

July 17th, 2018

Dear Valued Customer,

[Notice] Change of Assembly factory for QFP (Quad Flat Package)

First of all, we would like to take this opportunity to thank you for the excellent business relationship between the two companies and we look forward to a successful ongoing partnership in the future.

Our limited assembly capacity causes some delivery problems in recent high demand situations. To improve such situations, we'd like to change our assembly process for some QFP(Quad Flat Package) products to our contracted assembly factory having more capacity. We have enough experiences to utilize the factory, so we judged to keep the same quality level with the current. The detail information is referred to the attached documents. We appreciate your understanding and cooperation.

1. Change of Assembly factory

Current location: Singapore Epson Industrial Pte Ltd. (SEP) New location: Advanced Semiconductor Engineering, Inc. Chung-Li (ASECL)

2. Material and Specification change

There is no specification change in your operation, though mold resin, lead frame and thickness of IC chip are changed to follow the contracted factory's standard. The detail information is referred to the attached documents.

3. Objective parts :

Please refer to the attached documents.

4. Schedule :

The products assembled in the contracted factory will be shipped after December 2018 onwards. Concrete schedule will be defined by order volume and WIP status, and it will be informed by our sales representatives.

5. Last order information: Effective last order date: _26th December, 2018 Last shipment date:

30th June, 2019

*It's appreciated to receive your requests or inquiries about this change by 28th September, 2018.

Sincerely yours 12

Hiroshi Ota General Manager of IC Sales Department **Device Sales & Marketing Department** SEIKO EPSON CORPORATION

SEIKO EPSON CORPORATION

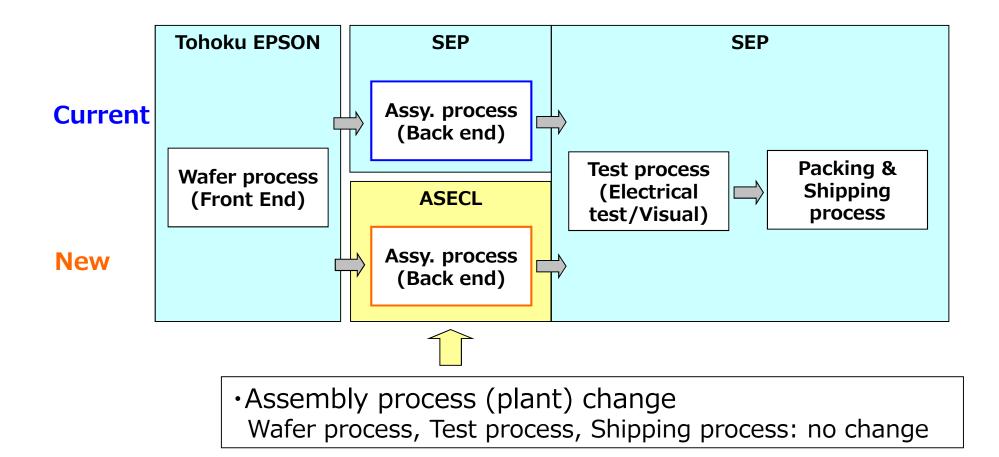
HEAD OFFICE 3-3-5 Owa, Suwa-shi, Nagano-ken 392-8502 JAPAN TEL +81 266-52-3131 FAX +81 266-53-4844 HINO OFFICE 421-8, Hino, Hino-shi, Tokyo, 191-8501, JAPAN TEL +81 42-587-5313 FAX +81 42-587-5116

Package Product Assembly Plant & Material Change

QFP22-208pin (P-LQFP208-2828-0.50) QFP22-256pin (P-LQFP256-2828-0.40)

SEIKO EPSON CORPORATION Microdevices Operations Division

Confidential © SEIKO EPSON CORPORATION 2018. All rights reserved.


Table of contents

- Description of Change Production Site / Flow Changing points
- Verification
 - Verification Results of Changing points /Concerns Reliability Test Results of EC parts List of Product Comparisons
- Summary of Verification Results
- ◆ Appendix
 - Outline of our subcontractor Volume of Business for Epson

Description of Change : Production Site / Flow

SEP : Singapore Epson Industrial Pte Ltd.

ASECL : Advanced Semiconductor Engineering, Inc. Chung-Li

Doc# Q22_std_eg

Item	Current	New	Changing point	Reason
Lead frame	Cu frame with slit on die- pad	Cu frame without slit on die-pad	Dimension	Take standard lead-frame at subcontractor
Mold Compound	CV8000series Flammability: UL-94 V-0 Halogen free	EME-G600series Flammability: UL-94 V-0 Halogen free	Material	Take standard mold compound at subcontractor
IC Chip Thickness	400um	300um	Thickness	Take standard thickness and process condition at subcontractor

These are their standard materials of our subcontractor.
Our subcontractor has produced over 1000Mpcs in this condition as their standard since 2009.

