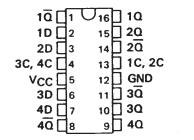
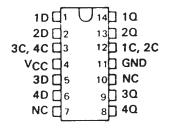
FUNCTION TABLE (each latch)

11	NPUTS	OUTPUTS				
D	С	a	ā			
L	Н	L	н			
Н	Н	Н	L			
X	L	Ο0	$\overline{\alpha}_0$			

H = high level, L = low level, X = irrelevant $Q_0 = the level of Q before the high-to-low transition of G$

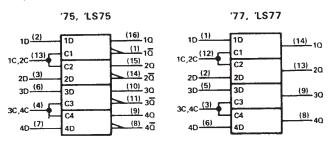

description

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (C) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.


The '75 and 'LS75 feature complementary Q and $\overline{\rm Q}$ outputs from a 4-bit latch, and are available in various 16-pin packages. For higher component density applications, the '77 and 'LS77 4-bit latches are available in 14-pin flat packages.

These circuits are completely compatible with all popular TTL families. All inputs are diode-clamped to minimize transmission-line effects and simplify system design. Series 54 and 54LS devices are characterized for operation over the full military temperature range of –55°C to 125°C; Series 74, and 74LS devices are characterized for operation from 0°C to 70°C.

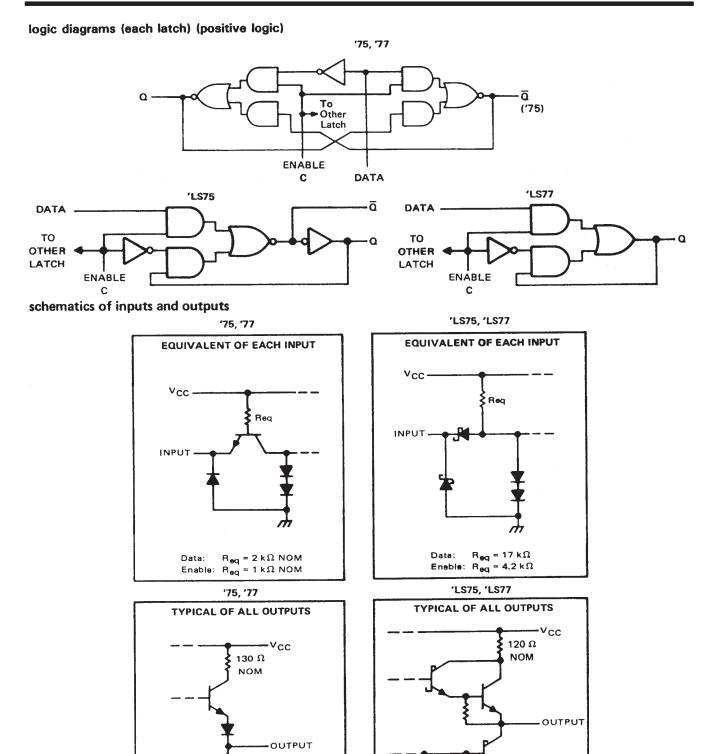
SN5475, SN54LS75 . . . J OR W PACKAGE SN7475 . . . N PACKAGE SN74LS75 . . . D OR N PACKAGE (TOP VIEW)



SN5477, SN54LS77 . . . W PACKAGE (TOP VIEW)

NC - No internal connection

logic symbols†


[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (See Note 1) .	
Input voltage: '75, '77	5.5 V
	5.5 V
Operating free-air temperature range	: SN54′ – 55°C to 125°C
, ,	SN74' 0° C to 70°C
Storage temperature range	65°C to 150°C

NOTES: 1. Voltage values are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter input transistor and is not applicable to the 'LS75 and 'LS77.

