

Compact, Low Power Consumption, Triple SPDT (Triple 2:1 Multiplexers)

DESCRIPTION

The DG9454 is a triple SPDT (triple 2:1 multiplexers) with enhanced performance on low power consumption, while guarantees 1.8 V logic compatible over the full operation voltage range.

The DG9454 is designed to operate from a + 2.7 V to + 13.2 V supply at V+, and + 2.5 V to + 5.5 V at $V_{\rm I}$.

The DG9454 is a high precision switch of low parasitic capacitance, low leakage, low charge injection, and fast switching speed.

Processed with advanced CMOS technology, the DG9454 conducts equally well in both directions, offers rail to rail analog signal handling and can be used both as multiplexers as well as de-multiplexers.

The advantages of DG9454 at size, weight, power consumption, and low voltage control capability make it ideal for portable consumer applications such as 3D glasses (3D goggles). Its precise switching, wide dynamic range, and low parasitic characters make it a high performance switch for healthcare, data acquisition, and instrument products.

The DG9454 operating temperature is specified from - $40 \, ^{\circ}$ C to + $85 \, ^{\circ}$ C and are available and the ultra compact 1.8 mm x 2.6 mm miniQFN16 packages.

As a comitted partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device terminations. DG9454 is offered in a miniQFN package. The miniQFN package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-E4" suffix. The nickel-palladium-gold device terminations meet all JEDEC standards for reflow and MSL ratings.

FEATURES

- Operates with V+ = 2.7 V to 13.2 V;
 V₁ = 2.5 V to 5.5 V
- Pb-free

COMPLIANT

HALOGEN

FREE

- Guaranteed 1.8 V logic control at full V+ range
- Low power consumption, < 1 μA
- High bandwidth: 540 MHz
- Low charge injection over the full signal range (less than 0.9 pQ)
- Low switch capacitance (C_{s(off)} 2 pF typ.)
- Good isolation and crosstalk performance (typ. 65 dB at 10 MHz)
- Compact and light miniQFN16 package (1.8 mm x 2.6 mm)
- Compliant to RoHS Directive 2002/95/EC
- Halogen-free according to IEC 61249-2-21 definition

APPLICATIONS

- · 3D glasses (goggles)
- Touch panels
- Data acquisition
- · Medical and healthcare devices
- · Control and automation equipments
- · Test instruments

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking: 5xx for DG9454 (miniQFN16)

xx = Date/Lot Traceability Code

TRUTH TAB	TRUTH TABLE									
Enable		Select Inputs		On Switches						
Input	С	В	Α	DG9454						
Н	Х	X	X	All Switches Open						
L	L	L	L	X to X0, Y to Y0, Z to Z0						
L	L	L	Н	X to X1, Y to Y0, Z to Z0						
L	L	Н	L	X to X0, Y to Y1, Z to Z0						
L	L	Н	Н	X to X1, Y to Y1, Z to Z0						
L	Н	L	L	X to X0, Y to Y0, Z to Z1						
L	Н	L	Н	X to X1, Y to Y0, Z to Z1						
L	Н	Н	L	X to X0, Y to Y1, Z to Z1						
L	Н	Н	Н	X to X1, Y to Y1, Z to Z1						

ORDERING INFORMATION								
Temp. Range	Temp. Range Package Part Number							
DG9454	DG9454							
- 40 °C to 125 °C ^a	16-Pin miniQFN	DG9454EN-T1-E4						

Notes:

a. - 40 °C to 85 °C datasheet limits apply.

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)								
Parameter		Limit	Unit					
Digital Inputs ^a , V _S , V _D , V _L		GND - 0.3 to (V+) + 0.3 or 30 mA, whichever occurs first	V					
V+ to GND		14						
Continuous Current (Any terminal)		30	1					
Peak Current, S or D (Pulsed 1 ms	, 10 % duty cycle)	100	mA mA					
Storage Temperature		- 65 to 150	°C					
Power Dissipation ^b	16-Pin miniQFN ^{c, d}	525	mW					
Thermal Resistance ^b	16-Pin miniQFN ^d	152	°C/W					
Latch-up (per JESD78)	•		mA					

Notes:

- a. Signals on SX, DX, V₁ or INX exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board. c. Derate 6.6 mW/°C above 70 °C.
- d. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

SPECIFICATIONS FOR UNIPOLAR SUPPLIES										
		Test Conditions			- 40 °C to	+ 125 °C	- 40 °C to	o + 85 °C		
Parameter	Symbol	Unless Otherwise Specified $V_{CC} = + 12 \text{ V}, V_L = 2.7 \text{ V}$ $V_{IN(A, B, C \text{ and enable})} = 1.6 \text{ V}, 0.5 \text{ V}^a$	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit	
Analog Switch										
Analog Signal Range ^e	V _{ANALOG}		Full		0	12	0	12	٧	
On-Resistance	R _{DS(on)}	$I_S = 1 \text{ mA}, V_D = 0.7 \text{ V}, 6.0 \text{ V}, 11.3 \text{ V}$	Room Full	80		120 143		120 137		
On-Resistance Match	ΔR _{ON}	$I_S = 1 \text{ mA}, V_D = + 0.7 \text{ V}$	Room Full	4		7 10		7 8	Ω	
On-Resistance Flatness	R _{FLATNESS}	I _S = 1 mA, V _D = 0.7 V, 6.0 V, 11.3 V	Room Full	32		26 30		26 28		

SPECIFICATIONS	FOR U	NIPOLAR SUPPLI	ES							
		Test Condition Unless Otherwise Sp				- 40 °C to	+ 125 °C	- 40 °C to	o + 85 °C	
Parameter	Symbol	$V_{CC} = + 12 \text{ V}, V_L = 200 \text{ V}$ $V_{IN(A, B, C \text{ and enable})} = 1.600 \text{ V}$	2.7 V	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch	Oyllibol	VIN(A, B, C and enable) - 1.0	y, 0.5 v	Temp.	iyp.	IVIIII.	wax.	141111.	IVIAX.	Oiii
Switch Off	I _{S(off)}	V+ = + 13.2 V, V _L =	2.7 V	Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	
Leakage Current	I _{D(off)}	$V_D = 1 \text{ V}/12.2 \text{ V}, V_S = 12$		Room	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	nA
Channel On Leakage Current	I _{D(on)}	$V+ = + 13.2 \text{ V}, V_L = V_D = V_S = 1 \text{ V}/12.1$		Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	
Digital Control		В 3 -								
Logic Low Input Voltage	V _{INL}			Full			0.5		0.5	
Logic High Input Voltage	V _{INH}	$V_{L} = 2.7 \text{ V}$		Full		1.6		1.6		V
Logic Low Input Current	IL	V _{IN} A0, A1, A2 and e under test = 0.5		Full	0.01	- 1	1	- 1	1	
Logic High Input current	I _H	V _{IN} A0, A1, A2 and e above test = 1.6		Full	0.01	- 1	1	- 1	1	- μΑ
Dynamic Characteristics					L		L	L	L	
Transition Time	t _{TRANS}			Room Full	80		135 205		135 170	
Enable Turn-On Time	t _{ON(EN)}	$R_L = 300 \Omega$, $C_L = 35 pF$ see figure 1, 2, 3		Room Full	115		180 250		180 215	- ns
Enable Turn-Off Time	t _{OFF(EN)}			Room Full	46		110 180		110 145	
Break-Before-Make Time Delay	t _D			Room Full	37	12		12		
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega, V$	_{GEN} = 0 V	Full	0.86					рС
	OIRR		100 kHz	Room	< - 90					
Off Isolation ^e			1 MHz	Room	- 80					
		f = 1 MHz, $R_L = 50 Ω$, $C_L = 5 pF$	10 MHz	Room	- 61					dB
•	V	nL = 50 12, OL = 5 PF	100 kHz	Room	< - 90					_
Crosstalk ^e	X _{TALK}		1 MHz	Room	- 81					
Bandwidth, - 3dB ^e	BW	$R_L = 50 \Omega$	10 MHz	Room	- 65 540					MHz
		11[= 30 12								IVITIZ
Source Off Capacitance ^e	C _{S(off)}			Room	2					_
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz		Room	3					pF
Channel On Capacitance ^e	C _{D(on)}	0, , , , , ,		Room	6					
Total Harmonic Distortion ^e	THD	Signal = 1 V_{RMS} , 20 Hz to 20 kHz, R_L = 600 Ω		Room	0.01					%
Power Supply							ı	ı	1	
Power Supply Range	l+	$V_{IN(A, B, C \text{ and enable})} = 0 \text{ V}$	or + 12 V	Room Full	0.05		1 10		1 10	
Ground Current	I _{GND}	IN(M, D, O and enable) = 0 •		Room Full	0.05	- 1 - 10		- 1 - 10		μΑ
Logic Supply Current	ΙL	$V_L = 2.7 V$		Room Full	0.05		1 10		1 10	

- Notes:
 a. V_{IN} = input voltage to perform proper function.
 b. Room 25 °C, Full = as determined by the operating temperature suffix.
 c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
 d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
 e. Guaranteed by design, not subject to production test.

SPECIFICATIONS	FOR UN	IPOLAR SUPPLIES							
		Test Conditions			- 40 °C to	+ 125 °C	- 40 °C to	o + 85 °C	
_		Unless Otherwise Specified $V_{CC} = +5 \text{ V}, V_L = 2.7 \text{ V}$			d	d	d	4	
Parameter Analog Switch	Symbol	V _{IN(A, B, C and enable)} = 1.5 V, 0.6 V ^a	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch	V		F	1	0	<i>-</i>			V
Analog Signal Range ^e	V _{ANALOG}		Full	105	0	5 165	0	5 165	V
On-Resistance	R _{ON}	$I_S = 1 \text{ mA}, V_D = 0 \text{ V}, + 3.5 \text{ V}$	Room Full	105		205		194	
On-Resistance Match	ΔR_{ON}	$I_S = 1 \text{ mA}, V_D = +3.5 \text{ V}$	Room Full	3.2		8 13		8 10	Ω
On-Resistance Flatness	R _{FLATNESS}	$I_S = 1 \text{ mA}, V_D = 0 \text{ V}, + 3 \text{ V}$	Room Full	17		26 30		26 28	
Switch Off	I _{S(off)}	V+ = + 5.5 V, V- = 0 V	Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	
Leakage Current	I _{D(off)}	$V_D = 1 \text{ V}/4.5 \text{ V}, V_S = 4.5 \text{ V}/1 \text{ V}$	Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	nA
Channel On Leakage Current	I _{D(on)}	V+ = +5.5 V, V- = 0 V $V_D = V_S = 1 V/4.5 V$	Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	
Digital Control							l	l	
V _{IN(A, B, C and enable)} Low	V _{IL}	V _L = 2.7 V	Full			0.6		0.6	
V _{IN(A, B, C and enable)} High	V _{IH}	$V_{L} = 2.7 \text{ V}$	Full		1.5		1.5		V
Input Current, V _{IN} Low	Ι _L	V _{IN(A, B, C and enable)} under test = 0.6 V	Full	0.01	- 1	1	- 1	1	4
Input Current, V _{IN} High	Input Current, V _{IN} High I _H VIN(A, B, C and enable under test = 1.5 V		Full	0.01	- 1	1	- 1	1	μΑ
Dynamic Characteristics									
Transition Time	t _{TRANS}		Room Full	96		175 250		175 210	
Enable Turn-On Time	t _{ON}	$R_L = 300 \Omega$, $C_L = 35 pF$	Room Full	200		295 365		295 330	ns
Enable Turn-Off Time	t _{OFF}	see figure 1, 2, 3	Room Full	60		155 225		155 190	113
Break-Before-Make Time Delay	t _D		Room Full	50	20		20		
Charge Injection ^e	Q	$V_g = 0 \text{ V}, R_g = 0 \Omega, C_L = 1 \text{ nF}$	Full	0.4					рС
Off Isolation ^e	OIRR	B - 50 0 C - 5 pE	Room	< - 90					
Channel-to-Channel Crosstalk ^e	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$ f = 100 kHz	Room	< - 90					dB
Source Off Capacitance ^e	C _{S(off)}		Room	2					
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz	Room	4					рF
Channel On Capacitance ^e	C _{D(on)}		Room	7					
Power Supply									
Power Supply Current	l+	Vivva a construction of the construction of th	Room Full	0.05		1 10		1 10	
Ground Current	I _{GND}	$V_{IN(A, B, C \text{ and enable})} = 0 \text{ V or 5 V}$	Room Full	- 0.05	- 1 - 10		- 1 - 10		μΑ
Logic Supply Current	ΙL	$V_L = 2.7 V$	Room Full	0.05		1 10		1 10	

- Notes:
 a. V_{IN} = input voltage to perform proper function.
 b. Room 25 °C, Full = as determined by the operating temperature suffix.
 c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
 d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
 e. Guaranteed by design, not subject to production test.

		Test Condition Unless Otherwise Sp				- 40 °C to	+ 125 °C	- 40 °C to) + 85 °C	
_		$V_{CC} = +3 \text{ V}, V_1 = 2$	2.7 V	_ h		d	d	d	d	
Parameter	Symbol	V _{IN(A, B, C and enable)} = 1.5	5 V, 0.6 V ^a	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min.d	Max. ^d	Unit
Analog Switch	V			E					0	
Analog Signal Range ^e	V _{ANALOG}			Full	474	0	3	0	3	V
On-Resistance	R _{DS(on)}	$I_S = 1 \text{ mA}, V_D = 1.$	5 V	Room Full	171		265 310		265 289	Ω
Switch Off	I _{S(off)}	$V+ = 3.3 V, V_L = 2.3 V$		Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	
Leakage Current	I _{D(off)}	$V_D = 0.3 \text{ V}/3.0 \text{ V}, V_S = 3$		Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	nA
Channel On Leakage Current	I _{D(on)}	$V+ = 3.3 \text{ V}, V_L = 2$ $V_S = V_D = 0.3 \text{ V}/3$		Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	
Digital Control										
Logic Low Input Voltage	V_{INL}	V ₁ = + 2.7 V		Full			0.6		0.6	V
Logic High Input Voltage	V_{INH}	V + 2.7 V	V _L = + 2.7 V			1.5		1.5		V
Logic Low Input Current	ΙL	V _{IN} A0, A1, A2 and enable under test = 0.6 V		Full	0.01	- 1	1	- 1	1	μА
Logic High Input Current	l _Η	V _{IN} A0, A1, A2 and enable above test = 1.5 V		Full	0.01	- 1	1	- 1	1	μΑ
Dynamic Characteristics										
Transition Time	t _{TRANS}			Room Full	151		270 355		270 315	
Enable Turn-On Time	t _{ON(EN)}	$R_L = 300 \ \Omega, \ C_L = 3$	5 pF	Room Full	390		510 610		510 565	ns
Enable Turn-Off Time	$t_{OFF(EN)}$	see figure 1, 2,	3	Room Full	90		220 320		220 275	110
Break-Before-Make Time Delay	t _D			Room Full	90	35		35		
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega, V$	_{GEN} = 0 V	Full	0.5					рC
Off Isolation ^e	OIRR	$f = 1$ MHz, $R_L = 50$ Ω,	100 kHz	Room	< - 90					dB
Crosstalk ^e	X _{TALK}	$C_L = 5 pF$	100 kHz	Room	< - 90					ub
Source Off Capacitance ^e	C _{S(off)}			Room	2					
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz		Room	4					pF
Channel On Capacitance ^e	C _{D(on)}			Room	7					
Power Supply										
Power Supply Range	l+	VINVA D. C. and analysis = 0	V _{IN(A, B, C and enable)} = 0 V or + 3 V		0.05		1 10		1 10	
Ground Current	I _{GND}	· IIV(A, B, C and enable) — 0		Room Full	0.05	- 1 - 10		- 1 - 10		μΑ
Logic Supply Current	Ι _L	$V_1 = 2.7 \text{ V}$		Room Full	0.05		1 10		1 10	

- a. V_{IN} = input voltage to perform proper function.
 b. Room 25 °C, Full = as determined by the operating temperature suffix.
 c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e. Guaranteed by design, not subject to production test.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

VISHAY.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

On-Resistance vs. V_D and Signal Supply Voltage

On-Resistance vs. Analog Voltage and Temperature

500 $V_{CC} = 3.0 \text{ V}, V_{L} = 2.7 \text{ V}$ 450 $I_S = 1 \text{ mA}$ 400 R_{ON} - On-Resistance (Ω) 350 40 °C 300 + 85 °C + 125 °C 250 200 150 100 50 0 0 0.5 1.5 2.0 2.5 1.0 3.0 V_D - Analog Voltage (V)

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. Analog Voltage and Temperature

Switching Time vs. Temperature

+ 5 V

40 °C; $V_L = 5 V$

 $V_{IH} =$

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

3.0

2.8

40 °C to + 125 °C

6

 $V_{IL} = 125 \, ^{\circ}C; \, V_{L} = 5 \, V$

V+ - Supply Voltage (V) Switching Threshold vs. Logic Supply Voltage

8 9 10 11 12 13

Switching Threshold vs. Logic Supply Voltage

Charge Injection vs. Analog Voltage

Current vs. Frequency

TEST CIRCUITS

Figure 1. Transition Time

Figure 2. Enable Switching Time

Figure 3. Break-Before-Make

TEST CIRCUITS

Figure 4. Charge Injection

Figure 5. Insertion Loss

Figure 6. Off Isolation

Figure 7. Crosstalk

Figure 8. Source, Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg267185.

Thin miniQFN16 Case Outline

DIMENSIONS		MILLIMETERS (1)		INCHES				
DIMENSIONS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
А	0.50	0.55	0.60	0.020	0.022	0.024		
A1	0	-	0.05	0	-	0.002		
A3		0.15 ref.			0.006 ref.			
b	0.15	0.20	0.25	0.006	0.008	0.010		
D	2.50	2.60	2.70	0.098	0.102	0.106		
е		0.40 BSC			0.016 BSC	BSC		
Е	1.70	1.80	1.90	0.067	0.071	0.075		
L	0.35	0.40	0.45	0.014	0.016	0.018		
L1	0.45	0.50	0.55	0.018	0.020	0.022		
N (3)		16		16				
Nd ⁽³⁾		4 4						
Ne ⁽³⁾		4		4				

Notes

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: T16-0226-Rev. B, 09-May-16

DWG: 6023

RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.