Verification : Verification Results of Changing points /Concerns

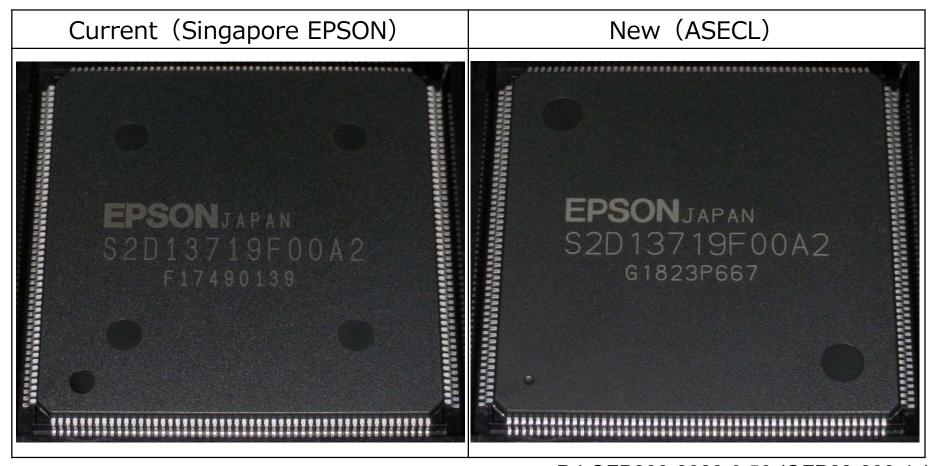
Item	Changing points	Concerns	Verification item	Result
		Dimensions /Tolerance	Dimensions data	Pass
Lead frame	Dimension	Lead strength	Lead strength test	Pass
		Solderbility	Solderbility test	Pass
Mold Compound	Material	Reliability	Reliability test	Pass
IC Chip Thickness	Thickness	Reliability	Reliability test	Pass

 \cdot We evaluated each verification items. Any problem was not found in our evaluation.

Verification : Reliability Test Results of EC parts EPSON

Test Item	Test Condition	Sample size	Test Duration	Failure Count	Judge ment
High Temp with Bias Test	125℃, Absolute Maximum Rating Voltage	135	1,000 H	0	Pass
High Temp and High Humidity with Bias Test	85℃, 85%RH, Absolute Maximum Rating Voltage	135	1,000 H	0	Pass
High Temp storage Test	Ta=150℃	45	1,000 H	0	Pass
Temp cycle Test	-65℃~150℃ each more than 10 minute	45	200 сус.	0	Pass
Pressure cooker Test	Ta=121℃, 100% 2.0E5 Pa	45	200 H	0	Pass
Resistance to soldering heat Test	Pre-Conditioning → Reflow 265°C	45	3 Times	0	Pass
Lead strength (Pull)	Tension 2.5N, 30sec	22	1 Time	0	Pass
Lead strength (Bending)	Bend 30°	22	2 Times	0	Pass
Solderability1	Steam aging 4h \rightarrow Solder dipping 245°C, 5sec	22	1 Time	0	Pass
Solderability2	150℃,16h → Solder dipping 245℃, 5sec	22	1 Time	0	Pass

•We judged that the Engineering change had no problem, based on the test result performed in the same condition as our current parts.


Item	Item Contents	
Comparison of Appearance	Package Appearance Our general products QFP22-208pin QFP22-256pin	P8 P9
Comparison of External dimension	Measurement points of dimension (drawing) Measurement result of external dimension QFP22-208pin QFP22-256pin	P10 P11 P12
Comparison of Lead frame QFP22-208pin QFP22-256pin	X-ray photo Our general products QFP22-208pin QFP22-256pin	P13 P14

Comparison data and photo are shown on each page. As a typical photo, we explain with our general product.

Verification : Comparison of Appearance

It shows comparison photos before and after change.

•The difference in appearance is as follows. P-LQFP208-2828-0.50 (QFP22-208pin) Index mark shape / Ejector pin location and size

There are no change of external dimension and its tolerance.

※ These are the pictures of Epson's general product for reference.

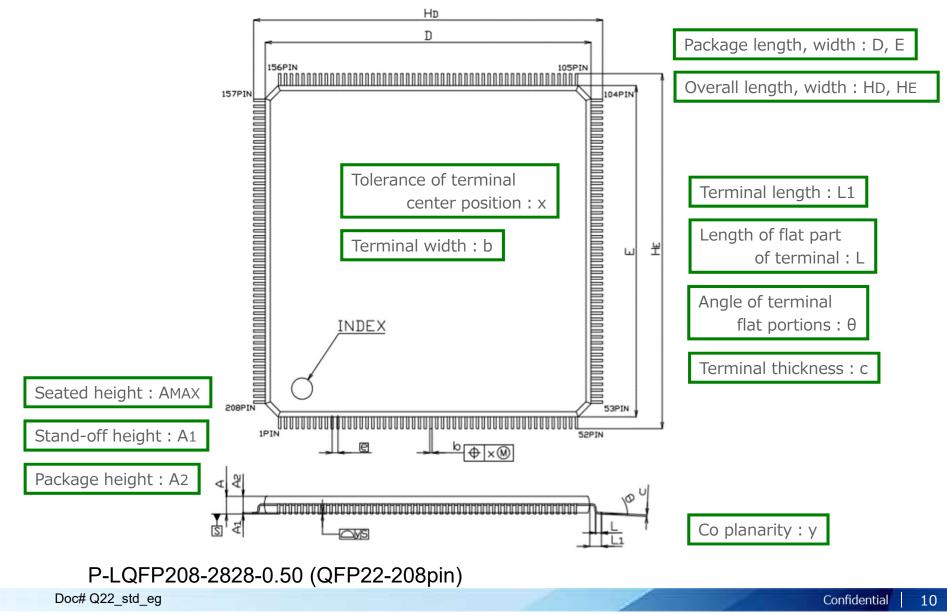
Verification : Comparison of Appearance

It shows comparison photos before and after change.

•The difference in appearance is as follows.

P-LQFP256-2828-0.40 (QFP22-256pin)

Index mark shape / Ejector pin location and size


There are no change of external dimension and its tolerance.

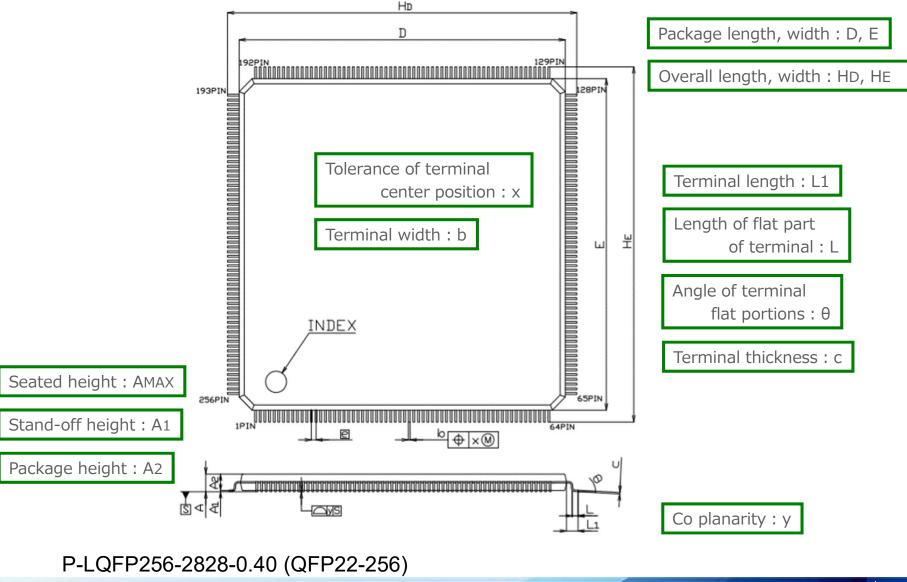
※ These are the pictures of Epson's general product for reference.

Verification : External Dimension

Comparison of each dimension before / after the change.

Verification : Measurement Results of External Dimension

単位	(mr	n)
	(•••


Item / Spec.		Current (Singapore EPSON)		New (ASECL)	
		Average	Cpk	Average	Cpk
E	28±0.1	28.017	6.78	28.004	6.92
D	28±0.1	28.012	8.50	28.002	6.84
HE	30±0.4	29.990	17.53	29.987	26.43
HD	30±0.4	30.030	28.33	29.994	21.97
Амах	Max 1.7	1.600	3.26	1.553	8.76
A1	0.1 ±0.1	0.084	3.54	0.092	4.45
A2	1.4±0.1	1.412	8.94	1.392	7.09
b	0.17~0.27	0.191	2.59	0.219	3.30
с	0.09~0.2	0.160	30.01	0.152	20.29
θ	0~10°	3.9°	1.92	3.5°	1.91
L	0.3~0.75	0.559	2.23	0.530	2.09
L1	1±0.2	1.000	1.86	0.993	4.05
x	Max 0.08	0.009	2.57	0.003	6.06
У	Max 0.08	0.050	2.39	0.029	6.74

•Judged no problem, because measurement data of each dimension shows over Cpk1.67.

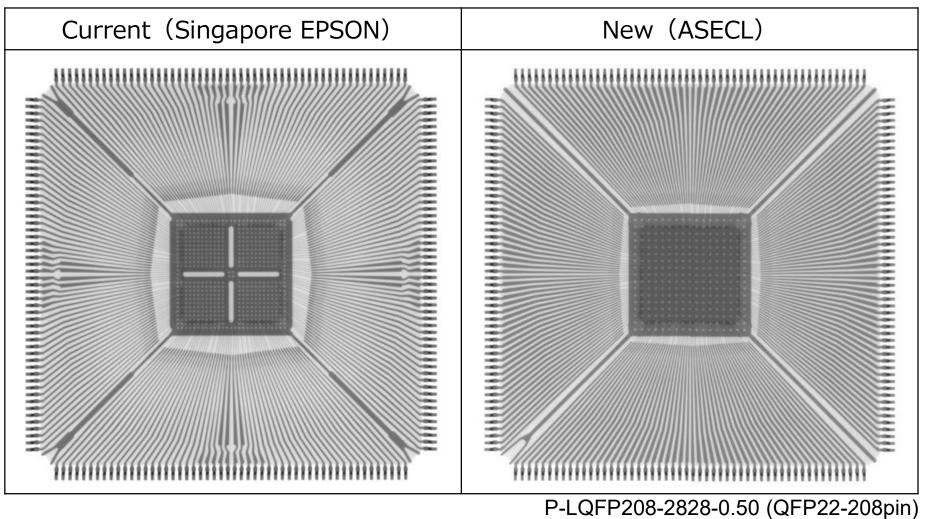
Verification : External Dimension

Comparison of each dimension before / after the change.

Doc# Q22_std_eg

Verification : Measurement Results of External Dimension

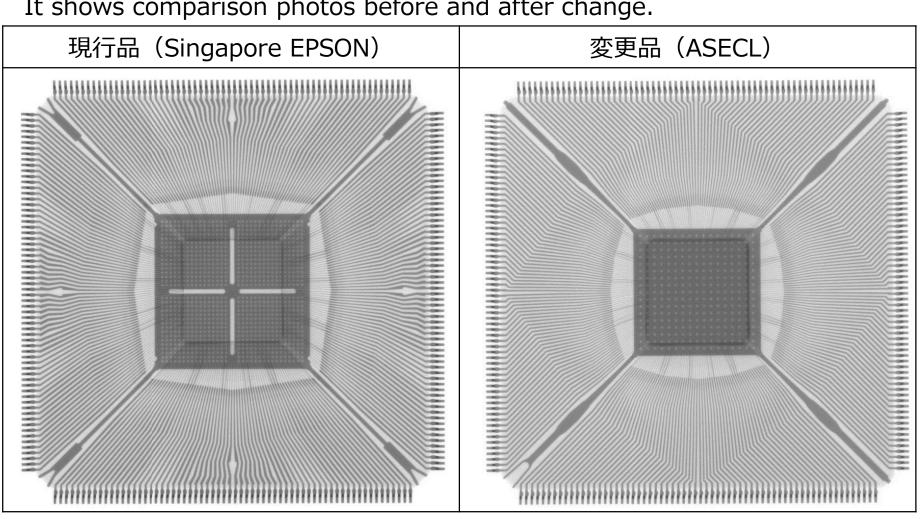
					<u> </u>
Item / Spec.		Current (Singapore EPSON)		New (ASECL)	
		Average	Cpk	Average	Cpk
E	28±0.1	28.021	2.22	28.023	5.13
D	28±0.1	28.029	4.96	28.017	2.47
HE	30±0.4	30.004	42.75	30.001	34.29
HD	30±0.4	30.019	42.07	29.993	57.70
Амах	Max 1.7	1.560	7.01	1.532	5.00
A1	0.1 ±0.1	0.087	5.60	0.075	5.25
A2	1.4±0.1	1.415	14.77	1.401	5.97
b	0.13~0.23	0.165	2.52	0.172	3.47
С	0.09~0.2	0.167	44.99	0.144	55.57
θ	0~10°	5.1°	3.06	5.7°	2.11
L	0.3~0.75	0.542	2.89	0.507	3.84
L1	1±0.2	0.994	1.82	0.988	3.49
х	Max 0.08	0.006	3.21	0.003	5.03
У	Max 0.08	0.029	3.88	0.027	1.95


•Judged no problem, because measurement data of each dimension shows over Cpk1.67.

単位 (mm)

Verification : Comparison of Lead frame (X-ray photo)

It shows comparison photos before and after change.


•Resistance to soldering heat (MSL) is same.

※ These are the pictures of Epson's general product for reference.

Doc# Q22_std_eg

Verification : Comparison of Lead frame (X-ray photo)

It shows comparison photos before and after change.

P-LQFP256-2828-0.40 (QFP22-256pin)

•Resistance to soldering heat (MSL) is same.

X These are the pictures of Epson's general product for reference.

Doc# Q22_std_eg

•Lead frame Material, External dimension : no change Lead strength and Solderability : equal to current parts

•Mold Compound Material Resistance to soldering heat, Reliability : equal to current parts Flammability (UL-94 V-0), Halogen Free compliance : no change

IC Chip Thickness
 Change of IC chip thickness has no influence to IC chip itself.

•Conclusion

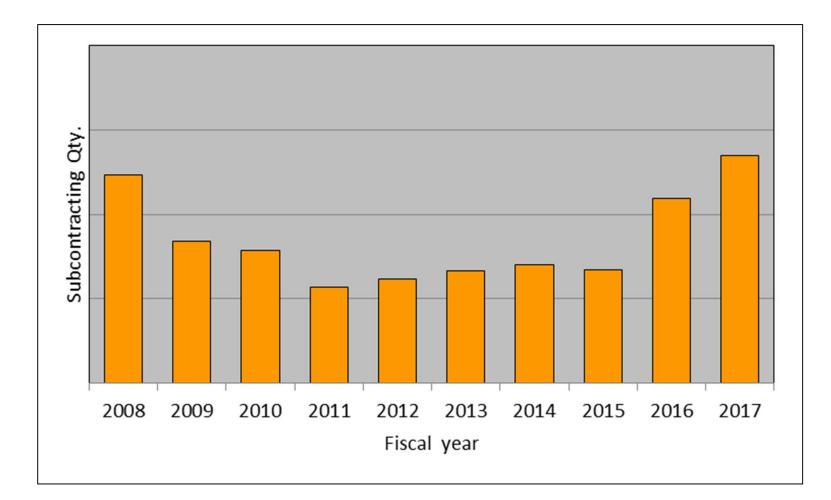
We judged that there was no concern about new parts, because any problems were not found in our evaluation. We also refer to the fact that our subcontractor has produced over 1000Mpcs in this condition as their standard since 2009.

-> You can take the EC parts in your production by current handling way without any adjustment.

Appendix : Outline of our subcontractor

ASE Group Chung-Li (ASECL) <u>http://www.asecl.aseglobal.com/</u>

(ASE; Advanced Semiconductor Engineering, Inc.)


Address	550,Chung-Hwa Road Section 1 Chung-Li, 320, Taiwan, R.O.C		
Site area	6.4ha		
Business offerings	IC package Packaged IC test IC package material (Flip-chip package substrates)		
Quality systems	ISO9001:2015August 2017(Org. Jul. 2003)IATF16949:2016August 2017(Org. Jul. 2003)ISO1401:2016November 2018(Org. Nov. 2002)		
	1999 M&A Plant by Motorola Inc.2003 QFP production start2004 BGA production start		
Other	W/W Number One OSAT(Outsourced Semiconductor Assembly & Test) company. Sales : ASE total NT\$240.4B (US\$7.9B) Packaging service NT\$126.2B (US\$4.2B) [2017 ASE IR Report]		

<Location of ASECL> 士林區 重市台北市之基隆市 統 台北市 • • 基隆市 桃園縣 新店市 台北縣 新竹市 0 新竹 赤柯山 宜蘭市 ● 台中市 ogle Map より 新竹縣 ASE Group 花蓮縣 Chung Li Factory (中壢) 嘉義市 台湾 台南市の ma minne 高雄市 ASE Group Head Office Factory (高雄)

Appendix : Volume of Business for Epson

Epson started subcontracting production to ASECL from CY2003. The average of our volume of business was over 17Mpcs per year in the last ten years.