recommended operating conditions

	SN54	SN5475, SN5477			SN7475		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			-400	μΑ
Low-level output current, IOL			16			16	mA
Width of enabling pulse, tw	20			20			กร
Setup time, t _{SU}	20			20			ns
Hold time, th	5			5			ns
Operating free-air temperature, TA	55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CO	ONDITIONS [†]	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			٧
VIL	Low-level input voltage						8.0	V
VIK	Input clamp voltage		V _{CC} = MIN,	I _I = -12 mA			-1.5	V
VoH	High-level output voltage		V _{CC} = M1N, V _{1L} = 0.8 V,	V _{1H} = 2 V, I _{OH} = -400 μA	2.4	3.4		٧
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4	٧
11	Input current at maximum input voltage		V _{CC} = MAX,	V _I = 5.5 V			1	mA
ЧН	High-level input current	D input C input	V _{CC} = MAX,	V _I = 2.4 V			80 160	μΑ
1	Low level input purront	D input	V _{CC} = MAX,	V ₁ = 0.4 V			-3.2	mA
!IL	Low-level input current	C input	VCC - WAA,	V1 - 0.4 V			-6.4	'''
	Short-circuit output current §		V MAY	SN54'	-20		-57	mA
los	Short-circuit output currents		V _{CC} = MAX	SN74'	-18		-57	
	Supply gurrant		V _{CC} = MAX,	SN54'		32	46	mA
ICC	Supply current		See Note 3	SN74'		32	53	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH					16	30	
^t PHL	P	Q			14	25	ns
tPLH¶	D	ā	C. = 15 nE		24	40	ns
tPHL¶	1 "	1	$C_L = 15 pF,$ $R_L = 400 \Omega,$		7	15	1 "
tPLH		a	See Figure 1		16	30	ns
^t PHL	C	1	See rigure 1		7	15] '''
¹PLH¶		ā	7		16	30	ns
tPHL¶	C	· ·			7	15	1113

 $t_{PLH} \equiv propagation delay time, low-to-high-level output$

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.

Not more than one output should be shorted at a time.

NOTE 3: I_{CC} is tested with all inputs grounded and all outputs open.

tpHL = propagation delay time, high-to-low-level output

These parameters are not applicable for the SN5477.

SN5475, SN5477, SN54LS75, SN54LS77 SN7475, SN74LS75 **4-BIT BISTABLE LATCHES**

SDLS120 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

	1	SN54LS75 SN54LS77			SN74LS75		
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μΑ
Low-level output current, IQL			4			8	mA
Width of enabling pulse, tw	20			20			ns
Setup time, t _{su}	20			20			ns
Hold time, th	5			5			ns
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST	TEST CONDITIONS [†]					S	75	UNIT	
			MIN	TYP‡	MAX	MIN	TYP [‡]	MAX			
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	l ₁ = -18 mA				-1.5			-1.5	٧
VOH	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400	μA	2.5	3.5		2.7	3.5		٧
		V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	l v
VOL	Low-level output voltage	VIL = VIL max		I _{OL} = 8 mA					0.35	0.5	
	Input current at			D input			0.1			0.1	mA
Ц	maximum input voltage	VCC = MAX,	V ₁ = 7 V	C input			0.4			0.4	
			V = 2.7.V	D input			20			20	μА
ЧН	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V	C input			80			80	
				D input			-0.4			-0.4	mA
HL	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V	C input			-1.6			-1.6	<u> </u>
los	Short-circuit output current§	V _{CC} = MAX			-20		-100	-20		-100	mA
		14 - MAY	Can Note 2	'LS75		6.3	12		6.3	12	mA
1CC	Supply current	V _{CC} = MAX,	See Note 2	'LS77	T	6.9	13				

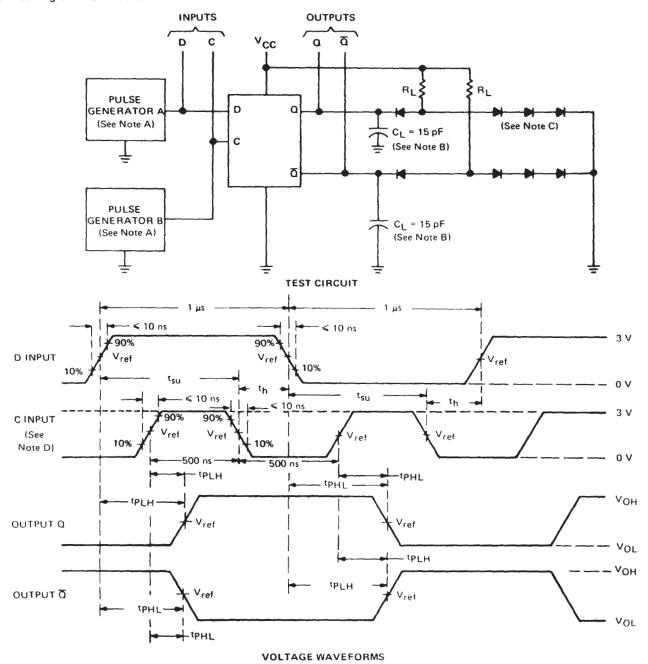
[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25° C

	FROM	то			'LS75			'LS77		UNIT
PARAMETER¶	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	OIVII
tPLH					15	27		11	19	ns
tPHL	P	Q			9	17	Ī	9	17	
tPLH		-	_		12	20				ns
tPHL	D	ā	C _L = 15 pF,		7	15				,,,,
tPLH	1		R _L = 2 kΩ,		15	27		10	18	ns
tPHL	С	Q	See Figure 1		14	25		10	18	
tPLH		=			16	30				ns
^t PHL	С	ā			7	15				

[¶] tp_H = propagation delay time, low-to-high-level output

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second

NOTE 2: ICC is tested with all inputs grounded and all outputs open.

 t_{PLH} = propagation delay time, high-to-low-level output

switching characteristics[†]

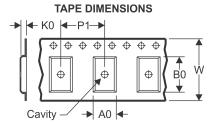
PARAMETER MEASUREMENT INFORMATION

 $^{\dagger}\text{Complementary Q}$ outputs are on the '75 and 'LS75 only.

NOTES: A. The pulse generators have the following characteristics: Z_{OUT} ≈ 50 Ω; for pulse generator A, PRR ≤ 500 kHz; for pulse generator B, PRR ≤ 1 MHz. Positions of D and C input pulses are varied with respect to each other to verify setup times.

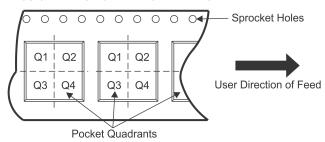
- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.
- D. When measuring propagation delay times from the D input, the corresponding C input must be held high.
- E. For '75 and '77, V_{ref} = 1.5 V; for 'LS75 and 'LS77, V_{ref} = 1.3 V.

FIGURE 1

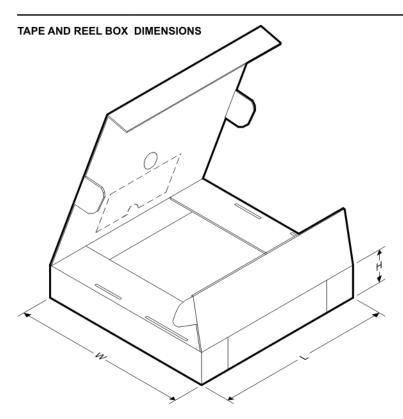


PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022


TAPE AND REEL INFORMATION

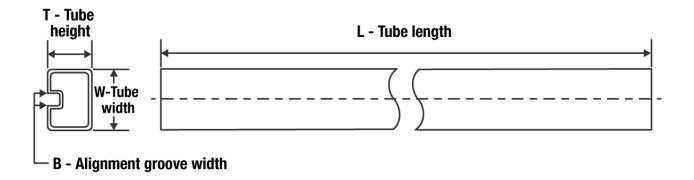
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	_	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS75DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS75NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 5-Jan-2022


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS75DR	SOIC	D	16	2500	340.5	336.1	32.0
SN74LS75NSR	SO	NS	16	2000	853.0	449.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LS75D	D	SOIC	16	40	507	8	3940	4.32
SN74LS75N	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS75N	N	PDIP	16	25	506	13.97	11230	4.32

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated