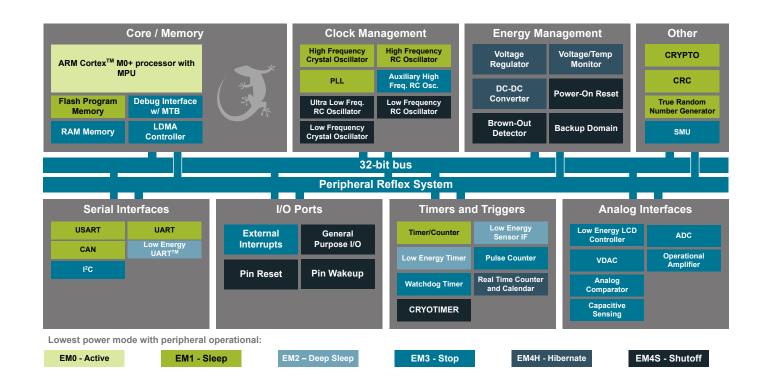


EFM32 Tiny Gecko 11 Family Reference Manual

The EFM32 Tiny Gecko MCUs are the world's most energy-friendly microcontrollers, featuring new connectivity interfaces and user interface features.


EFM32TG11 includes a powerful 32-bit ARM® Cortex®-M0+ and provides robust security via a unique cryptographic hardware engine supporting AES, ECC, SHA, and True Random Number Generator (TRNG). New features include a CAN bus controller, highly robust capacitive sensing, and LESENSE/PCNT enhancements for smart energy meters. These features, combined with ultra-low current active mode and short wake-up time from energy-saving modes, make EFM32TG11 microcontrollers well suited for any battery-powered application, as well as other systems requiring high performance and lowenergy consumption.

Example applications:

- · Smart energy meters
- · Industrial and factory automation
- · Home automation and security
- · Entry-level wearables
- · Personal medical devices
- · IoT devices

ENERGY FRIENDLY FEATURES

- · ARM Cortex-M0+ at 48 MHz
- · Ultra low energy operation
- · CAN 2.0 Bus Controller
- Low energy analog peripherals: ADC, DAC, OPAMP, Comparator, Segment LCD
- Hardware cryptographic engine supports AES, ECC, SHA, and TRNG
- · Robust capacitive touch sense
- Footprint compatible with select EFM32 packages
- 5 V tolerant I/O

Table of Contents

1.	1. About This Document				. 29
	1.1 Introduction	 			.29
	1.2 Conventions	 			.29
	1.3 Related Documentation	 			.30
2.	2. System Overview	 			31
	2.1 Introduction				
	2.2 Features				
	2.3 Block Diagram				
	2.4 Energy Modes				
	2.5 Timers				
3.	3. System Processor				
	3.1 Introduction	 	 •		.36
	3.2 Features	 			.37
	3.3 Functional Description				
	3.3.1 Interrupt Operation				
	3.3.2 Interrupt Request Lines (IRQ)				
4.	4. Memory and Bus System				
	4.1 Introduction	 			.40
	4.2 Functional Description				
	4.2.1 Peripheral Non-Word Access Behavior				
	4.2.3 Peripherals				
	4.2.4 Bus Matrix				
	4.3 Access to Low Energy Peripherals (Asynchronous Registers)	 			.48
	4.3.1 Writing	 			.49
	4.3.2 Reading				
	4.3.3 FREEZE Register				
	4.4 Flash				
	4.5 SRAM				
	4.6 DI Page Entry Map				
	4.7 DI Page Entry Description				
	4.7.1 CAL - CRC of DI-page and calibration temperature				
	4.7.3 MEMINFO - Flash page size and misc. chip information				
	4.7.4 UNIQUEL - Low 32 bits of device unique number				
	4.7.5 UNIQUEH - High 32 bits of device unique number				
	4.7.6 MSIZE - Flash and SRAM Memory size in kB				
	4.7.7 PART - Part description				
	1.7.5 DEVITA CITE DEVICE INFORMATION PAGE ICVISION	 			.00

4.7.9	EMUTEMP - EMU Temperature Calibration Information	60
4.7.10	ADC0CAL0 - ADC0 calibration register 0	61
4.7.11	ADC0CAL1 - ADC0 calibration register 1	62
4.7.12	ADC0CAL2 - ADC0 calibration register 2	63
4.7.13	ADC0CAL3 - ADC0 calibration register 3	63
4.7.14	HFRCOCAL0 - HFRCO Calibration Register (4 MHz)	64
4.7.15	HFRCOCAL3 - HFRCO Calibration Register (7 MHz)	65
4.7.16	HFRCOCAL6 - HFRCO Calibration Register (13 MHz)	66
4.7.17	HFRCOCAL7 - HFRCO Calibration Register (16 MHz)	67
4.7.18	HFRCOCAL8 - HFRCO Calibration Register (19 MHz)	68
4.7.19	HFRCOCAL10 - HFRCO Calibration Register (26 MHz)	69
4.7.20	HFRCOCAL11 - HFRCO Calibration Register (32 MHz)	70
4.7.21	HFRCOCAL12 - HFRCO Calibration Register (38 MHz)	71
4.7.22	HFRCOCAL13 - HFRCO Calibration Register (48 MHz)	72
4.7.23		73
4.7.24	AUXHFRCOCAL3 - AUXHFRCO Calibration Register (7 MHz)	74
4.7.25	AUXHFRCOCAL6 - AUXHFRCO Calibration Register (13 MHz)	75
4.7.26	AUXHFRCOCAL7 - AUXHFRCO Calibration Register (16 MHz)	76
4.7.27		77
4.7.28	5 , , ,	78
4.7.29	• • • • • • • • • • • • • • • • • • • •	79
4.7.30		80
4.7.31	AUXHFRCOCAL13 - AUXHFRCO Calibration Register (48 MHz)	81
4.7.32	• ,	82
4.7.33	•	83
4.7.34	•	84
4.7.35	<u> </u>	85
4.7.36	DCDCLPVCTRL0 - DCDC Low-power VREF Trim Register 0	85
4.7.37	DCDCLPVCTRL1 - DCDC Low-power VREF Trim Register 1	86
4.7.38	DCDCLPVCTRL2 - DCDC Low-power VREF Trim Register 2	87
4.7.39	DCDCLPVCTRL3 - DCDC Low-power VREF Trim Register 3	88
4.7.40	DCDCLPCMPHYSSEL0 - DCDC LPCMPHYSSEL Trim Register 0	88
4.7.41	DCDCLPCMPHYSSEL1 - DCDC LPCMPHYSSEL Trim Register 1	89
4.7.42		
4.7.43		
4.7.44	VDAC0CH1CAL - VDAC0 CH1 Error Cal	92
4.7.45	OPA0CAL0 - OPA0 Calibration Register for DRIVESTRENGTH 0, INCBW=1	93
4.7.46		94
4.7.47	· · · · · · · · · · · · · · · · · · ·	95
4.7.48		96
4.7.49		97
4.7.50		98
4.7.51		99
4.7.52		
4.7.53	•	
4.7.54	,	102
4.7.55		
	OPA1CAL3 - OPA1 Calibration Register for DRIVESTRENGTH 3 INCBW=1	104

	4.7.57 OPA1CAL4 - OPA1 Calibration Register for DRIVESTRENGTH 0, INCBW=0	105
	4.7.58 OPA1CAL5 - OPA1 Calibration Register for DRIVESTRENGTH 1, INCBW=0	106
	4.7.59 OPA1CAL6 - OPA1 Calibration Register for DRIVESTRENGTH 2, INCBW=0	107
	4.7.60 OPA1CAL7 - OPA1 Calibration Register for DRIVESTRENGTH 3, INCBW=0	108
	4.7.61 OPA2CAL0 - OPA2 Calibration Register for DRIVESTRENGTH 0, INCBW=1	109
	4.7.62 OPA2CAL1 - OPA2 Calibration Register for DRIVESTRENGTH 1, INCBW=1	110
	4.7.63 OPA2CAL2 - OPA2 Calibration Register for DRIVESTRENGTH 2, INCBW=1	111
	4.7.64 OPA2CAL3 - OPA2 Calibration Register for DRIVESTRENGTH 3, INCBW=1	112
	4.7.65 OPA2CAL4 - OPA2 Calibration Register for DRIVESTRENGTH 0, INCBW=0	113
	4.7.66 OPA2CAL5 - OPA2 Calibration Register for DRIVESTRENGTH 1, INCBW=0	114
	4.7.67 OPA2CAL6 - OPA2 Calibration Register for DRIVESTRENGTH 2, INCBW=0	115
	4.7.68 OPA2CAL7 - OPA2 Calibration Register for DRIVESTRENGTH 3, INCBW=0	116
	4.7.69 OPA3CAL0 - OPA3 Calibration Register for DRIVESTRENGTH 0, INCBW=1	117
	4.7.70 OPA3CAL1 - OPA3 Calibration Register for DRIVESTRENGTH 1, INCBW=1	118
	4.7.71 OPA3CAL2 - OPA3 Calibration Register for DRIVESTRENGTH 2, INCBW=1	119
	4.7.72 OPA3CAL3 - OPA3 Calibration Register for DRIVESTRENGTH 3, INCBW=1	120
	4.7.73 OPA3CAL4 - OPA3 Calibration Register for DRIVESTRENGTH 0, INCBW=0	
	4.7.74 OPA3CAL5 - OPA3 Calibration Register for DRIVESTRENGTH 1, INCBW=0	122
	4.7.75 OPA3CAL6 - OPA3 Calibration Register for DRIVESTRENGTH 2, INCBW=0	123
	4.7.76 OPA3CAL7 - OPA3 Calibration Register for DRIVESTRENGTH 3, INCBW=0	124
	4.7.77 CSENGAINCAL - Cap Sense Gain Adjustment	
_	DDC Debug luterfees	400
5.	DBG - Debug Interface	
	5.1 Introduction	. 126
	5.2 Features	. 126
	5.3 Functional Description	126
	5.3.1 Debug Pins	
	5.3.2 Debug and EM2 DeepSleep/EM3 Stop	
	5.3.3 Authentication Access Point	
	5.3.4 Debug Lock	
	5.3.5 AAP Lock	
	5.3.6 Debugger Reads of Actionable Registers	
	5.3.7 Debug Recovery	
	5.4 Register Map	
	5.5 Register Description	
	5.5.1 AAP_CMD - Command Register	
	5.5.2 AAP_CMDKEY - Command Key Register	
	5.5.3 AAP_STATUS - Status Register	
	5.5.4 AAP_CTRL - Control Register	
	5.5.5 AAP_CRCCMD - CRC Command Register	
	5.5.6 AAP_CRCSTATUS - CRC Status Register	
	5.5.7 AAP_CRCADDR - CRC Address Register	
	5.5.8 AAP_CRCRESULT - CRC Result Register	
	5.5.9 AAP_IDR - AAP Identification Register	. 134
6.	MSC - Memory System Controller	135
	6.1 Introduction	135

6.2 Features	136
6.3 Functional Description	137
6.3.1 User Data (UD) Page Description	137
6.3.2 Lock Bits (LB) Page Description	138
6.3.3 Device Information (DI) Page	138
6.3.4 Bootloader	139
6.3.5 Post-reset Behavior	139
6.3.6 Flash Startup	139
6.3.7 Wait-states	139
6.3.8 Instruction Cache	141
6.3.9 Low Voltage Flash Read	142
6.3.10 Erase and Write Operations	142
6.4 Register Map	143
6.5 Register Description	144
6.5.1 MSC_CTRL - Memory System Control Register	
6.5.2 MSC_READCTRL - Read Control Register	
6.5.3 MSC WRITECTRL - Write Control Register	146
6.5.4 MSC_WRITECMD - Write Command Register	
6.5.5 MSC_ADDRB - Page Erase/Write Address Buffer	
6.5.6 MSC_WDATA - Write Data Register	
6.5.7 MSC_STATUS - Status Register	
6.5.8 MSC_IF - Interrupt Flag Register	150
6.5.9 MSC_IFS - Interrupt Flag Set Register	151
6.5.10 MSC_IFC - Interrupt Flag Clear Register	
6.5.11 MSC_IEN - Interrupt Enable Register	153
6.5.12 MSC_LOCK - Configuration Lock Register	154
6.5.13 MSC_CACHECMD - Flash Cache Command Register	155
6.5.14 MSC_CACHEHITS - Cache Hits Performance Counter	155
6.5.15 MSC_CACHEMISSES - Cache Misses Performance Counter	156
6.5.16 MSC_MASSLOCK - Mass Erase Lock Register	157
6.5.17 MSC_IRQLATENCY - Irq Latency Register	158
6.5.18 MSC_STARTUP - Startup Control	159
6.5.19 MSC_CMD - Command Register	160
6.5.20 MSC_BOOTLOADERCTRL - Bootloader Read and Write Enable, Write Once Re	gister160
6.5.21 MSC_AAPUNLOCKCMD - Software Unlock AAP Command Register	161
6.5.22 MSC_CACHECONFIG0 - Cache Configuration Register 0	162
7. LDMA - Linked DMA Controller	163
7.1 Introduction	163
7.1.1 Features	
7.2 Block Diagram	165
7.3 Functional Description	166
7.3.1 Channel Descriptor	166
7.3.2 Channel Configuration	
7.3.3 Channel Select Configuration	171
7.3.4 Starting a Transfer	
7.3.5 Managing Transfer Errors	

7.3.6 Arbitration	172
7.3.7 Channel Descriptor Data Structure	174
7.3.8 Interaction With the EMU	
7.3.9 Interrupts	
7.3.10 Debugging	178
7.4 Examples	178
7.4.1 Single Direct Register DMA Transfer	179
7.4.2 Descriptor Linked List	180
7.4.3 Single Descriptor Looped Transfer	
7.4.4 Descriptor List With Looping	
7.4.5 Simple Inter-Channel Synchronization	
7.4.6 2D Copy	
7.4.7 Ping-Pong	
7.4.8 Scatter-Gather	189
7.5 Register Map	190
7.6 Register Description	191
7.6.1 LDMA_CTRL - DMA Control Register	191
7.6.2 LDMA_STATUS - DMA Status Register	
7.6.3 LDMA_SYNC - DMA Synchronization Trigger Register (Single-Cycle RMW) .	193
7.6.4 LDMA_CHEN - DMA Channel Enable Register (Single-Cycle RMW)	
7.6.5 LDMA_CHBUSY - DMA Channel Busy Register	
7.6.6 LDMA_CHDONE - DMA Channel Linking Done Register (Single-Cycle RMW)	
7.6.7 LDMA_DBGHALT - DMA Channel Debug Halt Register	
7.6.8 LDMA_SWREQ - DMA Channel Software Transfer Request Register	
7.6.9 LDMA_REQDIS - DMA Channel Request Disable Register	
7.6.10 LDMA_REQPEND - DMA Channel Requests Pending Register	
7.6.11 LDMA_LINKLOAD - DMA Channel Link Load Register	
7.6.12 LDMA_REQUEERY - DMA Chambel Request Clear Register	
7.6.14 LDMA IFS - Interrupt Flag Set Register	
7.6.15 LDMA IFC - Interrupt Flag Clear Register	
7.6.16 LDMA_IEN - Interrupt Enable Register	
7.6.17 LDMA_CHx_REQSEL - Channel Peripheral Request Select Register	
7.6.18 LDMA_CHx_CFG - Channel Configuration Register	
7.6.19 LDMA_CHx_LOOP - Channel Loop Counter Register	205
7.6.20 LDMA_CHx_CTRL - Channel Descriptor Control Word Register	206
7.6.21 LDMA_CHx_SRC - Channel Descriptor Source Data Address Register	209
7.6.22 LDMA_CHx_DST - Channel Descriptor Destination Data Address Register .	
7.6.23 LDMA_CHx_LINK - Channel Descriptor Link Structure Address Register	210
8. RMU - Reset Management Unit	211
8.1 Introduction	211
8.2 Features	
8.3 Functional Description	
8.3.1 Reset Levels	
8.3.2 RMU_RSTCAUSE Register	
8.3.3 Power-On Reset (POR)	215

	8.3.4 Brown-Out Detector (BOD)	215
	8.3.5 RESETn Pin Reset	. 216
	8.3.6 Watchdog Reset	. 216
	8.3.7 Lockup Reset	. 216
	8.3.8 System Reset Request	. 216
	8.3.9 Reset State	216
	8.3.10 Register Reset Signals	216
	8.4 Register Map	218
	8.5 Register Description	
	·	
	8.5.1 RMU_CTRL - Control Register	
	8.5.2 RMU_RSTCAUSE - Reset Cause Register	
	8.5.4 RMU_RST - Reset Control Register	
	8.5.5 RMU_LOCK - Configuration Lock Register	
9.	EMU - Energy Management Unit	.224
	9.1 Introduction	. 224
	9.2 Features	
	9.3 Functional Description	
	9.3.1 Energy Modes	
	9.3.2 Entering Low Energy Modes	
	9.3.3 Exiting a Low Energy Mode	
	9.3.4 Power Configurations	
	9.3.5 DC-to-DC Interface	
	9.3.6 Analog Peripheral Power Selection.	
	9.3.7 Digital LDO Power Selection	
	9.3.9 Voltage Scaling	
	9.3.10 EM2/EM3 Peripheral Retention Disable	
	9.3.11 Brown Out Detector (BOD)	
	9.3.12 Voltage Monitor (VMON)	
	9.3.13 Powering Off SRAM Blocks	
	9.3.14 Temperature Sensor	
	9.3.15 Registers latched in EM4	
	9.3.16 Register Resets	
	9.3.17 Backup Power Domain	
	9.4 Register Map	
	•	
	9.5 Register Description	
	9.5.1 EMU_CTRL - Control Register	
	9.5.2 EMU_STATUS - Status Register	
	9.5.3 EMU_LOCK - Configuration Lock Register	
	9.5.4 EMU_RAM0CTRL - Memory Control Register	
	9.5.5 EMU_CMD - Command Register	
	9.5.6 EMU_EM4CTRL - EM4 Control Register	
	9.5.7 EMU_TEMPLIMITS - Temperature Limits for Interrupt Generation	
	9.5.8 EMU_TEMP - Value of Last Temperature Measurement	
	9.5.9 EMU_IF - Interrupt Flag Register	. ∠00

9.5.10 EMU_IFS - Interrupt Flag Set Register	
9.5.11 EMU_IFC - Interrupt Flag Clear Register	34
9.5.12 EMU_IEN - Interrupt Enable Register	37
9.5.13 EMU_PWRLOCK - Regulator and Supply Lock Register	
9.5.14 EMU_PWRCTRL - Power Control Register	70
9.5.15 EMU_DCDCCTRL - DCDC Control	71
9.5.16 EMU_DCDCMISCCTRL - DCDC Miscellaneous Control Register	72
9.5.17 EMU_DCDCZDETCTRL - DCDC Power Train NFET Zero Current Detector Control Register 27	74
9.5.18 EMU_DCDCCLIMCTRL - DCDC Power Train PFET Current Limiter Control Register 27	75
9.5.19 EMU_DCDCLNCOMPCTRL - DCDC Low Noise Compensator Control Register 27	76
9.5.20 EMU_DCDCLNVCTRL - DCDC Low Noise Voltage Register	
9.5.21 EMU_DCDCLPVCTRL - DCDC Low Power Voltage Register	
9.5.22 EMU_DCDCLPCTRL - DCDC Low Power Control Register	
9.5.23 EMU_DCDCLNFREQCTRL - DCDC Low Noise Controller Frequency Control	
9.5.24 EMU_DCDCSYNC - DCDC Read Status Register	
9.5.25 EMU_VMONAVDDCTRL - VMON AVDD Channel Control	
9.5.26 EMU_VMONALTAVDDCTRL - Alternate VMON AVDD Channel Control	
9.5.27 EMU_VMONDVDDCTRL - VMON DVDD Channel Control	
9.5.28 EMU_VMONIO0CTRL - VMON IOVDD0 Channel Control	
9.5.29 EMU_VMONBUVDDCTRL - VMON BUVDD Channel Control	
9.5.30 EMU_BUCTRL - Backup Power Configuration Register	36
9.5.31 EMU_DCDCLPEM01CFG - Configuration Bits for Low Power Mode to Be Applied During	00
EM01, This Field is Only Relevant If LP Mode is Used in EM01	30
EM23PERNORETAINSTATUS Unlocking Access to Peripheral	રવ
9.5.33 EMU_EM23PERNORETAINSTATUS - Status Indicating If Peripherals Were Powered Down	,0
in EM23, Subsequently Locking Access to It) 1
9.5.34 EMU EM23PERNORETAINCTRL - When Set Corresponding Peripherals May Get Powered	
Down in EM23	93
I0. CMU - Clock Management Unit) =
10.1 Introduction	} 5
10.2 Features) 5
10.3 Functional Description	96
10.3.1 System Clocks	
10.3.2 Oscillators	
10.3.3 Configuration for Operating Frequencies	20
10.3.4 Energy Modes	21
10.3.5 Clock Output on a Pin	22
10.3.6 Clock Input From a Pin	22
10.3.7 Clock Output on PRS	22
10.3.8 Error Handling	22
10.3.9 Interrupts	
10.3.10 Wake-up	
10.3.11 Protection	
10.3.12 Digital Phase-Locked Loop	23
10.4 Register Map	25
10.5 Register Description	27

10.5.1	CMU_CTRL - CMU Control Register	.327
10.5.2	CMU_HFRCOCTRL - HFRCO Control Register	329
10.5.3	CMU_AUXHFRCOCTRL - AUXHFRCO Control Register	331
10.5.4	CMU_LFRCOCTRL - LFRCO Control Register	332
10.5.5	CMU HFXOCTRL - HFXO Control Register	334
	=	336
	CMU HFXOSTARTUPCTRL - HFXO Startup Control	337
	CMU_HFXOSTEADYSTATECTRL - HFXO Steady State Control	338
	CMU HFXOTIMEOUTCTRL - HFXO Timeout Control	339
10.5.10	CMU_LFXOCTRL - LFXO Control Register	341
10.5.11	CMU_DPLLCTRL - DPLL Control Register	343
10.5.12	CMU_DPLLCTRL1 - DPLL Control Register	.344
10.5.13	CMU_CALCTRL - Calibration Control Register	345
10.5.14	CMU_CALCNT - Calibration Counter Register	347
10.5.15	CMU_OSCENCMD - Oscillator Enable/Disable Command Register	348
10.5.16	CMU CMD - Command Register	. 349
10.5.17	=	350
10.5.18	CMU_HFCLKSEL - High Frequency Clock Select Command Register	351
10.5.19	CMU_LFACLKSEL - Low Frequency A Clock Select Register	352
10.5.20	CMU LFBCLKSEL - Low Frequency B Clock Select Register	352
10.5.21	CMU_LFECLKSEL - Low Frequency E Clock Select Register	353
10.5.22	CMU_STATUS - Status Register	.354
10.5.23	-	356
10.5.24		. 357
10.5.25	CMU_IF - Interrupt Flag Register	. 358
10.5.26	CMU_IFS - Interrupt Flag Set Register	.360
10.5.27	CMU_IFC - Interrupt Flag Clear Register	362
10.5.28	CMU_IEN - Interrupt Enable Register	364
10.5.29	CMU_HFBUSCLKEN0 - High Frequency Bus Clock Enable Register 0	.366
10.5.30	CMU HFPERCLKEN0 - High Frequency Peripheral Clock Enable Register 0	. 367
10.5.31	CMU HFPERCLKEN1 - High Frequency Peripheral Clock Enable Register 1	. 368
10.5.32	CMU_LFACLKEN0 - Low Frequency a Clock Enable Register 0 (Async Reg)	
10.5.33	CMU_LFBCLKEN0 - Low Frequency B Clock Enable Register 0 (Async Reg)	
10.5.34	CMU_LFECLKEN0 - Low Frequency E Clock Enable Register 0 (Async Reg)	
10.5.35	CMU_HFPRESC - High Frequency Clock Prescaler Register	
10.5.36	CMU HFBUSPRESC - High Frequency Bus Clock Prescaler Register	
10.5.37	CMU_HFCOREPRESC - High Frequency Core Clock Prescaler Register	
10.5.38	CMU_HFPERPRESC - High Frequency Peripheral Clock Prescaler Register	
10.5.39	CMU_HFEXPPRESC - High Frequency Export Clock Prescaler Register	
10.5.40	CMU_HFPERPRESCB - High Frequency Peripheral Clock Prescaler B Register	
10.5.41	CMU_HFPERPRESCC - High Frequency Peripheral Clock Prescaler C Register	
10.5.42	CMU_LFAPRESC0 - Low Frequency a Prescaler Register 0 (Async Reg)	
10.5.43	CMU_LFBPRESC0 - Low Frequency B Prescaler Register 0 (Async Reg)	
10.5.44	CMU_LFEPRESC0 - Low Frequency E Prescaler Register 0 (Async Reg)	
	CMU_SYNCBUSY - Synchronization Busy Register	
10.5.46	CMU FREEZE - Freeze Register	
	CMU_PCNTCTRL - PCNT Control Register	
	CMIL ADCCTRL - ADC Control Pegister	384

10.5.49 CMU_ROUTEPEN - I/O Routing Pin Enable Register	385
10.5.50 CMU_ROUTELOC0 - I/O Routing Location Register	. 386
10.5.51 CMU_ROUTELOC1 - I/O Routing Location Register	
10.5.52 CMU_LOCK - Configuration Lock Register	
10.5.53 CMU_HFRCOSS - HFRCO Spread Spectrum Register	. 389
11. SMU - Security Management Unit	. 390
11.1 Introduction	. 390
11.2 Features	. 390
11.3 Functional Description	391
11.3.1 PPU - Peripheral Protection Unit	
11.3.2 Programming Model	392
11.4 Register Map	393
11.5 Register Description	394
11.5.1 SMU_IF - Interrupt Flag Register	. 394
11.5.2 SMU_IFS - Interrupt Flag Set Register	. 394
11.5.3 SMU_IFC - Interrupt Flag Clear Register	395
11.5.4 SMU_IEN - Interrupt Enable Register	
11.5.5 SMU_PPUCTRL - PPU Control Register	396
11.5.6 SMU_PPUPATD0 - PPU Privilege Access Type Descriptor 0	
11.5.7 SMU_PPUPATD1 - PPU Privilege Access Type Descriptor 1	
11.5.8 SMU_PPUFS - PPU Fault Status	. 400
12. RTCC - Real Time Counter and Calendar	. 402
12.1 Introduction	. 402
12.2 Features	. 402
12.3 Functional Description	403
12.3.1 Counter	. 404
12.3.2 Capture/Compare Channels	. 408
12.3.3 Interrupts and PRS Output	
12.3.4 Energy Mode Availability	411
12.3.5 Register Lock	. 411
12.3.6 Oscillator Failure Detection	
12.3.7 Retention Registers	. 411
12.3.8 Timestamp	. 411
12.3.9 Debug Session	411
12.4 Register Map	
12.5 Register Description	
12.5.1 RTCC_CTRL - Control Register (Async Reg)	
12.5.2 RTCC_PRECNT - Pre-Counter Value Register (Async Reg)	
12.5.3 RTCC_CNT - Counter Value Register (Async Reg)	
12.5.4 RTCC_COMBCNT - Combined Pre-Counter and Counter Value Register	
12.5.5 RTCC_TIME - Time of Day Register (Async Reg)	
12.5.6 RTCC_DATE - Date Register (Async Reg)	
12.5.7 RTCC_IF - RTCC Interrupt Flags	
12.5.8 RTCC IFS - Interrupt Flag Set Register	420

12.5.9 RTCC_IFC - Interrupt Flag Clear Register	421
12.5.10 RTCC_IEN - Interrupt Enable Register	
12.5.11 RTCC_STATUS - Status Register	423
12.5.12 RTCC_CMD - Command Register (Async Reg)	.423
12.5.13 RTCC_SYNCBUSY - Synchronization Busy Register	.424
12.5.14 RTCC_POWERDOWN - Retention RAM Power-down Register (Async Reg)	.424
12.5.15 RTCC_LOCK - Configuration Lock Register (Async Reg)	. 425
12.5.16 RTCC_EM4WUEN - Wake Up Enable	.425
12.5.17 RTCC_CCx_CTRL - CC Channel Control Register (Async Reg)	426
12.5.18 RTCC_CCx_CCV - Capture/Compare Value Register (Async Reg)	428
12.5.19 RTCC_CCx_TIME - Capture/Compare Time Register (Async Reg)	429
12.5.20 RTCC_CCx_DATE - Capture/Compare Date Register (Async Reg)	430
12.5.21 RTCC_RETx_REG - Retention Register	430
13. WDOG - Watchdog Timer	431
13.1 Introduction	431
13.2 Features	431
13.3 Functional Description	. 431
13.3.1 Clock Source	
13.3.2 Debug Functionality	432
13.3.3 Energy Mode Handling	
13.3.4 Register Access	
13.3.5 Warning Interrupt	
13.3.6 Window Interrupt	
13.3.7 PRS as Watchdog Clear	
13.3.8 PRS Rising Edge Monitoring	
13.4 Register Map	
13.5 Register Description	436
13.5.1 WDOG_CTRL - Control Register (Async Reg)	
13.5.2 WDOG_CMD - Command Register (Async Reg)	
13.5.3 WDOG_SYNCBUSY - Synchronization Busy Register	
13.5.4 WDOGn_PCHx_PRSCTRL - PRS Control Register (Async Reg)	
13.5.5 WDOG_IF - Watchdog Interrupt Flags	
13.5.6 WDOG_IFS - Interrupt Flag Set Register	
13.5.7 WDOG IFC - Interrupt Flag Clear Register	
13.5.8 WDOG_IEN - Interrupt Enable Register	
14. PRS - Peripheral Reflex System	
14.1 Introduction	
14.2 Features	
14.3 Functional Description	
14.3.1 Channel Functions	
14.3.2 Producers	
14.3.3 Consumers	
14.3.4 Event on PRS	
14.3.5 DMA Request on PRS	
14.3.6 Example	.451
14.3.6 Example	.451

14.4 Register Map	. 451
14.5 Register Description	. 452
14.5.1 PRS_SWPULSE - Software Pulse Register	. 452
14.5.2 PRS_SWLEVEL - Software Level Register	.453
14.5.3 PRS_ROUTEPEN - I/O Routing Pin Enable Register	. 454
14.5.4 PRS_ROUTELOC0 - I/O Routing Location Register	.455
14.5.5 PRS_ROUTELOC1 - I/O Routing Location Register	.457
14.5.6 PRS_CTRL - Control Register	458
14.5.7 PRS_DMAREQ0 - DMA Request 0 Register	. 459
14.5.8 PRS_DMAREQ1 - DMA Request 1 Register	. 460
14.5.9 PRS_PEEK - PRS Channel Values	. 461
14.5.10 PRS_CHx_CTRL - Channel Control Register	. 462
14.5.11 PRS_TRACECTRL - MTB Trace Control Register	.469
15. LCD - Liquid Crystal Display Driver	. 471
15.1 Introduction	
15.2 Features	
15.3 Functional Description	
15.3.1 Power Supply	
15.3.2 LCD Driver Enable	
15.3.3 LCD Frame Rate and Power Reduction	
15.3.4 Multiplexing, Bias, and Wave Settings	
15.3.5 LCD Contrast	
15.3.6 Voltage Levels and Mode Selection	
15.3.7 Frame Rate	
15.3.8 Data Update	
15.3.9 Direct Segment Control (DSC)	
15.3.10 Frame Counter (FC)	
15.3.11 LCD Interrupt	
15.3.12 Blink, Blank, and Animation Features	
15.3.13 LCD in Low Energy Modes	
15.3.14 Register Access	
15.3.15 Waveform Examples	
15.4 Register Map	
15.5 Register Description	. 504
15.5.1 LCD_CTRL - Control Register (Async Reg)	. 504
15.5.2 LCD_DISPCTRL - Display Control Register	. 505
15.5.3 LCD_SEGEN - Segment Enable Register	
15.5.4 LCD_BACTRL - Blink and Animation Control Register (Async Reg)	
15.5.5 LCD_STATUS - Status Register	
15.5.6 LCD_AREGA - Animation Register a (Async Reg)	. 510
15.5.7 LCD_AREGB - Animation Register B (Async Reg)	. 511
15.5.8 LCD_IF - Interrupt Flag Register	
15.5.9 LCD_IFS - Interrupt Flag Set Register	
15.5.10 LCD_IFC - Interrupt Flag Clear Register	
15.5.11 LCD_IEN - Interrupt Enable Register	
15.5.12 LCD BIASCTRL - Analog BIAS Control	. 513

15.5.13 LCD_SEGD0L - Segment Data Low Register 0 (Asyr	nc Reg) 5	13
15.5.14 LCD_SEGD1L - Segment Data Low Register 1 (Asyr	nc Reg) 5	14
15.5.15 LCD_SEGD2L - Segment Data Low Register 2 (Asyr	nc Reg) 5	14
15.5.16 LCD_SEGD3L - Segment Data Low Register 3 (Asyr	nc Reg) 5	15
15.5.17 LCD_SEGD0H - Segment Data High Register 0 (Asy	ync Reg) 5	15
15.5.18 LCD_SEGD1H - Segment Data High Register 1 (Asy	ync Reg) 5	16
15.5.19 LCD_SEGD2H - Segment Data High Register 2 (Asy	ync Reg) 5	16
15.5.20 LCD_SEGD3H - Segment Data High Register 3 (Asy	ync Reg) 5	17
15.5.21 LCD_SEGD4L - Segment Data Low Register 4 (Asyr	nc Reg) 5	17
15.5.22 LCD_SEGD5L - Segment Data Low Register 5 (Asyr	nc Reg) 5	18
15.5.23 LCD_SEGD6L - Segment Data Low Register 6 (Asyr	nc Reg) 5	18
15.5.24 LCD_SEGD7L - Segment Data Low Register 7 (Asyr	nc Reg) 5	19
15.5.25 LCD_SEGD4H - Segment Data High Register 4 (Asy	ync Reg) 5	19
15.5.26 LCD_SEGD5H - Segment Data High Register 5 (Asy	ync Reg) 52	20
15.5.27 LCD_SEGD6H - Segment Data High Register 6 (Asy	ync Reg) 52	20
15.5.28 LCD_SEGD7H - Segment Data High Register 7 (Asy	ync Reg) 5	21
15.5.29 LCD_FREEZE - Freeze Register		22
15.5.30 LCD_SYNCBUSY - Synchronization Busy Register		23
15.5.31 LCD_FRAMERATE - Frame Rate		
15.5.32 LCD_SEGEN2 - Segment Enable (32 to 39)		25
16.1 Introduction		26
16.2 Features		26
16.3 Functional Description	5.	27
16.3.1 Pulse Counter Modes		
16.3.2 Hysteresis		
16.3.3 Auxiliary Counter		
16.3.4 Triggered Compare and Clear		
16.3.5 Register Access.		
16.3.6 Clock Sources		
16.3.8 Edge Polarity		
16.3.9 PRS and PCNTn_S0IN,PCNTn_S1IN Inputs		
16.3.11 Cascading Pulse Counters		
•		
16.4 Register Map		41
16.5 Register Description		42
16.5.1 PCNTn_CTRL - Control Register (Async Reg)		42
16.5.2 PCNTn_CMD - Command Register (Async Reg) .		45
16.5.3 PCNTn_STATUS - Status Register		46
16.5.4 PCNTn_CNT - Counter Value Register	54	46
16.5.5 PCNTn_TOP - Top Value Register		47
16.5.6 PCNTn_TOPB - Top Value Buffer Register (Async Re	 -	
16.5.7 PCNTn_IF - Interrupt Flag Register		48
16.5.8 PCNTn_IFS - Interrupt Flag Set Register		49
16.5.9 PCNTn IFC - Interrupt Flag Clear Register		50

16.5.10 PCNTn_IEN - Interrupt Enable Register	551
16.5.11 PCNTn_ROUTELOC0 - I/O Routing Location Register	552
16.5.12 PCNTn_FREEZE - Freeze Register	553
16.5.13 PCNTn_SYNCBUSY - Synchronization Busy Register	
16.5.14 PCNTn_AUXCNT - Auxiliary Counter Value Register	
16.5.15 PCNTn INPUT - PCNT Input Register	
16.5.16 PCNTn_OVSCFG - Oversampling Config Register (Async Reg)	
17. I2C - Inter-Integrated Circuit Interface	
17.1 Introduction	
17.2 Features	557
17.3 Functional Description	558
17.3.1 I2C-Bus Overview	559
17.3.2 Enable and Reset	563
17.3.3 Safely Disabling and Changing Slave Configuration	563
17.3.4 Clock Generation	563
17.3.5 Arbitration	564
17.3.6 Buffers	
17.3.7 Master Operation	
17.3.8 Bus States	
17.3.9 Slave Operation	
17.3.10 Transfer Automation	
17.3.11 Using 10-bit Addresses	
17.3.12 Error Handling	
17.3.13 DMA Support	
• •	
17.3.14 Interrupts	
17.3.15 Wake-up	
17.4 Register Map	582
17.5 Register Description	583
17.5.1 I2Cn_CTRL - Control Register	. 583
17.5.2 I2Cn_CMD - Command Register	
17.5.3 I2Cn_STATE - State Register	
17.5.4 I2Cn STATUS - Status Register	
17.5.5 I2Cn_CLKDIV - Clock Division Register	
17.5.6 I2Cn_SADDR - Slave Address Register	
17.5.7 I2Cn_SADDRMASK - Slave Address Mask Register	
17.5.8 I2Cn_RXDATA - Receive Buffer Data Register (Actionable Reads)	
17.5.9 I2Cn_RXDOUBLE - Receive Buffer Double Data Register (Actionable Reads)	
17.5.10 I2Cn_RXDATAP - Receive Buffer Data Peek Register	
_	
17.5.11 I2Cn_RXDOUBLEP - Receive Buffer Double Data Peek Register	
17.5.12 I2Cn_TXDATA - Transmit Buffer Data Register	
17.5.13 I2Cn_TXDOUBLE - Transmit Buffer Double Data Register	
17.5.14 I2Cn_IF - Interrupt Flag Register	
17.5.15 I2Cn_IFS - Interrupt Flag Set Register	
17.5.16 I2Cn_IFC - Interrupt Flag Clear Register	
17.5.17 I2Cn_IEN - Interrupt Enable Register	
17.5.18 I2Cn ROUTEPEN - I/O Routing Pin Enable Register	601

17.5.19 I2Cn_ROUTELOC0 - I/O Routing Location Register	. 602
18. USART - Universal Synchronous Asynchronous Receiver/Transmitter	.603
18.1 Introduction	. 603
18.2 Features	. 604
18.3 Functional Description	605
18.3.1 Modes of Operation	
18.3.2 Asynchronous Operation	
18.3.3 Synchronous Operation	
18.3.4 Hardware Flow Control	.630
18.3.5 Debug Halt	.630
18.3.6 PRS-triggered Transmissions	
18.3.7 PRS RX Input	
18.3.8 PRS CLK Input	
18.3.9 DMA Support	
18.3.10 Timer	
18.3.11 Interrupts	
18.3.12 IrDA Modulator/ Demodulator	
18.4 Register Map	
18.5 Register Description	
18.5.1 USARTn_CTRL - Control Register	
18.5.2 USARTn_FRAME - USART Frame Format Register	
18.5.3 USARTn_TRIGCTRL - USART Trigger Control Register	
18.5.4 USARTn_CMD - Command Register	
18.5.5 USARTn_STATUS - USART Status Register	
18.5.7 USARTn_RXDATAX - RX Buffer Data Extended Register (Actionable Reads)	
18.5.8 USARTn_RXDATA - RX Buffer Data Register (Actionable Reads)	
18.5.9 USARTn RXDOUBLEX - RX Buffer Double Data Extended Register (Actionable Reads)	
18.5.10 USARTn RXDOUBLE - RX FIFO Double Data Register (Actionable Reads)	
18.5.11 USARTn_RXDATAXP - RX Buffer Data Extended Peek Register	
18.5.12 USARTn_RXDOUBLEXP - RX Buffer Double Data Extended Peek Register	
18.5.13 USARTn_TXDATAX - TX Buffer Data Extended Register	. 656
18.5.14 USARTn_TXDATA - TX Buffer Data Register	. 657
18.5.15 USARTn_TXDOUBLEX - TX Buffer Double Data Extended Register	. 658
18.5.16 USARTn_TXDOUBLE - TX Buffer Double Data Register	. 659
18.5.17 USARTn_IF - Interrupt Flag Register	. 660
18.5.18 USARTn_IFS - Interrupt Flag Set Register	
18.5.19 USARTn_IFC - Interrupt Flag Clear Register	
18.5.20 USARTn_IEN - Interrupt Enable Register	
18.5.21 USARTn_IRCTRL - IrDA Control Register	
18.5.22 USARTn_INPUT - USART Input Register	
18.5.23 USARTn_I2SCTRL - I2S Control Register	
18.5.24 USARTn_TIMING - Timing Register	
18.5.25 USARTn_CTRLX - Control Register Extended	
18.5.26 USARTn_TIMECMP0 - Used to Generate Interrupts and Various Delays	
10.5.21 COMNTHE HIVILOWET - COEC TO DEHETALE HILEHUPLO AND VAHOUS DEIGYS	. 013

18.5.28 USARTn_TIMECMP2 - Used to Generate Interrupts and Various Delays	
18.5.30 USARTn_ROUTELOC0 - I/O Routing Location Register	
18.5.31 USARTn_ROUTELOC1 - I/O Routing Location Register	
19. UART - Universal Asynchronous Receiver/ Transmitter	688
19.1 Introduction	688
19.2 Features	689
19.3 Functional Description	
19.4 Register Map	
19.5 Register Description	689
20. LEUART - Low Energy Universal Asynchronous Receiver/Transmitter	690
20.1 Introduction	
20.2 Features	691
20.3 Functional Description	
20.3.1 Frame Format	
20.3.3 Clock Generation	
20.3.4 Data Transmission	
20.3.5 Data Reception	
20.3.6 Loopback	
20.3.8 Transmission Delay	
20.3.9 PRS RX Input	
20.3.10 DMA Support	
20.3.12 Register Access	
20.4 Register Map	702
20.5 Register Description	703
20.5.1 LEUARTn_CTRL - Control Register (Async Reg)	
20.5.2 LEUARTn_CMD - Command Register (Async Reg)	
20.5.4 LEUARTn_CLKDIV - Clock Control Register (Async Reg)	
20.5.5 LEUARTn_STARTFRAME - Start Frame Register (Async Reg)	
20.5.6 LEUARTn_SIGFRAME - Signal Frame Register (Async Reg)	
20.5.7 LEUARTn_RXDATAX - Receive Buffer Data Extended Register (Actionable Reads)	
20.5.8 LEUARTn_RXDATA - Receive Buffer Data Register (Actionable Reads)	
20.5.9 LEUARTn_RXDATAXP - Receive Buffer Data Extended Peek Register	
20.5.10 LEUARTI_TXDATAX - Transmit Buffer Data Extended Register (Async Reg)	
-	
20.5.12 LEUARTn_IF - Interrupt Flag Register	
20.5.13 LEUARTII_IFS - Interrupt Flag Clear Register	
20.5.15 LEUARTn_IEN - Interrupt Enable Register	
20.5.16 LEUARTh PUIL SECTRL - Pulse Control Register (Async Reg)	

20.5.17 LEUARTn_FREEZE - Freeze Register	718
20.5.18 LEUARTn_SYNCBUSY - Synchronization Busy Register	. 719
20.5.19 LEUARTn_ROUTEPEN - I/O Routing Pin Enable Register	. 720
20.5.20 LEUARTn_ROUTELOC0 - I/O Routing Location Register	. 721
20.5.21 LEUARTn_INPUT - LEUART Input Register	722
21. TIMER/WTIMER - Timer/Counter	. 723
21.1 Introduction	. 723
21.2 Features	. 7.24
21.3 Functional Description	. 725
21.3.1 Counter Modes	
21.3.2 Compare/Capture Channels	
21.3.3 Dead-Time Insertion Unit	
21.3.4 Debug Mode	
21.3.5 Interrupts, DMA and PRS Output	
21.3.6 GPIO Input/Output	
21.4 Register Map	
21.5 Register Description	. 748
21.5.1 TIMERn_CTRL - Control Register	748
21.5.2 TIMERn_CMD - Command Register	. 751
21.5.3 TIMERn_STATUS - Status Register	. 752
21.5.4 TIMERn_IF - Interrupt Flag Register	. 755
21.5.5 TIMERn_IFS - Interrupt Flag Set Register	. 756
21.5.6 TIMERn_IFC - Interrupt Flag Clear Register	. 757
21.5.7 TIMERn_IEN - Interrupt Enable Register	. 759
21.5.8 TIMERn_TOP - Counter Top Value Register	. 7.60
21.5.9 TIMERn_TOPB - Counter Top Value Buffer Register	. 760
21.5.10 TIMERn_CNT - Counter Value Register	
21.5.11 TIMERn_LOCK - TIMER Configuration Lock Register	
21.5.12 TIMERn_ROUTEPEN - I/O Routing Pin Enable Register	
21.5.13 TIMERn_ROUTELOC0 - I/O Routing Location Register	
21.5.14 TIMERn_ROUTELOC2 - I/O Routing Location Register	
21.5.15 TIMERn CCx CTRL - CC Channel Control Register	
21.5.16 TIMERn_CCx_CCV - CC Channel Value Register (Actionable Reads)	
21.5.17 TIMERn_CCx_CCVP - CC Channel Value Peek Register	
21.5.18 TIMERn CCx CCVB - CC Channel Buffer Register	
21.5.19 TIMERn_DTCTRL - DTI Control Register	
21.5.20 TIMERn_DTTIME - DTI Time Control Register	
21.5.21 TIMERn_DTFC - DTI Fault Configuration Register	
21.5.22 TIMERn_DTOGEN - DTI Output Generation Enable Register	
21.5.23 TIMERn_DTFAULT - DTI Fault Register	
21.5.24 TIMERn_DTFAULTC - DTI Fault Clear Register	
21.5.25 TIMERn_DTLOCK - DTI Configuration Lock Register	
22. LETIMER - Low Energy Timer	
22.1 Introduction.	
22.2 Features	782

22.3 Functional Description	. 783
22.3.1 Timer	.783
22.3.2 Compare Registers	783
22.3.3 Top Value	784
22.3.4 Underflow Output Action	790
22.3.5 PRS Output	. 792
22.3.6 Examples	792
22.3.7 Register Access	795
22.4 Register Map	. 796
22.5 Register Description	797
22.5.1 LETIMERn_CTRL - Control Register (Async Reg)	797
22.5.2 LETIMERn_CMD - Command Register (Async Reg)	
22.5.3 LETIMERn_STATUS - Status Register	799
22.5.4 LETIMERn_CNT - Counter Value Register	.800
22.5.5 LETIMERn_COMP0 - Compare Value Register 0 (Async Reg)	800
22.5.6 LETIMERn_COMP1 - Compare Value Register 1 (Async Reg)	801
22.5.7 LETIMERn REP0 - Repeat Counter Register 0 (Async Reg)	.801
22.5.8 LETIMERn REP1 - Repeat Counter Register 1 (Async Reg)	.802
22.5.9 LETIMERn_IF - Interrupt Flag Register	802
22.5.10 LETIMERn_IFS - Interrupt Flag Set Register	
22.5.11 LETIMERn_IFC - Interrupt Flag Clear Register	
22.5.12 LETIMERn IEN - Interrupt Enable Register	
22.5.13 LETIMERn_SYNCBUSY - Synchronization Busy Register	
22.5.14 LETIMERn ROUTEPEN - I/O Routing Pin Enable Register	
22.5.15 LETIMERn ROUTELOC0 - I/O Routing Location Register	
22.5.16 LETIMERn_PRSSEL - PRS Input Select Register	
3. CRYOTIMER - Ultra Low Energy Timer/Counter	. 811
23.1 Introduction	
23.2 Features	
23.3 Functional Description	
23.3.1 Block Diagram	
23.3.2 Operation	
23.3.3 Debug Mode	
23.3.4 Energy Mode Availability	
23.4 Register Map	
23.5 Register Description	
23.5.1 CRYOTIMER_CTRL - Control Register	
23.5.2 CRYOTIMER_PERIODSEL - Interrupt Duration	
23.5.3 CRYOTIMER_CNT - Counter Value	
23.5.4 CRYOTIMER_EM4WUEN - Wake Up Enable	
23.5.5 CRYOTIMER_IF - Interrupt Flag Register	
23.5.6 CRYOTIMER_IFS - Interrupt Flag Set Register	
23.5.7 CRYOTIMER_IFC - Interrupt Flag Clear Register	
23.5.8 CRYOTIMER_IEN - Interrupt Enable Register	. 820
4. VDAC - Digital to Analog Converter	821

24.1 Introduction	. 821
24.2 Features	. 822
24.3 Functional Description	. 822
24.3.1 Power Supply	
24.3.2 I/O Pin Considerations	
24.3.3 Enabling and Disabling a Channel	. 823
24.3.4 Conversions	
24.3.5 Reference Selection	824
24.3.6 Warmup Time and Initial Conversion	. 825
24.3.7 Analog Output	825
24.3.8 Output Mode	. 825
24.3.9 Async Mode	. 826
24.3.10 Refresh Timer	
24.3.11 Clock Prescaling	
24.3.12 High Speed	
24.3.13 Sine Generation Mode	
24.3.14 Interrupt Flags	
24.3.15 PRS Outputs	
24.3.16 DMA Request	
24.3.17 LESENSE Trigger Mode	
24.3.18 Opamps	
24.3.19 Calibration	
24.3.20 Warmup Mode	. 829
24.4 Register Map	. 830
24.5 Register Description	. 832
24.5.1 VDACn_CTRL - Control Register	
24.5.2 VDACn_STATUS - Status Register	
24.5.3 VDACn_CH0CTRL - Channel 0 Control Register	
24.5.4 VDACn_CH1CTRL - Channel 1 Control Register	
24.5.5 VDACn_CMD - Command Register	. 841
24.5.6 VDACn_IF - Interrupt Flag Register	
24.5.7 VDACn_IFS - Interrupt Flag Set Register	. 844
24.5.8 VDACn_IFC - Interrupt Flag Clear Register	. 846
24.5.9 VDACn_IEN - Interrupt Enable Register	.848
24.5.10 VDACn_CH0DATA - Channel 0 Data Register	. 850
24.5.11 VDACn_CH1DATA - Channel 1 Data Register	
24.5.12 VDACn_COMBDATA - Combined Data Register	. 851
24.5.13 VDACn_CAL - Calibration Register	
24.5.14 VDACn_OPAx_APORTREQ - Operational Amplifier APORT Request Status Register .	
24.5.15 VDACn_OPAx_APORTCONFLICT - Operational Amplifier APORT Conflict Status Registe	
24.5.16 VDACn_OPAx_CTRL - Operational Amplifier Control Register	. 855
24.5.17 VDACn_OPAx_TIMER - Operational Amplifier Timer Control Register	
24.5.18 VDACn_OPAx_MUX - Operational Amplifier Mux Configuration Register	
24.5.19 VDACn_OPAx_OUT - Operational Amplifier Output Configuration Register	
24.5.20 VDACn_OPAx_CAL - Operational Amplifier Calibration Register	. 864
25. OPAMP - Operational Amplifier	.866

25.1 Introduction	866
25.2 Features	866
25.3 Functional Description	. 867
25.3.1 Opamp Configuration	
25.3.2 Interrupts and PRS Output	. 871
25.3.3 APORT Request and Conflict Status	
25.3.4 Opamp Modes	
25.3.5 Opamp VDAC Combination	878
25.4 Register Map	. 879
25.5 Register Description	879
26. ACMP - Analog Comparator	880
26.1 Introduction	880
26.2 Features	881
26.3 Functional Description	882
26.3.1 Power Supply	
26.3.2 Warm-up Time	
26.3.3 Response Time	883
26.3.4 Hysteresis	884
26.3.5 Input Pin Considerations	885
26.3.6 Input Selection	. 885
26.3.7 Capacitive Sense Mode	886
26.3.8 Interrupts and PRS Output	
26.3.9 Output to GPIO	
26.3.10 APORT Conflicts	
26.3.11 Supply Voltage Monitoring	
26.3.12 External Override Interface	. 889
26.4 Register Map	. 889
26.5 Register Description	890
26.5.1 ACMPn_CTRL - Control Register	890
26.5.2 ACMPn_INPUTSEL - Input Selection Register	
26.5.3 ACMPn_STATUS - Status Register	
26.5.4 ACMPn_IF - Interrupt Flag Register	
26.5.5 ACMPn_IFS - Interrupt Flag Set Register	
26.5.6 ACMPn_IFC - Interrupt Flag Clear Register	
26.5.7 ACMPn_IEN - Interrupt Enable Register	
26.5.8 ACMPn_APORTREQ - APORT Request Status Register	
26.5.9 ACMPn_APORTCONFLICT - APORT Conflict Status Register	
26.5.10 ACMPn_HYSTERESIS0 - Hysteresis 0 Register	
26.5.11 ACMPn_HYSTERESIS1 - Hysteresis 1 Register	
26.5.12 ACMPn_ROUTEPEN - I/O Routing Pine Enable Register	
26.5.13 ACMPn_ROUTELOC0 - I/O Routing Location Register	
-	
27. ADC - Analog to Digital Converter	
27.1 Introduction	910

27.2 Features	911
27.3 Functional Description	912
27.3.1 Clock Selection	913
27.3.2 Conversions	913
27.3.3 ADC Modes	914
27.3.4 Warm-up Time	
27.3.5 Power Supply	916
27.3.6 Input Pin Considerations	916
27.3.7 Input Selection	917
27.3.8 Reference Selection and Input Range Definition	921
27.3.9 Programming of Bias Current	
27.3.10 Feature Set	925
27.3.11 Interrupts, PRS Output	
27.3.12 DMA Request	
27.3.13 Calibration	
27.3.14 EM2 DeepSleep or EM3 Stop Operation	
27.3.15 ASYNC ADC_CLK Usage Restrictions and Benefits	
27.3.16 Window Compare Function	
27.3.17 ADC Programming Model	935
27.4 Register Map	936
27.5 Register Description	937
27.5.1 ADCn_CTRL - Control Register	937
27.5.2 ADCn_CMD - Command Register	.940
27.5.3 ADCn_STATUS - Status Register	.941
27.5.4 ADCn_SINGLECTRL - Single Channel Control Register	943
27.5.5 ADCn_SINGLECTRLX - Single Channel Control Register Continued	948
27.5.6 ADCn_SCANCTRL - Scan Control Register	951
27.5.7 ADCn_SCANCTRLX - Scan Control Register Continued	
27.5.8 ADCn_SCANMASK - Scan Sequence Input Mask Register	
27.5.9 ADCn_SCANINPUTSEL - Input Selection Register for Scan Mode	
27.5.10 ADCn_SCANNEGSEL - Negative Input Select Register for Scan	.962
27.5.11 ADCn_CMPTHR - Compare Threshold Register	964
27.5.12 ADCn_BIASPROG - Bias Programming Register for Various Analog Blocks Used in ADC	
Operation	
27.5.13 ADCn_CAL - Calibration Register	
27.5.14 ADCn_IF - Interrupt Flag Register	
27.5.15 ADCn_IFS - Interrupt Flag Set Register	
27.5.16 ADCn_IFC - Interrupt Flag Clear Register	
27.5.17 ADCn_IEN - Interrupt Enable Register	
27.5.18 ADCn_SINGLEDATA - Single Conversion Result Data (Actionable Reads)	
27.5.19 ADCn_SCANDATA - Scan Conversion Result Data (Actionable Reads)	
27.5.20 ADCn_SINGLEDATAP - Single Conversion Result Data Peek Register	
27.5.21 ADCn_SCANDATAY	9/6
27.5.22 ADCn_SCANDATAX - Scan Sequence Result Data + Data Source Register (Actionable	077
Reads)	
27.5.23 ADCn_SCANDATAXP - Scan Sequence Result Data + Data Source Peek Register	
_ ' '	970

27.5.26 ADCn_SINGLEFIFOCOUNT - Single FIFO Count Register	980
27.5.27 ADCn_SCANFIFOCOUNT - Scan FIFO Count Register	. 980
27.5.28 ADCn_SINGLEFIFOCLEAR - Single FIFO Clear Register	. 981
27.5.29 ADCn_SCANFIFOCLEAR - Scan FIFO Clear Register	981
27.5.30 ADCn_APORTMASTERDIS - APORT Bus Master Disable Register	982
28. LESENSE - Low Energy Sensor Interface	. 985
28.1 Introduction	
28.2 Features	. 986
28.3 Functional Description	986
28.3.1 Channel Configuration	
28.3.2 Scan Sequence	
28.3.3 Sensor Timing	
28.3.4 Sensor Interaction	
28.3.5 Sensor Sampling	
28.3.6 Sensor Evaluation	
28.3.7 Decoder	
28.3.8 Measurement Results	
28.3.9 VDAC Interface	
28.3.10 ACMP and VDAC Date Cooling	
28.3.11 ACMP and VDAC Duty Cycling	
28.3.12 ADC Interface	
28.3.14 PRS Output	
28.3.15 RAM	
28.3.16 Application Examples	
28.4 Register Map	
28.5 Register Description	
28.5.1 LESENSE_CTRL - Control Register (Async Reg)	
28.5.2 LESENSE_TIMCTRL - Timing Control Register (Async Reg)	
28.5.3 LESENSE_PERCTRL - Peripheral Control Register (Async Reg)	
28.5.4 LESENSE_DECCTRL - Decoder Control Register (Async Reg)	
28.5.5 LESENSE_BIASCTRL - Bias Control Register (Async Reg)	
28.5.6 LESENSE_EVALCTRL - LESENSE Evaluation Control (Async Reg)	
28.5.7 LESENSE_PRSCTRL - PRS Control Register (Async Reg)	
28.5.8 LESENSE_CMD - Command Register (Async Reg)	
28.5.10 LESENSE_SCANRES - Scan Result Register (Async Reg)	
28.5.11 LESENSE_STATUS - Status Register (Async Reg)	
28.5.12 LESENSE_PTR - Result Buffer Pointers (Async Reg)	
28.5.13 LESENSE_BUFDATA - Result Buffer Data Register (Async Reg) (Actionable Reads)	
28.5.14 LESENSE_CURCH - Current Channel Index (Async Reg)	
28.5.15 LESENSE_DECSTATE - Current Decoder State (Async Reg)	
28.5.16 LESENSE_SENSORSTATE - Decoder Input Register (Async Reg)	
28.5.17 LESENSE_IDLECONF - GPIO Idle Phase Configuration (Async Reg)	
28.5.18 LESENSE_ALTEXCONF - Alternative Excite Pin Configuration (Async Reg)	
28.5.19 LESENSE IF - Interrupt Flag Register	1034

28.5.20 LESENSE_IFS - Interrupt Flag Set Register	1036
28.5.21 LESENSE_IFC - Interrupt Flag Clear Register	1038
28.5.22 LESENSE_IEN - Interrupt Enable Register	1040
28.5.23 LESENSE_SYNCBUSY - Synchronization Busy Register	1041
28.5.24 LESENSE_ROUTEPEN - I/O Routing Register (Async Reg)	1042
28.5.25 LESENSE_STx_TCONFA - State Transition Configuration a (Async Reg)	1.044
28.5.26 LESENSE_STx_TCONFB - State Transition Configuration B (Async Reg)	1046
28.5.27 LESENSE_BUFx_DATA - Scan Results (Async Reg)	1047
28.5.28 LESENSE_CHx_TIMING - Scan Configuration (Async Reg)	1048
28.5.29 LESENSE_CHx_INTERACT - Scan Configuration (Async Reg)	1049
28.5.30 LESENSE_CHx_EVAL - Scan Configuration (Async Reg)	1051
29. GPCRC - General Purpose Cyclic Redundancy Check	1053
29.1 Introduction	
29.3 Functional Description	
29.3.1 Polynomial Specification	
29.3.2 Input and Output Specification	
29.3.3 Initialization	
29.3.4 DMA Usage	
29.3.5 Byte-Level Bit Reversal and Byte Reordering	
29.4 Register Map	1058
29.5 Register Description	
29.5.1 GPCRC_CTRL - Control Register	
29.5.2 GPCRC_CMD - Command Register	
29.5.3 GPCRC_INIT - CRC Init Value	
29.5.4 GPCRC_POLY - CRC Polynomial Value	
29.5.5 GPCRC_INPUTDATA - Input 32-bit Data Register	
29.5.6 GPCRC_INPUTDATAHWORD - Input 16-bit Data Register	
29.5.7 GPCRC_INPUTDATABYTE - Input 8-bit Data Register	
29.5.8 GPCRC_DATA - CRC Data Register	
29.5.9 GPCRC_DATAREV - CRC Data Reverse Register	
29.5.10 GPCRC_DATABYTEREV - CRC Data Byte Reverse Register	1.064
30. TRNG - True Random Number Generator	1065
30.1 Introduction	1065
30.2 Features	1065
30.3 Functional Description	1066
30.3.1 Built-In Tests	
30.3.2 FIFO Interface	
30.3.3 Data Format - Byte Ordering	
30.3.4 TRNG Usage	
30.4 Register Map	1069
30.5 Register Description	
30.5.1 TRNGn CONTROL - Main Control Register	
30.5.1 TRNGIT_CONTROL - Main Control Register (Actionable Reads)	

30.5.3 TRNGn_FIFODEPTH - FIFO Depth Register	1072
30.5.4 TRNGn KEY0 - Key Register 0	
30.5.5 TRNGn_KEY1 - Key Register 1	
30.5.6 TRNGn KEY2 - Key Register 2	
30.5.7 TRNGn_KEY3 - Key Register 3	
30.5.8 TRNGn_TESTDATA - Test Data Register	
30.5.9 TRNGn_STATUS - Status Register	
30.5.10 TRNGn INITWAITVAL - Initial Wait Counter	
30.5.11 TRNGn_FIFO - FIFO Data (Actionable Reads)	
31. CRYPTO - Crypto Accelerator.	
31.1 Introduction	
31.2 Features	1079
31.3 Usage and Programming Interface	1079
31.4 Functional Description	. 1080
31.4.1 Data and Key Registers	. 1081
31.4.2 Instructions and Execution	. 1083
31.4.3 Repeated Sequence	. 1088
31.4.4 AES	1089
31.4.5 SHA	1091
31.4.6 ECC	1091
31.4.7 GCM and GMAC	
31.4.8 DMA	1092
31.4.9 Debugging	. 1093
31.5 Register Map	. 1094
31.6 Register Description	1096
31.6.1 CRYPTO_CTRL - Control Register	
31.6.2 CRYPTO_WAC - Wide Arithmetic Configuration	
31.6.3 CRYPTO_CMD - Command Register	. 1101
31.6.4 CRYPTO_STATUS - Status Register	
31.6.5 CRYPTO_DSTATUS - Data Status Register	
31.6.6 CRYPTO_CSTATUS - Control Status Register	1108
31.6.7 CRYPTO_KEY - KEY Register Access (No Bit Access) (Actionable Reads)	. 1109
31.6.8 CRYPTO_KEYBUF - KEY Buffer Register Access (No Bit Access) (Actionable Reads)	. 1.110
31.6.9 CRYPTO_SEQCTRL - Sequence Control	1111
31.6.10 CRYPTO_SEQCTRLB - Sequence Control B	1112
31.6.11 CRYPTO_IF - AES Interrupt Flags	1112
31.6.12 CRYPTO_IFS - Interrupt Flag Set Register	1113
31.6.13 CRYPTO_IFC - Interrupt Flag Clear Register	1113
31.6.14 CRYPTO_IEN - Interrupt Enable Register	
31.6.15 CRYPTO_SEQ0 - Sequence Register 0	1114
31.6.16 CRYPTO_SEQ1 - Sequence Register 1	
31.6.17 CRYPTO_SEQ2 - Sequence Register 2	
31.6.18 CRYPTO_SEQ3 - Sequence Register 3	
31.6.19 CRYPTO_SEQ4 - Sequence Register 4	
31.6.20 CRYPTO_DATA0 - DATA0 Register Access (No Bit Access) (Actionable Reads)	1117
31.6.21 CRYPTO DATA1 - DATA1 Register Access (No Bit Access) (Actionable Reads)	1117

31.6.22 CRYPTO_DATA2 - DATA2 Register Access (No Bit Access) (Actionable Reads)	.1118
31.6.23 CRYPTO_DATA3 - DATA3 Register Access (No Bit Access) (Actionable Reads)	.1118
31.6.24 CRYPTO_DATA0XOR - DATA0XOR Register Access (No Bit Access) (Actionable Reads)	1119
31.6.25 CRYPTO_DATA0BYTE - DATA0 Register Byte Access (No Bit Access) (Actionable Reads	
	.1119
31.6.26 CRYPTO_DATA1BYTE - DATA1 Register Byte Access (No Bit Access) (Actionable Reads	•
04.007 ODVDTO DATAOVODDVTE DATAO D. : (D.) VODA	. 1120
31.6.27 CRYPTO_DATA0XORBYTE - DATA0 Register Byte XOR Access (No Bit Access) (Actionable Reads)	.1120
(Actionable Reads)	.1120
31.6.29 CRYPTO DATAOBYTE13 - DATAO Register Byte 13 Access (No Bit Access)	.1121
31.6.30 CRYPTO_DATA0BYTE14 - DATA0 Register Byte 14 Access (No Bit Access)	.1122
31.6.31 CRYPTO_DATA0BYTE15 - DATA0 Register Byte 15 Access (No Bit Access)	.1122
31.6.32 CRYPTO DDATA0 - DDATA0 Register Access (No Bit Access) (Actionable Reads)	.1123
31.6.33 CRYPTO_DDATA1 - DDATA1 Register Access (No Bit Access) (Actionable Reads)	.1123
31.6.34 CRYPTO_DDATA2 - DDATA2 Register Access (No Bit Access) (Actionable Reads)	.1124
31.6.35 CRYPTO_DDATA3 - DDATA3 Register Access (No Bit Access) (Actionable Reads) .	.1124
31.6.36 CRYPTO_DDATA4 - DDATA4 Register Access (No Bit Access) (Actionable Reads)	.1125
31.6.37 CRYPTO_DDATA0BIG - DDATA0 Register Big Endian Access (No Bit Access) (Actionable	е
Reads)	.1125
31.6.38 CRYPTO_DDATA0BYTE - DDATA0 Register Byte Access (No Bit Access) (Actionable	
Reads)	.1126
31.6.39 CRYPTO_DDATA1BYTE - DDATA1 Register Byte Access (No Bit Access) (Actionable Reads)	.1126
31.6.40 CRYPTO DDATA0BYTE32 - DDATA0 Register Byte 32 Access (No Bit Access)	.1127
31.6.41 CRYPTO QDATA0 - QDATA0 Register Access (No Bit Access) (Actionable Reads)	. 1127
	. 1128
31.6.43 CRYPTO_QDATA1BIG - QDATA1 Register Big Endian Access (No Bit Access) (Actionable	
Reads)	.1128
31.6.44 CRYPTO_QDATA0BYTE - QDATA0 Register Byte Access (No Bit Access) (Actionable	
Reads)	.1129
31.6.45 CRYPTO_QDATA1BYTE - QDATA1 Register Byte Access (No Bit Access) (Actionable	4 4 0 0
Reads)	.1129
32. GPIO - General Purpose Input/Output	.1130
32.1 Introduction	. 1130
32.2 Features	
32.3 Functional Description	
32.3.1 Pin Configuration	
32.3.2 EM4 Wake-up	
32.3.4 Alternate Functions	
32.3.5 Interrupt Generation	
32.3.6 Output to PRS	
32.3.7 Synchronization	
32.4 Register Map	
•	
32.5 Register Description	
32.5.1 GPIO_Px_CTRL - Port Control Register	1142

32.5.2 GPIO_Px_MODEL - Port Pin Mode Low Register	1144
32.5.3 GPIO_Px_MODEH - Port Pin Mode High Register	. 1149
32.5.4 GPIO_Px_DOUT - Port Data Out Register	1.154
32.5.5 GPIO_Px_DOUTTGL - Port Data Out Toggle Register	1.154
32.5.6 GPIO_Px_DIN - Port Data in Register	.1155
32.5.7 GPIO_Px_PINLOCKN - Port Unlocked Pins Register	.1155
32.5.8 GPIO_Px_OVTDIS - Over Voltage Disable for All Modes	1.156
32.5.9 GPIO_EXTIPSELL - External Interrupt Port Select Low Register	.1157
32.5.10 GPIO_EXTIPSELH - External Interrupt Port Select High Register	1160
32.5.11 GPIO_EXTIPINSELL - External Interrupt Pin Select Low Register	.1163
32.5.12 GPIO_EXTIPINSELH - External Interrupt Pin Select High Register	
32.5.13 GPIO_EXTIRISE - External Interrupt Rising Edge Trigger Register	. 1168
32.5.14 GPIO_EXTIFALL - External Interrupt Falling Edge Trigger Register	1169
32.5.15 GPIO_EXTILEVEL - External Interrupt Level Register	
32.5.16 GPIO_IF - Interrupt Flag Register	.1171
32.5.17 GPIO_IFS - Interrupt Flag Set Register	
32.5.18 GPIO_IFC - Interrupt Flag Clear Register	
32.5.19 GPIO_IEN - Interrupt Enable Register	
32.5.20 GPIO_EM4WUEN - EM4 Wake Up Enable Register	
32.5.21 GPIO_ROUTEPEN - I/O Routing Pin Enable Register	
32.5.22 GPIO_INSENSE - Input Sense Register	
32.5.23 GPIO_LOCK - Configuration Lock Register	. 1176
33. APORT - Analog Port	1177
33.1 Introduction	
33.2 Features	
33.3 Functional Description	
33.3.1 I/O Pin Considerations	
33.3.2 APORT ABUS Naming	
33.3.3 Managing ABUSes	. 1182
34. CSEN - Capacitive Sense Module	1.184
34.1 Introduction	
34.2 Features	
34.3 Timing	
34.3.1 Clocks	
34.3.2 Conversion Triggers	
34.3.3 Shutdown and Warmup	1186
34.4 Conversion Types	1.186
34.4.1 SAR Conversion Type	. 1186
34.4.2 Delta Modulation Conversion Type	1.187
34.5 Input Configuration	1189
34.6 Converison Modes	
34.6.1 Single Channel Conversions	
34.6.2 Scan Conversions	
34.6.3 Bonded Channel Conversions	1192
	/

	34.7 Output Data	. 1193
	34.8 Low Frequency Noise Filter (Chopping)	. 1194
	34.9 Wake on Threshold and Exponential Moving Average	. 1.195
	34.10 Analog Adjustments	
	34.10.1 Current Reference and Gain	
	34.10.2 Current Drive	. 1196
	34.10.3 Reset (Discharge) Timing	1196
	34.11 DMA Interface	. 1.197
	34.12 Register Map	. 1198
	34.13 Register Description	. 1.199
	34.13.1 CSEN_CTRL - Control	
	34.13.2 CSEN_TIMCTRL - Timing Control	.1203
	34.13.3 CSEN_CMD - Command	
	34.13.4 CSEN_STATUS - Status	
	34.13.5 CSEN_PRSSEL - PRS Select	
	34.13.6 CSEN_DATA - Output Data	
	34.13.7 CSEN_SCANMASK0 - Scan Channel Mask 0	
	34.13.8 CSEN_SCANINPUTSEL0 - Scan Input Selection 0	
	=	
	34.13.10 CSEN_SCANINPUTSEL1 - Scan Input Selection 1	
	34.13.12 CSEN_APORTCONFLICT - APORT Request Conflict	
	34.13.13 CSEN CMPTHR - Comparator Threshold	
	34.13.14 CSEN_EMA - Exponential Moving Average	
	34.13.15 CSEN_EMACTRL - Exponential Moving Average Control	
	34.13.16 CSEN_SINGLECTRL - Single Conversion Control	
	34.13.17 CSEN_DMBASELINE - Delta Modulation Baseline	. 1217
	34.13.18 CSEN_DMCFG - Delta Modulation Configuration	
	34.13.19 CSEN_ANACTRL - Analog Control	
	34.13.20 CSEN_IF - Interrupt Flag	
	34.13.21 CSEN_IFS - Interrupt Flag Set	
	34.13.22 CSEN_IFC - Interrupt Flag Clear	
	34.13.23 CSEN_IEN - Interrupt Enable	.1223
35	5. CAN - Controller Area Network	. 1224
	35.1 Introduction	. 1224
	35.2 Features	. 1225
	35.3 Functional Description	1225
	35.3.1 Operating Modes	. 1.225
	35.3.2 Message Interface Register Sets	
	35.3.3 Message Object in the Message Memory	
	35.3.4 Management of Message Objects	
	35.3.5 Data Transfer From/to Message RAM	
	35.3.6 Transmission of Messages	
	35.3.7 Acceptance Filtering of Received Messages	
	35.3.8 Receive/Transmit Priority	. 1232

35.3.9 Configuration of a Transmit Object	1232
35.3.10 Updating a Transmit Object	
35.3.11 Configuration of a Receive Object	
35.3.12 Handling of Received Messages	
35.3.13 Configuration of a FIFO Buffer	
35.3.14 Reception of Messages With FIFO Buffers	
35.3.15 Reading From a FIFO Buffer	
35.3.16 Handling of Interrupts	
35.3.17 Configuration of the Bit Timing	1235
35.4 Register Map	1237
35.5 Register Description	.1238
35.5.1 CANn_CTRL - Control Register	
35.5.2 CANn_STATUS - Status Register	
35.5.3 CANn_ERRCNT - Error Count Register	
35.5.4 CANn_BITTIMING - Bit Timing Register	
35.5.5 CANn_INTID - Interrupt Identification Register	
35.5.6 CANn_TEST - Test Register	
35.5.7 CANn_BRPE - BRP Extension Register	1244
35.5.8 CANn_TRANSREQ - Transmission Request Register	1244
35.5.9 CANn_MESSAGEDATA - New Data Register	1245
35.5.10 CANn_MESSAGESTATE - Message Valid Register	1245
35.5.11 CANn_CONFIG - Configuration Register	1246
35.5.12 CANn_IF0IF - Message Object Interrupt Flag Register	
35.5.13 CANn_IF0IFS - Message Object Interrupt Flag Set Register	
35.5.14 CANn_IF0IFC - Message Object Interrupt Flag Clear Register	
35.5.15 CANn_IF0IEN - Message Object Interrupt Enable Register	
35.5.16 CANn_IF1IF - Status Interrupt Flag Register	
35.5.17 CANn_IF1IFS - Message Object Interrupt Flag Set Register	
35.5.18 CANn_IF1IFC - Message Object Interrupt Flag Clear Register	
35.5.19 CANn_IF1IEN - Status Interrupt Enable Register	
35.5.20 CANn_ROUTE - I/O Routing Register	
35.5.21 CANn_MIRx_CMDMASK - Interface Command Mask Register	
35.5.22 CANn_MIRx_MASK - Interface Mask Register	
35.5.23 CANn_MIRx_ARB - Interface Arbitration Register	
35.5.24 CANn_MIRx_CTRL - Interface Message Control Register	
35.5.25 CANn_MIRx_DATALL_Interface Data a Register	
35.5.26 CANn_MIRx_DATAH - Interface Data B Register	
35.5.27 CANn_MIRx_CMDREQ - Interface Command Request Register	1∠58
36. Revision History	.1259
Appendix 1. Abbreviations	1260

1. About This Document

1.1 Introduction

This document contains reference material for the EFM32 Tiny Gecko 11 devices. All modules and peripherals in the EFM32 Tiny Gecko 11 devices are described in general terms. Not all modules are present in all devices and the feature set for each device might vary. Such differences, including pinout, are covered in the device data sheets and applicable errata documents.

1.2 Conventions

Register Names

Register names are given with a module name prefix followed by the short register name:

TIMERn_CTRL - Control Register

The "n" denotes the module number for modules which can exist in more than one instance.

Some registers are grouped which leads to a group name following the module prefix:

GPIO Px DOUT - Port Data Out Register

The "x" denotes the different ports.

Bit Fields

Registers contain one or more bit fields which can be 1 to 32 bits wide. Bit fields wider than 1 bit are given with start (x) and stop (y) bit [y:x].

Bit fields containing more than one bit are unsigned integers unless otherwise is specified.

Unspecified bit field settings must not be used, as this may lead to unpredictable behaviour.

Address

The address for each register can be found by adding the base address of the module found in the Memory Map (see Figure 4.2 System Address Space With Core and Code Space Listing on page 41), and the offset address for the register (found in module Register Map).

Access Type

The register access types used in the register descriptions are explained in Table 1.1 Register Access Types on page 29.

Table 1.1. Register Access Types

Access Type	Description
R	Read only. Writes are ignored
RW	Readable and writable
RW1	Readable and writable. Only writes to 1 have effect
(R)W1	Sometimes readable. Only writes to 1 have effect. Currently only used for IFC registers (see 3.3.1.2 IFC Read-clear Operation)
W1	Read value undefined. Only writes to 1 have effect
W	Write only. Read value undefined.
RWH	Readable, writable, and updated by hardware
RW(nB), RWH(nB), etc.	"(nB)" suffix indicates that register explicitly does not support peripheral bit set or clear (see 4.2.2 Peripheral Bit Set and Clear)

Access Type	Description
RW(a), R(a), etc.	"(a)" suffix indicates that register has actionable reads (see 5.3.6 Debugger Reads of Actionable Registers)

Number format

0x prefix is used for hexadecimal numbers

0b prefix is used for binary numbers

Numbers without prefix are in decimal representation.

Reserved

Registers and bit fields marked with **reserved** are reserved for future use. These should be written to 0 unless otherwise stated in the Register Description. Reserved bits might be read as 1 in future devices.

Reset Value

The reset value denotes the value after reset.

Registers denoted with X have unknown value out of reset and need to be initialized before use. Note that read-modify-write operations on these registers before they are initialized results in undefined register values.

Pin Connections

Pin connections are given with a module prefix followed by a short pin name:

CMU CLKOUT1 (Clock management unit, clock output pin number 1)

The location for the pin names given in the module documentation can be found in the device-specific data sheet.

1.3 Related Documentation

Further documentation on the EFM32 Tiny Gecko 11 devices and the ARM Cortex-M0+ can be found at the Silicon Labs and ARM web pages:

www.silabs.com

www.arm.com

2. System Overview

2.1 Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M0+, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32 Tiny Gecko 11 microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption.

2.2 Features

ARMCortex-M0+ CPU Platform

- High Performance 32-bit processor @ up to 48 MHz
- Memory Protection Unit
- · Wake-up Interrupt Controller

Flexible Energy Management System

- · Power routing configurations including integrated DCDC converter
- · Voltage Monitoring and Brown Out Detection
- · State Retention

· Up to 128 kB Flash

32 kB RAM Data Memory

Up to 67 General Purpose I/O Pins

- · Configurable push-pull, open-drain, pull-up/down, input filter, drive strength, slew rate
- · Configurable peripheral I/O locations
- · 5 V tolerance on select pins
- · Asynchronous external interrupts
- · Output state retention and wake-up from Shutoff Mode

· 8 Channel Linked Direct Memory Access (LDMA) Controller

- · Single or linked list of descriptors
- · Supports circular and ping-pong buffers, scatter-gather, looping
- · Sophistocated, flexible flow control for performing complex multi-step operations without CPU interevention

• Up to 8 Channel Peripheral Reflex System for Autonomous Inter-peripheral Signaling

Integrated LCD Controller for up to 4 × 36 Segments or 8 × 32 Segments in Octaplex Mode

- · Voltage boost, contrast and autonomous animation
- · Patented low-energy LCD driver

CRYPTO Advanced Encryption Standard Accelerator

- · AES encryption / decryption, with 128 or 256 bit keys
- Multiple AES modes of operation, including Counter (CTR), Galois/Counter Mode (GCM), Cipher Block Chaining (CBC), Cipher Feedback (CFB) and Output Feedback (OFB).
- Accelerated SHA-1 and SHA-2
- · Accelerated Elliptic Curve Cryptography (ECC), with binary or prime fields
- · Flexible 256-bit ALU and sequencer

• True Random Number Generator (TRNG)

· Hardware CRC Engine

Single-cycle computation with 8/16/32-bit data and 16-bit (programmable)/32-bit (fixed) polynomial

Security Management Unit (SMU)

Fine-grained access control for on-chip peripherals

Additional Communication Interfaces

- · CAN Bus Controller
 - · Version 2.0A and 2.0B up to 1 Mbps
- · Up to 4×Universal Synchronous/Asynchronous Receiver/Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN
 - Triple buffered full/half-duplex operation
 - Hardware flow control
 - 4-16 data bits
- · 1×Universal Asynchronous Receiver/Transmitter
 - · Triple buffered full/half-duplex operation
 - 8-9 data bits
- 1× Low Energy UART
 - · Autonomous operation with DMA in Deep Sleep Mode
- 2 ×I²C Interface with SMBus support
 - · Address recognition in EM3 Stop Mode

· Timers/Counters

- · 2× 32-bit Timer/Counter
 - 3/4 Compare/Capture/PWM channels
 - · Dead-Time Insertion
- · 2× 16-bit Timer/Counter
 - 3 Compare/Capture/PWM channels
 - · Dead-Time Insertion
- 1×16-bit Low Energy Timer
- · 32-bit Ultra Low Energy Timer/Counter (CRYOTIMER) for periodic wake-up from any Energy Mode
- 32-bit Real-Time Counter and Calendar (RTCC)
- 1× 16-bit Pulse Counter
 - · Asynchronous pulse counting/quadrature decoding
- 1× Watchdog Timer

Backup Power Domain

- RTCC and retention registers in a separate power domain, available in all energy modes
- · Operation from backup battery when main power absent/insufficient

Ultra Low Power Precision Analog Peripherals

- Up to 62 GPIO pins are analog-capable. Flexible analog peripheral-to-pin routing via Analog Port (APORT)
- 1× 12-bit 1 Msamples/s Analog to Digital Converter (ADC)
 - · Single ended or differential operation
 - · Conversion tailgating for predictable latency
 - · On-chip temperature sensor
- 12-bit 500 ksamples/s Digital to Analog Converter (VDAC)
 - · 2 single ended channels/1 differential channel
- · Up to 4 Operational Amplifiers
 - · Supports rail-to-rail inputs and outputs
 - · Programmable gain
- 2× Analog Comparator (ACMP)
 - · Programmable speed/current
 - · Capacitive sensing with up to 8 inputs
- · Capacitive Sense Module (CSEN)
 - · Robust current-based capacitive sensing with up to 38 inputs and wake-on-touch
- Supply Voltage Monitor (VMON)

Ultra Low Power Sensor Interface (LESENSE)

- · Autonomous sensor monitoring in Deep Sleep Mode
- · Wide range of sensors supported, including LC sensors and capacitive buttons
- · Up to 16 inputs
- · Ultra Efficient Power-on Reset and Brown-Out Detector
- Debug Interface
 - · 2-pin Serial Wire Debug interface
 - · 4-pin JTAG interface
 - · Micro Trace Buffer (MTB)

2.3 Block Diagram

A block diagram of EFM32 Tiny Gecko 11 is shown in the figure below. The color indicates peripheral availability in energy modes as described in 2.4 Energy Modes.

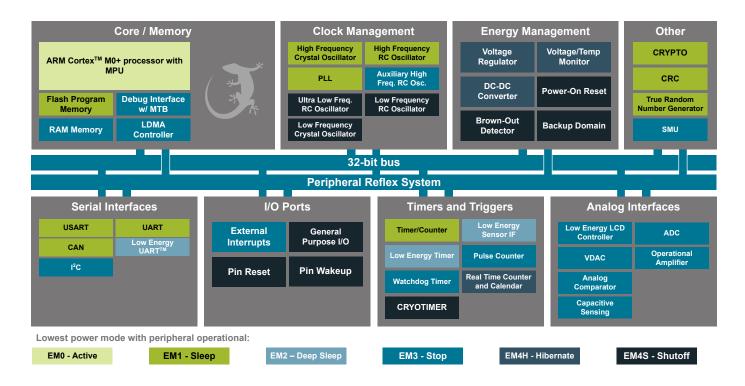


Figure 2.1. Diagram of EFM32 Tiny Gecko 11

Note:

In the block diagram, color indicates availability in different energy modes.

2.4 Energy Modes

There are five different Energy Modes (EM0 Active-EM4 Hibernate/Shutoff) in the EFM32 Tiny Gecko 11, see Table 2.1 Energy Mode Description on page 34. The EFM32 Tiny Gecko 11 is designed to achieve a high degree of autonomous operation in low energy modes. The intelligent combination of peripherals, RAM with data retention, DMA, low-power oscillators and short wake-up times, makes it attractive to remain in low energy modes for long periods and thus saving energy consumption.

Throughout this document, the first figure in every module description contains an Energy Mode Indicator that shows in which energy mode(s) the module can operate (see Table 2.1 Energy Mode Description on page 34).

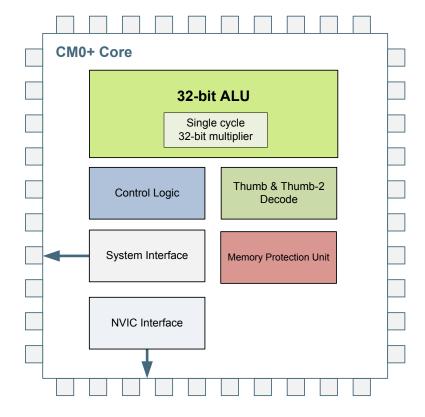
Table 2.1. Energy Mode Description

Energy Mode	Name	Description
0 1 2 3 4	EM0 Active – Energy Mode 0 (Run mode)	In EM0 Active, the CPU is actively running code. All peripherals can also be activated.
0 1 2 3 4	EM1 Sleep – Energy Mode 1 (Sleep Mode)	In EM1 Sleep, the CPU is sleeping in a low-power state. All peripherals, including DMA, PRS, and the memory system are still available.
0 1 2 3 4	EM2 DeepSleep – Energy Mode 2 (Deep Sleep Mode)	In EM2 DeepSleep the high frequency oscillator is turned off, but with the 32.768 kHz oscillator running, selected low energy peripherals (LCD, RTC, LETIMER, PCNT, WDOG, LEUART, I ² C, ACMP, LESENSE,) are still available, giving a high degree of autonomous operation with very low current consumption and fast wake times. Power-on Reset, Brown-out Detection and full RAM and CPU retention is also included.
0 1 2 3 4	EM3 Stop - Energy Mode 3 (Stop Mode)	In EM3 Stop the low-frequency oscillator is disabled, but there is still full CPU and RAM retention, as well as Power-on Reset, Pin reset EM4 Hibernate/Shutoff wake-up and Brown-out Detector, with very low current consumption. The low-power ACMP, asynchronous external interrupt, PCNT, and I ² C can quickly wake the device.
0 1 2 3 4	EM4 Hibernate/Shutoff – Energy Mode 4 (Shutoff Mode)	In EM4 Hibernate/Shutoff, the current is extremely low and all chip functionality is turned off except the pin reset, GPIO pin wake-up, GPIO pin retention and the power on reset. All pins are put into their reset state.

2.5 Timers

EFM32 Tiny Gecko 11 includes multiple timers as shown in Table 2.2 EFM32 Tiny Gecko 11 Timers Overview on page 35.

Table 2.2. EFM32 Tiny Gecko 11 Timers Overview


Timer	Number of Instances	Typical Clock Source	Overview
RTCC	1	Low frequency (LFXO or LFRCO)	32 bit Real Time Counter and Calendar, typically used to accurately time inactive periods and enable wakeup on compare match.
TIMER	2	High frequency (HFXO or HFRCO)	16 bit general purpose timer.
WTIMER	2	High frequency (HFXO or HFRCO)	32 bit general purpose timer.
SysTick timer	1	High frequency (HFXO or HFRCO) or low frequency (LFXO, LFRCO or ULFRCO)	32 bit SysTick timer integrated in the Cortex-M0+. Typically used as an Operating System timer.
WDOG	1	Low frequency (LFXO, LFRCO or ULFRCO)	Watch dog timer. Once enabled, this module must be periodically accessed. If not, this is considered an error and the EFM32 Tiny Gecko 11 is reset in order to recover the system.
LETIMER	1	Low frequency (LFXO, LFRCO or ULFRCO)	Low energy general purpose timer.
PCNT	1	Low frequency (LFXO, LFRCO or ULFRCO) or external pin	Low energy pulse counter with quadrature mode.
CRYOTIMER	1	Low frequency (LFXO, LFRCO or ULFRCO)	Ultra Low energy 32 bit timer available in all Energy Modes

Advanced interconnect features allows synchronization between timers. This includes:

• Start / stop any high frequency timer synchronized with the RTCC

3. System Processor

Quick Facts

What?

The industry leading Cortex-M0+ processor from ARM is the CPU in the EFM32 Tiny Gecko 11 devices.

Why?

The ARM Cortex-M0+ is designed for exceptionally short response time, high code density, and high 32-bit throughput while maintaining a strict cost and power consumption budget.

How?

Combined with the ultra low energy peripherals available in EFM32 Tiny Gecko 11 devices, the Cortex-M0+ processor's Harvard architecture, 2 stage pipeline, single cycle instructions, Thumb-2 instruction set support, and fast interrupt handling make it perfect for 8-bit, 16-bit, and 32-bit applications.

3.1 Introduction

The ARM Cortex-M0+ 32-bit RISC processor provides outstanding computational performance and exceptional system response to interrupts while meeting low cost requirements and low power consumption.

The ARM Cortex-M0+ implemented is revision r0p1.

3.2 Features

- · Harvard architecture
 - · Separate data and program memory buses (No memory bottleneck as in a single bus system)
- · 2-stage pipeline
- · Thumb-2 instruction set
 - Enhanced levels of performance, energy efficiency, and code density
- · Single cycle multiply instructions
 - · 32-bit multiplication in a single cycle
- 1.08 DMIPS/MHz
- Configurable IRQ-latency
 - · Allows developers to select a trade-off between interrupt respone time and predictability
- · Memory Protection Unit
 - Up to 8 protected memory regions
- 24 bits System Tick Timer for Real Time OS
- · Excellent 32-bit migration choice for 8/16 bit architecture based designs
 - Simplified stack-based programmer's model is compatible with traditional ARM architecture and retains the programming simplicity of legacy 8-bit and 16-bit architectures
- · Alligned or unaligned data storage and access
 - · Contiguous storage of data requiring different byte lengths
 - · Data access in a single core access cycle
- · Integrated power modes
 - · Sleep Now mode for immediate transfer to low power state
 - · Sleep on Exit mode for entry into low power state after the servicing of an interrupt
 - · Ability to extend power savings to other system components
- · Optimized for low latency, nested interrupts

3.3 Functional Description

For a full functional description of the ARM Cortex-M0+ implementation in the EFM32 Tiny Gecko 11 family, the reader is referred to the ARM Cortex-M0+ documentation provided by ARM.

3.3.1 Interrupt Operation

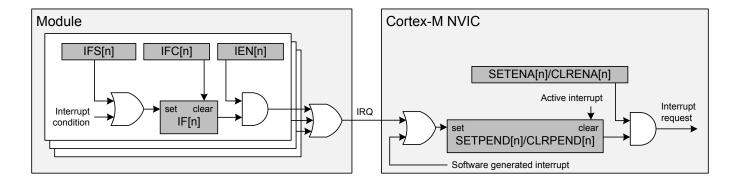


Figure 3.1. Interrupt Operation

The interrupt request (IRQ) lines are connected to the Cortex-M0+. Each of these lines (shown in Table 3.1 Interrupt Request Lines (IRQ) on page 39) is connected to one or more interrupt flags in one or more modules. The interrupt flags are set by hardware on an interrupt condition. It is also possible to set/clear the interrupt flags through the IFS/IFC registers. Each interrupt flag is then qualified with its own interrupt enable bit (IEN register), before being OR'ed with the other interrupt flags to generate the IRQ. A high IRQ line will set the corresponding pending bit (can also be set/cleared with the SETPEND/CLRPEND bits in ISPR0/ICPR0) in the Cortex-M0+NVIC. The pending bit is then qualified with an enable bit (set/cleared with SETENA/CLRENA bits in ISER0/ICER0) before generating an interrupt request to the core. Figure 3.1 Interrupt Operation on page 38 illustrates the interrupt system. For more information on how the interrupts are handled inside the Cortex-M0+, the reader is referred to the ARM Cortex-M0+ Technical Reference Manual.

The EFM32TG11 devices have a CortexM0+ which has only 32 interrupts, but the system has 40 module interrupts. Some interrupt sources are merged to share a single CortexM0+ interrupt. CRYPTO,TRNG module interrupts merged to a single interrupt, USART*_RX, USART*_TX module interrupts merged to single interrupt and UART0_RX, UART0_TX module interrupts are merged to single interrupt source.

3.3.1.1 Avoiding Extraneous Interrupts

There can be latencies in the system such that clearing an interrupt flag could take longer than leaving an Interrupt Service Routine (ISR). This can lead to the ISR being re-entered as the interrupt flag has yet to clear immediately after leaving the ISR. To avoid this, when clearing an interrupt flag at the end of an ISR, the user should execute ARM's Data Synchronization Barrier (DSB) instruction. Another approach is to clear the interrupt flag immediately after identifying the interrupt source and then service the interrupt as shown in the pseudo-code below. The ISR typically is sufficiently long to more than cover the few cycles it may take to clear the interrupt status, and also allows the status to be checked for further interrupts before exiting the ISR.

```
irqXServiceRoutine() {
   do {
     clearIrqXStatus();
     serviceIrqX();
   } while(irqXStatusIsActive());
}
```

3.3.1.2 IFC Read-clear Operation

In addition to the normal interrupt setting and clearing operations via the IFS/IFC registers, there is an additional atomic Read-clear operation that can be enabled by setting IFCREADCLEAR=1 in the MSC_CTRL register. When enabled, reads of peripheral IFC registers will return the interrupt vector (mirroring the IF register), while at the same time clearing whichever interrupt flags are set. This operation is functionally equivalent to reading the IF register and then writing the result immediately back to the IFC register.

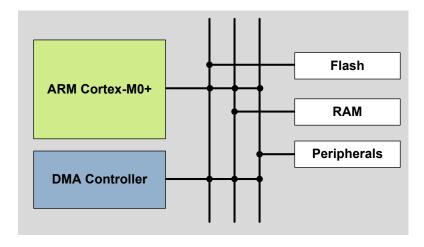

3.3.2 Interrupt Request Lines (IRQ)

Table 3.1. Interrupt Request Lines (IRQ)

IRQ#	Source(s)
0	EMU
1	WDOG0
2	LDMA
3	GPIO_EVEN
4	SMU
5	TIMER0
6	USART0
7	ACMP0
	ACMP1
8	ADC0
9	12C0
10	I2C1
11	GPIO_ODD
12	TIMER1
13	USART1
14	USART2
15	UART0
16	LEUART0
17	LETIMER0
18	PCNT0
19	RTCC
20	СМИ
21	MSC
22	CRYPTO0
	TRNG0
23	CRYOTIMER
24	USART3
25	WTIMER0
26	WTIMER1
27	VDAC0
28	CSEN
29	LESENSE
30	LCD
31	CAN0

4. Memory and Bus System

Quick Facts

What?

A low latency memory system including low energy Flash and RAM with data retention which makes the energy modes attractive.

Why?

RAM retention reduces the need for storing data in Flash and enables frequent use of the ultra low energy modes EM2 DeepSleep and EM3 Stop.

How?

Low energy and non-volatile Flash memory stores program and application data in all energy modes and can easily be reprogrammed in system. Low leakage RAM with data retention in EM0 Active to EM3 Stop removes the data restore time penalty, and the DMA ensures fast autonomous transfers with predictable response time.

4.1 Introduction

The EFM32 Tiny Gecko 11 contains an AMBA AHB Bus system to allow bus masters to access the memory mapped address space. A multilayer AHB bus matrix connects the 2 master bus interfaces to the AHB slaves (Figure 4.1 EFM32 Tiny Gecko 11 Bus System on page 40). The bus matrix allows several AHB slaves to be accessed simultaneously. An AMBA APB interface is used for the peripherals, which are accessed through an AHB-to-APB bridge connected to the AHB bus matrix. The 2 AHB bus masters are:

- Cortex-M0+ ICode: Used for instruction fetches from Code memory (valid address range: 0x00000000 0x1FFFFFFF)
- Cortex-M0+ DCode: Used for debug and data access to Code memory (valid address range: 0x00000000 0x1FFFFFFF)
- Cortex-M0+ System: Used for data and debug access to system space. It can access entire memory space except Code memory (valid address range: 0x20000000 0xFFFFFFFF)
- DMA: Can access the entire memory space except the internal core memory region and the DMEM code region

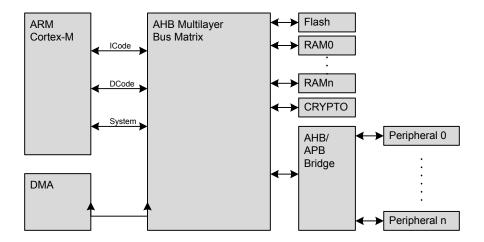


Figure 4.1. EFM32 Tiny Gecko 11 Bus System

4.2 Functional Description

The memory segments are mapped together with the internal segments of the Cortex-M0+ into the system memory map shown by Figure 4.2 System Address Space With Core and Code Space Listing on page 41.

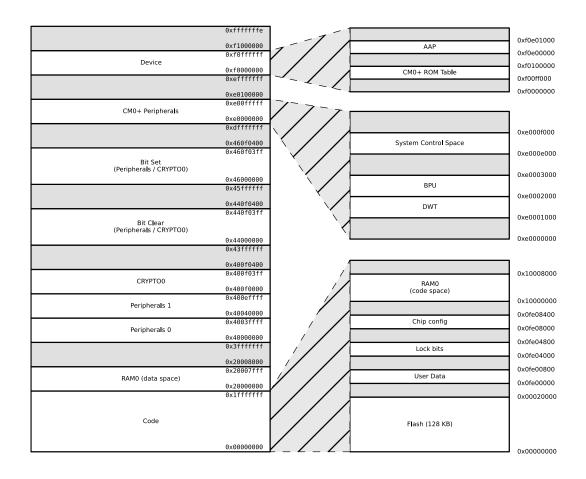


Figure 4.2. System Address Space With Core and Code Space Listing

Additionally, the peripheral address map is detailed by Figure 4.3 System Address Space With Peripheral Listing on page 42.

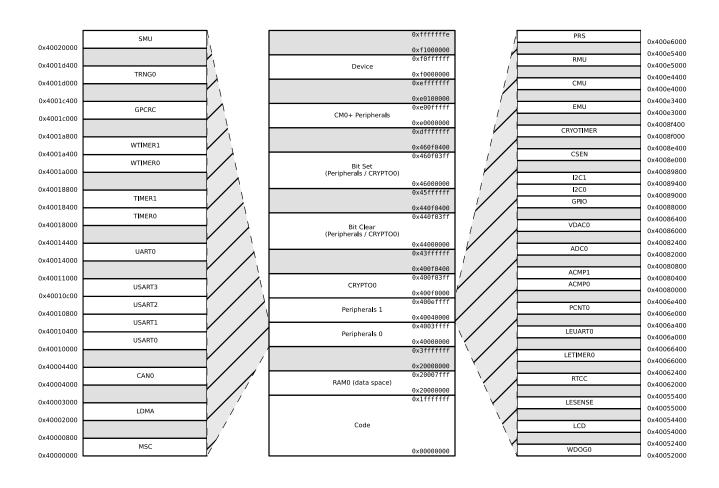


Figure 4.3. System Address Space With Peripheral Listing

The embedded SRAM is located at address 0x20000000 in the memory map of the EFM32 Tiny Gecko 11. When running code located in SRAM starting at this address, the Cortex-M0+ uses the System bus interface to fetch instructions. This results in reduced performance as the Cortex-M0+ accesses stack, other data in SRAM and peripherals using the System bus interface. To be able to run code from SRAM efficiently, the SRAM is also mapped in the code space at address 0x10000000.

The SRAM mapped into the code space can however only be accessed by the CPU and not any other bus masters, e.g. DMA. See 4.5 SRAM for more detailed info on the system SRAM.

4.2.1 Peripheral Non-Word Access Behavior

When writing to peripheral registers, all accesses are treated as 32-bit accesses. This means that writes to a register need to be large enough to cover all bits of register, otherwise, any uncovered bits may become corrupted from the partial-word transfer. Thus, the safest practice is to always do 32-bit writes to peripheral registers.

When reading, there is generally no issue with partial word accesses, however, note that any read action (e.g. FIFO popping) will be triggered regardless of whether the actual FIFO bit-field was included in the transfer size.

Note: The implementation of bit-banding in the core is such that bit-band accesses forward the transfer size info into the actual bus transfer size, so the same restrictions apply to bit-band accesses as apply to normal read/write accesses.

4.2.2 Peripheral Bit Set and Clear

The EFM32 Tiny Gecko 11 supports bit set and bit clear access to all peripherals except those listed in Table 4.1 Peripherals that Do Not Support Bit Set and Bit Clear on page 43. The bit set and bit clear functionality (also called Bit Access) enables modification of bit fields (single bit or multiple bit wide) without the need to perform a read-modify-write (though it is functionally equivalent). Also, the operation is contained within a single bus access (for HF peripherals).

The bit clear aliasing region starts at 0x44000000 and the bit set aliasing region starts at 0x46000000. Thus, to apply a bit set or clear operation, write the bit set or clear mask to the following addresses:

bit_clear_address = address + 0x04000000 bit_set_address = address + 0x06000000

For bit set operations, bit locations that are 1 in the bit mask will be set in the destination register:

register = (register OR mask)

For bit clear operations, bit locations that are 1 in the bit mask will be cleared in the destination register:

register = (register AND (NOT mask))

Note: It is possible to combine bit clear and bit set operations in order to arbitrarily modify multi-bit register fields, without affecting other fields in the same register. In this case, care should be taken to ensure that the field does not have intermediate values that can lead to erroneous behavior. For example, if bit clear and bit set operations are used to change an analog tuning register field from 25 to 26, the field would initially take on a value of zero. If the analog module is active at the time, this could lead to undesired behavior.

The peripherals listed in Table 4.1 Peripherals that Do Not Support Bit Set and Bit Clear on page 43 do not support Bit Access for any registers. All other peripherals do support Bit Access, however, there may be cases of certain registers that do not support it. Such registers have a note regarding this lack of support.

Table 4.1. Peripherals that Do Not Support Bit Set and Bit Clear

Module	
EMU	
RMU	
CAN0	
CRYOTIMER	
TRNG0	

4.2.3 Peripherals

The peripherals are mapped into the peripheral memory segment, each with a fixed size address range according to Table 4.2 Peripherals on page 44, Table 4.3 Low Energy Peripherals on page 44 and Table 4.4 Core Peripherals on page 45.

Table 4.2. Peripherals

Address Range	Module Name
0x400E6000 - 0x400E6400	PRS
0x4008F000 - 0x4008F400	CRYOTIMER
0x4008E000 - 0x4008E400	CSEN
0x40089400 - 0x40089800	I2C1
0x40089000 - 0x40089400	12C0
0x40088000 - 0x40089000	GPIO
0x40086000 - 0x40086400	VDAC0
0x40082000 - 0x40082400	ADC0
0x40080400 - 0x40080800	ACMP1
0x40080000 - 0x40080400	ACMP0
0x40020000 - 0x40020400	SMU
0x4001D000 - 0x4001D400	TRNG0
0x4001C000 - 0x4001C400	GPCRC
0x4001A400 - 0x4001A800	WTIMER1
0x4001A000 - 0x4001A400	WTIMER0
0x40018400 - 0x40018800	TIMER1
0x40018000 - 0x40018400	TIMER0
0x40014000 - 0x40014400	UART0
0x40010C00 - 0x40011000	USART3
0x40010800 - 0x40010C00	USART2
0x40010400 - 0x40010800	USART1
0x40010000 - 0x40010400	USART0
0x40004000 - 0x40004400	CAN0

Table 4.3. Low Energy Peripherals

Address Range	Module Name
0x4006E000 - 0x4006E400	PCNT0
0x4006A000 - 0x4006A400	LEUART0
0x40066000 - 0x40066400	LETIMER0
0x40062000 - 0x40062400	RTCC
0x40055000 - 0x40055400	LESENSE
0x40054000 - 0x40054400	LCD
0x40052000 - 0x40052400	WDOG0

Table 4.4. Core Peripherals

Address Range	Module Name
0xF0040000 - 0xF0080000	МТВ
0xE0000000 - 0xE0040000	СМОР
0x400F0000 - 0x400F0400	CRYPTO0
0x40002000 - 0x40003000	LDMA
0x40000000 - 0x40000800	MSC

4.2.4 Bus Matrix

The Bus Matrix connects the memory segments to the bus masters as detailed in 4.1 Introduction.

4.2.4.1 Arbitration

The Bus Matrix uses a round-robin arbitration algorithm which enables high throughput and low latency, while starvation of simultaneous accesses to the same bus slave are eliminated. Round-robin does not assign a fixed priority to each bus master. The arbiter does not insert any bus wait-states during peak interaction. However, one wait state is inserted for master accesses occurring after a prolonged inactive time. This wait state allows for increased power efficiency during master idle time.

4.2.4.2 Peripheral Access Performance

The Bus Matrix is a multi-layer energy optimized AMBA AHB compliant bus with an internal bandwidth of 2x a single AHB interface.

The Cortex-M0+, DMA Controller, and peripherals (not peripherals in the low frequency clock domain) run on clocks which can be prescaled separately. Clocks and prescaling are described in more detail in 10. CMU - Clock Management Unit . This section describes the expected bus wait states for a peripheral based on its frequency relative to the HFCLK frequency. For this discussion, PERCLK refers to a selected peripheral's clock frequency, which is some integer division of the HFCLK frequency.

4.2.4.2.1 WS0 Mode

In general, when accessing a peripheral, the latency in number of HFCLK cycles, not including master arbitration, is given by:

 $N_{bus\ cycles} = N_{slave\ cycles} \times f_{HFCLK}/f_{PERCLK}$, best-case write accesses $N_{bus\ cycles} = N_{slave\ cycles} \times f_{HFCLK}/f_{PERCLK} + 1$, best-case read accesses $N_{bus\ cycles} = (N_{slave\ cycles} + 1) \times f_{HFCLK}/f_{PERCLK} - 1$, worst-case write accesses $N_{bus\ cycles} = (N_{slave\ cycles} + 1) \times f_{HFCLK}/f_{PERCLK}$, worst-case read accesses

where N_{slave cycles} is the throughput of the slave's bus interface in number of PERCLK cycles per transfer, including any wait cycles introduced by the slave.

Figure 4.4. Bus Access Latency (General Case)

Note that a latency of ${\bf 1}$ cycle corresponds to ${\bf 0}$ wait states.

Additionally, for back-to-back accesses to the same peripheral, the throughput in number of cycles per transfer is given by:

 $N_{bus\ cycles} = N_{slave\ cycles} \times f_{HFCLK}/f_{PERCLK}$, write accesses $N_{bus\ cycles} = (N_{slave\ cycles} + 1) \times f_{HFCLK}/f_{PERCLK}$, read accesses

Figure 4.5. Bus Access Throughput (Back-to-Back Transfers)

Lastly, in the highest performing case, where PERCLK equals HFCLK and the slave does not introduce any additional wait states, the access latency in number of cycles is given by:

N_{bus cycles} = 1, write accesses N_{bus cycles} = 2, read accesses

Figure 4.6. Bus Access Latency (Max Performance)

4.2.4.2.2 WS1 Mode

In general, when accessing a peripheral, the latency in number of HFCLK cycles, not including master arbitration, is given by:

 $N_{bus\ cycles} = N_{slave\ cycles} \times f_{HFCLK}/f_{PERCLK} + 2$, best-case write accesses $N_{bus\ cycles} = N_{slave\ cycles} \times f_{HFCLK}/f_{PERCLK} + 1$, best-case read accesses $N_{bus\ cycles} = (N_{slave\ cycles} + 1) \times f_{HFCLK}/f_{PERCLK} + 1$, worst-case write accesses $N_{bus\ cycles} = (N_{slave\ cycles} + 1) \times f_{HFCLK}/f_{PERCLK}$, worst-case read accesses

where N_{slave cycles} is the throughput of the slave's bus interface in number of PERCLK cycles per transfer, including any wait cycles introduced by the slave.

Figure 4.7. Bus Access Latency (General Case)

Note that a latency of ${\bf 1}$ cycle corresponds to ${\bf 0}$ wait states.

Additionally, for back-to-back accesses to the same peripheral, the throughput in number of cycles per transfer is given by:

 $N_{bus\ cycles} = max\{f_{HFCLK}/f_{PERCLK},\ 2\} + N_{slave\ cycles} \times f_{HFCLK}/f_{PERCLK},\ write\ accesses$ $N_{bus\ cycles} = (N_{slave\ cycles} + 1) \times f_{HFCLK}/f_{PERCLK},\ read\ accesses$

Figure 4.8. Bus Access Throughput (Back-to-Back Transfers)

Lastly, in the highest performing case, where PERCLK equals HFCLK and the slave does not introduce any additional wait states, the access latency in number of cycles is given by:

 $N_{bus\ cycles}$ = 3, write accesses $N_{bus\ cycles}$ = 2, read accesses

Figure 4.9. Bus Access Latency (Max Performance)

4.2.4.2.3 Core Access Latency

Note that the cycle counts in the equations above is in terms of the HFCLK. When the core is prescaled from the bus clock, the core will see a reduced number of latency cycles given by:

N_{core cycles} = ceiling(N_{bus cycles} × f_{HFCORECLK}/f_{HFCLK})
where master arbitration is not included.

Figure 4.10. Core Access Latency

4.2.4.3 Bus Faults

System accesses from the core can receive a bus fault in the following condition(s):

- The core attempts to access an address that is not assigned to any peripheral or other system device. These faults can be enabled or disabled by setting the ADDRFAULTEN bit appropriately in MSC_CTRL.
- The core attempts to access a peripheral or system device that has its clock disabled. These faults can be enabled or disabled by setting the CLKDISFAULTEN bit appropriately in MSC_CTRL.
- The bus times out during an access. For example, this could happen while trying to synchronize volatile read data during an LE
 peripheral access. See 10.3.1.1 HFCLK High Frequency Clock. These faults can be enabled or disabled by setting the TIMEOUTFAULTEN bit appropriately in MSC CTRL.

In addition to any condition-specific bus fault control bits, the bus fault interrupt itself can be enabled or disabled in the same way as all other internal core interrupts.

Note: The icache flush is not triggered at the event of a bus fault. As a result, when an instruction fetch results in a bus fault, invalid data may be cached. This means that the next time the instruction that caused the bus fault is fetched, the processor core will get the invalid cached data without any bus fault. In order to avoid invalid cached data propagation to the processor core, software should manually invalidate cache by writing 1 to MSC_CMD_INVCACHE bitfield at the event of a bus fault.

4.3 Access to Low Energy Peripherals (Asynchronous Registers)

The Low Energy Peripherals are capable of running when the high frequency oscillator and core system is powered off, i.e. in energy mode EM2 DeepSleep and in some cases also EM3 Stop. This enables the peripherals to perform tasks while the system energy consumption is minimal.

The Low Energy Peripherals are listed in Table 4.3 Low Energy Peripherals on page 44.

All Low Energy Peripherals are memory mapped, with automatic data synchronization. Because the Low Energy Peripherals are running on clocks asynchronous to the high frequency system clock, there are some constraints on how register accesses are performed, as described in the following sections.

4.3.1 Writing

Every Low Energy Peripheral has one or more registers with data that needs to be synchronized into the Low Energy clock domain to maintain data consistency and predictable operation. There are two different synchronization mechanisms on the EFM32TG11, immediate synchronization, and delayed synchronization. Immediate synchronization is available for the RTCC, LESENSE and LETIMER, and results in an immediate update of the target registers. Delayed synchronization is used for the remaining Low Energy Peripherals, and for these peripherals, a write operation requires 3 positive edges of the clock on the Low Energy Peripheral being accessed. Registers requiring synchronization are marked "Async Reg" in their description header.

Note: On the Gecko series of devices, all LE peripherals are subject to delayed synchronization.

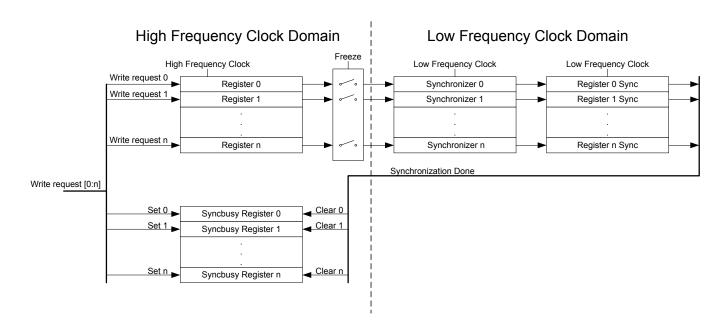


Figure 4.11. Write Operation to Low Energy Peripherals

4.3.1.1 Delayed Synchronization

After writing data to a register which value is to be synchronized into the Low Energy Peripheral using delayed synchronization, a corresponding busy flag in the <module_name>_SYNCBUSY register (e.g. LETIMER_SYNCBUSY) is set. This flag is set as long as synchronization is in progress and is cleared upon completion.

Note: Subsequent writes to the same register before the corresponding busy flag is cleared is not supported. Write before the busy flag is cleared may result in undefined behavior. In general the SYNCBUSY register only needs to be observed if there is a risk of multiple write access to a register (which must be prevented). It is not required to wait until the relevant flag in the SYNCBUSY register is cleared after writing a register. E.g., EM2 DeepSleep can be entered directly after writing a register.

See Figure 4.12 Write Operation to Low Energy Peripherals on page 50 for an overview of the writing mechanism operation.

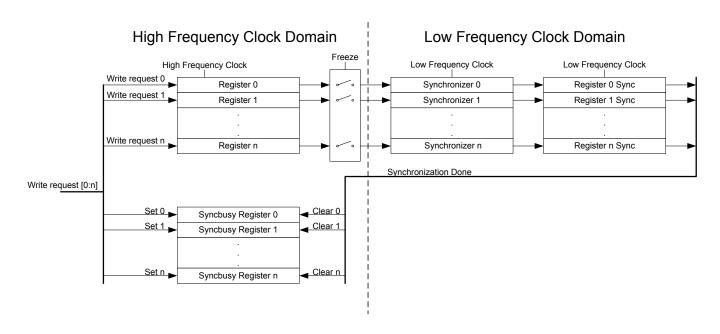


Figure 4.12. Write Operation to Low Energy Peripherals

4.3.1.2 Immediate Synchronization

In contrast to the peripherals with delayed synchronization, peripherals with immediate synchronization do not experience a register write delay for most registers. Registers are updated immediately on the peripheral write access. If such a write is done close to an edge on the clock of the peripheral, the write can be delayed until after that clock edge. This will introduce wait-states on the peripheral access.

One exception is made for commands (writing to the CMD register) in peripherals with immediate synchronization. Peripherals with immediate synchronization each have a SYNCBUSY register with a bit for the CMD register status. Commands written to a peripheral with immediate synchronization are not executed before the first peripheral clock after the write. In this period, the SYNCBUSY flag for the command register is set, indicating that the command has not yet been performed.

To maintain compatibility with earlier Gecko series, the SYNCBUSY register reserves placeholders where other register synchronization bits resided. These bits always read 0, indicating that register writes are always safe.

Note: If compatibility with earlier Gecko series is a requirement for a given application, the rules that apply to delayed synchronization with respect to SYNCBUSY should also be followed for the peripherals that support immediate synchronization.

4.3.2 Reading

When reading from a Low Energy Peripheral, the data read is synchronized regardless if it originates in the Low Energy clock domain or High Frequency clock domain. See Figure 4.13 Read Operation From Low Energy Peripherals on page 51 for an overview of the reading operation.

Note: Writing a register and then immediately reading the new value of the register may give the impression that the write operation is complete. This may not be the case. Refer to the SYNCBUSY register for correct status of the write operation to the Low Energy Peripheral.

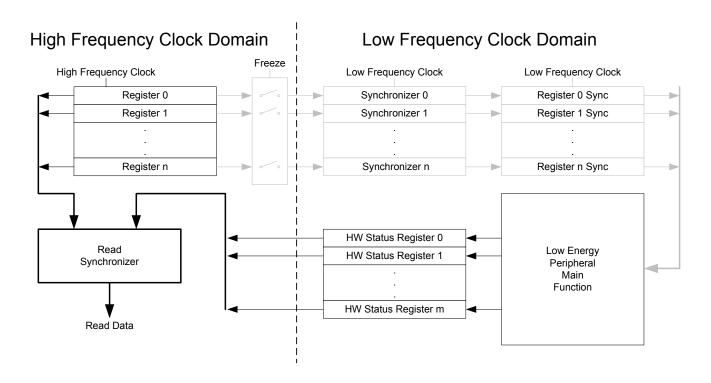


Figure 4.13. Read Operation From Low Energy Peripherals

4.3.3 FREEZE Register

In all Low Energy Peripheral with delayed synchronization there is a <module_name>_FREEZE register (e.g. RTCC_FREEZE). The register contains a bit named REGFREEZE. If precise control of the synchronization process is required, this bit may be utilized. When REGFREEZE is set, the synchronization process is halted allowing the software to write multiple Low Energy registers before starting the synchronization process, thus providing precise control of the module update process. The synchronization process is started by clearing the REGFREEZE bit.

Note: The FREEZE register is also present on peripherals with immediate synchronization, but there it has no effect

4.4 Flash

The Flash retains data in any state and typically stores the application code, special user data and security information. The Flash memory is typically programmed through the debug interface, but can also be erased and written to from software.

- · Up to 128 kB of memory
- · Page size of 2 kB (minimum erase unit)
- · Minimum 10K erase cycles endurance
- Greater than 10 years data retention at 85 °C
- · Lock-bits for memory protection
- · Data retention in any state

4.5 SRAM

The primary task of the SRAM memory is to store application data. Additionally, it is possible to execute instructions from SRAM, and the DMA may be set up to transfer data between the SRAM, flash and peripherals.

- · Up to 32 kB of memory
- · Set of RAM blocks may be powered down when not in use
- · Data retention of the entire memory in EM0 Active to EM3 Stop

The SRAM memory may be split among two or more different AHB slaves (e.g., RAM0, RAM1, ...) in order to allow simultaneous access to different sections of the memory from two different AHB masters. For example, the Cortex-M0+ can access RAM0 while the DMA controller accesses RAM1 in parallel. See 4.1 Introduction for AHB slave connectivity details.

4.6 DI Page Entry Map

The DI page contains production calibration data as well as device identification information. See the peripheral chapters for how each calibration value is to be used with the associated peripheral.

The offset address is relative to the start address of the DI page (see 6.3 Functional Description).

Offset	Name	Туре	Description
0x000	CAL	RO	CRC of DI-page and calibration temperature
0x030	CUSTOMINFO	RO	Custom information
0x034	MEMINFO	RO	Flash page size and misc. chip information
0x040	UNIQUEL	RO	Low 32 bits of device unique number
0x044	UNIQUEH	RO	High 32 bits of device unique number
0x048	MSIZE	RO	Flash and SRAM Memory size in kB
0x04C	PART	RO	Part description
0x050	DEVINFOREV	RO	Device information page revision
0x054	EMUTEMP	RO	EMU Temperature Calibration Information
0x060	ADC0CAL0	RO	ADC0 calibration register 0
0x064	ADC0CAL1	RO	ADC0 calibration register 1
0x068	ADC0CAL2	RO	ADC0 calibration register 2
0x06C	ADC0CAL3	RO	ADC0 calibration register 3
0x080	HFRCOCAL0	RO	HFRCO Calibration Register (4 MHz)
0x08C	HFRCOCAL3	RO	HFRCO Calibration Register (7 MHz)
0x098	HFRCOCAL6	RO	HFRCO Calibration Register (13 MHz)
0x09C	HFRCOCAL7	RO	HFRCO Calibration Register (16 MHz)
0x0A0	HFRCOCAL8	RO	HFRCO Calibration Register (19 MHz)
0x0A8	HFRCOCAL10	RO	HFRCO Calibration Register (26 MHz)
0x0AC	HFRCOCAL11	RO	HFRCO Calibration Register (32 MHz)
0x0B0	HFRCOCAL12	RO	HFRCO Calibration Register (38 MHz)
0x0B4	HFRCOCAL13	RO	HFRCO Calibration Register (48 MHz)
0x0E0	AUXHFRCOCAL0	RO	AUXHFRCO Calibration Register (4 MHz)
0x0EC	AUXHFRCOCAL3	RO	AUXHFRCO Calibration Register (7 MHz)
0x0F8	AUXHFRCOCAL6	RO	AUXHFRCO Calibration Register (13 MHz)
0x0FC	AUXHFRCOCAL7	RO	AUXHFRCO Calibration Register (16 MHz)
0x100	AUXHFRCOCAL8	RO	AUXHFRCO Calibration Register (19 MHz)
0x108	AUXHFRCOCAL10	RO	AUXHFRCO Calibration Register (26 MHz)
0x10C	AUXHFRCOCAL11	RO	AUXHFRCO Calibration Register (32 MHz)
0x110	AUXHFRCOCAL12	RO	AUXHFRCO Calibration Register (38 MHz)
0x114	AUXHFRCOCAL13	RO	AUXHFRCO Calibration Register (48 MHz)
0x140	VMONCAL0	RO	VMON Calibration Register 0
0x144	VMONCAL1	RO	VMON Calibration Register 1

Offset	Name	Туре	Description
0x148	VMONCAL2	RO	VMON Calibration Register 2
0x168	DCDCLNVCTRL0	RO	DCDC Low-noise VREF Trim Register 0
0x16C	DCDCLPVCTRL0	RO	DCDC Low-power VREF Trim Register 0
0x170	DCDCLPVCTRL1	RO	DCDC Low-power VREF Trim Register 1
0x174	DCDCLPVCTRL2	RO	DCDC Low-power VREF Trim Register 2
0x178	DCDCLPVCTRL3	RO	DCDC Low-power VREF Trim Register 3
0x17C	DCDCLPCMPHYSSEL0	RO	DCDC LPCMPHYSSEL Trim Register 0
0x180	DCDCLPCMPHYSSEL1	RO	DCDC LPCMPHYSSEL Trim Register 1
0x184	VDAC0MAINCAL	RO	VDAC0 Cals for Main Path
0x188	VDAC0ALTCAL	RO	VDAC0 Cals for Alternate Path
0x18C	VDAC0CH1CAL	RO	VDAC0 CH1 Error Cal
0x190	OPA0CAL0	RO	OPA0 Calibration Register for DRIVESTRENGTH 0, INCBW=1
0x194	OPA0CAL1	RO	OPA0 Calibration Register for DRIVESTRENGTH 1, INCBW=1
0x198	OPA0CAL2	RO	OPA0 Calibration Register for DRIVESTRENGTH 2, INCBW=1
0x19C	OPA0CAL3	RO	OPA0 Calibration Register for DRIVESTRENGTH 3, INCBW=1
0x1A0	OPA0CAL4	RO	OPA0 Calibration Register for DRIVESTRENGTH 0, INCBW=0
0x1A4	OPA0CAL5	RO	OPA0 Calibration Register for DRIVESTRENGTH 1, INCBW=0
0x1A8	OPA0CAL6	RO	OPA0 Calibration Register for DRIVESTRENGTH 2, INCBW=0
0x1AC	OPA0CAL7	RO	OPA0 Calibration Register for DRIVESTRENGTH 3, INCBW=0
0x1B0	OPA1CAL0	RO	OPA1 Calibration Register for DRIVESTRENGTH 0, INCBW=1
0x1B4	OPA1CAL1	RO	OPA1 Calibration Register for DRIVESTRENGTH 1, INCBW=1
0x1B8	OPA1CAL2	RO	OPA1 Calibration Register for DRIVESTRENGTH 2, INCBW=1
0x1BC	OPA1CAL3	RO	OPA1 Calibration Register for DRIVESTRENGTH 3, INCBW=1
0x1C0	OPA1CAL4	RO	OPA1 Calibration Register for DRIVESTRENGTH 0, INCBW=0
0x1C4	OPA1CAL5	RO	OPA1 Calibration Register for DRIVESTRENGTH 1, INCBW=0
0x1C8	OPA1CAL6	RO	OPA1 Calibration Register for DRIVESTRENGTH 2, INCBW=0
0x1CC	OPA1CAL7	RO	OPA1 Calibration Register for DRIVESTRENGTH 3, INCBW=0
0x1D0	OPA2CAL0	RO	OPA2 Calibration Register for DRIVESTRENGTH 0, INCBW=1
0x1D4	OPA2CAL1	RO	OPA2 Calibration Register for DRIVESTRENGTH 1, INCBW=1
0x1D8	OPA2CAL2	RO	OPA2 Calibration Register for DRIVESTRENGTH 2, INCBW=1
0x1DC	OPA2CAL3	RO	OPA2 Calibration Register for DRIVESTRENGTH 3, INCBW=1
0x1E0	OPA2CAL4	RO	OPA2 Calibration Register for DRIVESTRENGTH 0, INCBW=0
0x1E4	OPA2CAL5	RO	OPA2 Calibration Register for DRIVESTRENGTH 1, INCBW=0
0x1E8	OPA2CAL6	RO	OPA2 Calibration Register for DRIVESTRENGTH 2, INCBW=0
0x1EC	OPA2CAL7	RO	OPA2 Calibration Register for DRIVESTRENGTH 3, INCBW=0
0x1F0	OPA3CAL0	RO	OPA3 Calibration Register for DRIVESTRENGTH 0, INCBW=1
0x1F4	OPA3CAL1	RO	OPA3 Calibration Register for DRIVESTRENGTH 1, INCBW=1

Offset	Name	Туре	Description
0x1F8	OPA3CAL2	RO	OPA3 Calibration Register for DRIVESTRENGTH 2, INCBW=1
0x1FC	OPA3CAL3	RO	OPA3 Calibration Register for DRIVESTRENGTH 3, INCBW=1
0x200	OPA3CAL4	RO	OPA3 Calibration Register for DRIVESTRENGTH 0, INCBW=0
0x204	OPA3CAL5	RO	OPA3 Calibration Register for DRIVESTRENGTH 1, INCBW=0
0x208	OPA3CAL6	RO	OPA3 Calibration Register for DRIVESTRENGTH 2, INCBW=0
0x20C	OPA3CAL7	RO	OPA3 Calibration Register for DRIVESTRENGTH 3, INCBW=0
0x210	CSENGAINCAL	RO	Cap Sense Gain Adjustment

4.7 DI Page Entry Description

4.7.1 CAL - CRC of DI-page and calibration temperature

Offset		Bit Position																
0x000	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3										0							
Access		8							8									
Name		ТЕМР							CRC									

Bit	Name	Access	Description
31:24	Reserved	Reserved for futu	ire use
23:16	TEMP	RO	Calibration temperature as an usigned int in DegC (25 = 25DegC)
15:0	CRC	RO	CRC of DI-page (CRC-16-CCITT)

4.7.2 CUSTOMINFO - Custom information

Offset	Bit P	osition
0x030	33 30 30 30 30 30 30 30 30 30 30 30 30 3	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Access	O O	
Name	PARTNO	

Bit	Name	Access	Description
31:16	PARTNO	RO	Custom part identifier as unsigned integer (e.g. 903) 65535 for standard product

15:0 Reserved Reserved for future use	
---------------------------------------	--

4.7.3 MEMINFO - Flash page size and misc. chip information

Offset															Bit	t Po	sitio	on														
0x034	31	30	29	28	27	26	25	24	23	22	71	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Access				0	2	•	•		RO								RO									RO						
Name				בו אכות באכוב מוצב								TNICONIA								7071	77G - 77E				TEMPGRADE							

-			
Bit	Name	Access	Description
31:24	FLASH_PAGE_SIZE	RO	Flash page size in bytes coded as 2 ^ ((MEM_IN-FO_FLASH_PAGE_SIZE + 10) & 0xFF). le. the value 0xFF = 512 bytes.
23:16	PINCOUNT	RO	Device pin count as unsigned integer (eg. 48)
15:8	PKGTYPE	RO	Package Identifier as character
	Value	Mode	Description
	74	WLCSP	WLCSP package
	76	BGA	BGA package
	77	QFN	QFN package
	81	QFP	QFP package
7:0	TEMPGRADE	RO	Temperature Grade of product as unsigned integer enumeration
	Value	Mode	Description
	0	N40TO85	-40 to 85degC
	1	N40TO125	-40 to 125degC
	2	N40TO105	-40 to 105degC
	3	N0TO70	0 to 70degC

4.7.4 UNIQUEL - Low 32 bits of device unique number

Offset	Bit Position
0x040	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Access	Q Q
Name	UNIQUEL

Bit	Name	Access	Description
31:0	UNIQUEL	RO	Low 32 bits of device unique number

4.7.5 UNIQUEH - High 32 bits of device unique number

Offset	Bit Position
0x044	33 34 37 38 39 30 30 30 30 30 30 30 30 30 40
Access	S S
Name	UNIQUEH

Bit	Name	Access	Description
31:0	UNIQUEH	RO	High 32 bits of device unique number

4.7.6 MSIZE - Flash and SRAM Memory size in kB

Offset	Bit Position
0x048	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Access	& &
Name	SRAM

Bit	Name	Access	Description
31:16	SRAM	RO	Ram size, kbyte count as unsigned integer (eg. 16)
15:0	FLASH	RO	Flash size, kbyte count as unsigned integer (eg. 128)

4.7.7 PART - Part description

Offset		Bit P										osition															
0x04C	30 30 29	28	26	25	23	22	7	20	19	<u>,</u>	7	5 5	4	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Access		80									O O																
Name		PROD_REV						DEVICE FAMILY	 										L								

	PRO	DEVI	DEVI
Bit	Name	Access	Description
31:24	PROD_REV	RO	Production revision as unsigned integer
23:16	DEVICE_FAMILY	RO	Device Family
	Value	Mode	Description
	16	EFR32MG1P	EFR32 Mighty Gecko Family Series 1 Device Config 1
	17	EFR32MG1B	EFR32 Mighty Gecko Family Series 1 Device Config 1
	18	EFR32MG1V	EFR32 Mighty Gecko Family Series 1 Device Config 1
	19	EFR32BG1P	EFR32 Blue Gecko Family Series 1 Device Config 1
	20	EFR32BG1B	EFR32 Blue Gecko Family Series 1 Device Config 1
	21	EFR32BG1V	EFR32 Blue Gecko Family Series 1 Device Config 1
	25	EFR32FG1P	EFR32 Flex Gecko Family Series 1 Device Config 1
	26	EFR32FG1B	EFR32 Flex Gecko Family Series 1 Device Config 1
	27	EFR32FG1V	EFR32 Flex Gecko Family Series 1 Device Config 1
	28	EFR32MG12P	EFR32 Mighty Gecko Family Series 1 Device Config 2
	29	EFR32MG12B	EFR32 Mighty Gecko Family Series 1 Device Config 2
	30	EFR32MG12V	EFR32 Mighty Gecko Family Series 1 Device Config 2
	31	EFR32BG12P	EFR32 Blue Gecko Family Series 1 Device Config 2
	32	EFR32BG12B	EFR32 Blue Gecko Family Series 1 Device Config 2
	33	EFR32BG12V	EFR32 Blue Gecko Family Series 1 Device Config 2
	37	EFR32FG12P	EFR32 Flex Gecko Family Series 1 Device Config 2
	38	EFR32FG12B	EFR32 Flex Gecko Family Series 1 Device Config 2
	39	EFR32FG12V	EFR32 Flex Gecko Family Series 1 Device Config 2
	40	EFR32MG13P	EFR32 Mighty Gecko Family Series 1 Device Config 3
	41	EFR32MG13B	EFR32 Mighty Gecko Family Series 1 Device Config 3
	42	EFR32MG13V	EFR32 Mighty Gecko Family Series 1 Device Config 3
	43	EFR32BG13P	EFR32 Blue Gecko Family Series 1 Device Config 3
	44	EFR32BG13B	EFR32 Blue Gecko Family Series 1 Device Config 3

	Name	Access	Description
	45	EFR32BG13V	EFR32 Blue Gecko Family Series 1 Device Config 3
	46	EFR32ZG13P	EFR32 Zen Gecko Family Series 1 Device Config 3
	49	EFR32FG13P	EFR32 Flex Gecko Family Series 1 Device Config 3
	50	EFR32FG13B	EFR32 Flex Gecko Family Series 1 Device Config 3
	51	EFR32FG13V	EFR32 Flex Gecko Family Series 1 Device Config 3
	52	EFR32MG14P	EFR32 Mighty Gecko Family Series 1 Device Config 4
	53	EFR32MG14B	EFR32 Mighty Gecko Family Series 1 Device Config 4
	54	EFR32MG14V	EFR32 Mighty Gecko Family Series 1 Device Config 4
	55	EFR32BG14P	EFR32 Blue Gecko Family Series 1 Device Config 4
	56	EFR32BG14B	EFR32 Blue Gecko Family Series 1 Device Config 4
	57	EFR32BG14V	EFR32 Blue Gecko Family Series 1 Device Config 4
	58	EFR32ZG14P	EFR32 Zen Gecko Family Series 1 Device Config 4
	61	EFR32FG14P	EFR32 Flex Gecko Family Series 1 Device Config 4
	62	EFR32FG14B	EFR32 Flex Gecko Family Series 1 Device Config 4
	63	EFR32FG14V	EFR32 Flex Gecko Family Series 1 Device Config 4
	71	EFM32G	EFM32 Gecko Device Family
	72	EFM32GG	EFM32 Giant Gecko Device Family
	73	EFM32TG	EFM32 Tiny Gecko Device Family
	74	EFM32LG	EFM32 Leopard Gecko Device Family
	75	EFM32WG	EFM32 Wonder Gecko Device Family
	76	EFM32ZG	EFM32 Zero Gecko Device Family
	77	EFM32HG	EFM32 Happy Gecko Device Family
	81	EFM32PG1B	EFM32 Pearl Gecko Family Series 1 Device Config 1
	83	EFM32JG1B	EFM32 Jade Gecko Family Series 1 Device Config 1
	85	EFM32PG12B	EFM32 Pearl Gecko Family Series 1 Device Config 2
	87	EFM32JG12B	EFM32 Jade Gecko Family Series 1 Device Config 2
	100	EFM32GG11B	EFM32 Giant Gecko Family Series 1 Device Config 1
	103	EFM32TG11B	EFM32 Tiny Gecko Family Series 1 Device Config 1
	106	EFM32GG12B	EFM32 Giant Gecko Family Series 1 Device Config 2
	120	EZR32LG	EZR32 Leopard Gecko Device Family
	121	EZR32WG	EZR32 Wonder Gecko Device Family
	122	EZR32HG	EZR32 Happy Gecko Device Family
0	DEVICE_NUMBER	RO	Part number as unsigned integer (e.g. 233 for EFR32BG1P 233 F256GM48-B0)

4.7.8 DEVINFOREV - Device information page revision

Offset	Bit Position		
0x050	33 34 36 37 38 39 30 30 30 30 30 30 30 30 40 <th>7 6 5</th> <th>4 K V - O</th>	7 6 5	4 K V - O
Access		RO	RO
Name		MAJOR	MINOR

Bit	Name	Access	Description
31:8	Reserved	Reserved for futu	ire use
7:5	MAJOR	RO	Major DEVINFO revision as unsigned integer (initially 1)
4:0	MINOR	RO	Minor DEVINFO layout revision as unsigned integer (initially 0)

4.7.9 EMUTEMP - EMU Temperature Calibration Information

Offset															Bi	t Po	siti	on													
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Access																												2	2		
Name																												MOCAGMETIME			
																												ũ	<u> </u>		

Bit	Name	Access	Description
31:8	Reserved	Reserved for futu	ire use
7:0	EMUTEMPROOM	RO	EMU_TEMP temperature reading at room

4.7.10 ADC0CAL0 - ADC0 calibration register 0

Offset															Bi	t Po	siti	on														
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Access					RO						2			0	2				•		8					(2			C C	2	
Name					GAIN2V5					ALC CEDEFORM	71135127			3/61-19-14-0	7						GAIN1V25					,	NEGSEOFFSEI 1V25			OFFSET1V25	-	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	
30:24	GAIN2V5	RO	Gain for 2.5V reference
23:20	NEGSEOFFSET2V5	RO	Negative single ended offset for 2.5V reference
19:16	OFFSET2V5	RO	Offset for 2.5V reference
15	Reserved	Reserved for futu	ire use
14:8	GAIN1V25	RO	Gain for 1.25V reference
7:4	NEGSEOFFSET1V25	RO	Negative single ended offset for 1.25V reference
3:0	OFFSET1V25	RO	Offset for 1.25V reference

4.7.11 ADC0CAL1 - ADC0 calibration register 1

Offset															Bi	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Access					RO			•		0	2				2				•		RO					(2			RO)	
Name					GAIN5VDIFF						NEGSEOFFSEISVUIFF			OFFORTEVOIEE	- I						GAINVDD					i di	NEGSEOFFSEIVDD			OFFSETVDD		

Bit	Name	Access	Description
31	Reserved	Reserved for	future use
30:24	GAIN5VDIFF	RO	Gain for for 5V differential reference
23:20	NEGSEOFFSET5VDIFF	RO	Negative single ended offset with for 5V differential reference
19:16	OFFSET5VDIFF	RO	Offset for 5V differential reference
15	Reserved	Reserved for	future use
14:8	GAINVDD	RO	Gain for VDD reference
7:4	NEGSEOFFSETVDD	RO	Negative single ended offset for VDD reference
3:0	OFFSETVDD	RO	Offset for VDD reference

4.7.12 ADC0CAL2 - ADC0 calibration register 2

Offset															Bi	t Po	siti	on														
0x068	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Access						•					•			•								•					2			0	2	
Name																										ACV SCEDERAL SAN DE LA SAN	1 2 V D			OFFSETOXVDD	>	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ire use
30:24	Reserved	Reserved for futu	ire use
23:20	Reserved	Reserved for futu	ire use
19:16	Reserved	Reserved for futu	ire use
15:8	Reserved	Reserved for futu	ire use
7:4	NEGSEOFFSET2XVDD	RO	Negative single ended offset for 2XVDD reference
3:0	OFFSET2XVDD	RO	Offset for 2XVDD reference

4.7.13 ADC0CAL3 - ADC0 calibration register 3

Offset															Bi	t Po	siti	on														
0x06C	33	30	59	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Access																							RO									
																							V25 									
Name																						:	AD1									
Name																							IEMPRE									
																							<u>≥</u> -									

Bit	Name	Access	Description
31:16	Reserved	Reserved for futu	ire use
15:4	TEMPREAD1V25	RO	Temperature reading at 1V25 reference
3:0	Reserved	Reserved for futu	ire use

4.7.14 HFRCOCAL0 - HFRCO Calibration Register (4 MHz)

Offset		Bit Position							
0x080	330 29 28	27 26 25 24 23 23 23	20 20 118 129 141 141 141 141 141 141 141 141 141 14	13 13 17 17 17 17 17 17 17 17 17 17 17 17 17	0 0 4 6 7 - 0				
Access	RO	RO RO RO	RO	RO	80				
Name	VREFTC	CLKDIV LDOHP CMPBIAS	FREQRANGE	FINETUNING	TUNING				

Bit	Name	Access	Description
31:28	VREFTC	RO	HFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	HFRCO enable reference for fine tuning
26:25	CLKDIV	RO	HFRCO Clock Output Divide
24	LDOHP	RO	HFRCO LDO High Power Mode
23:21	CMPBIAS	RO	HFRCO Comparator Bias Current
20:16	FREQRANGE	RO	HFRCO Frequency Range
15:14	Reserved	Reserved for futu	ire use
13:8	FINETUNING	RO	HFRCO Fine Tuning Value
7	Reserved	Reserved for futu	ire use
6:0	TUNING	RO	HFRCO Tuning Value

4.7.15 HFRCOCAL3 - HFRCO Calibration Register (7 MHz)

Offset		Bit Position							
0x08C	31 30 29 28 27	25 25 25 27 23 23 23 23 23 23 23 23 23 23 23 24 24 25 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	20 20 19 17 17 14 15 17 15 17	13 13 13 14 15 17 17 19 18 14 17 17 17 17 17 17 17 17 17 17 17 17 17	0 0 4 6 7 - 0				
Access	RO RO	8	S S	RO	RO				
Name	VREFTC	NV HP SIAS	FREQRANGE	FINETUNING	TUNING				

Bit	Name	Access	Description
31:28	VREFTC	RO	HFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	HFRCO enable reference for fine tuning
26:25	CLKDIV	RO	HFRCO Clock Output Divide
24	LDOHP	RO	HFRCO LDO High Power Mode
23:21	CMPBIAS	RO	HFRCO Comparator Bias Current
20:16	FREQRANGE	RO	HFRCO Frequency Range
15:14	Reserved	Reserved for futu	ire use
13:8	FINETUNING	RO	HFRCO Fine Tuning Value
7	Reserved	Reserved for futu	ire use
6:0	TUNING	RO	HFRCO Tuning Value

4.7.16 HFRCOCAL6 - HFRCO Calibration Register (13 MHz)

Offset		Bit Position							
0x098	330 29 28	27 26 26 27 27 23 23 23 27 27 27	20 20 19 17 17 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17	13 13 17 17 17 17 17 17 17 17 17 17 17 17 17	0 0 4 6 7 - 0				
Access	RO	8 8 8 0 N	RO	RO	RO				
Name	VREFTC	CMPBIAS	FREQRANGE	FINETUNING	TUNING				

Bit	Name	Access	Description
31:28	VREFTC	RO	HFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	HFRCO enable reference for fine tuning
26:25	CLKDIV	RO	HFRCO Clock Output Divide
24	LDOHP	RO	HFRCO LDO High Power Mode
23:21	CMPBIAS	RO	HFRCO Comparator Bias Current
20:16	FREQRANGE	RO	HFRCO Frequency Range
15:14	Reserved	Reserved for fut	ure use
13:8	FINETUNING	RO	HFRCO Fine Tuning Value
7	Reserved	Reserved for fut	ure use
6:0	TUNING	RO	HFRCO Tuning Value

4.7.17 HFRCOCAL7 - HFRCO Calibration Register (16 MHz)

Offset		Bit Position																														
0x09C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	3	7	_	0
Access		0	2		RO	0	2	RO		8		8				•	RO						RO N									
Name		VPEETC	_		FINETUNINGEN	2	CLAUIV	LDOHP		CMPBIAS				FREQRANGE								20							TUNING			

Bit	Name	Access	Description
31:28	VREFTC	RO	HFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	HFRCO enable reference for fine tuning
26:25	CLKDIV	RO	HFRCO Clock Output Divide
24	LDOHP	RO	HFRCO LDO High Power Mode
23:21	CMPBIAS	RO	HFRCO Comparator Bias Current
20:16	FREQRANGE	RO	HFRCO Frequency Range
15:14	Reserved	Reserved for futu	ire use
13:8	FINETUNING	RO	HFRCO Fine Tuning Value
7	Reserved	Reserved for futu	ire use
6:0	TUNING	RO	HFRCO Tuning Value

4.7.18 HFRCOCAL8 - HFRCO Calibration Register (19 MHz)

Offset		Bit Position							
0x0A0	330 30 29 28 28	22 23 24 25 27 27 27 27 27 27 27 27 27 27 27 27 27	20 19 19 17 17 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17	11 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0 ω 4 m 0 t 0				
Access	S C	0	RO	RO	RO				
Name	VREFTC	CLKDIV LDOHP CMPBIAS	FREQRANGE	FINETUNING	TUNING				

Bit	Name	Access	Description
31:28	VREFTC	RO	HFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	HFRCO enable reference for fine tuning
26:25	CLKDIV	RO	HFRCO Clock Output Divide
24	LDOHP	RO	HFRCO LDO High Power Mode
23:21	CMPBIAS	RO	HFRCO Comparator Bias Current
20:16	FREQRANGE	RO	HFRCO Frequency Range
15:14	Reserved	Reserved for	future use
13:8	FINETUNING	RO	HFRCO Fine Tuning Value
7	Reserved	Reserved for	future use
6:0	TUNING	RO	HFRCO Tuning Value

4.7.19 HFRCOCAL10 - HFRCO Calibration Register (26 MHz)

Offset		Bit Position							
0x0A8	30 30 28 28	27 26 25 23 23 23 21 27	02 01 11 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14	11 12 13 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17	0 ω 4 m 0 t 0				
Access	RO	8 8 8 80 80 80 80 80 80 80 80 80 80 80 8	RO	RO	RO				
Name	VREFTC	CLKDIV LDOHP CMPBIAS	FREQRANGE	FINETUNING	TUNING				

Bit	Name	Access	Description
31:28	VREFTC	RO	HFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	HFRCO enable reference for fine tuning
26:25	CLKDIV	RO	HFRCO Clock Output Divide
24	LDOHP	RO	HFRCO LDO High Power Mode
23:21	CMPBIAS	RO	HFRCO Comparator Bias Current
20:16	FREQRANGE	RO	HFRCO Frequency Range
15:14	Reserved	Reserved for fut	ure use
13:8	FINETUNING	RO	HFRCO Fine Tuning Value
7	Reserved	Reserved for fut	ure use
6:0	TUNING	RO	HFRCO Tuning Value

4.7.20 HFRCOCAL11 - HFRCO Calibration Register (32 MHz)

Offset		Bit Position																														
0x0AC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	3	2	_	0
Access			2	•	RO	0	2	RO		RO		RO							RO							RO						
Name		VBEETC.	_		FINETUNINGEN	210	CLKUIV	LDOHP		CMPBIAS			FREQRANGE								Ē								TUNING			

Bit	Name	Access	Description						
31:28	VREFTC	RO	HFRCO Temperature Coefficient Trim on Comparator Reference						
27	FINETUNINGEN	RO	HFRCO enable reference for fine tuning						
26:25	CLKDIV	RO	HFRCO Clock Output Divide						
24	LDOHP	RO	HFRCO LDO High Power Mode						
23:21	CMPBIAS	RO	HFRCO Comparator Bias Current						
20:16	FREQRANGE	RO	HFRCO Frequency Range						
15:14	Reserved	Reserved for futu	ıre use						
13:8	FINETUNING	RO	HFRCO Fine Tuning Value						
7	Reserved	Reserved for future use							
6:0	TUNING	RO	HFRCO Tuning Value						

4.7.21 HFRCOCAL12 - HFRCO Calibration Register (38 MHz)

Offset		Bit Position																														
0x0B0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	2	_	0
Access			2		RO	0	2	RO		RO		RO						•	RO								RO					
Name		VBEETO	_ L		FINETUNINGEN	2	CLKUIV	ГРОНР		CMPBIAS			FREGRANGE								F								TUNING			

Bit	Name	Access	Description						
31:28	VREFTC	RO	HFRCO Temperature Coefficient Trim on Comparator Reference						
27	FINETUNINGEN	RO	HFRCO enable reference for fine tuning						
26:25	CLKDIV	RO	HFRCO Clock Output Divide						
24	LDOHP	RO	HFRCO LDO High Power Mode						
23:21	CMPBIAS	RO	HFRCO Comparator Bias Current						
20:16	FREQRANGE	RO	HFRCO Frequency Range						
15:14	Reserved	Reserved for futu	ire use						
13:8	FINETUNING	RO	HFRCO Fine Tuning Value						
7	Reserved	Reserved for future use							
6:0	TUNING	RO	HFRCO Tuning Value						

4.7.22 HFRCOCAL13 - HFRCO Calibration Register (48 MHz)

Offset		Bit Position										
0x0B4	30 39 29 29 27 27 26	25 24 25 27 27 27 27 27 27 27 27 27 27 27 27 27	20 19 17 17 17 17 17	11 11 12 13 1	0 0 4 6 7 - 0							
Access	RO RO	8 8 8	RO	RO	RO							
Name	VREFTC	CLKDIV LDOHP CMPBIAS	FREQRANGE	FINETUNING	TUNING							

Bit	Name	Access	Description						
31:28	VREFTC	RO	HFRCO Temperature Coefficient Trim on Comparator Reference						
27	FINETUNINGEN	RO	HFRCO enable reference for fine tuning						
26:25	CLKDIV	RO	HFRCO Clock Output Divide						
24	LDOHP	RO	HFRCO LDO High Power Mode						
23:21	CMPBIAS	RO	HFRCO Comparator Bias Current						
20:16	FREQRANGE	RO	HFRCO Frequency Range						
15:14	Reserved	Reserved for futu	ire use						
13:8	FINETUNING	RO	HFRCO Fine Tuning Value						
7	Reserved	Reserved for future use							
6:0	TUNING	RO	HFRCO Tuning Value						

4.7.23 AUXHFRCOCAL0 - AUXHFRCO Calibration Register (4 MHz)

Offset		Bit Position										
0x0E0	330 29 28	27 26 25 24 23 23 21 21	20 20 19 17 17 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17	13 13 17 17 17 17 17 17 17 17 17 17 17 17 17	0 0 4 6 7 - 0							
Access	RO	8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9	S S	RO	RO							
Name	.TC	CLKDIV LDOHP CMPBIAS	FREQRANGE	FINETUNING	TUNING							

Bit	Name	Access	Description
31:28	VREFTC	RO	AUXHFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	AUXHFRCO enable reference for fine tuning
26:25	CLKDIV	RO	AUXHFRCO Clock Output Divide
24	LDOHP	RO	AUXHFRCO LDO High Power Mode
23:21	CMPBIAS	RO	AUXHFRCO Comparator Bias Current
20:16	FREQRANGE	RO	AUXHFRCO Frequency Range
15:14	Reserved	Reserved for futu	ire use
13:8	FINETUNING	RO	AUXHFRCO Fine Tuning Value
7	Reserved	Reserved for futu	ire use
6:0	TUNING	RO	AUXHFRCO Tuning Value

4.7.24 AUXHFRCOCAL3 - AUXHFRCO Calibration Register (7 MHz)

Offset		Bit Position																														
0x0EC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Access			2		RO		2	RO		RO				RO		•			RO								•		RO			
Name		CETTO	_		FINETUNINGEN	2 2	CLKUIV	ГРОНР		CMPBIAS				FREGRANGE							()								TUNING			

Bit	Name	Access	Description
31:28	VREFTC	RO	AUXHFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	AUXHFRCO enable reference for fine tuning
26:25	CLKDIV	RO	AUXHFRCO Clock Output Divide
24	LDOHP	RO	AUXHFRCO LDO High Power Mode
23:21	CMPBIAS	RO	AUXHFRCO Comparator Bias Current
20:16	FREQRANGE	RO	AUXHFRCO Frequency Range
15:14	Reserved	Reserved for futu	ire use
13:8	FINETUNING	RO	AUXHFRCO Fine Tuning Value
7	Reserved	Reserved for futu	ure use
6:0	TUNING	RO	AUXHFRCO Tuning Value

4.7.25 AUXHFRCOCAL6 - AUXHFRCO Calibration Register (13 MHz)

Offset	Bit Position										
0x0F8	31 30 29 28 27	22 23 24 25 26 27 27 23 23 24 25 25 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	20 19 19 19 17 17 17 17 17 17 17 17 17 17 17 17 17	11 11 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0 ω 4 m α t 0						
Access	80 80	RO RO S	RO	RO	RO						
Name	VREFTC	CLKDIV LDOHP CMPBIAS	FREQRANGE	FINETUNING	TUNING						

Bit	Name	Access	Description
DIL	Name	Access	Description
31:28	VREFTC	RO	AUXHFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	AUXHFRCO enable reference for fine tuning
26:25	CLKDIV	RO	AUXHFRCO Clock Output Divide
24	LDOHP	RO	AUXHFRCO LDO High Power Mode
23:21	CMPBIAS	RO	AUXHFRCO Comparator Bias Current
20:16	FREQRANGE	RO	AUXHFRCO Frequency Range
15:14	Reserved	Reserved for futu	ıre use
13:8	FINETUNING	RO	AUXHFRCO Fine Tuning Value
7	Reserved	Reserved for futu	ire use
6:0	TUNING	RO	AUXHFRCO Tuning Value

4.7.26 AUXHFRCOCAL7 - AUXHFRCO Calibration Register (16 MHz)

Offset	Bit Position										
0x0FC	330 30 28 28 28	22 23 24 27 27 27 27 23 23 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	20 19 19 17 17 17 17 17 17 17	13 13 13 14 15 17 17 18 18	0 ω 4 m α t 0						
Access	RO RO	S	RO	RO	RO						
Name	VREFTC	CLKDIV LDOHP CMPBIAS	FREQRANGE	FINETUNING	TUNING						

Bit	Name	Access	Description
31:28	VREFTC	RO	AUXHFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	AUXHFRCO enable reference for fine tuning
26:25	CLKDIV	RO	AUXHFRCO Clock Output Divide
24	LDOHP	RO	AUXHFRCO LDO High Power Mode
23:21	CMPBIAS	RO	AUXHFRCO Comparator Bias Current
20:16	FREQRANGE	RO	AUXHFRCO Frequency Range
15:14	Reserved	Reserved for futu	ire use
13:8	FINETUNING	RO	AUXHFRCO Fine Tuning Value
7	Reserved	Reserved for futu	ire use
6:0	TUNING	RO	AUXHFRCO Tuning Value

4.7.27 AUXHFRCOCAL8 - AUXHFRCO Calibration Register (19 MHz)

Offset	Bit Position										
0x100	330 29 28 27	26 25 24 23 23 23 23 23 23	20 19 18 17 17 17 17 17	11 11 12 13 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17	0 0 4 6 0 -0						
Access	RO RO	8 8 8 8 0	S S	NO NO	RO						
Name	VREFTC	CLKDIV LDOHP CMPBIAS	FREQRANGE	FINETUNING	TUNING						

Bit	Name	Access	Description
31:28	VREFTC	RO	AUXHFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	AUXHFRCO enable reference for fine tuning
26:25	CLKDIV	RO	AUXHFRCO Clock Output Divide
24	LDOHP	RO	AUXHFRCO LDO High Power Mode
23:21	CMPBIAS	RO	AUXHFRCO Comparator Bias Current
20:16	FREQRANGE	RO	AUXHFRCO Frequency Range
15:14	Reserved	Reserved for futu	ire use
13:8	FINETUNING	RO	AUXHFRCO Fine Tuning Value
7	Reserved	Reserved for futu	ire use
6:0	TUNING	RO	AUXHFRCO Tuning Value

4.7.28 AUXHFRCOCAL10 - AUXHFRCO Calibration Register (26 MHz)

Offset		Bit Position																														
0x108	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Access			2		8		2	RO		8				8					RO								1		RO		'	
Name		VECTO	_		FINETUNINGEN	2	CLKUIV	LDOHP		CMPBIAS				FREQRANGE							Ē								TUNING			

Bit	Name	Access	Description
31:28	VREFTC	RO	AUXHFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	AUXHFRCO enable reference for fine tuning
26:25	CLKDIV	RO	AUXHFRCO Clock Output Divide
24	LDOHP	RO	AUXHFRCO LDO High Power Mode
23:21	CMPBIAS	RO	AUXHFRCO Comparator Bias Current
20:16	FREQRANGE	RO	AUXHFRCO Frequency Range
15:14	Reserved	Reserved for futu	ire use
13:8	FINETUNING	RO	AUXHFRCO Fine Tuning Value
7	Reserved	Reserved for futu	ure use
6:0	TUNING	RO	AUXHFRCO Tuning Value

4.7.29 AUXHFRCOCAL11 - AUXHFRCO Calibration Register (32 MHz)

Offset															Bi	t Po	siti	on														
0x10C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Access			2		8		2	RO		8				RO		•					2	2					1		RO		'	
Name		VECTO	_		FINETUNINGEN	2	CLKUIV	LDOHP		CMPBIAS				FREQRANGE							Ē								TUNING			

Bit	Name	Access	Description
31:28	VREFTC	RO	AUXHFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	AUXHFRCO enable reference for fine tuning
26:25	CLKDIV	RO	AUXHFRCO Clock Output Divide
24	LDOHP	RO	AUXHFRCO LDO High Power Mode
23:21	CMPBIAS	RO	AUXHFRCO Comparator Bias Current
20:16	FREQRANGE	RO	AUXHFRCO Frequency Range
15:14	Reserved	Reserved for t	future use
13:8	FINETUNING	RO	AUXHFRCO Fine Tuning Value
7	Reserved	Reserved for t	future use
6:0	TUNING	RO	AUXHFRCO Tuning Value

4.7.30 AUXHFRCOCAL12 - AUXHFRCO Calibration Register (38 MHz)

Offset		Bit Po	sition	
0x110	31 30 29 28 27 27 26 26	23 23 23 20 10 10 10 10 10 10 10 10 10 10 10 10 10	10 0 0 0 L	0 0 4 0 7 - 0
Access	0 0 0	RO RO	RO	RO
Name	VREFTC FINETUNINGEN CLKDIV	LDOHP CMPBIAS FREQRANGE	FINETUNING	TUNING

		-	
Bit	Name	Access	Description
31:28	VREFTC	RO	AUXHFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	AUXHFRCO enable reference for fine tuning
26:25	CLKDIV	RO	AUXHFRCO Clock Output Divide
24	LDOHP	RO	AUXHFRCO LDO High Power Mode
23:21	CMPBIAS	RO	AUXHFRCO Comparator Bias Current
20:16	FREQRANGE	RO	AUXHFRCO Frequency Range
15:14	Reserved	Reserved for futu	ire use
13:8	FINETUNING	RO	AUXHFRCO Fine Tuning Value
7	Reserved	Reserved for futu	ire use
6:0	TUNING	RO	AUXHFRCO Tuning Value

4.7.31 AUXHFRCOCAL13 - AUXHFRCO Calibration Register (48 MHz)

Offset															Ві	t Po	siti	on														
0x114	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Access			2		RO	0	2	RO		RO				80							C	2					•		8			
Name		VBEETC.	_		FINETUNINGEN		CLKUIV	LDOHP		CMPBIAS				FREQRANGE															TUNING			

Bit	Name	Access	Description
31:28	VREFTC	RO	AUXHFRCO Temperature Coefficient Trim on Comparator Reference
27	FINETUNINGEN	RO	AUXHFRCO enable reference for fine tuning
26:25	CLKDIV	RO	AUXHFRCO Clock Output Divide
24	LDOHP	RO	AUXHFRCO LDO High Power Mode
23:21	CMPBIAS	RO	AUXHFRCO Comparator Bias Current
20:16	FREQRANGE	RO	AUXHFRCO Frequency Range
15:14	Reserved	Reserved for fut	ure use
13:8	FINETUNING	RO	AUXHFRCO Fine Tuning Value
7	Reserved	Reserved for fut	ure use
6:0	TUNING	RO	AUXHFRCO Tuning Value

4.7.32 VMONCAL0 - VMON Calibration Register 0

Offset															Bit	: Po	sitio	on														
0x140	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Access		0	2		0						0	2			0	2				8			(2			0	2				
Name			ALIAY DDZV30111NESCOANSE			AI TAV/DD9V98THPESEINE	ALIAV DOZVBOTINESTINE			ALTAVDD1V86THRESCOARSE R				AI TAV/DD11//86THDESEINE				AVDD3V98THBESCOABSE	AV DDZV 801 FINESOCOANSE				AVDD2V98THRESFINE				AVDD1V861HKESCOAKSE			AVVDD4V86THDESEINE		

Bit	Name	Access	Description
31:28	ALTAVDD2V98THRESCOARSE	RO	ALTAVDD 2.98 V Coarse Threshold Adjust
27:24	ALTAVDD2V98THRESFINE	RO	ALTAVDD 2.98 V Fine Threshold Adjust
23:20	ALTAVDD1V86THRESCOARSE	RO	ALTAVDD 1.86 V Coarse Threshold Adjust
19:16	ALTAVDD1V86THRESFINE	RO	ALTAVDD 1.86 V Fine Threshold Adjust
15:12	AVDD2V98THRESCOARSE	RO	AVDD 2.98 V Coarse Threshold Adjust
11:8	AVDD2V98THRESFINE	RO	AVDD 2.98 V Fine Threshold Adjust
7:4	AVDD1V86THRESCOARSE	RO	AVDD 1.86 V Coarse Threshold Adjust
3:0	AVDD1V86THRESFINE	RO	AVDD 1.86 V Fine Threshold Adjust

4.7.33 VMONCAL1 - VMON Calibration Register 1

Offset															Bit	t Po	sitic	on														
0x144	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	0	8	7	9	5	4	က	2	_	0
Access			2			٥	2			2	2			0	2				2				S S	·		(2	•		2	2	
Name			1002 V 90 1117 E 30 0 A 17 E			ENISCHEDER FINE				IO01V86THRESCOARSE RC				10041/86TUDESEINE					DVDDZV381 HRESCOARSE				DVDD2V98THRESFINE				DVDD1V861HKESCOAKSE			DVDD1V86THRESEINE		

Bit	Name	Access	Description
31:28	IO02V98THRESCOARSE	RO	IO0 2.98 V Coarse Threshold Adjust
27:24	IO02V98THRESFINE	RO	IO0 2.98 V Fine Threshold Adjust
23:20	IO01V86THRESCOARSE	RO	IO0 1.86 V Coarse Threshold Adjust
19:16	IO01V86THRESFINE	RO	IO0 1.86 V Fine Threshold Adjust
15:12	DVDD2V98THRESCOARSE	RO	DVDD 2.98 V Coarse Threshold Adjust
11:8	DVDD2V98THRESFINE	RO	DVDD 2.98 V Fine Threshold Adjust
7:4	DVDD1V86THRESCOARSE	RO	DVDD 1.86 V Coarse Threshold Adjust
3:0	DVDD1V86THRESFINE	RO	DVDD 1.86 V Fine Threshold Adjust

4.7.34 VMONCAL2 - VMON Calibration Register 2

Offset			Bit Position	ion			
0x148	30 30 28 28	27 26 25 24 23 23 23 20 20	19 19 15 15	4 6 2	11 10 8	7 6 6	0 1 2 3
Access	RO	8 O O O O	RO	RO	RO	RO	RO
Name	FVDD2V98THRESCOARSE	FVDD2V98THRESFINE FVDD1V86THRESCOARSE	FVDD1V86THRESFINE	BUVDD2V98THRESCOARSE	BUVDD2V98THRESFINE	BUVDD1V86THRESCOARSE	BUVDD1V86THRESFINE

Bit	Name	Access	Description
31:28	FVDD2V98THRESCOARSE	RO	FVDD 2.98 V Coarse Threshold Adjust
27:24	FVDD2V98THRESFINE	RO	FVDD 2.98 V Fine Threshold Adjust
23:20	FVDD1V86THRESCOARSE	RO	FVDD 1.86 V Coarse Threshold Adjust
19:16	FVDD1V86THRESFINE	RO	FVDD 1.86 V Fine Threshold Adjust
15:12	BUVDD2V98THRESCOARSE	RO	BUVDD 2.98 V Coarse Threshold Adjust
11:8	BUVDD2V98THRESFINE	RO	BUVDD 2.98 V Fine Threshold Adjust
7:4	BUVDD1V86THRESCOARSE	RO	BUVDD 1.86 V Coarse Threshold Adjust
3:0	BUVDD1V86THRESFINE	RO	BUVDD 1.86 V Fine Threshold Adjust

4.7.35 DCDCLNVCTRL0 - DCDC Low-noise VREF Trim Register 0

Offset															Bi	t Po	sitio	on																
0x168	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	0	∞	7	9	5	4	က	2	_	0		
Access				0	2	•				•		0	2	•			RO									RO								
Name				3VOI NATT4								TT VIV IO/ 1	\							OTT VIVION 1								4 0	1VZLNA I I U					

Bit	Name	Access	Description
31:24	3V0LNATT1	RO	DCDC LNVREF Trim for 3.0V output, LNATT=1
23:16	1V8LNATT1	RO	DCDC LNVREF Trim for 1.8V output, LNATT=1
15:8	1V8LNATT0	RO	DCDC LNVREF Trim for 1.8V output, LNATT=0
7:0	1V2LNATT0	RO	DCDC LNVREF Trim for 1.2V output, LNATT=0

4.7.36 DCDCLPVCTRL0 - DCDC Low-power VREF Trim Register 0

Offset		Bit Po	osition									
0x16C	31 30 29 28 27 27 26 26 27 27	23 22 22 21 20 119 149 149 149 149 149 149 149 149 149	6 9 9 8	L 0 0 4 8 0 1 0								
Access	RO	RO	RO	RO								
Name	1V8LPATT0LPCMPBIAS1	1V2LPATT0LPCMPBIAS1	1V8LPATT0LPCMPBIAS0	1V2LPATT0LPCMPBIAS0								

Bit	Name	Access	Description
31:24	1V8LPATT0LPCMPBIAS1	RO	DCDC LPVREF Trim for 1.8V output, LPATT=0, LPCMPBIAS=1
23:16	1V2LPATT0LPCMPBIAS1	RO	DCDC LPVREF Trim for 1.2V output, LPATT=0, LPCMPBIAS=1
15:8	1V8LPATT0LPCMPBIAS0	RO	DCDC LPVREF Trim for 1.8V output, LPATT=0, LPCMPBIAS=0
7:0	1V2LPATT0LPCMPBIAS0	RO	DCDC LPVREF Trim for 1.2V output, LPATT=0, LPCMPBIAS=0

4.7.37 DCDCLPVCTRL1 - DCDC Low-power VREF Trim Register 1

Offset		Bit													t Po	Position																
0x170	31	30	29	78	27	26	25	24	23	22	7	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	5	_	4 ო	0	ı -	- 0
Access				RO								0	2								2								RO			
Name												1V2I PATTOI PCMPBIAS3									I V&LPA I I ULPCIVIPBIASZ								1V2LPATT0LPCMPBIAS2			

Bit	Name	Access	Description
31:24	1V8LPATT0LPCMPBIAS3	RO	DCDC LPVREF Trim for 1.8V output, LPATT=0, LPCMPBIAS=3
23:16	1V2LPATT0LPCMPBIAS3	RO	DCDC LPVREF Trim for 1.2V output, LPATT=0, LPCMPBIAS=3
15:8	1V8LPATT0LPCMPBIAS2	RO	DCDC LPVREF Trim for 1.8V output, LPATT=0, LPCMPBIAS=2
7:0	1V2LPATT0LPCMPBIAS2	RO	DCDC LPVREF Trim for 1.2V output, LPATT=0, LPCMPBIAS=2

4.7.38 DCDCLPVCTRL2 - DCDC Low-power VREF Trim Register 2

Offset		Bit Po	sition	
0x174	31 30 29 28 27 27 26 25 25	23 22 21 20 20 19 19 17 17	4 4 <th>r 0 0 4 m 7 - 0</th>	r 0 0 4 m 7 - 0
Access	RO	RO	RO	RO
Name	3V0LPATT1LPCMPBIAS1	1V8LPATT1LPCMPBIAS1	3V0LPATT1LPCMPBIAS0	1V8LPATT1LPCMPBIAS0

Bit	Name	Access	Description
31:24	3V0LPATT1LPCMPBIAS1	RO	DCDC LPVREF Trim for 3.0V output, LPATT=1, LPCMPBIAS=1
23:16	1V8LPATT1LPCMPBIAS1	RO	DCDC LPVREF Trim for 1.8V output, LPATT=1, LPCMPBIAS=1
15:8	3V0LPATT1LPCMPBIAS0	RO	DCDC LPVREF Trim for 3.0V output, LPATT=1, LPCMPBIAS=0
7:0	1V8LPATT1LPCMPBIAS0	RO	DCDC LPVREF Trim for 1.8V output, LPATT=1, LPCMPBIAS=0

4.7.39 DCDCLPVCTRL3 - DCDC Low-power VREF Trim Register 3

Offset		Bit Po	sition	
0x178	31 30 29 27 27 26 26 27 27 27 27	23 22 22 20 19 19 17 17	6 9 9 8	r 0 0 4 m 7 - 0
Access	RO	RO	RO	RO
Name	3V0LPATT1LPCMPBIAS3	1V8LPATT1LPCMPBIAS3	3V0LPATT1LPCMPBIAS2	1V8LPATT1LPCMPBIAS2

Bit	Name	Access	Description
31:24	3V0LPATT1LPCMPBIAS3	RO	DCDC LPVREF Trim for 3.0V output, LPATT=1, LPCMPBIAS=3
23:16	1V8LPATT1LPCMPBIAS3	RO	DCDC LPVREF Trim for 1.8V output, LPATT=1, LPCMPBIAS=3
15:8	3V0LPATT1LPCMPBIAS2	RO	DCDC LPVREF Trim for 3.0V output, LPATT=1, LPCMPBIAS=3
7:0	1V8LPATT1LPCMPBIAS2	RO	DCDC LPVREF Trim for 1.8V output, LPATT=1, LPCMPBIAS=2

4.7.40 DCDCLPCMPHYSSEL0 - DCDC LPCMPHYSSEL Trim Register 0

Offset															Bi	t Po	siti	on														
0x17C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Access																					2								2			
Name																				>	LPCMPH 3 SSELLPALL I							CTTAGLIBOOXUGMOG	OMPRI SSELETAL			

Bit	Name	Access	Description
31:16	Reserved	Reserved for futu	ire use
15:8	LPCMPHYSSELLPATT1	RO	DCDC LPCMPHYSSEL Trim, LPATT=1
7:0	LPCMPHYSSELLPATT0	RO	DCDC LPCMPHYSSEL Trim, LPATT=0

4.7.41 DCDCLPCMPHYSSEL1 - DCDC LPCMPHYSSEL Trim Register 1

Offset		Bit Po	sition	
0x180	31 30 29 28 27 27 26 26 27 27	23 22 22 22 11 20 119 119 119 119 119 119 119 119 119 11	4 5 6 6 7 8 8 8 8 8 8 8 9 9 10	r 0 0 4 m 0 t 0
Access	NO NO	RO	RO	NO NO
Name	LPCMPHYSSELLPCMPBIAS3	LPCMPHYSSELLPCMPBIAS2	LPCMPHYSSELLPCMPBIAS1	LPCMPHYSSELLPCMPBIAS0

Bit	Name	Access	Description
31:24	LPCMPHYSSELLPCMPBIAS3	RO	DCDC LPCMPHYSSEL Trim, LPCMPBIAS=3
23:16	LPCMPHYSSELLPCMPBIAS2	RO	DCDC LPCMPHYSSEL Trim, LPCMPBIAS=2
15:8	LPCMPHYSSELLPCMPBIAS1	RO	DCDC LPCMPHYSSEL Trim, LPCMPBIAS=1
7:0	LPCMPHYSSELLPCMPBIAS0	RO	DCDC LPCMPHYSSEL Trim, LPCMPBIAS=0

4.7.42 VDAC0MAINCAL - VDAC0 Cals for Main Path

Offset															Bi	t Po	sitio	on														
0x184	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Access						2						2					0	2						8	•	•		•	(2	·	
Name											CAINEDDIMOVE						CAINEDBTDIM17/25							GAINERRTRIM2V5LN						GAINERK I KIMI VZSLIN		

Bit	Name	Access	Description
31:30	Reserved	Reserved for futu	ire use
29:24	GAINERRTRIMVDDANAEXTPIN	RO	Gain Error Trim Value for DAC main output using references VDDANA and EXTPIN
23:18	GAINERRTRIM2V5	RO	Gain Error Trim Value for DAC main output using reference 2V5
17:12	GAINERRTRIM1V25	RO	Gain Error Trim Value for DAC main output using reference 1V25
11:6	GAINERRTRIM2V5LN	RO	Gain Error Trim Value for DAC main output using reference 2V5LN
5:0	GAINERRTRIM1V25LN	RO	Gain Error Trim Value for DAC main output using reference 1V25LN

4.7.43 VDAC0ALTCAL - VDAC0 Cals for Alternate Path

Offset															Bi	t Po	sitio	on														
0x188	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	- 9	5	_	۰ ۲	2	_	0
Access					٥	2					0	2					0	2					(2						80		
Name					CAINEBBIBINATORANAEXTBINALT						+ ^ 1/ (2/) (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	GAINERRIRINGVOALI					GAINEBBTBIM1//25AI T							GAINERRIRIMZVSLNALI						GAINERRTRIM1V25LNALT		

Bit	Name	Access	Description
31:30	Reserved	Reserved for futu	ire use
29:24	GAINERRTRIMVDDANAEXTPI- NALT	RO	Gain Error Trim Value for DAC alternative output using references VDDANA and EXTPIN
23:18	GAINERRTRIM2V5ALT	RO	Gain Error Trim Value for DAC alternative output using reference 2V5
17:12	GAINERRTRIM1V25ALT	RO	Gain Error Trim Value for DAC alternative output using reference 1V25
11:6	GAINERRTRIM2V5LNALT	RO	Gain Error Trim Value for DAC alternative output using reference 2V5LN
5:0	GAINERRTRIM1V25LNALT	RO	Gain Error Trim Value for DAC alternative output using reference 1V25LN

4.7.44 VDAC0CH1CAL - VDAC0 CH1 Error Cal

Offset															Ві	it Po	siti	on														
0x18C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Access					•	•	•			•				•	•	•				•			2			(2				8	
Name																							GAINERRIRIMONIB				GAINERRI KINICHTA				OFFSETTRIM	

Bit	Name	Access	Description
31:12	Reserved	Reserved for	future use
11:8	GAINERRTRIMCH1B	RO	Gain Error Trim Value for Channel 1 Main Output for references 2V5LN, 2V5
7:4	GAINERRTRIMCH1A	RO	Gain Error Trim Value for Channel 1 Main Output for references 1V25LN, 1V25, VDDANA, EXTPIN
3	Reserved	Reserved for	future use
2:0	OFFSETTRIM	RO	Input Buffer Offset Calibration Value for all DAC references

4.7.45 OPA0CAL0 - OPA0 Calibration Register for DRIVESTRENGTH 0, INCBW=1

Offset															Bi	t Po	siti	on														
0x190	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Access				80	•					RO	•			5	2			RO	•		0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				2	SINIS			ВМ			CM3	2			CMO	O N					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.46 OPA0CAL1 - OPA0 Calibration Register for DRIVESTRENGTH 1, INCBW=1

Offset															Bi	t Po	siti	on														
0x194	31	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	_	0
Access			•	80	•					RO				5	2			RO			0	2			0	2				0	2	
Name				OFFSETN						OFFSETP				2	SINIS			ВМ			CM3	2			CMO	O NA					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.47 OPA0CAL2 - OPA0 Calibration Register for DRIVESTRENGTH 2, INCBW=1

Offset															Bi	t Po	siti	on														
0x198	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Access				80	•					RO	•			5	2			RO	•		0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				2	SINIS			ВМ			CM3	2			CMO	O N					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.48 OPA0CAL3 - OPA0 Calibration Register for DRIVESTRENGTH 3, INCBW=1

Offset															Bi	t Po	siti	on														
0x19C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Access				RO						RO				2	2			RO			0	2			0	2				2	2	
Name		OFFSETN RO								OFFSETP				CV4				GM			CM3	2			CM2	2				7	-	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	re use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	re use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	re use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	re use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	re use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	re use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	re use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.49 OPA0CAL4 - OPA0 Calibration Register for DRIVESTRENGTH 0, INCBW=0

Offset															Bi	t Po	siti	on														
0x1A0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	ဝ	8	7	9	5	4	က	2	_	0
Access				80	•					RO	•			5	2			RO	•		0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				2	SINIS			ВМ			CM3	2			CMO	O N					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.50 OPA0CAL5 - OPA0 Calibration Register for DRIVESTRENGTH 1, INCBW=0

Offset															Bi	t Po	siti	on														
0x1A4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	8	7	9	5	4	က	2	_	0
Access			•	RO	•					RO	•				2			RO			0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				9	GINIS			GM			CM3	2			CMO	Z NZ				7	5	

Bit	Name	Access	Description
31	Reserved	Reserved for fut	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for fut	ure use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for fut	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for fut	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for fut	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for fut	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for fut	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.51 OPA0CAL6 - OPA0 Calibration Register for DRIVESTRENGTH 2, INCBW=0

Offset															Bi	t Po	siti	on														
0x1A8	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	11	10	စ	8	7	9	5	4	က	2	_	0
Access				80	•					RO	•			0	2			RO	•		0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				C A	SINIS			В			CM3	2			CM2	1				2	- - - - -	

Bit	Name	Access	Description
31	Reserved	Reserved for fut	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for fut	ure use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for fut	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for fut	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for fut	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for fut	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for fut	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.52 OPA0CAL7 - OPA0 Calibration Register for DRIVESTRENGTH 3, INCBW=0

Offset															Bi	t Po	siti	on														
0x1AC	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Access				80	•					RO				0	2			RO	•		0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				CP4	SINIS			GM			CM3	2			CMO	2 2 2					- - - - -	

Bit	Name	Access	Description
31	Reserved	Reserved for fut	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for fut	ure use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for fut	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for fut	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for fut	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for fut	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for fut	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.53 OPA1CAL0 - OPA1 Calibration Register for DRIVESTRENGTH 0, INCBW=1

Offset															Bi	t Po	siti	on														
0x1B0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	_	0
Access				80	•					RO	•			5	2			RO			0	2			0	2				0	2	
Name				OFFSETN						OFFSETP				2	SINIS			ВМ			CM3	2			CMO	O N					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ire use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ure use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ire use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ire use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ire use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ire use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value
		·	

4.7.54 OPA1CAL1 - OPA1 Calibration Register for DRIVESTRENGTH 1, INCBW=1

Offset															Bi	t Po	siti	on														
0x1B4	31	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	41	13	12	11	10	ဝ	8	7	9	5	4	က	2	_	0
Access				80	•					RO					2			8			0	2			0	2				0	2	
Name				OFFSETN						OFFSETP				2	5 N			GM			CM3	2			CMO	O N				777	5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ire use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ire use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ire use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ire use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ire use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ire use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.55 OPA1CAL2 - OPA1 Calibration Register for DRIVESTRENGTH 2, INCBW=1

Offset															Bi	t Po	siti	on														
0x1B8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	8	7	9	5	4	က	2	_	0
Access			•	RO	•					RO				0	2			RO			0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				9	GINIS			GM			CM3	2			CMO	Z NZ				7	5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.56 OPA1CAL3 - OPA1 Calibration Register for DRIVESTRENGTH 3, INCBW=1

Offset															Bi	t Po	siti	on														
0x1BC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	ဝ	8	7	9	5	4	က	2	_	0
Access			•	80	•					RO	•				2			8			0	2			0	2					2	
Name				OFFSETN						OFFSETP				2	5 N			GM			CM3	2			CMO	<u> </u>					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ire use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ire use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ire use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ire use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ire use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ire use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.57 OPA1CAL4 - OPA1 Calibration Register for DRIVESTRENGTH 0, INCBW=0

Offset															Bi	t Po	siti	on														
0x1C0	31	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	_	0
Access			•	80	•					RO					2			RO			0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				2	5 N			GM			CM3	2			CMO	<u> </u>					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.58 OPA1CAL5 - OPA1 Calibration Register for DRIVESTRENGTH 1, INCBW=0

Offset															Bi	t Po	siti	on														
0x1C4	31	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	_	0
Access				8	•					RO				5	2			RO			0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP					5 N			GM			CM3	2			CMO	O N					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.59 OPA1CAL6 - OPA1 Calibration Register for DRIVESTRENGTH 2, INCBW=0

Offset		Bit Position																														
0x1C8	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Access				RO					RO				0	2		RO			80				RO				8					
Name	OFFSETN						OFFSETP				C A	SINIS		WO				CM3	2			CMO) N					- - - -				

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
10.17	CIVIO	NO	One min value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for fut	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.60 OPA1CAL7 - OPA1 Calibration Register for DRIVESTRENGTH 3, INCBW=0

Offset	Bit Position																															
0x1CC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	5	4	က	2	1	0
Access				RO					RO				0	2		RO			RO				RO				RO					
Name	OFFSETN						OFFSETP				6740	SIND		Wg			CM3	2			CMO) N					- - - - -					

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
10.17	CIVIO	NO	One min value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for fut	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.61 OPA2CAL0 - OPA2 Calibration Register for DRIVESTRENGTH 0, INCBW=1

Offset															Bi	t Po	siti	on														
0x1D0	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Access				80	•					RO				0	2			8	•		0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				CP4	SINIS			GM			CM3	2			CMO	2 2 2					- - - - -	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.62 OPA2CAL1 - OPA2 Calibration Register for DRIVESTRENGTH 1, INCBW=1

Offset															Bi	it Po	siti	on														
0x1D4	31	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	_	0
Access				8	•					RO	•			0	2			RO			0	2			0	2	•				2	
Name				OFFSETN						OFFSETP				940	SIM3			GM			CM3	2			CMO	<u> </u>					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.63 OPA2CAL2 - OPA2 Calibration Register for DRIVESTRENGTH 2, INCBW=1

Offset															Bi	t Po	siti	on														
0x1D8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	ဝ	8	7	9	5	4	က	2	_	0
Access				80	•					RO	•				2			8			0	2			0	2					2	
Name				OFFSETN						OFFSETP				2	5 N			GM			CM3	2			CMO	O N					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.64 OPA2CAL3 - OPA2 Calibration Register for DRIVESTRENGTH 3, INCBW=1

Offset															Bi	t Po	siti	on														
0x1DC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	-	0
Access			•	80	•					RO				0	2			RO			0	2				2	•				2	
Name				OFFSETN						OFFSETP				910	GIMIS			GM			CN13	2			CNAC	CIVIZ				7	5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ıre use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ıre use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ire use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ıre use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.65 OPA2CAL4 - OPA2 Calibration Register for DRIVESTRENGTH 0, INCBW=0

Offset															Ві	t Po	siti	on														
0x1E0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	8	7	9	5	4	က	2	_	0
Access				8	•					RO				2	2			RO			0	2				2	•				2	
Name				OFFSETN						OFFSETP				9	GINIS			GM			CM3	2			CNO	CIVIZ				7	5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.66 OPA2CAL5 - OPA2 Calibration Register for DRIVESTRENGTH 1, INCBW=0

Offset															Bi	t Po	siti	on														
0x1E4	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	11	10	6	8	7	9	5	4	က	2	1	0
Access		RO 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								RO		•		0	2			RO			0	2			0	2				0	2	
Name				OFFSETN						OFFSETP				C A	SINIS			GM			CM3	2			CMO	S S					- - - - -	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.67 OPA2CAL6 - OPA2 Calibration Register for DRIVESTRENGTH 2, INCBW=0

Offset															Bi	t Po	siti	on														
0x1E8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	ဝ	8	7	9	5	4	က	2	_	0
Access				80	•					RO	•			5	2			RO			0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				2	SINIS			ВМ			CM3	2			CMO	O N					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ire use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ire use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ire use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ire use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ire use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ire use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.68 OPA2CAL7 - OPA2 Calibration Register for DRIVESTRENGTH 3, INCBW=0

Offset															Bi	t Po	siti	on														
0x1EC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	7	_	0
Access			•	8					•	RO	1			2	2			8			0	2			0	2	'			2	2	
Name				OFFSETN						OFFSETP				2	SINIS			ВМ			CM3	2			CMO	O N				LM2	- - - -	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.69 OPA3CAL0 - OPA3 Calibration Register for DRIVESTRENGTH 0, INCBW=1

Offset															Bi	t Po	siti	on														
0x1F0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	ဝ	8	7	9	5	4	က	2	_	0
Access			•	80	•					RO	•				2			8			0	2			0	2				0	2	
Name				OFFSETN						OFFSETP				2	5 N			GM			CM3	2			CMO	O N					5	

Bit	Name	Access	Description
31	Reserved	Reserved for fut	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for fut	ure use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for fut	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for fut	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for fut	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for fut	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for fut	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.70 OPA3CAL1 - OPA3 Calibration Register for DRIVESTRENGTH 1, INCBW=1

Offset															Bi	t Po	siti	on														
0x1F4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	ဝ	8	7	9	5	4	က	2	_	0
Access			•	80	•					RO	•			5	2			8	•		0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				2	SINIS			ВМ			CM3	2			CMO	O NA				72	5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ire use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ure use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ire use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ire use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ire use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ire use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value
		·	

4.7.71 OPA3CAL2 - OPA3 Calibration Register for DRIVESTRENGTH 2, INCBW=1

Offset															Bi	t Po	siti	on														
0x1F8	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	11	10	စ	8	7	9	5	4	က	2	_	0
Access			•	80	•					RO	•			0	2			RO			0	2			0	2	•			0	2	
Name				OFFSETN						OFFSETP				C A	SINIS			ВМ			CM3	2			CM2	1				2	- - - - -	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.72 OPA3CAL3 - OPA3 Calibration Register for DRIVESTRENGTH 3, INCBW=1

Offset															Bi	t Po	siti	on														
0x1FC	31	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	41	13	12	11	10	ဝ	8	7	9	5	4	က	2	_	0
Access				80	•					RO	•				2			8			0	2			0	2				0	2	
Name				OFFSETN						OFFSETP				2	5 N			GM			CM3	2			CMO	O N					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.73 OPA3CAL4 - OPA3 Calibration Register for DRIVESTRENGTH 0, INCBW=0

Offset															Bi	t Po	siti	on														
0x200	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	_	0
Access	8									RO	•			5	2			RO			0	2			0	2	•			0	2	
Name	OFFSETN RC									OFFSETP				2	SINIS			ВМ			CM3	2			CMO	O NA					<u>.</u>	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ire use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ire use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ire use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ire use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ire use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ire use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.74 OPA3CAL5 - OPA3 Calibration Register for DRIVESTRENGTH 1, INCBW=0

Offset															Bi	t Po	siti	on														
0x204	31	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	_	0
Access	8									RO	•			5	2			RO			0	2			0	2				0	2	
Name	OFFSETN RC									OFFSETP				2	SINIS			ВМ			CM3	2			CMO	O NA					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	re use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	re use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	re use
18:17	GM3	RO	Gm3 Trim Value
10.17	GIVIS	RU	GIII3 TIIII Value
16	Reserved	Reserved for futu	re use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	re use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	re use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	re use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.75 OPA3CAL6 - OPA3 Calibration Register for DRIVESTRENGTH 2, INCBW=0

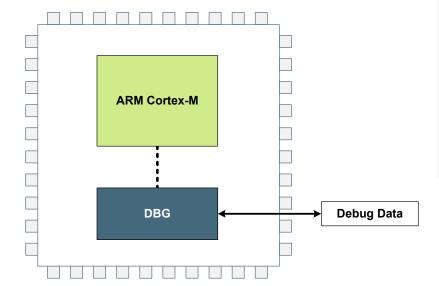
Offset															Bi	t Po	siti	on														
0x208	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	11	10	စ	8	7	9	5	4	က	2	_	0
Access	8									RO	•			0	2			RO			0	2			0	2	•			0	2	
Name	OFFSETN RG									OFFSETP				C A	2 2 2			ВМ			CM3	2			CM2	1				2	- - - - -	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value

4.7.76 OPA3CAL7 - OPA3 Calibration Register for DRIVESTRENGTH 3, INCBW=0

Offset															Bi	t Po	siti	on														
0x20C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	ဝ	8	7	9	5	4	က	2	_	0
Access	8									RO	•				2			8			0	2			0	2					2	
Name	OFFSETN RC									OFFSETP				2	5 N			GM			CM3	2			CMO	O N					5	

Bit	Name	Access	Description
31	Reserved	Reserved for futu	ure use
30:26	OFFSETN	RO	OPA Inverting Input Offset Configuration Value.
25	Reserved	Reserved for futu	ire use
24:20	OFFSETP	RO	OPA Non-Inverting Input Offset Configuration Value.
19	Reserved	Reserved for futu	ure use
18:17	GM3	RO	Gm3 Trim Value
16	Reserved	Reserved for futu	ure use
15:13	GM	RO	Gm Trim Value
12	Reserved	Reserved for futu	ure use
11:10	CM3	RO	Compensation cap Cm3 trim value
9	Reserved	Reserved for futu	ure use
8:5	CM2	RO	Compensation cap Cm2 trim value
4	Reserved	Reserved for futu	ure use
3:0	CM1	RO	Compensation cap Cm1 trim value


4.7.77 CSENGAINCAL - Cap Sense Gain Adjustment

Offset	Bit Position	
0x210	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r 0 r 4 s 7 t 0
Access		RO
Name		GAINCAL

Bit	Name	Access	Description
31:8	Reserved	Reserved for futu	ire use
7:0	GAINCAL	RO	Gain Adjustment for Cap Sense. Gain should be scaled by GAINCAL/128

5. DBG - Debug Interface

Quick Facts

What?

The Debug Interface is used to program and debug EFM32 Tiny Gecko 11 devices.

Why?

The Debug Interface makes it easy to re-program and update the system in the field, and allows debugging with minimal I/O pin usage.

How?

The Cortex-M0+ supports advanced debugging features. EFM32 Tiny Gecko 11 devices can use a minimum of two port pins for debugging or programming. The internal and external state of the system can be examined with debug extensions supporting instruction or data access break and watch points.

5.1 Introduction

The EFM32 Tiny Gecko 11 devices include hardware debug support through a 2-pin serial-wire debug (SWD) interface or a 4-pin Joint Test Action Group (JTAG) interface.

For more technical information about the debug interface the reader is referred to:

- · ARM Cortex-M0+ Technical Reference Manual
- · ARM CoreSight Components Technical Reference Manual
- ARM Debug Interface v5 Architecture Specification
- IEEE Standard for Test Access Port and Boundary-Scan Architecture, IEEE 1149.1-2013

5.2 Features

- · Debug Access Port Serial Wire JTAG (DAP SWJ-DP)
 - Implements the ADIv5 debug interface
- Authentication Access Point (AAP)
 - · Implements various user commands
- · Flash Patch and Breakpoint (FPB) unit
 - · Implement breakpoints and code patches
- · Data Watch point and Trace (DWT) unit
 - · Implement watch points, trigger resources and system profiling

5.3 Functional Description

Operation of the available debug interface is described in the following sections.

5.3.1 Debug Pins

The following pins are the debug connections for the device:

- Serial Wire Clock Input and Test Clock Input (SWCLKTCK): This pin is enabled after power-up and has a built-in pull down.
- Serial Wire Data Input/Output and Test Mode Select Input (SWDIOTMS): This pin is enabled after power-up and has a built-in pull-up.
- Test Data Output (TDO): This pin is assigned to JTAG functionality after power-up. However, it remains in high-Z state until the first valid JTAG command is received.
- Test Data Input (TDI): This pin is assigned to JTAG functionality after power-up. However, it remains in high-Z state until the first valid JTAG command is received. Once enabled, the pin has a built-in pull-up.

The debug pins have pull-down and pull-up enabled by default, so leaving them enabled may increase the current consumption if left connected to supply or ground. The debug pins can be enabled and disabled through GPIO_ROUTEPEN, see 32.3.4.2.3 Disabling Debug Connections. Remember that upon disabling the debug pins, debug contact with the device is lost once the DAP SWJ-DP power request bits are deasserted. By default after power cycle the part's debug pins are in JTAG mode. If during debugging session the pins are switched to SWD mode, a power cycle is required to bring restore the pins to JTAG mode.

5.3.2 Debug and EM2 DeepSleep/EM3 Stop

Leaving the debugger connected when issuing a WFI or WFE to enter EM2 DeepSleep or EM3 Stop will make the system enter a special EM2 DeepSleep. This mode differs from regular EM2 DeepSleep and EM3 Stop in that the high frequency clocks are still enabled, and certain core functionality is still powered in order to maintain debug-functionality. Because of this, the current consumption in this mode is closer to EM1 Sleep and it is therefore important to deassert the power requests in the DAP SWJ-DP and disconnect the debugger before doing current consumption measurements.

5.3.3 Authentication Access Point

The Authentication Acces Point (AAP) is a set of registers that provide a minimal amount of debugging and system level commands. The AAP registers contain commands to issue a FLASH erase, a system reset, a CRC of user code pages, and stalling the system bus. The user must program the APSEL bit field to 255 inside of the ARM DAP SWJ Debug Port SELECT register to access the AAP. The AAP is only accessible from a debugger and not from the core.

5.3.3.1 System Bus Stall

The system bus can be stalled at any time using the SYSBUSSTALL register bit. Once the SYSBUSSTALL is set, the system bus will remain stalled until SYSBUSSTALL is cleared. While the system bus is stalled, only the registers inside the Cortex-M0+, AAP and the debugger can be accessed. The SYSBUSSTALL register is available at all times through the AAP.

5.3.3.2 Command Key

The AAP uses a command key to enable the DEVICEERASE and SYSRESETREQ AAP commands. The command key must be written with the correct key in order for the commands to execute.

5.3.3.3 Device Erase

The device can be erased by stalling the system bus, writing AAP_CMDKEY, and then writing the DEVICEERASE register bit. Upon writing the command bit, the ERASEBUSY bit is asserted. The ERASEBUSY bit will be de-asserted once the erase is complete. The SYSRESETREQ bit must then be set to resume a normal debugger session. The DEVICEERASE register is available at all times through the AAP once the CMDKEY is entered.

5.3.3.4 System Reset

The system can be reset by writing AAP_CMDKEY followed by writing the SYSRESTREQ register bit. This must be done after asserting DEVICEERASE or CRCREQ. Depending on the reset level setting for system reset, asserting SYSRESETREQ will either reset the entire AAP register space or just the SYSRESETREQ bit. See 8.3.1 Reset Levels for more details on reset levels. The SYSRESETREQ register is available at all times through the AAP once the CMDKEY is enetered.

5.3.3.5 User Flash Page CRC

The CRCREQ command initiates a CRC calculation on a given Flash Page. The CRC is only available on the Main, User Data, and Lock Bit pages. It is highly recommended that the system bus is stalled before any CRCREQ commands are issued. The CRC calculation uses the on chip CRC block configured in 32 bit CRC mode. The Flash Page address for the CRCREQ command is written to the CRCADDR register. After issuing the CRCREQ, the CRCBUSY flag is asserted. Once the CRCBUSY flag is de-asserted, the resulting page CRC can be found in the CRCRESULT register. Once issuing a CRC command, the CPU is stalled and remains stalled until a system reset occurs. Multiple CRC requests can occur before resetting the system. However, a CRC request that occurs while the CRCBUSY flag is asserted will be ignored. The CRC registers are available at all times through the AAP.

5.3.4 Debug Lock

The debug access to the Cortex-M0+ is locked by clearing the Debug Lock Word (DLW) and resetting the device, see 6.3.2 Lock Bits (LB) Page Description.

When debug access is locked, the debugger can access the DAP SWJ-DP and AAP registers. However, the connection to the Cortex-M0+ core and the whole bus-system is blocked. This mechanism is controlled by the Authentication Access Port (AAP) as illustrated by Figure 5.1 AAP - Authentication Access Port on page 128.

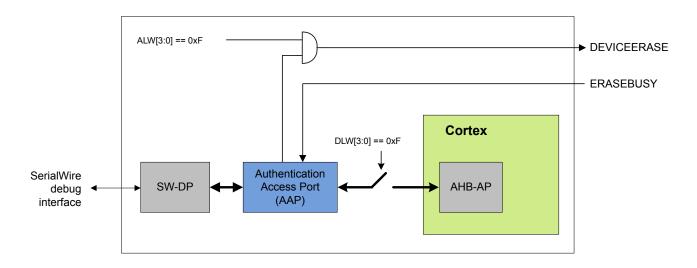


Figure 5.1. AAP - Authentication Access Port

If the DLW is cleared, the device is locked. If the device is locked and the the AAP Lock Word (ALW) has not been cleared, it can be unlocked by writing a valid key to the AAP_CMDKEY register and then setting the DEVICEERASE bit of the AAP_CMD register via the debug interface. This operation erases the main block of flash, clears all lock bits, and debug access to the Cortex-M0+ and bus-system is enabled. The operation takes tens of mili seconds to complete. Note that the SRAM contents will also be deleted during a device erase, while the UD-page is not erased.

The debugger may read the status of the device erase from the AAP_STATUS register. When the ERASEBUSY bit is set low after DEVICEERASE of the AAP_CMD register is set, the debugger may set the SYSRESETREQ bit in the AAP_CMD register. After reset, the debugger may resume a normal debug session through the AHB-AP.

5.3.5 AAP Lock

Take extreme caution when using this feature. Once the AAP has been locked, the state of the FLASH can not be changed via the debugger.

5.3.6 Debugger Reads of Actionable Registers

Some peripheral registers cause particular actions when read, e.g FIFOs which pop and IFC registers which clear the IF flags when read. This can cause problems when debugging and the user wants to read the value without triggering the read action. For this reason, by default, the peripherals will not execute these triggered actions when an attached debugger is performing the read accesses through the AAP. To override this behavior, the debugger can configure the MASTERTYPE bitfield of the Cortex-M0+ AHB Access Port CSW register in order to emulate a core access when performing system bus transfers.

Note:

- Registers with actionable reads are noted in their register descriptions. Refer to Table 1.1 Register Access Types on page 29.
- The following peripherals do not respect the debugger master override, and so may still cause their triggered actions to occur (e.g., when reading IFC):
 - CAN

5.3.7 Debug Recovery

Debug recovery is the ability to stall the system bus before the Cortex-M0+ executes code. For example, the first few instructions may disconnect the debugger pins. When this occurs it is difficult to connect the debugger and halt the Cortex-M0+ before the Cortex-M0+ starts to execute. By holding down pin reset, issuing the System Bus Stall AAP instruction, then releasing pin reset, the debugger can stall the system bus before the Cortex-M0+ has a chance to execute. Because the system is under reset during this procedure the Debugger can not look for ACK's from the part. Once the system bus is stalled, the FLASH can be erased by issuing the AAP_CMDKEY and then the writting the DEVICEERASE in the AAP_CMD register.

5.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	AAP_CMD	W1	Command Register
0x004	AAP_CMDKEY	W1	Command Key Register
0x008	AAP_STATUS	R	Status Register
0x00C	AAP_CTRL	RW	Control Register
0x010	AAP_CRCCMD	W1	CRC Command Register
0x014	AAP_CRCSTATUS	R	CRC Status Register
0x018	AAP_CRCADDR	RW	CRC Address Register
0x01C	AAP_CRCRESULT	R	CRC Result Register
0x0FC	AAP_IDR	R	AAP Identification Register

5.5 Register Description

5.5.1 AAP_CMD - Command Register

Offset															Ві	t Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset			'		'	•			•					•	'	'							•				•	'	'	•	0	0
Access																															M1	W
Name																															SYSRESETREQ	DEVICEERASE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure cor tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
1	SYSRESETREQ	0	W1	System Reset Request
	A system reset reque	st is generated v	when set to	o 1. This register is write enabled from the AAP_CMDKEY register.
0	DEVICEERASE	0	W1	Erase the Flash Main Block, SRAM and Lock Bits
	erased. This also inc	ludes the Debu	g Lock Wo	in block is erased, the SRAM is cleared and then the Lock Bit (LB) page is ord (DLW), causing debug access to be enabled after the next reset. The changed, but the User data page Lock Word (ULW) is erased. This register

5.5.2 AAP_CMDKEY - Command Key Register

is write enabled from the AAP_CMDKEY register.

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	တ	8	7	9	2	4	က	2	_	0
Reset																000000000000000000000000000000000000000																
Access																×	- >															
Name																WEITEKEY	, , , , , , , , , , , , , , , , , , ,															

Name	Reset	Access	Description
WRITEKEY	0x0000000	W1	CMD Key Register
The key value must	t be written to this	register to	write enable the AAP_CMD register.
Value	Mode		Description
0xCFACC118	WRITEEN		Enable write to AAP_CMD
	WRITEKEY The key value mus Value	WRITEKEY 0x00000000 The key value must be written to this Value Mode	WRITEKEY 0x00000000 W1 The key value must be written to this register to Value Mode

5.5.3 AAP_STATUS - Status Register

Offset															Bi	it Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	19	6	8	7	9	5	4	က	2	_	0
Reset																															0	0
Access																															ď	~
Name																															LOCKED	ERASEBUSY

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
1	LOCKED	0	R	AAP Locked
	Set when the AAP is	locked, .e.g the	AAP Lock	Word AAP lsb bits are not 0xF
0	ERASEBUSY	0	R	Device Erase Command Status
	This bit is set when a	a device erase is	executing.	

5.5.4 AAP_CTRL - Control Register

Offset															Bi	t Po	ositi	on														
0x00C	33	30	29	78	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•		•		•					•				•	•						•		•		•		•			0
Access																																A M
Name																																SYSBUSSTALL

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	SYSBUSSTALL	0	RW	Stall the System Bus
	When this bit is set,	the system bus	is stalled. C	nly the Cortex registers are accessible

5.5.5 AAP_CRCCMD - CRC Command Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	2	4	က	2	_	0
Reset																																0
Access																																W1
Name																																CRCREQ

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	CRCREQ	0	W1	CRC Request
	A CRC request is ger	nerated when se	t to 1. This	command is not available if debug access or AAP is locked.

5.5.6 AAP_CRCSTATUS - CRC Status Register

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	6	ω	7	9	2	4	က	2	_	0
Reset																																0
Access																																~
Name																																CBUSY
																																CRC

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	CRCBUSY	0	R	CRC Calculation is Busy
	Set when the CRC ca	lculation is exec	cuting. Will	transition from 1 to 0 on valid data.

5.5.7 AAP_CRCADDR - CRC Address Register

Offset												Bi	t Pos	itio	n														
0x018	33	29	28	26	25	24	23	22	23	1 0	2 8	17	16	ည ;	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset													0x000000x0																
Access													ΑW																
Name													CRCADDR																
Bit	Name				Re	set		1	Acce	ss	Des	crip	tion																
31:0	CRCA	DDR			0x0	0000	0000	0 1	RW		Sta	rtina	Page	e Ac	ddre	ess	for	CR	C E	xec	utio	n							

5.5.8 AAP_CRCRESULT - CRC Result Register

Set this to the address the CRC executes on.

Offset		Bit Position																														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	ဝ	ω	7	9	2	4	က	2	_	0
Reset																000000000000000000000000000000000000000																
Access																Ω	<u> </u>															
Name																T																

Bit	Name	Reset	Access	Description					
31:0	CRCRESULT	0x00000000	R	CRC Result of the CRCADDRESS					
	Result of the CRC cald	RC calculation using the CRCADDRESS.							

5.5.9 AAP_IDR - AAP Identification Register

Offset		Bit Position																														
0x0FC	31	30	29	78	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	ဝ	∞	7	9	5	4	က	2	_	0
Reset		0x26E60011																														
Access		<u>~</u>																														
Name																2	⊇ _															

Bit	Name	Reset	Access	Description				
31:0	ID	0x26E60011	R	AAP Identification Register				
	Access port identification register in compliance with the ARM ADI v5 specification (JEDEC Manufacturer ID) .							

6. MSC - Memory System Controller

011001010110111001100101011110010

Quick Facts

What?

The user can perform flash memory read, read configuration and write operations through the Memory System Controller (MSC).

Why?

The MSC allows the application code, user data and flash lock bits to be stored in non-volatile flash memory. Certain memory system functions, such as program memory wait-states and bus faults are also configured from the MSC peripheral register interface, giving the developer the ability to dynamically customize the memory system performance, security level, energy consumption and error handling capabilities to the requirements at hand.

How?

The MSC integrates a low-energy flash IP with a charge pump, enabling minimum energy consumption while eliminating the need for external programming voltage to erase the memory. An easy to use write and erase interface is supported by an internal, fixed-frequency oscillator and autonomous flash timing and control reduces software complexity while not using other timer resources.

Application code may dynamically scale between high energy optimization and high code execution performance through advanced read modes.

A highly efficient low energy instruction cache reduces the number of flash reads significantly, thus saving energy. Performance is also improved when wait-states are used, since many of the wait-states are eliminated. Built-in performance counters can be used to measure the efficiency of the instruction cache.

6.1 Introduction

The Memory System Controller (MSC) is the program memory unit of the EFM32 Tiny Gecko 11 microcontroller. The flash memory is readable and writable from both the Cortex-M0+ and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data, and bootloader. Read and write operations are supported in the energy modes EM0 Active and EM1 Sleep.

6.2 Features

- · AHB read interface
 - Scalable access performance to optimize the Cortex-M0+ code interface
 - Zero wait-state access up to 25 MHz
 - · Advanced energy optimization functionality
 - Instruction Cache
 - DMA read support in EM0 Active and EM1 Sleep
- · Command and status interface
 - · Flash write and erase
 - · Accessible from Cortex-M0+ in EM0 Active
 - DMA write support in EM0 Active and EM1 Sleep
 - · Core clock independent flash timing
 - · Internal oscillator and internal timers for precise and autonomous flash timing
 - General purpose timers are not occupied during flash erase and write operations
 - · Configurable interrupt erase abort
 - · Improved interrupt predictability
 - · Memory and bus fault control
- · Security features
 - · Lockable debug access
 - · Page lock bits
 - · SW mass erase lock bits
 - · Authentication Access Port (AAP) lock bits
- · End-of-write and end-of-erase interrupts

6.3 Functional Description

The size of the main block is device dependent. The largest size available is 128 kB (64 pages). The information block has 2 kB available for user data. The information block also contains chip configuration data located in a reserved area. The main block is mapped to address 0x00000000 and the information block is mapped to address 0x0FE00000. Table 6.1 MSC Flash Memory Mapping on page 137 outlines how the flash is mapped in the memory space. All flash memory is organized into 2 kB pages.

Table 6.1. MSC Flash Memory Mapping

Block	Page	Base address	Write/Erase by	Software Reada- ble?	Purpose/Name	Size
Main ¹	0	0x00000000	Software, debug	Yes	User code and data	64 kB - 128 kB
			Software, debug	Yes		
	63	0x0001F800	Software, debug	Yes		
Reserved	-	0x00040000	-	-	Reserved for flash expansion	~24 MB
Information	0	0x0FE00000	Software, debug	Yes	User Data (UD)	2 kB
	-	0x0FE00800	-	-	Reserved	-
	1	0x0FE04000	Write: Software, debug	Yes	Lock Bits (LB)	2 kB
			Erase: Debug only			
	-	0x0FE04800	-	-	Reserved	-
	2	0x0FE081B0	-	Yes	Device Information (DI)	1 kB
	-	0x0FE08400	-	-	Reserved	-
	2	0x0FE0C000	-	-		1 kB
	-	0x0FE0C400	-	-	Reserved	-
	3	0x0FE10000	Software, debug	Yes	Bootloader (BL)	18 kB
			-	-		
	11	0x0FE14000	-	-		
Reserved	-	0x0FE14800	-	Reserved for flash expansion	Rest of code space	-

Note:

6.3.1 User Data (UD) Page Description

This is the user data page in the information block. The page can be erased and written by software. The page is erased by the ERA-SEPAGE command of the MSC_WRITECMD register. Note that the page is not erased by a device erase operation. The device erase operation is described in 5.3.3 Authentication Access Point.

^{1.} Block/page erased by a device erase.

6.3.2 Lock Bits (LB) Page Description

This page contains the following information:

- · Main block Page Lock Words (PLWs)
- User data page Lock Word (ULWs)
- Debug Lock Word (DLW)
- Mass erase Lock Word (MLW)
- Authentication Access Port (AAP) lock word (ALW)
- Bootloader enable (CLW0)
- · Pin reset soft (CLW0)

The words in this page are organized as shown in Table 6.2 Lock Bits Page Structure on page 138:

Table 6.2. Lock Bits Page Structure

127	DLW
126	ULW
125	MLW
124	ALW
122	CLW0
N	PLW[N]
1	PLW[1]
0	PLW[0]

There are 32 page lock bits per page lock word (PLW). Bit 0 refers to the first page and bit 31 refers to the last page within a PLW. Thus, PLW[0] contains lock bits for page 0-31 in the main block, PLW[1] contains lock bits for page 32-63 etc. A page is locked when the bit is 0. A locked page cannot be erased or written.

Word 127 is the debug lock word (DLW). The four LSBs of this word are the debug lock bits. If these bits are 0xF, then debug access is enabled. Debug access to the core is disabled from power-on reset until the DLW is evaluated immediately before the Cortex-M0+ starts execution of the user application code. If the bits are not 0xF, then debug access to the core remains blocked.

Word 126 is the user page lock word (ULW). Bit 0 of this word is the User Data Page lock bit. Bit 1 in this word locks the Lock Bits Page. The lock bits can be reset by a device erase operation initiated from the Authentication Access Port (AAP) registers. The AAP is described in more detail in 5.3.3 Authentication Access Point. Note that the AAP is only accessible from the debug interface, and cannot be accessed from the Cortex-M0+ core.

Word 125 is the mass erase lock word (MLW). Bit 0 locks the entire flash. The mass erase lock bits will not have any effect on device erases initiated from the Authenitication Access Port (AAP) registers. The AAP is described in more detail in 5.3.3 Authentication Access Point.

Word 124 is the Authentication Access Port (AAP) lock word (ALW) and the four LSBs of this word are the lock bits. If these bits are 0xF, then AAP access is enabled. If the bits are not 0xF, AAP is disabled and it is impossible to access the device through the AAP. Bit 31 of the ALW may be used to allow AAP access under controlled conditions. If bit 31 is set to 1, software running on the device can unlock AAP access using the MSC_AAPUNLOCKCMD register. If bit 31 is cleared to 0, software will not be able to use MSC_AAPUNLOCKCMD to unlock AAP access. NOTE - locking the AAP completely (including the LSBs and bit 31) is irreversible. Once the AAP is locked, it will be impossible to perform an external mass erase and the AAP lock cannot be reset. The only way to program the device when the AAP is locked is through a boot loader or by SW already loaded into the FLASH.

Word 122 is Configuration Lock Word 0 (CLW0). Bit 2 is the Pin Reset Soft bit. By default, a pin reset is handled as a soft reset (See 8.3.5 RESETn Pin Reset). Bit 1 is the bootloader enable bit. Because the state of erased flash bits is 1, the bootloader is enabled by default.

6.3.3 Device Information (DI) Page

This read-only page holds calibration data from the production test as well as a unique device ID. The page is further described in 4. Memory and Bus System.

6.3.4 Bootloader

The system is configured by default to boot from a pre-programmed bootloader automatically after system reset. The bootloader is described in *AN0003: UART Bootloader* (www.silabs.com/32bit-appnotes). Users can bypass the bootloader by clearing bit 1 in Configuration Lock Word 0 (CLW0) at word 122 in the lock bits page.

After any device reset, the bootloader area is accessible to both software reads and writes. Reading and writing of this area may be disabled with the MSC_BOOTLOADERCTRL register. Note that this register is write-once, so after writing the register, a reset of the system is required in order to change permissions again.

The bootloader size is 18 kB for this device family.

Note: Software should never erase "Reserved" pages when bootloader write/erase is enabled. Doing so may cause the device to become non-functional and irrevocably locked.

6.3.5 Post-reset Behavior

Calibration values are automatically written to registers by the MSC before application code startup. The values are also available to read from the DI page for later reference by software. Other information such as the device ID and production date is also stored in the DI page and is readable from software.

If the bootloader is not bypassed, the system will boot up from the bootloader at address 0x0FE10000.

6.3.6 Flash Startup

On transitions from EM2/3 to EM0, the flash must be powered up. The time this takes depends on the current operating conditions. To have a deterministic startup-time, set STDLY0 in MSC_STARTUP to 0x64 and clear STDLY1, ASTWAIT, STWSEN and STWS. This will result in a 10 us delay before the flash is ready. The system will wake up before this, but the Cortex will stall on the first access to the flash until it is ready. Execute code from RAM or cache to get a quicker startup.

To get the fastest possible startup when waking, i.e. a startup that depends on the current operating conditions, set STDLY0 to 0x28 and set ASTWAIT in MSC_STARTUP. When configured this way, the system will poll the flash to determine when it is ready, and then start execution.

For even quicker startup, run code in beginning with a set of wait-states. Set STDLY0 to 0x32, STDLY1 to 0x32, and set ASTWAIT and STWSEN. Then configure STWS in MSC_STARTUP to the number of waitstates to run with. With this setup, sampling will begin with the given number of waitstates after 5 us, and the system will run with this number of waitstates for the remaining 5 us before returning to normal operation

A recommended setting for MSC_STARTUP register is to leave STDLY0 at its reset value and set ASTWAIT to one for active sampling Set STWSEN to zero to bypass the second delay period.

Flash wakeup on demand is supported when wakeup from EM2/3 to EM0. Set bit PWRUPONDEMAND of register MSC_CTRL to one to enable the power up on demand. When enabled during powerup, flash will enter sleep mode and waiting for either pending flash read transaction or software command to MSC_CMD.PWRUP bit. If software command wakeup, and interrupt of MSC_IF.PWRUPF will be flaged if the MSC_IEN.PWRUPF is set

6.3.7 Wait-states

Table 6.3. Flash Wait-States

Wait-States	Frequency
WS0	no more than 25 MHz
WS1	above 25 MHz and no more than 48 MHz

6.3.7.1 One Wait-state Access

After reset, the HFCORECLK is normally 19 MHz from the HFRCO and the MODE field of the MSC_READCTRL register is set to WS1 (one wait-state). Software must not select a zero wait-state mode unless the clock is guaranteed to be 25 MHz or below, otherwise the resulting behavior is undefined. If a HFCORECLK frequency above 25 MHz is to be set by software, the MODE field of the MSC READCTRL register must be set to WS1 or WS1SCBTP before the core clock is switched to the higher frequency clock source.

When changing to a lower frequency, the MODE field of the MSC_READCTRL register must be set to WS0 or WS0SCBTP only after the frequency transition has completed. If the HFRCO is used, wait until the oscillator is stable on the new frequency. Otherwise, the behavior is unpredictable.

To run at a frequency higher than 48 MHz, WS2 or WS2SCBTP must be selected to insert two wait-states for every flash access.

6.3.7.2 Zero Wait-state Access

At 25 MHz and below, read operations from flash may be performed without any wait-states. Zero wait-state access greatly improves code execution performance at frequencies from 25 MHz and below. By default, the Cortex-M0+ uses speculative prefetching to maximize code execution performance at the cost of additional flash accesses and energy consumption.

6.3.8 Instruction Cache

The MSC includes an instruction cache. The instruction cache for the internal flash memory is enabled by default, but can be disabled by setting IFCDIS in MSC_READCTRL. When enabled, the instruction cache typically reduces the number of flash reads significantly, thus saving energy. In most cases a cache hit-rate of more than 70 % is achievable. When a 32-bit instruction fetch hits in the cache the data is returned to the processor in one clock cycle. Thus, performance is also improved when wait-states are used (i.e. running at frequencies above 25 MHz).

The instruction cache is connected directly to the ARM core and functions as a memory access filter between the processor and the memory system, as illustrated in Figure 6.1 Instruction Cache on page 141. The cache consists of an access filter, lookup logic, SRAM, and two performance counters. The access filter checks that the address for the access is to on-chip flash memory (instructions in RAM are not cached). If the address matches, the cache lookup logic and SRAM is enabled. Otherwise, the cache is bypassed and the access is forwarded to the memory system. The cache is then updated when the memory access completes. The access filter also disables cache updates for interrupt context accesses if caching in interrupt context is disabled. The performance counters, when enabled, keep track of the number of cache hits and misses. The cachelines are filled up continuously one word at a time as the individual words are requested by the processor. Thus, not all words of a cacheline might be valid at a given time.

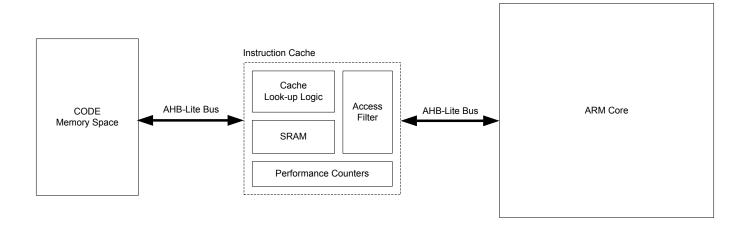


Figure 6.1. Instruction Cache

By default, the instruction cache is automatically invalidated when the contents of the flash is changed (i.e. written or erased). In many cases, however, the application only makes changes to data in the flash, not code. In this case, the automatic invalidate feature can be disabled by setting AIDIS in MSC_READCTRL. The cache can (independent of the AIDIS setting) be manually invalidated by writing 1 to INVCACHE in MSC_CMD.

Note: The instruction cache flush is not triggered at the event of a bus fault. As a result, when an instruction fetch results in a bus fault, invalid data may be cached. This means that the next time the instruction that caused the bus fault is fetched, the processor core will get the invalid cached data without any bus fault. In order to avoid invalid cached data propagation to the processor core, software should manually invalidate the instruction cache by writing 1 to INVCACHE in MSC_CMD at the event of a bus fault.

In general it is highly recommended to keep the cache enabled all the time. However, for some sections of code with very low cache hitrate more energy-efficient execution can be achieved by disabling the cache temporarily. To measure the hit-rate of a code-section, the built-in performance counters can be used. Before the section, start the performance counters by writing 1 to STARTPC in MSC_CMD. This starts the performance counters, counting from 0. At the end of the section, stop the performance counters by writing 1 to STOPPC in MSC_CMD. The number of cache hits and cache misses for that section can then be read from MSC_CACHEHITS and MSC_CACHEMISSES respectively. The total number of 32-bit instruction fetches will be MSC_CACHEHITS + MSC_CACHEMISSES. Thus, the cache hit-ratio can be calculated as MSC_CACHEHITS / (MSC_CACHEHITS + MSC_CACHEMISSES). When MSC_CACHEHITS overflows the CHOF interrupt flag is set. When MSC_CACHEMISSES overflows the CMOF interrupt flag is set. These flags must be cleared explicitly by software. The range of the performance counters can thus be extended by increasing a counter in the MSC interrupt routine. The performance counters only count when a cache lookup is performed. If the lookup fails, MSC_CACHEMISSES is increased. If the lookup is successful, MSC_CACHEHITS is increased. For example, a cache lookup is not performed if the cache is disabled or the code is executed from RAM.

The cache content is not retained in EM2, EM3 and EM4. The cache is therefore invalidated regardless of the setting of AIDIS in MSC_READCTRL when entering these energy modes. Applications that switch frequently between EM0 and EM2/3 and executes the very same non-looping code almost every time will most likely benefit from putting this code in RAM. The interrupt vectors can also be put in RAM to reduce current consumption even further.

6.3.9 Low Voltage Flash Read

The devices support low voltage flash reads. Because it takes more time to read from flash with a lower voltage supply MSC_READCTRL.MODE should be programmed accordingly. It is recommended that software should follow certain sequences for supply voltage scaling up and down. See the EMU chapter for details.

Flash write/erase is not supported in low voltage mode. Any write/erase command will be ignored if flash is operated in a low voltage mode and the interrupt flag MSC_IF.LVEWRITE will be set.

6.3.10 Erase and Write Operations

Both page erase and write operations require that the address is written into the MSC_ADDRB register. For erase operations, the address may be any within the page to be erased. Load the address by writing 1 to the LADDRIM bit in the MSC_WRITECMD register. The LADDRIM bit only has to be written once when loading the first address. After each word is written the internal address register ADDR will be incremented automatically by 4. The INVADDR bit of the MSC_STATUS register is set if the loaded address is outside the flash and the LOCKED bit of the MSC_STATUS register is set if the page addressed is locked. Any attempts to command erase of or write to the page are ignored if INVADDR or the LOCKED bits of the MSC_STATUS register are set. To abort an ongoing erase, set the ERASEABORT bit in the MSC_WRITECMD register.

When a word is written to the MSC_WDATA register, the WDATAREADY bit of the MSC_STATUS register is cleared. When this status bit is set, software or DMA may write the next word.

A single word write is commanded by setting the WRITEONCE bit of the MSC_WRITECMD register. The operation is complete when the BUSY bit of the MSC_STATUS register is cleared and control of the flash is handed back to the AHB interface, allowing application code to resume execution.

For a DMA write the software must write the first word to the MSC_WDATA register and then set the WRITETRIG bit of the MSC_WRITECMD register. DMA triggers when the WDATAREADY bit of the MSC_STATUS register is set.

It is possible to write words twice between each erase by keeping at 1 the bits that are not to be changed. Let us take as an example writing two 16 bit values, 0xAAAA and 0x5555. To safely write them in the same flash word this method can be used:

- Write 0xFFFFAAAA (word in flash becomes 0xFFFFAAAA)
- Write 0x5555FFFF (word in flash becomes 0x5555AAAA)

Note:

- There is a maximum of two writes to the same word between each erase due to a physical limitation of the flash.
- Flash write/erase is not supported in low voltage mode. Any write/erase command will be ignored if flash is operated in a low voltage mode and the interrupt flag MSC_IF.LVEWRITE will be set.
- During a write or erase, flash read accesses will be stalled, effectively halting code execution from flash. Code execution continues upon write/erase completion. Code residing in RAM may be executed during a write/erase operation.

6.3.10.1 Mass Erase

A mass erase can be initiated from software using ERASEMAIN0 MSC_WRITECMD. This command will start a mass erase of the entire flash. Prior to initiating a mass erase, MSC_MASSLOCK must be unlocked by writing 0x631A to it. After a mass erase has been started, this register can be locked again to prevent runaway code from accidentally triggering a mass erase.

The regular flash page lock bits will not prevent a mass erase. To prevent software from initiating mass erases, use the mass erase lock bits in the mass erase lock word (MLW).

6.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	MSC_CTRL	RWH	Memory System Control Register
0x004	MSC_READCTRL	RWH	Read Control Register
0x008	MSC_WRITECTRL	RW	Write Control Register
0x00C	MSC_WRITECMD	W1	Write Command Register
0x010	MSC_ADDRB	RW	Page Erase/Write Address Buffer
0x018	MSC_WDATA	RW	Write Data Register
0x01C	MSC_STATUS	R	Status Register
0x030	MSC_IF	R	Interrupt Flag Register
0x034	MSC_IFS	W1	Interrupt Flag Set Register
0x038	MSC_IFC	(R)W1	Interrupt Flag Clear Register
0x03C	MSC_IEN	RW	Interrupt Enable Register
0x040	MSC_LOCK	RWH	Configuration Lock Register
0x044	MSC_CACHECMD	W1	Flash Cache Command Register
0x048	MSC_CACHEHITS	R	Cache Hits Performance Counter
0x04C	MSC_CACHEMISSES	R	Cache Misses Performance Counter
0x054	MSC_MASSLOCK	RWH	Mass Erase Lock Register
0x058	MSC_IRQLATENCY	RW	Irq Latency Register
0x05C	MSC_STARTUP	RW	Startup Control
0x074	MSC_CMD	W1	Command Register
0x090	MSC_BOOTLOADERCTRL	RW	Bootloader Read and Write Enable, Write Once Register
0x094	MSC_AAPUNLOCKCMD	W1	Software Unlock AAP Command Register
0x098	MSC_CACHECONFIG0	RW	Cache Configuration Register 0

6.5 Register Description

6.5.1 MSC_CTRL - Memory System Control Register

	OC_CTRL - Memory S			
Offset				Bit Position
0x000	30 30 29 27 27 27	23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	20 27	0
Reset				0 0 0 0 7
Access				
Name				TIMEOUTFAULTEN IFCREADCLEAR PWRUPONDEMAND CLKDISFAULTEN
Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4	TIMEOUTFAULTEN	0	RW	Timeout Bus Fault Response Enable
				nen the bus system times out during an access, e.g., when reading a regisst to get a stable value
3	IFCREADCLEAR	0	RW	IFC Read Clears IF
	This bit controls what	happens when	an IFC reg	jister in a module is read.
	Value			Description
	0			IFC register reads 0. No side-effect when reading.
	1			IFC register reads the same value as IF, and the corresponding interrupt flags are cleared.
2	PWRUPONDEMAND	0	RW	Power Up on Demand During Wake Up
	When set, during wak			er will cause MSC to issue power up request to CMU. If not set, will always of set either.
1	CLKDISFAULTEN	0	RW	Clock-disabled Bus Fault Response Enable
	When this bit is set, b	usfaults are ger	erated on	accesses to peripherals/system devices with clocks disabled
0	ADDRFAULTEN	1	RW	Invalid Address Bus Fault Response Enable
	When this bit is set, b	usfaults are ger	erated on	accesses to unmapped parts of system and code address space

6.5.2 MSC_READCTRL - Read Control Register

Offset															Ві	it Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset			•	0			3	Š						•									0	-			0	0	0			
Access				RW				[} Y															RW	RW			W.	RW	W.			
Name				SCBTP				NO.															USEHPROT	PREFETCH			ICCDIS	AIDIS	IFCDIS			

Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
28	SCBTP	0	RW	Suppress Conditional Branch Target Perfetch

Enable suppressed Conditional Branch Target Prefetch (SCBTP) function. SCBTP saves energy by delaying Cortex-M conditional branch target prefetches until the conditional branch instruction is in the execute stage. When the instruction reaches this stage, the evaluation of the branch condition is completed and the core does not perform a speculative prefetch of both the branch target address and the next sequential address. With the SCBTP function enabled, one instruction fetch is saved for each branch not taken, with a negligible performance penalty.

27:26	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
25:24	MODE	0x1	RWH	Read Mode

After reset, the core clock is 19 MHz from the HFRCO and the MODE field of MSC_READCTRL register is set to WS1. The reset value is WS1 because the HFRCO may produce a frequency above 19 MHz before it is calibrated. A large wait states is associated with high frequency. When changing to a higher frequency, this register must be set to a large wait states first before the core clock is switched to the higher frequency. When changing to a lower frequency, this register should be set to lower wait states after the frequency transition has been completed. If the HFRCO is used as clock source, wait until the oscillator is stable on the new frequency to avoid unpredictable behavior. See Flash Wait-States table for the corresponding threshold for different wait-states.

	Value	Mode		Description
	0	WS0		Zero wait-states inserted in fetch or read transfers
	1	WS1		One wait-state inserted for each fetch or read transfer. See Flash Wait-States table for details
	2	WS2		Two wait-states inserted for eatch fetch or read transfer. See Flash Wait-States table for details
	3	WS3		Three wait-states inserted for eatch fetch or read transfer. See Flash Wait-States table for details
3:10	Reserved	To ensure tions	compatibility	y with future devices, always write bits to 0. More information in 1.2 Conven-
	USEHPROT	0	RW	AHB_HPROT Mode
	Use ahb_hrpot to	determine if the	instruction is	s cacheable or not
	PREFETCH	1	RW	Prefetch Mode
	Set to configure le	evel of prefetchir	ng.	
:6	Reserved	To ensure tions	compatibility	y with future devices, always write bits to 0. More information in 1.2 Conven-

Bit	Name	Reset	Access	Description
5	ICCDIS	0	RW	Interrupt Context Cache Disable
		,	-	vector fetches and instruction fetches in interrupt context. Cache lookup will the performance counters will not count when these types of fetches occur.
4	AIDIS	0	RW	Automatic Invalidate Disable
	When this bit is s	et the cache is not	automatical	ly invalidated when a write or page erase is performed.
3	IFCDIS	0	RW	Internal Flash Cache Disable
	Disable instructio	n cache for interna	ıl flash mem	ory.
2:0	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-

6.5.3 MSC_WRITECTRL - Write Control Register

Offset															Ві	it Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•				•	•			•	•			•	•	•	•	•		•	•		•	•	•	•		•	•	0	0
Access																															₹	₩ M
Name																															IRQERASEABORT	WREN

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
1	IRQERASEABORT	0	RW	Abort Page Erase on Interrupt
	When this bit is set to from Flash will halt the		1 interrupt	aborts any current page erase operation. Executing that interrupt vector
0	WREN	0	RW	Enable Write/Erase Controller
	When this bit is set, th	ne MSC write an	d erase fu	nctionality is enabled

6.5.4 MSC_WRITECMD - Write Command Register

Offset				В	it Positi	on													
0x00C	33 33 33 34 55 58 58 58 58 58 58 58 58 58 58 58 58	23 24 25 22 23 23 23	20 20	7 18	15	4	5 5	7 -	: 2	6	∞	7	9	2	4	က	2	_	0
Reset					1 1		c	>			0			0	0	0	0	0	0
Access							2	>			M1			W	Ž	W	M1	W1	W1
Name							CI EADWIDATA				ERASEMAINO			ERASEABORT	WRITETRIG	WRITEONCE	WRITEEND	ERASEPAGE	LADDRIM
Bit	Name	Reset	Access	Descrip	otion														
31:13	Reserved	To ensure contions	npatibility v	with future	device	s, alv	vays v	vrite	bits	to 0.	Мог	re in	forn	natio	on in	1.2	Col	nver	7-
12	CLEARWDATA	0	W1	Clear W	/DATA	State)												
	Will set WDATAREAL	DY and DMA red	quest. Shοι	uld only b	e used v	vhen	no w	rite is	s acti	ve.									
11:9	Will set WDATAREADY and DMA request. Should only be used when no write is active. Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Convitions ERASEMAINO 0 W1 Mass Erase Region 0															nver	1-		
8	ERASEMAIN0	0 W1 Mass Erase Region 0																	
		tions RASEMAINO 0 W1 Mass Erase Region 0 itiate mass erase of region 0. Before use MSC_MASSLOCK must be unlocked. To completely prevent access from sare, clear bit 0 in the mass erase lock-word (MLW)														sof	t-		
7:6	Reserved	To ensure cor tions	npatibility v	vith future	device	s, alv	vays v	vrite	bits	to 0.	Мог	re in	forn	natio	on in	1.2	Col	nver	1-
5	ERASEABORT	0	W1	Abort E	rase Se	eque	nce												
	Writing to this bit will	abort an ongoin	g erase sed	quence.															
4	WRITETRIG	0	W1	Word W	/rite Se	quen	nce Tr	igge	er										
	Start write of the first timeout. When ADDF two words are require	R is incremented	past the p	age bour	idary, A	DDR													
3	WRITEONCE	0	W1	Word W	/rite-On	ce T	rigge	r											
	Write the word in MS completes. The WRE is written, but the inte	N bit in the MSC	_WRITEC	TRL regis	ster mus	t be	set in	orde	er to u	use t	his (com	mar	nd. C	Only	a si	ngle	wo	rd
2	WRITEEND	0	W1	End Wr	ite Mod	е													
	Write 1 to end write n	node when using	the WRIT	ETRIG co	ommano	l													
1	ERASEPAGE	0	W1	Erase P	age														
	Erase any user define be set in order to use		d by the MS	SC_ADDF	RB regis	ter. T	The W	REN	l bit i	n the	MS	SC_'	WRI	TEC	CTR	L re	giste	er m	ust
0	LADDRIM	0	W1	Load M	SC_AD	DRB	Into	ADD	R										
	Load the internal writ cremented automatic to the base of the page	ally by 4 after ea																	

6.5.5 MSC_ADDRB - Page Erase/Write Address Buffer

Offset	Bit Position
0x010	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	00000000000000000000000000000000000000
Access	R ≪
Name	ADDRB
Bit	Name Reset Access Description

This register holds the page address for the erase or write operation. This register is loaded into the internal MSC_ADDR register when the LADDRIM field in MSC_WRITECMD is set.

Page Erase or Write Address Buffer

6.5.6 MSC_WDATA - Write Data Register

0x00000000

RW

ADDRB

31:0

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset																000000000000000000000000000000000000000	0000000000															
Access																2	2															
Name																V + V C/V/	7															

Bit	Name	Reset	Access	Description
31:0	WDATA	0x00000000	RW	Write Data
	The data to be written	to the address	in MCC AI	DDD. This register must be written when the M/DATADEADY hit of

The data to be written to the address in MSC_ADDR. This register must be written when the WDATAREADY bit of MSC_STATUS is set.

6.5.7 MSC_STATUS - Status Register

5.5 1110	0_017100	-			g.0401																									
Offset												Bi	t Po	siti	on															
0x01C	30 37	28	27	56	25 24	23	52	7.7	20	19	18	17	16	15	4	13	12	7	5	2 .	ກ	0	_	9	2	4	က	7	-	0
Reset	0×0			Š	8																			0	0	0	_	0	0	0
Access	œ			Ω	_																			~	22	<u>~</u>	2	~	2	2
Name	PWRUPCKBDFAILCOUNT			WDATAVALID																				PCRUNNING	ERASEABORTED	WORDTIMEOUT	WDATAREADY	INVADDR	LOCKED	BUSY
Bit	Name	PWRUPCKBDFAIL- 0x0 R Flash Power Up Checkerboard Pattern Check Fail Count																												
31:28	•																													
	COUNT This field tells how many times checkboard pattern check fail occured after a reset sequence.																													
27:24	WDATAVA	This field tells how many times checkboard pattern check fail occured after a reset sequence. WDATAVALID 0x0 R Write Data Buffer Valid Flag																												
	This field te	This field tells how many times checkboard pattern check fail occured after a reset sequence.																												
23:7	Reserved				To en	sure	comp	atil	bility	y Wi	ith fu	ıture	dev	/ices	s, al	way	s w	rite	bit	s to	0. N	1ore	e in	forn	natio	on ir	1.2	? Co	nvei	7-
6	PCRUNNIN	١G			0		I	₹			Perf	form	and	e C	our	ter	s R	unn	ing	9										
	This bit is s this bit is cl			the	perfor	man	ce co	unte	ers	are	runr	ning	. Wh	nen	one	per	forr	nand	се	cou	nter	rea	ach	es t	he n	naxi	mur	n va	ılue,	
5	ERASEABO	ORT	ED		0		1	₹			The	Cur	ren	t Fla	ash	Era	se	Оре	ra	tior	Ab	ort	ed							
	When set, t	the o	curre	nt e	erase o	pera	ation v	/as	ab	orte	d by	/ inte	errup	ot.																
4	WORDTIM	EOL	JT		0			₹			Flas	sh W	/rite	Wo	rd T	Γim	eou	ıt												
	When this to flash is return in MSC_WI	ırne	d to t	the	AHB ir	terfa	ace. T																							
3	WDATARE	(AD	1		1		ļ	₹			WD	ATA	Wr	ite F	Rea	dy														
	When this to with the next																							egis	ster	may	/ be	upo	lated	i
2	INVADDR				0		ļ	₹			Inva	alid \	Writ	e A	ddre	ess	or	Eras	se	Paç	je									
	Set when s	oftw	are a	atte	mpts to	o loa	d an i	nva	alid	(un	map	ped) ad	dres	s in	to A	ADD	R												
1	LOCKED				0		I	3			Acc	ess	Loc	ckec	i															
	When set, t	the I	ast e	eras	e or w	rite is	s abo	ted	l du	e to	era	se/v	vrite	acc	ess	cor	nstra	aints	3											
0	BUSY				0			₹			Eras				-															
	When set, a	an e	rase	or	write o	pera	tion is	in	pro	gre	ss a	nd r	iew	com	ımaı	nds	are	ign	ore	ed										

6.5.8 MSC_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	စ	∞	7	9	5	4	က	2	_	0
Reset			•																					0		0	0	0	0	0	0	0
Access																								22		22	22	2	22	2	2	22
Name																								LVEWRITE		WDATAOV	ICACHERR	PWRUPF	CMOF	CHOF	WRITE	ERASE

	Description	Access	Reset	Name	Bit
mation in 1.2 Conven-	with future devices, always write bits to 0. More information in 1.2	npatibility v	To ensure contions	Reserved	31:9
	Flash LVE Write Error Flag	R	0	LVEWRITE	8
	while in LVE mode	received v	write command	If one, flash controller	
mation in 1.2 Conven-	with future devices, always write bits to 0. More information in 1.2	npatibility v	To ensure contions	Reserved	7
	Flash Controller Write Buffer Overflow	R	0	WDATAOV	6
	ected	rflow detec	write buffer over	If one, flash controller	
	ICache RAM Parity Error Flag	R	0	ICACHERR	5
		ed	arity Error detect	If one, iCache RAM pa	
	Flash Power Up Sequence Complete Flag	R	0	PWRUPF	4
	owered up complete and ready for read/write	d, flash po	PWRUP received	Set after MSC_CMD.F	
	Cache Misses Overflow Interrupt Flag	R	0	CMOF	3
		flows	HEMISSES over	Set when MSC_CACH	
	Cache Hits Overflow Interrupt Flag	R	0	CHOF	2
		/S	HEHITS overflow	Set when MSC_CACH	
	Write Done Interrupt Read Flag	R	0	WRITE	1
			ne	Set when a write is do	
	Erase Done Interrupt Read Flag	R	0	ERASE	0
			ne	Set when erase is don	
	Cache Misses Overflow Interrupt Flag Cache Hits Overflow Interrupt Flag Write Done Interrupt Read Flag	d, flash po R flows R /s	PWRUP received 0 HEMISSES over 0 HEHITS overflow 0 one 0	Set after MSC_CMD.F CMOF Set when MSC_CACH CHOF Set when MSC_CACH WRITE Set when a write is do ERASE	3 2 1

6.5.9 MSC_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	2	4	က	2	_	0
Reset				•		•								•		•		•						0		0	0	0	0	0	0	0
Access																								W W		W 1	×	W W	W W	W1	W	W1
Name																								LVEWRITE		WDATAOV	ICACHERR	PWRUPF	CMOF	CHOF	WRITE	ERASE

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
8	LVEWRITE	0	W1	Set LVEWRITE Interrupt Flag
	Write 1 to set the	LVEWRITE interrup	t flag	
7	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
6	WDATAOV	0	W1	Set WDATAOV Interrupt Flag
	Write 1 to set the	WDATAOV interrup	t flag	
5	ICACHERR	0	W1	Set ICACHERR Interrupt Flag
	Write 1 to set the	ICACHERR interrup	ot flag	
4	PWRUPF	0	W1	Set PWRUPF Interrupt Flag
	Write 1 to set the	PWRUPF interrupt	flag	
3	CMOF	0	W1	Set CMOF Interrupt Flag
	Write 1 to set the	CMOF interrupt flag	I	
2	CHOF	0	W1	Set CHOF Interrupt Flag
	Write 1 to set the	CHOF interrupt flag	l	
1	WRITE	0	W1	Set WRITE Interrupt Flag
	Write 1 to set the	WRITE interrupt fla	g	
0	ERASE	0	W1	Set ERASE Interrupt Flag
	Write 1 to set the	ERASE interrupt fla	g	
	vviile i to set the	ERASE IIILEITUPI IIA	y	

6.5.10 MSC_IFC - Interrupt Flag Clear Register

Offset				Bit	Position	ı											
0x038	30 30 27 28 27 27	23 24 25 26	1 2 2 5	1 18 7	9 2 4	5 2	7	9 (n ω	7	9	2	4	က	2	_	0
Reset									0		0	0	0	0	0	0	0
Access									(R)W1		(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1
Name									LVEWRITE		WDATAOV	ICACHERR	PWRUPF	CMOF	CHOF	WRITE	ERASE
Bit	Name	Reset	Access	Descript	ion												
31:9	Reserved	To ensure co	mpatibility v	with future (devices, a	always wr	ite bi	ts to	0. Mc	re in	forn	natio	on in	1.2	Col	nver)-
8	LVEWRITE	0	(R)W1	Clear LV	EWRITE	Interrupt	Flag	J									
	Write 1 to clear the flags (This feature n				rns the va	alue of the	e IF a	nd c	lears	the o	orre	espo	ndir	ng in	terrı	upt	
7	Reserved	To ensure co	mpatibility v	with future (devices, a	always wr	ite bi	ts to	0. Mc	re in	forn	natio	on in	1.2	Col	nver)-
6	WDATAOV	0	(R)W1	Clear WI	DATAOV	Interrupt	Flag	J									
	Write 1 to clear the flags (This feature n				rns the va	alue of the	e IF a	nd c	lears	the c	orre	spo	ndin	ıg in	terru	ıpt	
5	ICACHERR	0	(R)W1	Clear ICA	ACHERR	Interrup	t Flaç	3									
	Write 1 to clear the flags (This feature n				irns the va	alue of the	e IF a	and c	lears	the o	corre	espo	ndir	ng in	terr	upt	
4	PWRUPF	0	(R)W1	Clear PW	VRUPF In	terrupt F	lag										
	Write 1 to clear the (This feature must be				s the valu	ue of the I	F and	d cle	ars th	e co	rres	pond	ding	inte	errup	t fla	gs
3	CMOF	0	(R)W1	Clear CN	IOF Inter	rupt Flag	J										
	Write 1 to clear the (This feature must b	•	-	-	ne value d	of the IF a	ınd cl	ears	the c	orres	spor	nding	g int	erru	pt fla	ags	
2	CHOF	0	(R)W1	Clear CH	IOF Inter	rupt Flag	l										
	Write 1 to clear the (This feature must b	•	-	-	ne value d	of the IF a	nd cle	ears	the c	orres	pon	ding	j inte	erru	ot fla	ags	
1	WRITE	0	(R)W1	Clear WF	RITE Inte	rrupt Fla	g										
	Write 1 to clear the '(This feature must b	•	-	-	he value	of the IF	and c	lear	s the o	corre	spo	ndin	g in	terru	ıpt fl	ags	
0	ERASE	0	(R)W1	Clear ER	ASE Inte	rrupt Fla	g										
	Write 1 to clear the (This feature must b				the value	of the IF	and c	clear	s the	corre	espo	ndir	ng in	terrı	upt f	lags	

6.5.11 MSC_IEN - Interrupt Enable Register

Offset	Bit Position						
0x03C	33 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5	7	9	5	4 ო	2	- c
Reset	C		0	0	0	0	0
Access			RW W	₩ Ş	M W	RW	W S
Name	H A NEW BILL		WDATAOV	ICACHERR	PWRUPF	CHOF	WRITE

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
8	LVEWRITE	0	RW	LVEWRITE Interrupt Enable
	Enable/disable the I	_VEWRITE interr	upt	
7	Reserved	To ensure co tions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
6	WDATAOV	0	RW	WDATAOV Interrupt Enable
	Enable/disable the \	NDATAOV interr	upt	
5	ICACHERR	0	RW	ICACHERR Interrupt Enable
	Enable/disable the I	CACHERR interr	upt	
4	PWRUPF	0	RW	PWRUPF Interrupt Enable
	Enable/disable the I	PWRUPF interrup	ot	
3	CMOF	0	RW	CMOF Interrupt Enable
	Enable/disable the	CMOF interrupt		
2	CHOF	0	RW	CHOF Interrupt Enable
	Enable/disable the 0	CHOF interrupt		
1	WRITE	0	RW	WRITE Interrupt Enable
	Enable/disable the \	WRITE interrupt		
0	ERASE	0	RW	ERASE Interrupt Enable
	Enable/disable the I	ERASE interrupt		

6.5.12 MSC_LOCK - Configuration Lock Register

Offset															Bi	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			1		1	ı		'	'	1	•			1				1	ı		•		'		nnnnn	•		•		•	1	
Access																									[} Y							
Name																								\L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LOCANE							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	LOCKKEY	0x0000	RWH	Configuration Lock

Write any other value than the unlock code to lock access to MSC_CTRL, MSC_READCTRL, MSC_WRITECMD, MSC_STARTUP and MSC_AAPUNLOCKCMD. Write the unlock code to enable access. When reading the register, bit 0 is set when the lock is enabled.

Mode	Value	Description
Read Operation		
UNLOCKED	0	MSC registers are unlocked
LOCKED	1	MSC registers are locked
Write Operation		
LOCK	0	Lock MSC registers
UNLOCK	0x1B71	Unlock MSC registers

6.5.13 MSC_CACHECMD - Flash Cache Command Register

Offset															Bi	t Po	siti	on														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	8	7	9	2	4	က	7	_	0
Reset			'	•								•			'				•									•	'	0	0	0
Access																														W W	W	W W
Name																														STOPPC	STARTPC	INVCACHE

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
2	STOPPC	0	W1	Stop Performance Counters
	Use this commant	bit to stop the pe	formance c	ounters.
1	STARTPC	0	W1	Start Performance Counters
	Use this command	bit to start the pe	erformance o	counters. The performance counters always start counting from 0.
0	INVCACHE	0	W1	Invalidate Instruction Cache
	Use this register to	invalidate the ins	struction cac	che.

6.5.14 MSC_CACHEHITS - Cache Hits Performance Counter

Offset															Bi	t Po	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	200	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset		'				1			-	<u> </u>		l								•	•		00000x0	•		•		•				
Access																							<u>~</u>									
Name																							CACHEHITS									

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
19:0	CACHEHITS	0x00000	R	Cache Hits Since Last Performance Counter Start Command
	Use to measure cach	ne performance	for a particu	ular code section.

6.5.15 MSC_CACHEMISSES - Cache Misses Performance Counter

Offset															Bi	t Po	sitio	on														
0x04C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	. 8	2	_	0
Reset																							00000×0									
Access																							ď									
Name																							CACHEMISSES									
Bit	Na	me					Re	set			Ac	ces	s I	Des	crip	tior																
31:20	Re	serve	ed				To tion		ure	con	pati	bility	/ wi	th fu	ture	de	vices	s, alı	way	s wr	ite b	oits	to 0.	Мо	re i	nforr	nati	on	in 1.2	2 Co	nve	n-
19:0	CA	CHE	MIS	SE	S		0x0	0000	00		R		(Cac	he N	/liss	es S	Sinc	e L	ast	Perf	fori	nan	ce C	ou	nter	Sta	rt (Com	man	d	
	Use	e to n	neas	sure	e ca	che	per	form	nanc	e fo	r a p	oarti	cula	ar co	de s	ect	ion.															

6.5.16 MSC_MASSLOCK - Mass Erase Lock Register

Offset															Ві	t Po	siti	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset														•				•						200	100000	•	•					
Access																																
Name																								\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ב כאא ב							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	LOCKKEY	0x0001	RWH	Mass Erase Lock

Write any other value than the unlock code to lock access the the ERASEMAINn commands. Write the unlock code 631A to enable access. When reading the register, bit 0 is set when the lock is enabled. Locked by default.

Mode	Value	Description
Read Operation		
UNLOCKED	0	Mass erase unlocked
LOCKED	1	Mass erase locked
Write Operation		
LOCK	0	Lock mass erase
UNLOCK	0x631A	Unlock mass erase

6.5.17 MSC_IRQLATENCY - Irq Latency Register

Offset															Bi	t Pc	siti	on														
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset									•	1		•						•		'		•						2	0000			
Access																												Š	≥ Y			
Name																												<	IRCLAIENCY			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	IRQLATENCY	0x00	RW	Irq Latency Register

Specify the minimum number of HCORECLK-cycles to wait before handling an interrupt after it has been asserted. This can be used to achieve deterministic (zero-jitter) behavior when handling interrupts, at the cost of speed. To achieve zero-jitter with zero wait-states in flash, set this to 9.

IRQLATENCY	Description
0	Interrupts will be handled as quickly as possible.
1 - 255	The CM0+ will use at least IRQLATENCY+6 HFCORECLK-cycles to handle interrupts.

6.5.18 MSC_STARTUP - Startup Control

Offset															Ві	it Po	siti	on														
0x05C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	9	6	œ	7	9	5	4	က	2	_	0
Reset			0x1			0	_	_				•			2	10000			•			•			•		0	UX04D	•			
Access			8 N			₩ M	N N	Z M							2	≥ Y											2	≩ Ƴ				
Name			STWS			STWSAEN	STWSEN	ASTWAIT							2	SIDLY											7	SIDLYO				

	STV	STV		STD		STD
Bit	Name	Reset	Access	Description		
31	Reserved	To ensure co	ompatibility	with future devices, always wr	rite bits t	o 0. More information in 1.2 Conven-
30:28	STWS	0x1	RW	Startup Waitstates		
	Active wait for flas	sh startup startup a	fter SDLY0			
27	Reserved	To ensure co	ompatibility	with future devices, always wr	rite bits t	o 0. More information in 1.2 Conven-
26	STWSAEN	0	RW	Startup Waitstates Always	s Enable)
	Use the number of	of waitstates given	by STWS d	uring startup always.		
25	STWSEN	1	RW	Startup Waitstates Enable)	
	Use the number of	of waitstates given	by STWS d	uring startup. During the optio	nal STD	LY1 timeout.
24	ASTWAIT	1	RW	Active Startup Wait		
	Active wait for flas	sh startup startup a	fter SDLY0			
23:22	Reserved	To ensure co	ompatibility	with future devices, always wr	rite bits t	o 0. More information in 1.2 Conven-
21:12	STDLY1	0x001	RW	Startup Delay 0		
	fore starting up sy		e reset valu	e of this field may differ from t		artup sampling will be attempted be- e shown in this description. The reset
11:10	Reserved	To ensure co	ompatibility	with future devices, always wr	rite bits t	o 0. More information in 1.2 Conven-
9:0	STDLY0	0x04D	RW	Startup Delay 0		
				Note that the reset value of th device is the optimal value.	is field r	nay differ from the value shown in this

6.5.19 MSC_CMD - Command Register

Offset															Ві	it Po	siti	on														
0x074	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	5	4	က	2	_	0
Reset						•	•						•	•	•	•	•			•	•									•		0
Access																																W1
Name																																PWRUP

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	PWRUP	0	W1	Flash Power Up Command
	Write to this bit to pov	ver up the Flash	. IRQ PWF	RUPF will be fired when power up sequence completed.

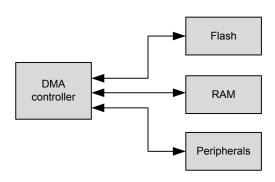
6.5.20 MSC_BOOTLOADERCTRL - Bootloader Read and Write Enable, Write Once Register

Offset															Ві	t Po	siti	on														
0x090	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	8	7	9	5	4	က	2	_	0
Reset																															0	0
Access																															RW	RW
Name																															BLWDIS	BLRDIS

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure con tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
1	BLWDIS	0	RW	Flash Bootloader Write/Erase Disable
	Controls write/erase a disabled.	ccess of the flas	sh bootload	der pages. When cleared, write/erase is enabled. When set, write/erase is
0	BLRDIS	0	RW	Flash Bootloader Read Disable
	Controls read access	of the flash boot	loader pag	ges. When cleared, read is enabled. When set, read is disabled.

6.5.21 MSC_AAPUNLOCKCMD - Software Unlock AAP Command Register

Offset															Bi	t Po	siti	on														
0x094	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	7	10	6	8	7	9	5	4	3	2	_	0
Reset			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	0
Access																																W 1
Name																																UNLOCKAAP


Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
0	UNLOCKAAP	0	W1	Software Unlock AAP Command
				ible when bit 31 of the AAP Lock Word (ALW) in flash is set to 1. If bit 31 of nas no effect. Register is writable only when MSC_LOCK is unlocked

6.5.22 MSC_CACHECONFIG0 - Cache Configuration Register 0

Offset														Bi	t Po	sitio	on														
0x098	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	6	8	7	9	2	4	က	2	_	0
Reset					•			•	<u>'</u>												•			1			1	'			OX3
Access																														i	≷
Name																														i i i i i i i i i i i i i i i i i i i	CACHELPLEVEL
Bit	Name	;				Re	set			Ac	ces	s I	Des	crip	tion																
31:2	Rese	ved				To tio		ure	con	npati	bility	y wii	th fu	ture	dev	rices	s, alı	way	s wr	ite k	its t	o 0.	Мс	re ir	nforr	natio	on in	1.	2 Co	nve	n-
1:0	CACH	IELPI	LEV	EL		0x3	3			RW	/	ı	Inst	ruct	ion	Cac	he	Low	-Po	wer	Lev	/el									
	Use th	nis to	set	the	low-	-pov	ver I	eve	l of t	he c	ach	e. Ir	n ge	nera	ıl, th	e de	faul	lt se	tting	j is l	oest	for	mos	st ap	plic	atior	ns.				
	Value					Мс	ode						Des	cript	ion																
	0					ВА	SE					·	Base	e ins	struc	tion	cac	he f	unc	tion	ality										
	1					AD	1AV	NCE	Ð															e us low					tern y.	to	
	3					MII	NAC	VIT	ΊΤΥ			 	logio intro exits is sr duce state	thanductory sone mall, e the	at it e wa e of but e van	predait-si its lo use riabi wish	licts tate ow-a rs r lity to	has s intactiv unni that low	s a to th ity s ing v the er th	low ne ir tate with cac ne c	prolestru s. T 0-w he reach	bab ictic he i ait- nigl e lo	ility on fenum state ot in	beir etch ber e me	ng u stre of w emo uce er le	sed. am ait-s ry ai with vel.	Thing whe state and ware and w	is n en t es in vish ditio	activ node he c ntrod ning t onal his r	e ca ach uce to re wai	n e d e- t-

7. LDMA - Linked DMA Controller

Quick Facts

What?

The LDMA controller can move data without CPU intervention, effectively reducing the energy consumption for a data transfer.

Why?

The LDMA can perform data transfers more energy efficiently than the CPU and allows autonomous operation in low energy modes. For example the LEUART can provide full UART communication in EM2 DeepSleep, consuming only a few μA by using the LDMA to move data between the LEUART and RAM.

How?

The LDMA controller has multiple highly configurable, prioritized DMA channels. A linked list of flexible descriptors makes it possible to tailor the controller to the specific needs of an application.

7.1 Introduction

The Linked Direct Memory Access (LDMA) controller performs memory transfer operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes while still routing data to memory and peripherals. For example, moving data from the LEUART to memory or memory to LEUART. Each of the DMA channels on the EFM32 can be connected to any of the EFM32 peripherals.

7.1.1 Features

- · Flexible Source and Destination transfers
 - · Memory-to-memory
 - · Memory-to-peripheral
 - · Peripheral-to-memory
 - · Peripheral-to-peripheral
- DMA transfers triggered by peripherals, software, or linked list
- · Single or multiple data transfers for each peripheral or software request
- · Inter-channel and hardware event synchronization via trigger and wait functions
- · Supports single or multiple descriptors
 - · Single descriptor
 - · Linked list of descriptors
 - · Circular and ping-pong buffers
 - · Scatter-Gather
 - Looping
 - · Pause and restart triggered by other channels
 - · Sophisticated flow control which can function without CPU interaction
- · Channel arbitration includes:
 - · Fixed priority
 - · Simple round robin
 - · Round robin with programmable multiple interleaved entries for higher priority requesters
- · Programmable data size and source and destination address strides
- · Programmable interrupt generation at the end of each DMA descriptor execution
- · Little-endian/big-endian conversion
- · DMA write-immediate function

7.2 Block Diagram

An overview of the LDMA and the modules it interacts with is shown in Figure 7.1 LDMA Block Diagram on page 165.

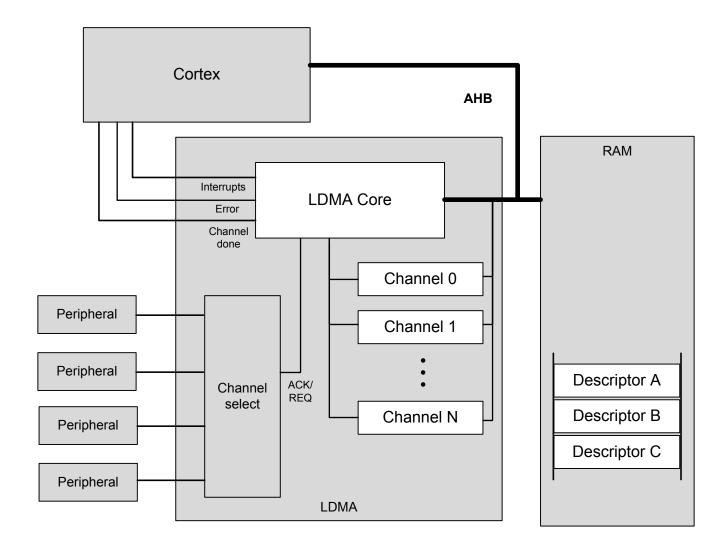


Figure 7.1. LDMA Block Diagram

The Linked DMA Controller consists of three main parts

- · A DMA core that executes transfers and communicates status to the core
- · A channel select block that routes peripheral DMA requests and acknowledge signals to the DMA
- · A set of internal channel configuration registers for tracking the progress of each DMA channel

The DMA has access to all system memory through the AHB bus and the AHB->APB bridge. It can load channel descriptors from memory with no CPU intervention.

7.3 Functional Description

The Linked DMA Controller is highly flexible. It is capable of transferring data between peripherals and memory without involvement from the processor core. This can be used to increase system performance by off-loading the processor from copying large amounts of data or avoiding frequent interrupts to service peripherals needing more data or having available data. It can also be used to reduce the system energy consumption by making the LDMA work autonomously with some EM2/3 peripherals for data transfer without having to wake up the processor core from sleep.

The Linked DMA Controller has 8 independent channels. Each of these channels can be connected to any of the available peripheral DMA transfer request input sources by writing to the channel configuration registers, see 7.3.2 Channel Configuration. In addition, each channel can also be triggered directly by software, which is useful for memory-to-memory transfers.

The channel descriptors determine what the Linked DMA Controller will do when it receives DMA transfer request. The initial descriptor is written directly to the LDMA's channel registers. If desired, the initial descriptor can link to additional linked descriptors stored in memory (RAM or Flash). Alternatively, software may also load the initial descriptor by writing the descriptor address to the LDMA_CHx_LINK register and then setting the corresponding bit the LDMA_LINKLOAD register.

Before enabling a channel, the software must take care to properly configure the channel registers including the link address and any linked descriptors. When a channel is triggered, the Linked DMA Controller will perform the memory transfers as specified by the descriptors. A descriptor contains the memory address to read from, the memory address to write to, link address of the next descriptor, the number of bytes to be transferred, etc. The channel descriptor is described in detail in 7.3.7 Channel Descriptor Data Structure.

The Linked DMA Controller supports both fixed priority and round robin arbitration. The number of fixed and round robin channels is programmable. For round robin channels, the number of arbitration slots requested for each channel is programmable. Using this scheme, it is possible to ensure that timing-critical transfers are serviced on time.

DMA transfers take place by reading a block of data at a time from the source, storing it in the LDMA's local FIFO, then writing the block out to the destination from the FIFO. Interrupts may optionally be signaled to the CPU's interrupt controller at the end of any DMA transfer or at the completion of a descriptor if the DONEIFSEN bit is set. An AHB error will always generate an interrupt.

7.3.1 Channel Descriptor

Each DMA channel has descriptor registers. A transfer can be initialized by software writing to the registers or by the DMA itself copying a descriptor from RAM to memory. When using a linked list of descriptors the first descriptor should be initialized by the CPU. The DMA itself will then copy linked descriptors to its descriptor registers as required. In addition to manually initializing the first transfer, software may also cause the LDMA to load the initial descriptor by writing the descriptor address to the LDMA_CHx_LINK register and then setting the corresponding bit the LDMA_LINKLOAD register.

The contents of the descriptor registers are dynamically updated during the DMA transfer. The contents of descriptors in memory are not edited by the controller.

Some descriptor field values are only used for linked descriptors. For example, the SRCMODE and DSTMODE bits of the LDMA_CHx_CTRL registers determine if a linked descriptor is using relative or absolute addressing. Software writes to the address registers will always use absolute addressing and never set these bits. Therefore, these bits are read only.

7.3.1.1 DMA Transfer Size

A DMA transfer is the smallest unit of data that can be transfered by the LDMA. The LDMA supports byte, half-word and word sized transfers. The SIZE field in the LDMA_CHx_CTRL register specifies the data width of one DMA transfer.

7.3.1.2 Source/Destination Increments

The SRCINC and DSTINC in the LDMA_CHx_CTRL register determines the increment between DMA transfers. The increment is in units of DMA transfers and using an increment size of 1 will transfer contiguous bytes, half-words, or words depending on the value of the SIZE field. Multiple unit increments are useful for transferring or packing/unpacking alligned data. For example using an increment of 4 with a size of BYTE will transfer word aligned bytes. An increment of 2 units with a size of HALFWORD is suitable for the transfer of word aligned half-word data. The LDMA can also pack or unpack data by using a different increment size for source and destination. For example - to convert from word aligned byte data (unpacked) to contiguous byte data (packed), set the SIZE to BYTE, SRCINC to 4, and DSTINC to 1.

SRCINC or DSTINC may also be set to NONE which will cause the LDMA to read or write the same location for every DMA transfer. This is useful for accessing peripheral FIFO or data registers.

7.3.1.3 Block Size

The block size defines the amount of data transferred in one arbitration. It consists of one or more DMA transfers. See 7.3.6.1 Arbitration Priority for more details.

7.3.1.4 Transfer Count

The descriptor transfer count defines how many DMA transfers to perform. The number of bytes transferred by the descripter will depend on both the transfer count XFERCNT and the SIZE field settings. TOTAL_BYTES = XFERCNT * SIZE

7.3.1.5 Descriptor List

A descriptor list consists of one or more descriptors which are executed in serially. This list may be a simple sequence of descriptors, a loop of descriptors, or a combination of the two.

Each descriptor in the list can be one of several types.

- Single Transfer descriptor: Transfers TOTAL_BYTES of data and then stops.
- · Linked Transfer descriptor: Transfers TOTAL_BYTES of data and then loads the next linked descriptor.
- Loop Transfer descriptor: Transfers TOTAL BYTES of data and performs loop control (see 7.3.2.2 Loop Counter).
- Sync descriptor: Handle synchronization of the list with other entities (see 7.3.7.2 SYNC Descriptor Structure).
- WRI descriptor: Writes a value to a location in memory (see 7.3.7.3 WRI Descriptor Structure).

7.3.1.6 Addresses

Before initiating a transfer, software should write the source address, destination address, and if applicable the link address to the descriptor registers. Alternatively, software may load a descriptor from memory by writing the descriptor address to the LDMA_CHx_LINK register and setting the corresponding bit in the LDMA_LINKLOAD register.

During a DMA transfer, the DMA source and destination address registers are pointers to the next transfer address. The LDMA will update the SRC and DST addresses after each transfer. If software halts a DMA transfer by clearing the enable bit, the SRC and DST addresses will indicate the next transfer address.

When a desriptor is finished the DMA will either halt or load the next (linked) descriptor depending on the value of the LINK field in the LDMA_Chx_LINK register. After loading a linked descriptor, the descriptor registers will reflect the content of the loaded descriptor. Note that the linked descriptor must be word aligned in memory. The two least significant bits of the LDMA_CHx_LINK register are used by the LINK and LINKMODE bits. The two least significant bits of the link address are always zero.

7.3.1.7 Addressing Modes

The DMA descriptors support absolute addressing or relative addressing. When using relative addressing, the offset is relative to the current contents of the respective address registers. Regardless of the descriptor addressing modes, the address registers always indicate the absolute address. For example, when loading a descriptor using relative SRC addressing, the LDMA will add the descriptor source address (offset) to the contents of the SRCADDR register (base address). After loading, the SRCADDR register will indicate the absolute address of the loaded descriptor.

The initial descriptor must use absolute addressing. The LDMA will ignore the DSTMODE, SRCMODE, and LINKMODE bits for the initial descriptor and interpret the addresses as an absolute addresses.

Relative addressing is most useful for the link address. The initial descriptor will indicate the absolute address of the linked descriptors in memory. The linked descriptors might be an array of structures. In this case the offset between descriptors is constant and is always 4 words or 16 bytes (each descriptor has 4 words). The LINK address is not incremented or decremented after each transfer. Thus, a relative offset of 0x10 may be used for all linked descriptors.

The source and destination addresses also support relative addressing. When using relative addressing with the source or destination address registers, the LDMA adds the relative offset to the current contents of the respective address register. Since the source and destination addresses are normally incremented after each transfer, the final address will point to one unit past the last transfer. Thus, an offset of zero will give the next sequential data address.

See the example 7.4.6 2D Copy for an common use of relative addressing.

7.3.1.8 Byte Swap

Enabling byte swap reverses the endianness of the incoming source data read into the LDMA's FIFO. Byte swap is only valid for transfer sizes of word and half-word. Note that linked structure reads are not byte swapped.

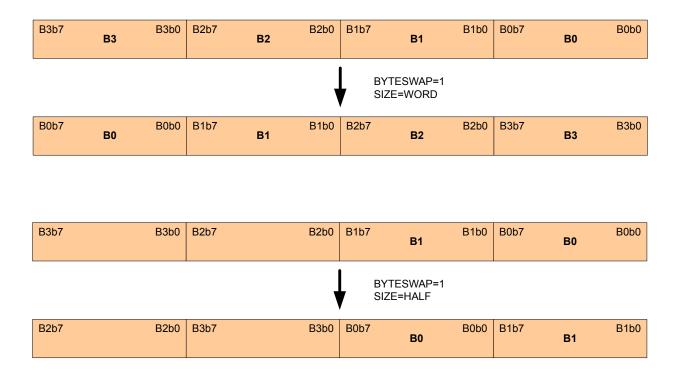


Figure 7.2. Word and Half-Word Endian Byte Swap Examples

7.3.1.9 DMA Size and Source/Destination Increment Programming

The DMA channels' SIZE, SRCINC, and DSTINC bit-fields are programmed to best utilize memory resources. They provide a means for memory packing and unpacking, as well as for matching the size of data being transmitted to or received from an IO peripheral. The following figure shows how 32-bit words of data are read from a memory source into the DMA's internal transfer FIFO, and then written out to the memory destination. The memory organization in bytes is shown as well as the first read to and write from the DMA's FIFO.

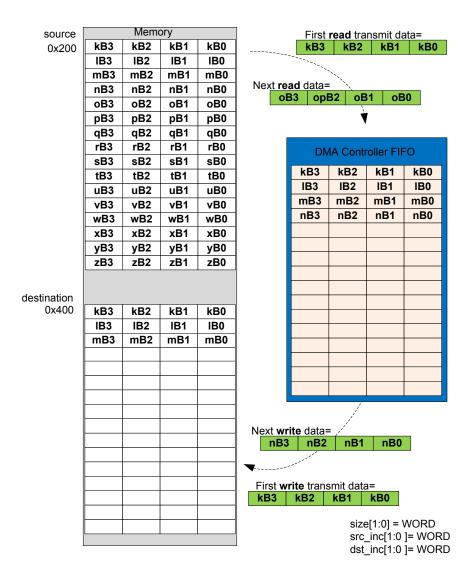


Figure 7.3. Memory-to-Memory Transfer WORD Size Example

The next example shows four variations of half-word sized transfers, with all possible combinations of half- and full-word source and destination increments. Note that when the size and source/destination increments are all configured for half-word, the resulting DMA transfer organization is equivalent to the full-word sized transfer in the previous example. The difference is that the half-word configuration requires twice as many DMA transfers.

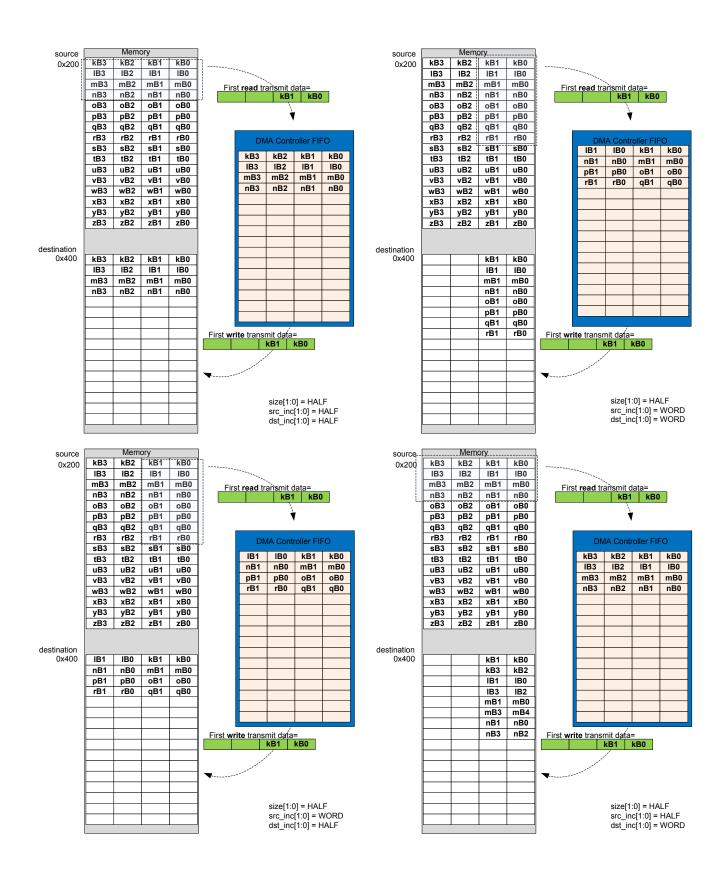


Figure 7.4. Memory-to-Memory Transfer HALF Size Examples

Fields SRCINCSIGN and DSTINCSIGN allow for address decrement. These can be used to mirror an image, for example, in the pixel copy application.

7.3.2 Channel Configuration

Each DMA channel has associated configuration and loop counter registers for controlling direction of address increment, arbitration slots, and descriptor looping.

7.3.2.1 Address Increment/Decrement

Normally DMA transfers increment the source and destination addresses after each DMA transfer. Each channel is also capable of decrementing the source and/or destination addresses after each DMA transfer. This may be useful for flipping an array or copying data from tail to head. For example, a data packet might be prepared as an array of data with increasing addresses and then transmitted from the highest address to the lowest address, from tail to head.

After reset the SRCINCSIGN and DSTINCSIGN bits in the LDMA_CHx_CFG register are cleared causing the source and destination addresses to increment after each transfer. If the SRCINCSIGN bit is set , the DMA will decrement the source address after each transfer. If the DSTINCSIGN bit in the LDMA_CHx_CFG register is set , the DMA will decrement the destination address after each transfer. Setting only one of these bits will flip the data. Setting both bits will copy from tail to head, but will not flip the data.

The SRCINCSIGN and DSTINCSIGN bits apply to all descriptors used by that channel. Software should take care to set the starting source and/or destination address to the highest data address when decrementing.

7.3.2.2 Loop Counter

Each channel has a LDMA_CHx_LOOP register that includes a loop counter field. To use looping, software should initialize the loop counter with the desired number of repetitions before enabling the transfer. A descriptor with the DECLOOPCNT bit set to TRUE will repeat the loop and decrement the loop counter until LOOPCNT = 0.

For a looping descriptor, with DECLOOPCNT=1, the LINK address in the LDMA_CHx_LINK register is used as the loop address. While LOOPCNT is greater than zero, the descriptor will execute and then the LDMA will load the next descriptor using the address specified in the LDMA_CHx_LINK register. This feature enables looping of multiple descriptors. To repeat a single descriptor, the LINK address of the descriptor should point to itself.

After LOOPCNT reaches zero, if the LINK bit in the descriptor LINK word is clear the transfer stops. If the LINK bit is set, the LDMA will load the next sequential descriptor located immediately following the looping descriptor. The behavior of the LINK bit is different for a looping descriptor. This is necessary because the LINK address is re-purposed as the loop address for a looping descriptor.

Note that LOOPCNT sets the number of repeats, not the number of iterations. The total number of loop iterations will be LOOPCNT plus 1. Normally, the LOOPCNT should be set to one or more repeats.

Also note that because there is only one LOOPCNT per channel, software intervention is required to update the LOOPCNT if a sequence of transfers contains multiple loops. It is also possible to use a write immediate DMA data transfer to update the LDMA CHx LOOP register.

7.3.3 Channel Select Configuration

The channel select block determines which peripheral request signal connects to each DMA channel.

This configuration is done by software through the SOURCESEL and SIGSEL fields of the LDMA_CHn_REQSEL register. SOURCE-SEL selects the peripheral and SIGSEL picks which DMA request signals to use from the selected peripheral.

7.3.4 Starting a Transfer

A transfer may be started by software, a peripheral request, or a descriptor load.

Software may initiate a transfer by setting the bit for the desired channel in the LDMA_SREQ register. In this case the channel should set SOURCESEL to NONE to prevent unintentional triggering of the channel by a peripheral.

A peripheral may trigger the channel by configuring the peripheral source and signal as described in 7.3.3 Channel Select Configuration

The LDMA may also be configured to begin a transfer immediately after a new descriptor is loaded by setting the STRUCTREQ field of the LDMA CHx CTRL register or descriptor word.

This configuration is done by software through the SOURCESEL and SIGSEL fields of the LDMA_CHn_REQSEL register. SOURCE-SEL selects the peripheral and SIGSEL picks which DMA request signals to use from the selected peripheral.

7.3.4.1 Peripheral Transfer Requests

By default peripherals issue a Single Request (SREQ) when any data is present. For peripherals with a data buffer or FIFO this occurs any time the FIFO is not empty. Upon receiving an SREQ the LDMA will perform one DMA transfer and stop till another request is made.

It is generally more efficient to wait for a peripheral to accumulate data and transfer in a burst. This both reduces overhead of the DMA engine and allows EM2 peripherals to save power by using the LDMA less often. To enable this set the IGNORESREQ bit in the LDMA_CHx_CTRL register (or descriptor) which will cause the LDMA to ignore SREQ's and wait for a full Request (REQ) signal. When the REQ is received the entire descriptor will be executed. For most peripherals with a FIFO the REQ signal is set when the FIFO is full, or a predetermined threshold has been reached. See the individual peripheral chapters for more information.

7.3.5 Managing Transfer Errors

LDMA transfer errors are normally managed using interrupts. Software should clear the ERROR flag in the bit in the LDMA_IF register and enable error interrupts by setting the ERROR bit in the LDMA_IEN register before initiating a DMA transfer.

The LDMA interrupt handler should check the ERROR flag bit in the LDMA_IF register. If the ERROR flag bit is set, it should then read the CHERROR field in the LDMA_STATUS register to determine the errant channel. The interrupt handler should reset the channel and clear the ERROR flag bit in the LDMA_IF register before returning.

7.3.6 Arbitration

While multiple channels are configured simultaneously the LDMA engine can only be actively copying data for one channel at a time. Arbitration determines which channel is being serviced at any point in time. The LDMA will choose a channel through arbitration, transfer BLOCK_SIZE elements of that channel and then arbitrate again choosing another channel to service. This allows high priority channels to be serviced while lower priority channels are in the middle of a transfer.

7.3.6.1 Arbitration Priority

There are two modes in determining priority when the controller arbitrates: fixed priority and round robin priority.

In fixed priority mode, channel 0 has the highest priority. As the channel number increases, the priority decreases. When the LDMA controller is idle or when a transfer completes, the highest priority channel with an active request is granted the transfer. This mode guarantees smallest latency for the highest priority requesters. It is best suited for systems where peak bandwidth is well below LDMA controller's maximum ability to serve. The drawback of this mode is the possibility of starvation for lowest priority requesters.

In the round robin priority mode, each active requesting channel is serviced in the order of priority. A late arriving request on a higher priority channel will not get serviced until the next round. This mode minimizes the risk of starving low-priority latency-tolerant requesters. The drawback of this mode is higher risk of starving low-latency requesters.

The NUMFIXED field in the LDMA_CTRL register determines which channels are fixed priority and which are round robin. Channels lower than NUMFIXED are fixed priority while those above it are round robin. A value of 0x0 implies all channels are round robin. A value of 0x4 implies channels 0 through 3 are fixed priority and 4 through 7 are round robin. A value of 7 implies that channels 0 through 6 are fixed and channel 7 is round robin. This is functionally equivalent to having 8 fixed priority channels.

Fixed priority channels always take priority over round robin. As long as NUMFIXED is greater than 0, there is a possibility that a higher priority channel can starve the remaining channels.

To address the drawbacks of using fixed priority or round robin priority the LDMA implements the concept of arbitration slots. This allows for channels to have high bandwidth and low latency while preventing starvation of latency tolerant low priority channels.

Each channel has a two bit ARBSLOT field in its LDM_CHx_CFG register. This field only applies to channels marked as round robin (determined by NUMFIXED). The channels in the same arbitration slot are treated equally with round robin scheduling. Channels marked with a higher arbitration slot will get serviced more frequently. By default all channels are placed in arbitration slot 1.

Every time the channels in slot 1 get serviced the channels in slot 2 get serviced twice, those in slot 4 get serviced 4 times, and those in slot 8 get serviced 7 times. The specific arbitration allocation can be seen by the following table. The highest arbitration slot is serviced every other arbitration cycle, allowing for low latency response. If there are no requests from channels in arbitration slot then that slot is immediately skipped.

Table 7.1. Arbitration Slot Order

Arbslot order	8	4	8	2	8	4	8	1	8	4	8	2	8	4
Arbslot1								1						
Arbslot2				1								1		
Arbslot4		1				1				1				1
Arbslot8	1		1		1		1		1		1		1	

The top row shows the order at which the arbitration slots are executed. The remaining part of the table shows a more visual interpretation of the arbitration order.

For example, if we have one low latency channel (CHNL0) and two latency tolerant channels (CHNL1 and CHNL2). We could use the following settings.

LDMA CTRL.NUMFIXED = 0; set round robin for all channels.

CHNL0_CFG.ARBSLOTS = TWO;

CHNL1_CFG.ARBSLOTS = ONE;

CHNL2_CFG.ARBSLOTS = ONE;

If all channels are constantly requesting transfers, then the arbitration order is: CHNL0, CHNL1, CHNL0, CHNL1, CHNL0, CHNL1, CHNL0, CHNL2, CHNL0, etc

Note, there are no channels assigned to arbitration slot four or eight in this example, so those slots are skipped and the final sequence is ARBSLOT2, ARBSLOT1, ARBSLOT2, ARBSLOT1, etc...

Channel 1 and Channel 2 are selected in round robin order when arbitration slot 1 is executed.

If we replace the ARBSLOTS value for channel 0 with EIGHT, then the sequence would look like the following:

CHNL0, CHNL0, CHNL0, CHNL1, CHNL1, CHNL0, CHNL0, CHNL2, CHNL0, CHNL0, CHNL0, CHNL0, CHNL1, etc.

7.3.6.2 DMA Transfer Arbitration

In addition to the inter channel arbitration, software can configure when the controller arbitrates during a DMA transfer. This provides reduced latency to higher priority channels when configuring low priority transfers with more arbitration cycles.

The LDMA provides four bits that configure how many DMA transfers occur before it re-arbitrates. These bits are known as the BLOCK-SIZE bits and they map to the arbitration rate as shown below. For example, if BLOCKSIZE = 4 then the arbitration rate is 6, that is, the controller arbitrates every 6 DMA transfers.

Table 7.2 AHB Bus Transfer Arbitration Interval on page 174 lists the arbitration rates.

Table 7.2. AHB Bus Transfer Arbitration Interval

BLOCKSIZE	Arbitrate After x DMA transfers
0	x = 1
1	x = 2
2	x = 3
3	x = 4
4	x = 6
5	x = 8
6	x = 12
7	x = 16
8	x = 24
9	x = 32
10	x = 64
11	x = 128
12	x = 256
13	x = 512
14	x = 1024
15	x = lock

Note: Software must take care not to assign a low-priority channel with a large BLOCKSIZE because this prevents the controller from servicing high-priority requests, until it re-arbitrates.

The number of DMA transfers that need to be done is specified by the user in XFERCNT. When XFERCNT > BLOCKSIZE and is not an integer multiple of BLOCKSIZE then the controller always performs sequences of BLOCKSIZE transfers until XFERCNT < BLOCKSIZE remain to be transferred. The controller performs the remaining XFERCNT transfers at the end of the DMA cycle.

Software must store the value of the BLOCKSIZE bits in the channel control data structure. See 7.3.7.1 XFER Descriptor Structure for more information about the location of the BLOCKSIZE bits in the data structure.

7.3.7 Channel Descriptor Data Structure

Each channel descriptor consists of four 32-bit words:

- · CTRL control word contains information like transfer count and block size.
- SRC source address points to where to copy data from
- · DST destination address points to where to copy data to
- · LINK link address points to where to load the next linked descriptor

These words map directly to the LDMA_CHx_CTRL, LDMA_CHx_SRC, LDMA_CHx_DST, and LDMA_CHx_LINK registers. The usage of the SRC and DST fields may differ depending on the structure type

There are three different types of descriptor data structures: XFER, SYNC, and WRI

7.3.7.1 XFER Descriptor Structure

This descriptor defines a typical data transfer which may be a Normal, Link, or Loop transfer.

Only this structure type can be written directly into LDMA's registers by the CPU. All descriptors may be linked to. Refer to the register descriptions for additional information.

For specifying XFER structure type, set STRUCTTYPE to 0. See the peripheral register descriptions for information on the fields in this structure.

Name															Bi	t Po	sitio	on														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	ω	7	9	2	4	ဗ	2	1	0
CTRL	DSTMODE	SRCMODE	CAL		SIZE	9121	0	SACING	IGNORESREQ	DECLOOPCNT	REQMODE	DONEIFSEN		100VS17E	BLOCKSIZE		BYTESWAP						XFERCNT						STRUCTREQ		STELLCTTVDE	
SRC															S	RCA	ADD	R														
DST															D	STA	ADD	R														
LINK														L	INKA	ADD	R														LINK	LINKMODE

7.3.7.2 SYNC Descriptor Structure

This descriptor defines an intra-channel synchronizing structure. It allows the channel to wait for some external stimulus before continuing on to the next descriptor. This structure is also used to provide stimulus to another channel to indicate that it may continue.

For example channel 1 may be configured to transfer a header into a buffer while channel 2 is simultaneously transferring data into the same structure. When channel 1 has completed it can wait for a sync signal from channel 2 before transferring the now complete buffer to a peripheral.

Synch descriptors do nothing until a condition is met. The condition is formed by the SYNCTRIG field in the LDMA_SYNC register and the MATCHEN and MATCHVAL fields of the descriptor. When (SYNCTRIG & MATCHEN) == (MATCHVAL & MATCHEN) the next descriptor is loaded. In addition to waiting for the condition a Link descriptor can set or clear bits in SYNCTRIG to meet the conditions of another channel and cause it to continue. The CPU also has the ability to set and clear the SYNCTRIG bits from software.

This structure type can only be linked in from memory.

For specifying SYNC structure type, set STRUCTTYPE to 1.

Name															В	it Po	sitio	on														
	3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	3	2	← c	_ >
CTRL												DONEIFSEN										•	•								STRUCTTYPE	
SRC																			S	SYNO	CC	LR					S	ÿΥN	CSE	Т		
DST																			Ν	ΊΑΤ	CH	EN					M	AT(CHV	ΑL		
LINK			Name Description STRUCTTYPE Descriptor Type													LINK	LINKMODE															
Bit																																
1:0			,	STF	RUCT	ГТҮР	Έ					D	esc	ript	or T	ype																_
			-	This	field	d indi	cate	s wl	hich	type	of o	desc	ripto	r th	is is.	It m	ust t	oe 1	for a	a SY	/NC	C des	scrip	or.								
20			I	DOI	NEIF	SEN						D	one	if S	Set ir	ndic	ator															
			I	f se	et the	inte	rrup	t flag	g wil	l be	set v	wher	de:	scri	ptor o	com	olete	S.														
15:	8		,	SYN	ICCI	_R						S	ync	Tri	gger	Cle	ar															
			á	a gi are	ven b	oit, a ed w	one ith a	sho	uld e. Th	be lo e sy	ade nc t	d to rigge	the er cle	cor ear	respo funct	ondir ion d	ng bi can c	t. Se	t is be ι	give	n p	riori	y ov	er cl	ear i	f bo	th co	rres	spon	ding	To clea bits ernate	
7:0			(SYN	NCSE	ΞΤ						S	ync	Tri	gger	Set																
			ţ	to th ger	ne co	rresp uncti	on o	ling an c	bit. S	Set is be u	s giv	en p	orior	ity c	over o	clear	if bo	oth c	orre	espo	ndi	ng b	its aı	e lo	adec	d wit	h a c	ne.	The	syn	loade c trig- SYN-	
15:	8		MATCHEN Sync Trigger Match Enable												_																	
					bit-f																						link	ed [DMA	stru	cture	
7:0			ı	MA	TCH	VAL						S	ync	Tri	gger	Mat	tch \	/alu	е													

Bit Name Description

This bit-field serves as the SYNCTRIG match value. A sync match triggers the load of the next linked DMA structure as specified by link_mode, when: (SYNCTRIG & MATCHEN) == (MATCHVAL & MATCHEN).

7.3.7.3 WRI Descriptor Structure

This descriptor defines a write-immediate structure. This allows a list of descriptors to write a value to a register or memory location. For example, if a channel wishes to perform two loops in a descriptor sequence a WRI may be used to program the loop count for the second loop.

This structure type can only be linked in from memory.

For specifying WRI structure type, set STRUCTTYPE to 2.

Name															Ві	it Po	ositi	on														
	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	41	13	12	7	10	6	8	7	9	5	4	က	2	1	0
CTRL												DONEIFSEN																			STELLCTTVEE	-
SRC																IMM	IVAL	-														
DST															С	STA	ADD	R														
LINK														L	INK	ADD	R														LINK	LINKMODE

Bit	Name	Description
1:0	STRUCTTYPE	Descriptor Type
	This field indicates which	h type of descriptor this is. It must be 2 for a WRI descriptor.
20	DONEIFSEN	Done if Set indicator
	If set the interrupt flag w	vill be set when descriptor completes.
31:0	IMMVAL	Immediate Value for Write
	This bit-field specifies the write occurs for WRI str	ne immediate data value that is to be written to the address pointed to by DSTADDR. Only one uctures.
31:0	DSTADDR	Address to write
	This bit-field specifies the	ne address the immediate data should be written to.

7.3.8 Interaction With the EMU

The LDMA interacts with the Energy Management Unit (EMU) to allow transfers from a low energy peripheral while in EM2 DeepSleep. For example, when using the LEUART in EM2 DeepSleep the EMU can wake up the LDMA sufficiently long to allow data transfers to occur. See section "DMA Support" in the LEUART documentation.

Similarly, when using the ADC in EM2 DeepSleep or EM3 Stop the EMU can wake up the LDMA as needed to allow data transfers to occur.

Table 7.3 List of Peripherals Capable of Waking Up LDMA in EM2 DeepSleep or EM3 Stop on page 178 shows complete list of peripherals that are capable of waking up LDMA via EMU in EM2 DeepSleep or EM3 Stop

Table 7.3. List of Peripherals Capable of Waking Up LDMA in EM2 DeepSleep or EM3 Stop

Peripheral	
ADC0	
CSEN	
ESENSE	
EUARTO	

7.3.9 Interrupts

The LDMA_IF Interrupt flag register contains one DONE bit for each channel and one combined ERROR bit. When enabled, these interrupts are available as interrupts to the Cortex-M0+ core. They are combined into one interrupt vector, DMA_INT. If the interrupt for the DMA is enabled in the ARM Cortex-M0+ core, an interrupt will be made if one or more of the interrupt flags in LDMA_IF and their corresponding bits in LDMA_IEN are set.

When a descriptor finishes execution the interrupt flag for that channel will be set if the DONEIFSEN field of the LDMA_CHx_LOOP register is set. If LINK and DONEIFSEN are both set when the descriptor completes the interrupt and the linked descriptor will be immediatly loaded. When the final descriptor in a linked list (LINK = 0) is finished the interrupt flag is always set regardless of the state of DONEIFSEN.

7.3.10 Debugging

For a peripheral request DMA transfer, if software sets a bit for a channel in the LDMA_DBGHALT register then the DMA will halt durring a debug halt and the SRC and DST registers in the debug window will show the transfer in progress. Otherwise, during debug halt the DMA will continue to run and complete the entire transfer causing the descriptor registers to indicate the transfer has completed.

7.4 Examples

This section provides examples of common LDMA usage. All examples assume the LDMA is in the reset state with the channel being configured disabled and LDAM_CHx_CFG, LDMA_CHx_LOOP, and LDMA_CHx_LINK cleared.

7.4.1 Single Direct Register DMA Transfer

This simple example uses only the Channel Descriptor registers directly and does not use linking. Software writes directly to the LDMA channel registers. This example does not use a memory based descriptor list.

This example is suitable for most simple transfers that are limited to transferring one block of data. It supports anything that can be done using a single descriptor. This includes endian conversion and packing/unpacking data. Channel 0 is used for this example.

The LDMA will be used to copy 127 contiguous half words (254 bytes) from 0x0 to 0x1000. It will allow arbitration every 4 transfers and is triggered by a CPU write to the LDMA_SWREQ register. The CH0 interrupt flag will be set when the transfer completes since the descriptor does not link to another descriptor.

- Configure LDMA_CH0_CTRL
 - DSTMODE = 0 (absolute)
 - SRCMODE = 0 (absolute)
 - SIZE = HALFWORD (16 bits)
 - DSTINC = 0 (1 half-word)
 - SRCINC = 0 (1 half-word)
 - DECLOOPCNT=0 (unused)
 - REQMODE = 1 (one request transfers all data)
 - BLOCKSIZE = 3 (4 transfers)
 - BYTESWAP=0 (no byte swap)
 - XFERCNT=127 (transfer 127 half words)
 - STRUCTTPYE=0 (TRANSFER)
- · Write source address to LDMA CH0 SRC register
- Write destination address to LDMA CH0 DST register
- · Configure the LDMA_CH0REQSEL register for the desired peripheral or select none for a memory-to-memory transfer
- · Clear and enable interrupts.
 - · Write a 1 to bit 0 of the LDMA IFC register to clear the CH0 DONE flag
 - Write a 1 to bit 0 of the LDMA IEN register to enable the CH0 interrupt
- · Write a 1 to bit 0 of the LDMA_CHEN register to enable CH0

The REQMODE field is normally cleared to zero for a peripheral request transfer and will transfer the specified block size for each peripheral request. The REQMODE may be set to 1 for a memory-to-memory transfer or any time it is desired for a single DMA request to initiate complete transfer.

7.4.2 Descriptor Linked List

This example shows how to use a Linked List of descriptors. Each descriptor has a link address which points to the next descriptor in the list. A descriptor may be removed from the Linked list by altering the Link address of the one before it to point to the one after it. Descriptor Linked lists are useful when handling an array of buffers for communication data. For example, a bad packet can be removed from a receiver queue by simply removing the descriptor from the linked list.

Software loads the first descriptor into the DMA by writing the descriptor address to LDMA_CHx_LINK and setting the bit for that channel in the LDMA_LINKLOAD register. This method is preferred when using a linked list in memory since it treats the first descriptor just like all the others. However, it is also allowed for software to write the first descriptor directly to the LDMA registers.

In this example 4 descriptors are executed in series, the interrupt flag is set after the 2nd and 4th (last) descriptors have completed.

- · Prepare a list of descriptors using the XFER structure type in RAM
- · Initialize the CTRL, SRC, and DST members as desired
 - · Setting STRUCTREQ in the CTRL word for descritpors 2-4 will cause them to begin transfering data as soon as they are loaded.
- Write 0x00000013 to the LINK member of all but the last descriptor
 - LINKMODE = 1 (relative addressing)
 - LINK = 1 (Link to the next descriptor)
 - LINKADDR = 0x00000010 (size of descriptor)
- · Set the DONEIFSEN bit in the CTRL member of the 2nd structure so that the interrupt flag will be set when it completes
- Write 0x00000000 to the LINK member of the last descriptor
 - LINK = 0 (Do not link to the next descriptor)
 - LINKMODE = 0 (don't care)
 - LINKADDR = 0x00000000 (don't care)

Each descriptor now points to the start of the next descriptor as shown on the left in Figure 7.5 Descriptor Linked List on page 180. To remove a descriptor from the linked list modify the LINK address of the descriptor of the one before to point to the one after. For example to remove the third descriptor, add 0x00000010 to the LINK register of the second descriptor. The second descriptor will now point to the forth descriptor and skip over the third descriptor as shown on the right in Figure 7.5 Descriptor Linked List on page 180.

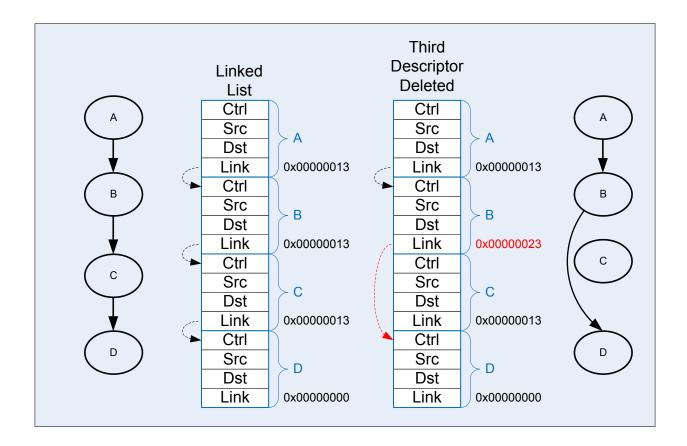
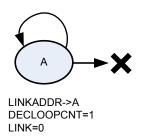


Figure 7.5. Descriptor Linked List

To start execution of the linked list of descriptors:

- · Write the absolute address of the first descriptor to the LINKADR field of the LDMA_CH0_LINK register
- · Set the LINK bit of LDMA CH0 LINK register.
- Configure the LDMA_CH0REQSEL register for the desired peripheral or select none for memory-to-memory
- · Clear and enable interrupts as desired
- · Set bit 0 in the LDMA LINKLOAD register to initiate loading and execution of the first descriptor

Alternativley, software can manually copy the first descriptor contents to the LDMA_CH0_CTRL, LDMA_CH0_SRC, LDMA_CH0_DST, and LDMA_CH0_LINK registers and then enable the channel in the LDMA_CHEN register.

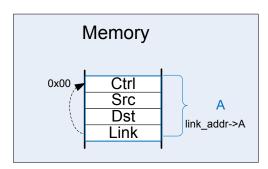

7.4.3 Single Descriptor Looped Transfer

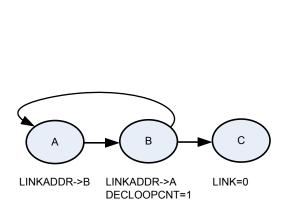
This example demonstrates how to use looping using a single descriptor. This method allows a single DMA transfer to be repeated a specified number of times. The looping descriptor is stored in memory and reloaded by hardware. After a specified number of iterations, the transfer stops.

CH0 is setup to copy 4 words from the ADC FIFO into a 15 word buffer at 0x1000. It repeats 4 times to fill the entire 16 word buffer. An interrupt will fire when the entire 16 words have been transferred.

Initialize the Linked descriptor in memory as follows:

- · Configure CTRL member
 - DSTMODE = 0 (absolute)
 - SRCMODE = 0 (absolute)
 - SIZE = WORD
 - DSTINC = 0 (1 WORD)
 - SRCINC = 3 (0 WORDS)
 - DECLOOPCNT=1 (decrement loop count)
 - REQMODE=1 (Use XFERCNT)
 - BLOCKSIZE = 4 (4 words)
 - BYTESWAP=0 (no swap)
 - XFERCNT= 4 (4 words)
 - STRUCTTPYE=0 (TRANSFER)
 - IGNORESREQ=1 (ignore single requests)
- Write the address ADC0_SINGLEDATA register to the SRC member
- · Write 0x1000 address to DST member
- · Configure the LINKLink member
 - LINK = 0 (stop after loop)
 - MODE = 1 (relative link address)
 - LINKADDR = 0 (point to ourself)
- · Configure the Channel
 - · Write the desired number of repeats to the LDMA CH0 LOOP register
 - SOURCESEL in LDMA_CH0REQSEL = ADC0 (select the ADC)
 - SIG in LDMA_CH0REQSEL = ADC0SCAN (select the scan conversion request)
- · Clear and enable interrupts
- Load the descriptor using LINKLOAD as described in 7.4.2 Descriptor Linked List




Figure 7.6. Single Descriptor Looped Transfer

Note that the looping descriptor must be stored in memory, because it must load itself from the link address in memory on each iteration.

7.4.4 Descriptor List With Looping

This example uses a descriptor list in memory with looping over multiple descriptors. This example also uses the looping feature and continues on with the next sequential descriptor after looping completes.

The descriptor list in memory is shown in figure Figure 7.7 Descriptor List With Looping on page 183. Descriptor A links to descriptor B. Descriptor B has the DECLOOPCNT bit enabled and loops back to the start of descriptor A. The LINK address of descriptor B is used for the loop address. The LINK bit is set to indicate that execution will continue after completion of looping. Once the LOOPCNT reaches zero, the LDMA will load descriptor C. Descriptor C must be located immediately following descriptor B.

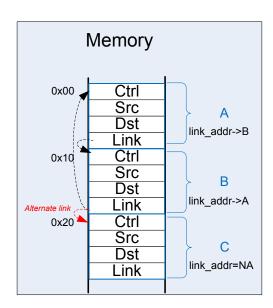


Figure 7.7. Descriptor List With Looping

Initialization is similar to the single looping descriptor with the following modifications.

- · Set the LINK bit in descriptors A and B
- · write the address of descriptor A into the LIKADDRESS of descriptor B
- · write the address of descriptor B into the LIKADDRESS of descriptor A
- · Descriptor C must be located immediately after descriptor B in memory

7.4.5 Simple Inter-Channel Synchronization

The LDMA controller features synchronization structures which allow differing channels and/or hardware events to pause a DMA sequence, and wait for a synchronizing event to restart it.

In this example DMA channel 0 and 1 are tasked with the transfer of different sets of data. Channel 0 has two transfer structures, and channel 1 just one, but channel 0 must wait until channel 1 has completed its transfer before it starts its second transfer structure.

Pausing channel 0 is accomplished by inserting a sync wait structure between the two transfer structures. This sync structure waits on SYNCTRIG[7] to be set by a sync set/clear structure which is controlled by channel 1. Sync structures do not transfer data, they can only set, clear, or wait to match the SYNCTRIG[7:0] bits. Note that sync structures cannot decrement loop counter.

```
LDMA SYNC
    SYNCTRIG=0x0 (at time 0)
LDMA_CH0
    Structure A @ 0x00
                                    Structure B @ 0x10
                                                                         Structure C @ 0x20
    CTRL
                                        CTRL
                                                                             CTRL
       STRUCTTYPE=XFER
                                            STRUCTTYPE=SYNC
                                                                                 STRUCTTYPE=XFER
    T.TNK
                                         T.TNK
                                                                             LINK
        LINKADDR[29:0]=0x00000004
                                            LINKADDR[29:0]=0x00000008
                                                                                 LINKADDR[29:0]=NA
        LINK=1
                                             LINK=1
                                                                                  LINK=0
                                         DST
                                            MATCHEN=0×80
                                             MATCHVAL=0x80 (waits for SYNCTRIG[7]=1)
LDMA_CH1
    Structure Y @ 0x30
                                    Structure Z @ 0x40
                                         CTRL
    CTRL
        STRUCTTYPE=XFER
                                             STRUCTTYPE=SYNC
    LINK
                                         LINK
        LINKADDR[29:0]=0x00000010
                                             LINKADDR=NA
                                             LINK=0
                                         SRC
                                             SRCCLR=0x0
                                             SRCSET=0x80 (sets SYNCTRIG[7])
```

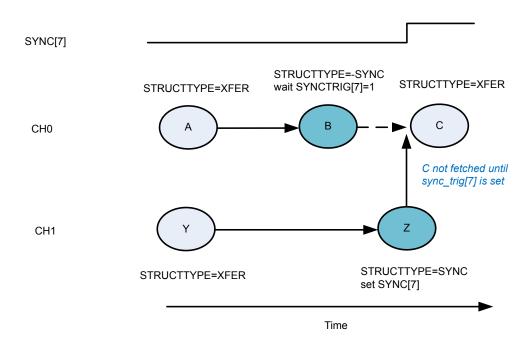


Figure 7.8. Simple Intra-channel Synchronization Example

Both A and Y effectively start at the same time. A finishes earlier, then it links to B, which waits for the SYNCTRIG[7] bit to be set before loading C. Y finishes after B is loaded, and it links to sync structure Z, which sets the SYNCTRIG[7] bit. Channel 0 responds to the trigger set by loading C for the final data transfer.

7.4.6 2D Copy

The LDMA can easily perform a 2D copy using a descriptor list with looping. This set up is visualized in Figure 7.9 2D Copy on page 186

For an application working with graphics, this would mean the ability to copy a rectangle of a given width and height from one picture to another.

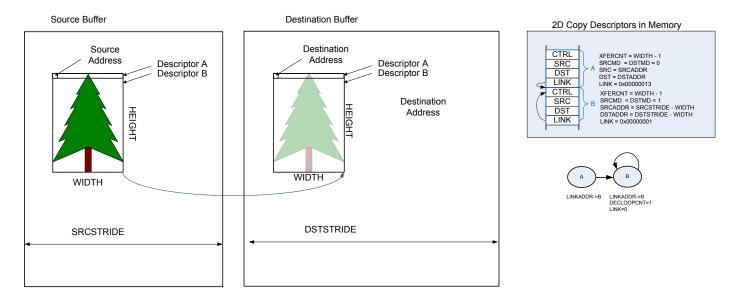


Figure 7.9. 2D Copy

The first descriptor will use absolute addressing mode and the source and destination addresses should point to the desired target addresses. The first descriptor will copy only the first row. The XFERCNT of the first descriptor is set to the desired width minus one.

- CTRL
 - XFERCNT = WIDTH 1
 - SRCMD = 0 (absolute)
 - DSTMD = 0 (absolute)
- SRCADDR = target source address
- DSTADDR = target destination address
- LINK = 0x00000013
 - LINK=1
 - LINKMD=1
 - LINKADDR=0x00000010 (point to next descriptor)

The second descriptor will use relative addressing and the source and destination addresses are set to the desired offset. After the completion of the first descriptor, the address registers will point to the last address transferred. Thus, the width must be subtracted from the stride to get the offset. The second descriptor uses looping and the link register has not offset.

- CTRL
 - XFERCNT = WIDTH 1
 - SRCMD = 1 (relative)
 - DSTMD = 1 (relative)
 - DECLOOPCNT = 1
- · SRCADDR = desired source offset (SRCSTRIDE-WIDTH)
- DSTADDR = desired destination offset (DSTSTRIDE-WIDTH)
- LINK = 0x00000001
 - LINK=0
 - LINKMD=1 (relative)
 - LINKADDR=0x000000000 (no offset)

Because the first descriptor already transferred one row, the number of looping repeats should be the desired height minus two. Therefore, LOOPCNT should be set to HEIGHT minus two before initiating the transfer.

This same method is easily extended to copy multiple rectangles by linking descriptors together. To initialize the LDMA_CHx_LOOP register, precede each descriptor pair described above with a write immediate descriptor which writes the desired value to the LOOPCNT field of the LDMA_CHx_LOOP register.

7.4.7 Ping-Pong

Communication peripherals often use ping-pong buffers. Ping-pong buffers allow the CPU to process data in one buffer while a peripheral transmits or receives data in the other buffer.

Both transmit and receive ping-pong buffers are easily implemented using the LDMA. In either case, this requires two descriptors as shown in Figure 7.10 Infinite Ping-Pong Example on page 188. The LINKADDR field of the LINK member should point to the other descriptor. Using two adjacent descriptors and relative link addressing ensures the descriptors are easily reloadable.

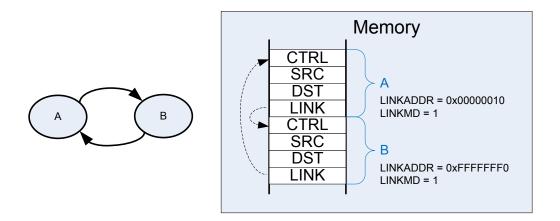


Figure 7.10. Infinite Ping-Pong Example

A **receiver** ping-pong buffer controller consists of two buffers and two descriptors stored in memory that point to the two buffers. Once initialized, as the peripheral receives data, it will fill the first buffer. Once the first buffer is full, it will link automatically to the second buffer and generate an interrupt. Software will then process the data in the first buffer while the LDMA is transferring data to the second buffer. For a receiver ping-pong buffer each descriptor should link to the other descriptor. The link bit should be set to provide infinite ping pong between the two buffers. The DONIFS bit in each descriptor should be set to generate an interrupt on the completion of each descriptor.

- · Descriptor A
 - CTRL
 - DONEIFS = 1
 - · other settings as desired
 - SRCADDR = peripheral source address
 - DSTADDR = memory destination address
 - LINK = 0x00000013
 - LINKADDR = 0x00000010 (next descriptor)
 - LINK = 1 (link to next descriptor)
 - LINKMD = 1 (relative addressing)
- Descriptor B
 - CTRL
 - DONEIFS = 1
 - · other settings as desired
 - SRCADDR = peripheral source address
 - DSTADDR = memory destination address
 - LINK = 0xFFFFFFF3
 - LINKADDR = 0xFFFFFFF0 (previous descriptor)
 - LINK = 1 (link to previous descriptor)
 - LINKMD = 1 (relative addressing)

For **transmitter** ping-pong buffer, software will fill the first buffer and then initiate the DMA transfer. The LDMA will transmit the first buffer data while software is filling the second buffer. In this case, the two descriptors should point to each other, but not automatically

continue to the second buffer. The LINK bit should be cleared to zero. Once software has loaded the first buffer, it will use the LINK-LOAD bit to load the first descriptor and transmit the data. The DONIFS need not be set in each descriptor. The DMA will stop and then generate an interrupt at the completion of each descriptor.

- · Descriptor A
 - CTRL
 - DONEIFS = 0
 - · other settings as desired
 - SRCADDR = memory source address
 - DSTADDR = peripheral destination address
 - LINK = 0x00000013
 - LINKADDR = 0x00000010 (next descriptor)
 - LINK = 0 (link to next descriptor)
 - LINKMD = 1 (relative addressing)
- · Descriptor B
 - CTRL
 - · DONEIFS = 0
 - · other settings as desired
 - · SRCADDR = memory source address
 - DSTADDR = peripheral destination address
 - LINK = 0xFFFFFF3
 - LINKADDR = 0xFFFFFF0 (previous descriptor)
 - LINK = 0 (link to previous descriptor)
 - LINKMD = 1 (relative addressing)

7.4.8 Scatter-Gather

Scatter-Gather in general refers to a process that copies data from multiple locations scattered in memory and gathers the data to a single location in memory, or vice versa. A simple descriptor list allows data gathering. For example, data from a discontiguous list of buffers might be copied to a contiguous sequential array of buffers. The inverse is also possible when a sequential array of buffers is scattered to a discontiguous list of available buffers. See section 7.4.2 Descriptor Linked List.

Some DMAs which only have two descriptors implement scatter-gather by using one descriptor to modify the other descriptor. While it is possible to implement this same behavior using the LDMA, it is much more straight-forward to just use a simple descriptor list.

7.5 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LDMA_CTRL	RW	DMA Control Register
0x004	LDMA_STATUS	R	DMA Status Register
0x008	LDMA_SYNC	RWH	DMA Synchronization Trigger Register (Single-Cycle RMW)
0x020	LDMA_CHEN	RWH	DMA Channel Enable Register (Single-Cycle RMW)
0x024	LDMA_CHBUSY	R	DMA Channel Busy Register
0x028	LDMA_CHDONE	RWH	DMA Channel Linking Done Register (Single-Cycle RMW)
0x02C	LDMA_DBGHALT	RW	DMA Channel Debug Halt Register
0x030	LDMA_SWREQ	W1	DMA Channel Software Transfer Request Register
0x034	LDMA_REQDIS	RW	DMA Channel Request Disable Register
0x038	LDMA_REQPEND	R	DMA Channel Requests Pending Register
0x03C	LDMA_LINKLOAD	W1	DMA Channel Link Load Register
0x040	LDMA_REQCLEAR	W1	DMA Channel Request Clear Register
0x060	LDMA_IF	R	Interrupt Flag Register
0x064	LDMA_IFS	W1	Interrupt Flag Set Register
0x068	LDMA_IFC	(R)W1	Interrupt Flag Clear Register
0x06C	LDMA_IEN	RW	Interrupt Enable Register
0x080	LDMA_CH0_REQSEL	RW	Channel Peripheral Request Select Register
0x084	LDMA_CH0_CFG	RW	Channel Configuration Register
0x088	LDMA_CH0_LOOP	RWH	Channel Loop Counter Register
0x08C	LDMA_CH0_CTRL	RWH	Channel Descriptor Control Word Register
0x090	LDMA_CH0_SRC	RWH	Channel Descriptor Source Data Address Register
0x094	LDMA_CH0_DST	RWH	Channel Descriptor Destination Data Address Register
0x098	LDMA_CH0_LINK	RWH	Channel Descriptor Link Structure Address Register
	LDMA_CHx_REQSEL	RW	Channel Peripheral Request Select Register
	LDMA_CHx_CFG	RW	Channel Configuration Register
	LDMA_CHx_LOOP	RWH	Channel Loop Counter Register
	LDMA_CHx_CTRL	RWH	Channel Descriptor Control Word Register
	LDMA_CHx_SRC	RWH	Channel Descriptor Source Data Address Register
	LDMA_CHx_DST	RWH	Channel Descriptor Destination Data Address Register
	LDMA_CHx_LINK	RWH	Channel Descriptor Link Structure Address Register
0x1D0	LDMA_CH7_REQSEL	RW	Channel Peripheral Request Select Register
0x1D4	LDMA_CH7_CFG	RW	Channel Configuration Register
0x1D8	LDMA_CH7_LOOP	RWH	Channel Loop Counter Register
0x1DC	LDMA_CH7_CTRL	RWH	Channel Descriptor Control Word Register
0x1E0	LDMA_CH7_SRC	RWH	Channel Descriptor Source Data Address Register

Offset	Name	Туре	Description
0x1E4	LDMA_CH7_DST	RWH	Channel Descriptor Destination Data Address Register
0x1E8	LDMA_CH7_LINK	RWH	Channel Descriptor Link Structure Address Register

7.6 Register Description

7.6.1 LD	MA_	CTI	RL - I	DMA	C	ontr	rol I	Reg	ister	•																						
Offset															Bi	t Po	sitio	on														
0x000	31	30	29	78	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	- 9	2	, ,	4 u	2	-	0
Reset							0x7														000								00x0			
Access							R													2	<u>}</u>								R			
Name	SCLREN SSETEN																															
Bit	Na	me					Re	set			Ac	cess	s I	Des	crip	tion																
31:27	Re	serv	red				To tio		ure	com	pati	ibility	/ Wit	th fu	ıture	dev	rices	s, alv	vay	s wr	ite b	oits t	o 0.	Мо	re i	infor	rmat	ion	in 1	.2 C	onve	en-
26:24	NU	MF	IXED				0x7	7			RV	V	ı	Nun	nber	of I	Fixe	d Pı	rior	ity (Chai	nne	ls									
			eld de throu																										d, ar	nd ch	ann	els
23:16	Re	serv	red				To tio		ure	com	pati	ibility	/ wit	th fu	ıture	dev	ices	s, alv	vay	s wr	ite b	its t	o 0.	Мо	re	infor	mat	ion	in 1	.2 C	onve	en-

Setting a bit in this field will enable the corresponding PRS input to set the respective bit in the SYNCTRIG field of the LDMA_SYNC register. Refer to the PRS section for a list of the PRS inputs.

Synchronization PRS Set Enable

SYNCPRSSETEN

0x00

RW

7:0

7.6.2 LDMA_STATUS - DMA Status Register

Offset															Ві	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset		R 0x08 26 29 39 3												0x10				•					0x0			•		0x0			0	0
Access						<u>~</u>								<u>~</u>									2					22			22	~
Name						CHNUM								FIFOLEVEL									CHERROR					CHGRANT			ANYREQ	ANYBUSY

Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
28:24	CHNUM	0x08	R	Number of Channels
	The value of CHN	JM always reads	the total nui	mber of channels present for this instance of the DMA controller module.
23:21	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
20:16	FIFOLEVEL	0x10	R	FIFO Level
	The value of FIFO register will read the			of entries currently in the FIFO. (Note when all channels are disabled, this ne FIFO.)
15:11	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
10:8	CHERROR	0x0	R	Errant Channel Number
	When the ERROR transfer error.	flag is set in the	LDMA_IF re	gister, the CHERROR field will indicate the most recent channel to have a
7:6	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
5:3	CHGRANT	0x0	R	Granted Channel Number
	The value of this finzero.	eld indicates the	currently act	ive channel or last active channel. Note that the reset value for this field is
2	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
1	ANYREQ	0	R	Any DMA Channel Request Pending
	The value of this b	it will be TRUE (1) if any requ	uests are pending
0	ANYBUSY	0	R	Any DMA Channel Busy
	The value of this b	it will be TRUE (1) if one or m	nore DMA channels are actively transferring data

7.6.3 LDMA_SYNC - DMA Synchronization Trigger Register (Single-Cycle RMW)

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset					•	•						•					•							•			•	,	noxo			
Access																													E A Y			
Name																													OTINCI RIG			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	SYNCTRIG	0x00	RWH	Synchronization Trigger

The SYNC trigger field allows a transfer to pause until a specified trigger bit is set or cleared. The SYNC trigger bits may be set and cleared by a SYNC descriptor, PRS signal, or software. Note: software requires to use single-cycle read-modify-write, detailed in 4.2.2 Peripheral Bit Set and Clear

7.6.4 LDMA_CHEN - DMA Channel Enable Register (Single-Cycle RMW)

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	œ	7	9	2	4	က	2	_	0
Reset		•		•									•			'		'				'		'		•		2	200			
Access																												I//\d	2			
Name																												I I				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co tions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	CHEN	0x00	RWH	Channel Enables

Setting one of these bits will enable the respective DMA channel. If cleared while a transfer is in progress, the current transfer block will complete. The remaining blocks will pause until resumed later by setting this bit again. Note: software requires to use single-cycle read-modify-write, detailed in 4.2.2 Peripheral Bit Set and Clear

7.6.5 LDMA_CHBUSY - DMA Channel Busy Register

Offset															Bi	t Po	sitio	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	œ	7	9	2	4	က	2	_	0
Reset		•	•	•	•	•			•	•	•	•			•	•				•		1	·					•	00×0		•	
Access																													<u>~</u>			
Name																													BUSY			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	BUSY	0x00	R	Channels Busy
	The bits of this field	read 1 when th	e correspond	ding channel is busy.

7.6.6 LDMA_CHDONE - DMA Channel Linking Done Register (Single-Cycle RMW)

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	ဝ	∞	7	9	2	4	3	2	-	0
Reset		•	•			•	•	•				•		•						•	•			•				00>0	0000			
Access																												HWG	-			
Name																												HUOUH	2			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	CHDONE	0x00	RWH	DMA Channel Linking or Done

Each DMA channel sets the corresponding bit in this register when the entire transfer is done. The interrupt service routine should clear these bits. Enabling a DMA channel will also clear the corresponding LINKDONE bit. Note: software requires to use single-cycle read-modify-write, detailed in 4.2.2 Peripheral Bit Set and Clear

7.6.7 LDMA_DBGHALT - DMA Channel Debug Halt Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset		•			•	•	•		•				•	•	•			•	•			•	•				•	0	200			
Access																												<u> </u>	2			
Name																												TIVHUU	7			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DBGHALT	0x00	RW	DMA Debug Halt
	Satting one of these	hita will mook th	no corrocno	ading DMA channella peripheral request when debugging and the CDLL is

Setting one of these bits will mask the corresponding DMA channel's peripheral request when debugging and the CPU is halted. This may be useful for debugging DMA software.

7.6.8 LDMA_SWREQ - DMA Channel Software Transfer Request Register

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	ဝ	∞	7	9	5	4	က	2	_	0
Reset		•	•	•	•	•	•		•	•		•	•	•	•	•	•	•		•	•	•	•	•				Ç	noxn			
Access																												3	<u>-</u>			
Name																												C	SWK SWK SWK SWK SWK SWK SWK SWK SWK SWK			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	SWREQ	0x00	W1	Software Transfer Requests
	Setting one of these	bits will trigger a	DMA trans	sfer for the corresponding channel. Writing zeros has no effect.

7.6.9 LDMA_REQDIS - DMA Channel Request Disable Register

Offset															Bi	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset			•	•	•	•		•			•	•		•	r				•	•	•	•	•			•	•	0	0000			<u> </u>
Access																												2	<u> </u>			
Name																												OLOCIO	מבק של של			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	REQDIS	0x00	RW	DMA Request Disables
	Setting one of these be eral requests will be s		eripheral r	equests for the corresponding channel. When cleared any pending periph-

7.6.10 LDMA_REQPEND - DMA Channel Requests Pending Register

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	∞	7	9	5	4	3	7	_	0
Reset							•											•						•				OVO		•	·	
Access																												Ω	<u>:</u>			
Name																												CINDEND	8 1			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	REQPEND	0x00	R	DMA Requests Pending
	When a DMA channe	el has a pending	peripheral	request the corresponding REQPEND bit will read 1.

7.6.11 LDMA_LINKLOAD - DMA Channel Link Load Register

Offset															Bi	t Po	siti	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset		•	•		•	•	•	•		•	•	•		•	•	•	•	•	•	•	•			•			•	2	2000			
Access																												×	<u>-</u> >			
Name																													LIINLOAD			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	LINKLOAD	0x00	W1	DMA Link Loads

Setting one of these bits will force the corresponding DMA channel to load the next DMA structure and enable the channel. This empowers software to step through a sequence of descriptors.

7.6.12 LDMA_REQCLEAR - DMA Channel Request Clear Register

Offset															Ві	t Po	siti	on														
0x040	31	30	29	78	27	26	25	24	23	22	2	20	19	18	17	16	15	4	13	12	11	10	ဝ	∞	7	9	2	4	က	2	_	0
Reset			•					•	•			•				•		•	•					•				0	0000			
Access																												24.	×			
Name																												L	KEQCLEAK			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	REQCLEAR	0x00	W1	DMA Request Clear
	Setting one of these	e bits will clear	any internally	registered transfer requests for the corresponding channel.

7.6.13 LDMA_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	ω	7	9	2	4	က	2	- (>
Reset	0																											000				
Access	~																											Ω	<u> </u>			
Name	ERROR																											HNOO) i			

Bit	Name	Reset	Access	Description
31	ERROR	0	R	Transfer Error Interrupt Flag
		ag is set when a re e channel which h		error occurs. The CHERROR field in the LDMA_STATUS register reflects ror.
30:8	Reserved	To ensure tions	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DONE	0x00	R	DMA Structure Operation Done Interrupt Flag
	When a channel	completes a trans	sfer or sync or	peration, the corresponding DONE bit is set in the LDMA_IF register.

7.6.14 LDMA_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	3	2	_	0
Reset	0																											OVO				
Access	×																											Ş	:			
Name	ERROR																											H N C))			

Bit	Name	Reset	Access	Description
31	ERROR	0	W1	Set ERROR Interrupt Flag
	Write 1 to set the	ERROR interrupt	flag	
30:8	Reserved	To ensure o	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DONE	0x00	W1	Set DONE Interrupt Flag
	Write 1 to set the	DONE interrupt fl	ag	

7.6.15 LDMA_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	siti	on														
0x068	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset	0		•							•	•		•		•							•						0	0000		·	
Access	(R)W1																											į	(K)W1			
Name	ERROR																											Ļ	DONE			

Bit	Name	Reset	Access	Description
31	ERROR	0	(R)W1	Clear ERROR Interrupt Flag
		ne ERROR interru st be enabled glob		ing returns the value of the IF and clears the corresponding interrupt flags .
30:8	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DONE	0x00	(R)W1	Clear DONE Interrupt Flag
		ne DONE interrupt at be enabled glob		g returns the value of the IF and clears the corresponding interrupt flags .

7.6.16 LDMA_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x06C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	2	_	0
Reset	0			•		•				•		•						•	•	•	•		•	•			•	2	200			
Access	RW																											7	2			
Name	ERROR																												DOIL			

Bit	Name	Reset	Access	Description
31	ERROR	0	RW	ERROR Interrupt Enable
	Enable/disable the Ef	RROR interrupt		
30:8	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DONE	0x00	RW	DONE Interrupt Enable
	Enable/disable the Do	ONE interrupt		

7.6.17 LDMA_CHx_REQSEL - Channel Peripheral Request Select Register

Offset			Bit Position
0x080	28 29 30 31 52 59 50 50 50 50 50 50 50 50 50 50 50 50 50	22 23 24 25 25 27 27 27 27 27 27 27 27 27 27 27 27 27	
Deset	0 0 0 0 0		
Reset			0000
Access			§
Name			SOURCESEL
Bit	Name	Reset Acce	ss Description
31:22	Reserved	To ensure compatible tions	ity with future devices, always write bits to 0. More information in 1.2 Conven-
21:16	SOURCESEL	0x00 RW	Source Select
	Select input source to	DMA channel.	
	Value	Mode	Description
	0b000000	NONE	No source selected
	0b000001	PRS	Peripheral Reflex System
	0b001000	ADC0	Analog to Digital Converter 0
	0b001010	VDAC0	Digital to Analog Converter 0
	0b001100	USART0	Universal Synchronous/Asynchronous Receiver/Transmitter 0
	0b001101	USART1	Universal Synchronous/Asynchronous Receiver/Transmitter 1
	0b001110	USART2	Universal Synchronous/Asynchronous Receiver/Transmitter 2
	0b001111	USART3	Universal Synchronous/Asynchronous Receiver/Transmitter 3
	0b010010	UART0	Universal Asynchronous Receiver/Transmitter 0
	0b010100	LEUART0	Low Energy UART 0
	0b010110	I2C0	I2C 0
	0b010111	I2C1	I2C 1
	0b011001	TIMER0	Timer 0
	0b011010	TIMER1	Timer 1
	0b100000	WTIMER0	Wide Timer 0
	0b100001	WTIMER1	Wide Timer 1
	0b110000	MSC	Memory System Controller
	0b110001	CRYPTO0	Advanced Encryption Standard Accelerator
	0b111101	CSEN	Capacitive touch sense module
	0b111110	LESENSE	Low Energy Sensor Interface
15:4	Reserved	To ensure compatibilitions	ity with future devices, always write bits to 0. More information in 1.2 Conven-

Bit	Name	Reset	Access	Description
3:0	SIGSEL	0x0	RW	Signal Select
	Select input signal to	DMA channel.		
	Value	Mode		Description
	SOURCESEL =	0b000000		(NONE)
	0bxxxx	OFF		Channel input selection is turned off
	SOURCESEL =	0b000001		(PRS)
	0b0000	PRSREQ0		PRSREQ0
	0b0001	PRSREQ1		PRSREQ1
	SOURCESEL =	0b001000		(ADC0)
	0b0000	ADC0SINGLE		ADC0SINGLE REQ/SREQ
	0b0001	ADC0SCAN		ADC0SCAN REQ/SREQ
	SOURCESEL =	0b001010		(VDAC0)
	0b0000	VDAC0CH0		VDAC0CH0
	0b0001	VDAC0CH1		VDAC0CH1
	SOURCESEL =	0b001100		(USART0)
	0b0000	USART0RXDA	ATAV	USART0RXDATAV REQ/SREQ
	0b0001	USART0TXBL		USART0TXBL REQ/SREQ
	0b0010	USART0TXEN	/IPTY	USART0TXEMPTY
	SOURCESEL =	0b001101		(USART1)
	0b0000	USART1RXDA	ATAV	USART1RXDATAV REQ/SREQ
	0b0001	USART1TXBL		USART1TXBL REQ/SREQ
	0b0010	USART1TXEN	/IPTY	USART1TXEMPTY
	0b0011	USART1RXDA RIGHT	ATAV-	USART1RXDATAVRIGHT REQ/SREQ
	0b0100	USART1TXBL	RIGHT	USART1TXBLRIGHT REQ/SREQ
	SOURCESEL =	0b001110		(USART2)
	0b0000	USART2RXDA	ATAV	USART2RXDATAV REQ/SREQ
	0b0001	USART2TXBL		USART2TXBL REQ/SREQ
	0b0010	USART2TXEN	/IPTY	USART2TXEMPTY
	SOURCESEL =	0b001111		(USART3)
	0b0000	USART3RXDA	ATAV	USART3RXDATAV REQ/SREQ
	0b0001	USART3TXBL		USART3TXBL REQ/SREQ
	0b0010	USART3TXEN	/IPTY	USART3TXEMPTY
	0b0011	USART3RXDA RIGHT	ATAV-	USART3RXDATAVRIGHT REQ/SREQ
	0b0100	USART3TXBL	RIGHT	USART3TXBLRIGHT REQ/SREQ
	SOURCESEL =	0b010010		(UARTO)
	0b0000	UART0RXDAT	ΓΑV	UART0RXDATAV REQ/SREQ

Name	Reset	Access	Description
0b0001	UART0TXBL		UART0TXBL REQ/SREQ
0b0010	UART0TXEMI	PTY	UART0TXEMPTY
SOURCESEL =	0b010100		(LEUART0)
0b0000	LEUART0RXI	VATAC	LEUART0RXDATAV
0b0001	LEUART0TXE	BL	LEUART0TXBL
0b0010	LEUART0TXE	MPTY	LEUART0TXEMPTY
SOURCESEL =	0b010110		(12C0)
0b0000	I2C0RXDATA	V	I2C0RXDATAV REQ/SREQ
0b0001	I2C0TXBL		I2C0TXBL REQ/SREQ
SOURCESEL =	0b010111		(I2C1)
0b0000	I2C1RXDATA	V	I2C1RXDATAV REQ/SREQ
0b0001	I2C1TXBL		I2C1TXBL REQ/SREQ
SOURCESEL =	0b011001		(TIMER0)
0b0000	TIMER0UFOF	=	TIMER0UFOF
0b0001	TIMER0CC0		TIMER0CC0
0b0010	TIMER0CC1		TIMER0CC1
0b0011	TIMER0CC2		TIMER0CC2
SOURCESEL =	0b011010		(TIMER1)
0b0000	TIMER1UFOF	=	TIMER1UFOF
0b0001	TIMER1CC0		TIMER1CC0
0b0010	TIMER1CC1		TIMER1CC1
0b0011	TIMER1CC2		TIMER1CC2
0b0100	TIMER1CC3		TIMER1CC3
SOURCESEL =	0b100000		(WTIMER0)
0b0000	WTIMER0UF	OF	WTIMER0UFOF
0b0001	WTIMER0CC	0	WTIMER0CC0
0b0010	WTIMER0CC	1	WTIMER0CC1
0b0011	WTIMER0CC	2	WTIMER0CC2
SOURCESEL =	0b100001		(WTIMER1)
0b0000	WTIMER1UF	OF	WTIMER1UFOF
0b0001	WTIMER1CC	0	WTIMER1CC0
0b0010	WTIMER1CC	1	WTIMER1CC1
0b0011	WTIMER1CC	2	WTIMER1CC2
0b0100	WTIMER1CC	3	WTIMER1CC3
SOURCESEL =	0b110000		(MSC)
0b0000	MSCWDATA		MSCWDATA REQ/SREQ
SOURCESEL =	0b110001		(CRYPTO0)

Bit	Name	Reset Access	Description
	0b0000	CRYPTO0DATA0WR	CRYPTO0DATA0WR
	0b0001	CRYPTO0DATA0XWR	CRYPTO0DATA0XWR
	0b0010	CRYPTO0DATA0RD	CRYPTO0DATA0RD
	0b0011	CRYPTO0DATA1WR	CRYPTO0DATA1WR
	0b0100	CRYPTO0DATA1RD	CRYPTO0DATA1RD
	SOURCESEL =	0b111101	(CSEN)
	0b0000	CSENDATA	CSENDATA
	0b0001	CSENBSLN	CSENBSLN
	SOURCESEL =	0b111110	(LESENSE)
	0b0000	LESENSEBUFDATAV	LESENSEBUFDATAV REQ/SREQ

7.6.18 LDMA_CHx_CFG - Channel Configuration Register

									,																			
Offset											Bit	Ро	sitio	on														
0x084	30 30 28 28 28	26	3 2	2 42	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	∞	_	۳	2	4	۰ ر	٥ ر	1 4	- 0
Reset		•	•		•		0	0		•	0x0	2							•		•	•	•		•	·	•	
Access							S M	₩			Z.																	
Name							DSTINCSIGN	SRCINCSIGN			ARBSLOTS																	
Bit	Name		R	Reset			Ac	ces	s	Des	cript	ion																
31:22	Reserved			o ens	sure	com	pati	bility	y wi	ith fu	ture	dev	ices	s, alı	way	s wi	rite k	oits t	to 0.	. Мс	re ii	nfoi	mat	ion i	in 1	.2 C	on	ven-
21	DSTINCSIGN		0	١			RW	/		Dest	tinat	ion	Add	dres	ss I	ncre	eme	nt S	ign									
	Value		N	/lode						Desc	cripti	on																
	0		Р	POSIT	ΠVΕ					Incre	emer	nt de	estin	atic	n a	ddre	ess											
	1		N	IEGA	TIVE	Ξ				Decr	eme	ent d	lesti	inati	on a	addr	ess											
20	SRCINCSIGN		0	l			RW	I		Sou	rce A	Add	res	s In	cre	mer	nt Si	gn										
	Value		N	lode						Desc	cripti	on																
	0		Р	POSIT	ΓIVE					Incre	emer	nt sc	ourc	e ac	ddre	ss												
	1		N	IEGA	TIVE	≣				Decr	eme	nt s	our	ce a	ddr	ess												
19:18	Reserved			o ens	sure	com	pati	bility	y wi	ith fu	ture	dev	ices	s, alı	way	's WI	rite k	oits t	to 0.	. Mc	re ii	nfoi	mat	ion i	in 1	.2 C	on	ven-
17:16	ARBSLOTS		0	x0			RW	/		Arbi	trati	on s	Slot	Nu	mb	er S	elec	t										
	For channels usir	ıg ro	ound	d rob	in ar	bitra	tion	, this	s bit	t-field	d is u	ısed	l to s	sele	ct tl	ne n	umb	er c	of sl	ots i	n th	e ro	ound	rob	oin (queu	ıe.	
	Value		N	lode						Desc	cripti	on																
	0		С	NE						One	arbit	trati	on s	slot	sele	cted	t											
	1		Т	WO						Two	arbit	trati	on s	slots	sel	ecte	ed											
	2		F	OUR						Four	arbi	itrati	ion s	slots	s se	lecte	ed											
	3		E	IGH	Γ					Eigh	t arb	itrat	ion	slot	s se	elect	ed											
15:0	Reserved			o ens	sure	com	pati	bility	y wi	ith fu	ture	dev	ices	s, alı	way	's WI	rite k	oits t	to 0.	Мс	re ii	nfoi	mat	ion i	in 1	.2 C	on	ven-

7.6.19 LDMA_CHx_LOOP - Channel Loop Counter Register

Offset															Ві	it Po	siti	on														
0x088	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	-	0
Reset			•	•											•	•						•					•	0	00X0			
Access																												2	I M Y			
Name																												<u> </u>	LOOPCNI			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	LOOPCNT	0x00	RWH	Linked Structure Sequence Loop Counter
	This bit-field specif		of iterations w	when using looping descriptors. Software should write to LOOPCNT before

using a looping descriptor.

7.6.20 LDMA_CHx_CTRL - Channel Descriptor Control Word Register

Offset															Bi	t Po	siti	on													
0x08C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	- 0
Reset	0	0	2	OXO	2	OXO	ç	OXO	0	0	0	0		2	OXO		0						000x0						0		0×0
Access	<u>~</u>	~	7/4/0		ם, אלם		1	[}	RWH	RWH	RWH	RWH		ם, אלם			RWH						RWH						W 1		~
Name	DSTMODE	SRCMODE	CAL	Do IIVO	SIZE	31ZE	O O	O NCINC	IGNORESREQ	DECLOOPCNT	REQMODE	DONEIFSEN		BI OCKS17E	BLOCKSIZE		BYTESWAP						XFERCNT						STRUCTREQ		STRUCTTYPE

Bit	Name	Reset	Access	Description
31	DSTMODE	0	R	Destination Addressing Mode

This field specifies the destination addressing mode of linked descriptors. After loading a linked descriptor, reading this field will indicate the destination addressing mode of the linked descriptor. Note that the first descriptor always uses absolute addressing mode.

Value	Mode		Description
0	ABSOLUTE		The DSTADDR field of LDMA_CHx_DST contains the absolute address of the destination data.
1	RELATIVE		The DSTADDR field of LDMA_CHx_DST contains the relative offset of the destination data.
SRCMODE	0	R	Source Addressing Mode

This field specifies the source addressing mode of linked descriptors. After loading a linked descriptor, reading this field will indicate the source addressing mode of the linked descriptor. Note that the first descriptor always uses absolute addressing mode.

DSTINC	0x0	RWH	Destination Address Increment Size
1	RELATIVE		The SRCADDR field of LDMA_CHx_SRC contains the relative offset of the source data.
0	ABSOLUTE		The SRCADDR field of LDMA_CHx_SRC contains the absolute address of the source data.
Value	Mode		Description

This bit-field specifies the stride or number of unit data addresses to increment the destination address after each unit of data is transferred. The unit data width is controlled by the SIZE bit-field and can be a byte, half-word or word.

Value	Mode	Description
0	ONE	Increment destination address by one unit data size after each write
1	TWO	Increment destination address by two unit data sizes after each write
2	FOUR	Increment destination address by four unit data sizes after each write
3	NONE	Do not increment the destination address. Writes are made to a fixed destination address, for example writing to a FIFO.

30

29:28

1 TWO Increment source address by two unit data sizes after each read 2 FOUR Increment source address by four unit data sizes after each read 3 NONE Do not increment the source address. In this mode reads are memory from a fixed source address, for example reading FIFO. 23 IGNORESREQ 0 RWH Ignore Sreq The channel arbiter will ignore single requests (SREQ) and only respond to multiple requests (REQ) when this bit will decrement the LOOPCNT field in the LDMA_CHx_LOOP register after east scriptor execution. 21 REQMODE 0 RWH DMA Request Transfer Mode Select Value Mode Description 0 BLOCK The LDMA transfers one BLOCKSIZE per transfer request.	Nan	ame	Reset	Access	Description
Value Mode Description 0 BYTE Each unit transfer is a byte 1 HALFWORD Each unit transfer is a half-word 2 WORD Each unit transfer is a half-word 2 WORD Each unit transfer is a word 25:24 SRCINC 0x0 RWH Source Address Increment Size This bit-field specifies the stride or number of unit data addresses to increment the source address after each unit transferred. The unit data width is controlled by the SIZE bit-field and can be a byte, half-word or word. Value Mode Description 0 ONE Increment source address by one unit data size after each read 1 TWO Increment source address by two unit data sizes after each read 2 FOUR Increment source address by four unit data sizes after each read 3 NONE Do not increment the source address. In this mode reads are me from a fixed source address, for example reading FIFO. 23 IGNORESREQ 0 RWH Ignore Sreq The channel arbiter will ignore single requests (SREQ) and only respond to multiple requests (REQ) when this bit DECLOOPCNT 0 RWH Decrement Loop Count When using looping, setting this bit will decrement the LOOPCNT field in the LDMA_CHx_LOOP register after each control of the scription on the LOMA CHx_LOOP register after each control of the LOMA CHX control of the LOMA CHX_LOOP register after each	SIZ	ZE	0x0	RWH	Unit Data Transfer Size
Description	This	is field specifies the	size of data tra	nsferred.	
1 HALFWORD Each unit transfer is a half-word 2 WORD Each unit transfer is a word 25:24 SRCINC 0x0 RWH Source Address Increment Size This bit-field specifies the stride or number of unit data addresses to increment the source address after each unit transferred. The unit data width is controlled by the SIZE bit-field and can be a byte, half-word or word. Value Mode Description 0 ONE Increment source address by one unit data size after each read in TWO Increment source address by two unit data sizes after each read increment source address by four unit data sizes after each read increment source address. In this mode reads are method increment the source address, for example reading FIFO. 23 IGNORESREQ 0 RWH Ignore Sreq The channel arbiter will ignore single requests (SREQ) and only respond to multiple requests (REQ) when this bit is bit will decrement the LOOPCNT field in the LDMA_CHx_LOOP register after each creating in the source address. In this mode reads are method in the LOMA_CHx_LOOP register after each read in the LOMA_CHx_LOOP register after each read in the LOMA control in the LOMA_CHx_LOOP register after each read in the LOMA control in the case of a SYNC transfer is done, or linked in the case where the LINK bit is set, in this bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	Valu	lue	Mode		Description
2 WORD Each unit transfer is a word	0		BYTE		Each unit transfer is a byte
SRCINC	1		HALFWORD		Each unit transfer is a half-word
This bit-field specifies the stride or number of unit data addresses to increment the source address after each unit transferred. The unit data width is controlled by the SIZE bit-field and can be a byte, half-word or word. Value Mode Description 0 ONE Increment source address by one unit data size after each read 1 TWO Increment source address by two unit data sizes after each read 2 FOUR Increment source address by four unit data sizes after each read 3 NONE Do not increment the source address. In this mode reads are method fixed source address, for example reading FIFO. 23 IGNORESREQ 0 RWH Ignore Sreq The channel arbiter will ignore single requests (SREQ) and only respond to multiple requests (REQ) when this bit when using looping, setting this bit will decrement the LOOPCNT field in the LDMA_CHx_LOOP register after eas scriptor execution. 21 REQMODE 0 RWH DMA Request Transfer Mode Select Value Mode Description 0 BLOCK The LDMA transfers one BLOCKSIZE per transfer request. 1 ALL One transfer request transfers all units as defined by the XFRC field. 20 DONEIFSEN 0 RWH DMA Operation Done Interrupt Flag Set Enable Setting this bit will set the interrupt flag when the transfer is done, or linked in the case where the LINK bit is set, synchronized in the case of a SYNC transfer. 19:16 BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	2		WORD		Each unit transfer is a word
transferred. The unit data width is controlled by the SIZE bit-field and can be a byte, half-word or word. Value Mode Description 0 ONE Increment source address by one unit data size after each read 1 TWO Increment source address by two unit data sizes after each read 2 FOUR Increment source address by four unit data sizes after each read 3 NONE Do not increment the source address. In this mode reads are m from a fixed source address, for example reading FIFO. 23 IGNORESREQ 0 RWH Ignore Sreq The channel arbiter will ignore single requests (SREQ) and only respond to multiple requests (REQ) when this bit DECLOOPCNT 0 RWH Decrement Loop Count When using looping, setting this bit will decrement the LOOPCNT field in the LDMA_CHx_LOOP register after eascriptor execution. 21 REQMODE 0 RWH DMA Request Transfer Mode Select Value Mode Description 0 BLOCK The LDMA transfers one BLOCKSIZE per transfer request. 1 ALL One transfer request transfers all units as defined by the XFRC field. 20 DONEIFSEN 0 RWH DMA Operation Done Interrupt Flag Set Enable Setting this bit will set the interrupt flag when the transfer is done, or linked in the case where the LINK bit is set, synchronized in the case of a SYNC transfer. 19:16 BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	SRO	RCINC	0x0	RWH	Source Address Increment Size
O ONE Increment source address by one unit data size after each read					
1 TWO Increment source address by two unit data sizes after each rea 2 FOUR Increment source address by four unit data sizes after each rea 3 NONE Do not increment the source address. In this mode reads are m from a fixed source address, for example reading FIFO. 23 IGNORESREQ 0 RWH Ignore Sreq The channel arbiter will ignore single requests (SREQ) and only respond to multiple requests (REQ) when this bit per	Valu	lue	Mode		Description
2 FOUR Increment source address by four unit data sizes after each read 3 NONE Do not increment the source address. In this mode reads are m from a fixed source address, for example reading FIFO. 23 IGNORESREQ 0 RWH Ignore Sreq The channel arbiter will ignore single requests (SREQ) and only respond to multiple requests (REQ) when this bit 22 DECLOOPCNT 0 RWH Decrement Loop Count When using looping, setting this bit will decrement the LOOPCNT field in the LDMA_CHx_LOOP register after east scriptor execution. 21 REQMODE 0 RWH DMA Request Transfer Mode Select Value Mode Description 0 BLOCK The LDMA transfers one BLOCKSIZE per transfer request. 1 ALL One transfer request transfers all units as defined by the XFRC field. 20 DONEIFSEN 0 RWH DMA Operation Done Interrupt Flag Set Enable Setting this bit will set the interrupt flag when the transfer is done, or linked in the case where the LINK bit is set, a synchronized in the case of a SYNC transfer. 19:16 BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	0		ONE		Increment source address by one unit data size after each read
3 NONE Do not increment the source address. In this mode reads are measure from a fixed source address, for example reading FIFO.	1		TWO		Increment source address by two unit data sizes after each read
From a fixed source address, for example reading FIFO.	2		FOUR		Increment source address by four unit data sizes after each read
The channel arbiter will ignore single requests (SREQ) and only respond to multiple requests (REQ) when this bit DECLOOPCNT 0 RWH Decrement Loop Count When using looping, setting this bit will decrement the LOOPCNT field in the LDMA_CHx_LOOP register after eascriptor execution. 21 REQMODE 0 RWH DMA Request Transfer Mode Select Value Mode Description 0 BLOCK The LDMA transfers one BLOCKSIZE per transfer request. 1 ALL One transfer request transfers all units as defined by the XFRC field. 20 DONEIFSEN 0 RWH DMA Operation Done Interrupt Flag Set Enable Setting this bit will set the interrupt flag when the transfer is done, or linked in the case where the LINK bit is set, a synchronized in the case of a SYNC transfer. 19:16 BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	3		NONE		Do not increment the source address. In this mode reads are made from a fixed source address, for example reading FIFO.
DECLOOPCNT 0 RWH Decrement Loop Count When using looping, setting this bit will decrement the LOOPCNT field in the LDMA_CHx_LOOP register after eascriptor execution. REQMODE 0 RWH DMA Request Transfer Mode Select Value Mode Description BLOCK The LDMA transfers one BLOCKSIZE per transfer request. ALL One transfer request transfers all units as defined by the XFRC field. DONEIFSEN 0 RWH DMA Operation Done Interrupt Flag Set Enable Setting this bit will set the interrupt flag when the transfer is done, or linked in the case where the LINK bit is set, synchronized in the case of a SYNC transfer. BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	IGN	NORESREQ	0	RWH	Ignore Sreq
When using looping, setting this bit will decrement the LOOPCNT field in the LDMA_CHx_LOOP register after eascriptor execution. 21 REQMODE 0 RWH DMA Request Transfer Mode Select Value Mode Description 0 BLOCK The LDMA transfers one BLOCKSIZE per transfer request. 1 ALL One transfer request transfers all units as defined by the XFRC field. 20 DONEIFSEN 0 RWH DMA Operation Done Interrupt Flag Set Enable Setting this bit will set the interrupt flag when the transfer is done, or linked in the case where the LINK bit is set, a synchronized in the case of a SYNC transfer. 19:16 BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	The	e channel arbiter wi	II ignore single i	requests (S	SREQ) and only respond to multiple requests (REQ) when this bit is set.
Scriptor execution. REQMODE 0 RWH DMA Request Transfer Mode Select Value Mode Description Description Description Description Description Description Description REQMODE Note The LDMA transfers one BLOCKSIZE per transfer request. Description Description Description REQMODE Note Transfer Mode Select The LDMA transfers one BLOCKSIZE per transfer request. Description Description Description REQMODE Note Transfer Mode Select The LDMA transfers one BLOCKSIZE per transfer request. Description Description Description REQMODE Note Transfer Mode Select The LDMA transfer request transfer request. Description Description Description	DEC	ECLOOPCNT	0	RWH	Decrement Loop Count
Value Mode Description 0 BLOCK The LDMA transfers one BLOCKSIZE per transfer request. 1 ALL One transfer request transfers all units as defined by the XFRC field. 20 DONEIFSEN 0 RWH DMA Operation Done Interrupt Flag Set Enable Setting this bit will set the interrupt flag when the transfer is done, or linked in the case where the LINK bit is set, a synchronized in the case of a SYNC transfer. 19:16 BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description			etting this bit wi	II decreme	ent the LOOPCNT field in the LDMA_CHx_LOOP register after each de-
0 BLOCK The LDMA transfers one BLOCKSIZE per transfer request. 1 ALL One transfer request transfers all units as defined by the XFRC field. 20 DONEIFSEN 0 RWH DMA Operation Done Interrupt Flag Set Enable Setting this bit will set the interrupt flag when the transfer is done, or linked in the case where the LINK bit is set, a synchronized in the case of a SYNC transfer. 19:16 BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	REC	EQMODE	0	RWH	DMA Request Transfer Mode Select
1 ALL One transfer request transfers all units as defined by the XFRC field. 20 DONEIFSEN 0 RWH DMA Operation Done Interrupt Flag Set Enable Setting this bit will set the interrupt flag when the transfer is done, or linked in the case where the LINK bit is set, a synchronized in the case of a SYNC transfer. 19:16 BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	Valu	alue	Mode		Description
DONEIFSEN 0 RWH DMA Operation Done Interrupt Flag Set Enable Setting this bit will set the interrupt flag when the transfer is done, or linked in the case where the LINK bit is set, a synchronized in the case of a SYNC transfer. 19:16 BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	0		BLOCK		The LDMA transfers one BLOCKSIZE per transfer request.
Setting this bit will set the interrupt flag when the transfer is done, or linked in the case where the LINK bit is set, a synchronized in the case of a SYNC transfer. 19:16 BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	1		ALL		One transfer request transfers all units as defined by the XFRCNT field.
synchronized in the case of a SYNC transfer. 19:16 BLOCKSIZE 0x0 RWH Block Transfer Size This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description	DOI	ONEIFSEN	0	RWH	DMA Operation Done Interrupt Flag Set Enable
This bit-field controls the number of unit data transfers per arbitration cycle Value Mode Description					e transfer is done, or linked in the case where the LINK bit is set, or
Value Mode Description	BLC	OCKSIZE	0x0	RWH	Block Transfer Size
	This	is bit-field controls t	he number of ur	nit data tra	nsfers per arbitration cycle
0 UNIT1 One unit transfer per arbitration	Valu	lue	Mode		Description
	0		UNIT1		One unit transfer per arbitration
1 UNIT2 Two unit transfers per arbitration	1		UNIT2		Two unit transfers per arbitration
2 UNIT3 Three unit transfers per arbitration	2		UNIT3		Three unit transfers per arbitration
3 UNIT4 Four unit transfers per arbitration	3		UNIT4		Four unit transfers per arbitration
4 UNIT6 Six unit transfers per arbitration	4		UNIT6		Six unit transfers per arbitration

Bit	Name	Reset	Access	Description
	5	UNIT8		Eight unit transfers per arbitration
	7	UNIT16		Sixteen unit transfers per arbitration
	9	UNIT32		32 unit transfers per arbitration
	10	UNIT64		64 unit transfers per arbitration
	11	UNIT128		128 unit transfers per arbitration
	12	UNIT256		256 unit transfers per arbitration
	13	UNIT512		512 unit transfers per arbitration
	14	UNIT1024		1024 unit transfers per arbitration
	15	ALL		Transfer all units as specified by the XFRCNT field
15	BYTESWAP	0	RWH	Endian Byte Swap
	For word and half-v	vord transfers, se	etting this bit	will swap all bytes of each word or half-word.
14:4	XFERCNT	0x000	RWH	DMA Unit Data Transfer Count
	Specifies number o should be one less			s, or bytes) to transfer, as determined by the SIZE field. The value written unt.
3	STRUCTREQ	0	W1	Structure DMA Transfer Request
	When a linked desc	criptor is loaded v	vith this bit s	set, it will immediately trigger a transfer.
2	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
1:0	STRUCTTYPE	0x0	R	DMA Structure Type
	Value	Mode		Description
	0	TRANSFER		DMA transfer structure type selected.
	0	TRANSFER SYNCHRON	IIZE	DMA transfer structure type selected. Synchronization structure type selected.

7.6.21 LDMA_CHx_SRC - Channel Descriptor Source Data Address Register

Offset															Bi	t Po	siti	on														
0x090	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																000000000000000000000000000000000000000	000000000000000000000000000000000000000															
Access		RWH 0)																														
Name																000,000	לטלטטט															
Bit	Na	me					Re	set			Ac	ces	S	Des	crip	tion																
31:0	SR	CAE	DDR	2			0x0	0000	0000	00	RV	/H		Sou	rce	Dat	a Ad	ddre	SS													

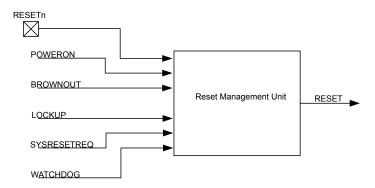
Writing to this register sets the source address. Reading from this register during a DMA transfer will indicate the next

source read address. The value of this register is incremented or decremented with each source read.

7.6.22 LDMA_CHx_DST - Channel Descriptor Destination Data Address Register

Offset	Bit Position														
0x094	30 30 30 30 30 30 30 30 30 30 30 30 30 3														0
Reset	0000000x0														
Access		RWH													
Name		DSTADDR R													

Bit	Name	Reset	Access	Description
31:0	DSTADDR	0x00000000	RWH	Destination Data Address


Writing to this register sets the destination address. Reading from this register during a DMA transfer will indicate the next destination write address. This value of this register is incremented or decremented with each destination write.

7.6.23 LDMA_CHx_LINK - Channel Descriptor Link Structure Address Register

Offset	Bit Position																														
0x098	31	29	28	27	26	25	24	23	22	21	20	10	2 8	17	16	15	4	13	12	11	10	6	_∞	7	9	2	4	က	2	_	0
Reset	·												•		nnnnnnnn															0	0
Access															I M Y															RWH	2
Name	LINKADDR																LINK	LINKMODE													
Bit	Name					Re	set			Ac	ces	s	De	scrip	tior	า															
31:2	LINKA	DDR	₹			0x0	0000	0000	0	RV	۷H		Link Structure Address																		
	To use																												ed, i	t ma	ıy
1	LINK					0				RV	VH		Lin	k Ne	xt S	Struc	ctur	е													
	After c																ad t	the r	next	link	ed d	lesc	ripto	r. If	the	nex	t link	ked	des	cript	or
0	LINKN	10DE	=			0				R			Lin	k Stı	ruct	ure	Add	ires	sing	ј Мс	ode										
	This field specifies the addressing mode of linked descriptors. After loading a linked descriptor, reading this field will indicate the addressing mode of the loaded linked descriptor. Note that the first descriptor always uses absolute addressing mode.																														
	Value					Мо	de						Description														_				
	0					AB	SOI	_UT	E				The LINKADDR field of LDMA_CHx_LINK contains the absolute address of the linked descriptor.													-	_				
	1 RELATIVE								The LINKADDR field of LDMA_CHx_LINK contains the relative offset of the linked descriptor.													the	rela	tive							

8. RMU - Reset Management Unit

Quick Facts

What?

The RMU ensures correct reset operation. It is responsible for connecting the different reset sources to the reset lines of the EFM32 Tiny Gecko 11.

Why?

A correct reset sequence is needed to ensure safe and synchronous startup of the EFM32 Tiny Gecko 11. In the case of error situations such as power supply glitches or software crash, the RMU provides proper reset and startup of the EFM32 Tiny Gecko 11.

How?

The Power-on Reset and Brown-out Detector of the EFM32 Tiny Gecko 11 provides power line monitoring with exceptionally low power consumption. The cause of the reset may be read from a register, thus providing software with information about the cause of the reset.

8.1 Introduction

The RMU is responsible for handling the reset functionality of the EFM32 Tiny Gecko 11.

8.2 Features

- · Reset sources
 - · Power-on Reset (POR)
 - Brown-out Detection (BOD) on the following power domains:
 - · Analog Unregulated Power Domain AVDD
 - · Digital Unregulated Power Domain DVDD
 - · Regulated Digital Domain DECOUPLE (DEC)
 - · RESETn pin reset
 - · Watchdog reset
 - Software triggered reset (SYSRESETREQ)
 - · Core LOCKUP condition
- EM4 Hibernate/Shutoff Detection
- EM4 Hibernate/Shutoff wakeup reset from GPIO pin
- · Configurable reset levels
- · A software readable register indicates the cause of the last reset

8.3 Functional Description

The RMU monitors each of the reset sources of the EFM32 Tiny Gecko 11. If one or more reset sources go active, the RMU applies reset to the EFM32 Tiny Gecko 11. When the reset sources go inactive the EFM32 Tiny Gecko 11 starts up. At startup the EFM32 Tiny Gecko 11 loads the stack pointer and program entry point from memory, and starts execution. Figure 8.1 RMU Reset Input Sources and Connections on page 212 shows an overview of the reset system on EFM32 Tiny Gecko 11.

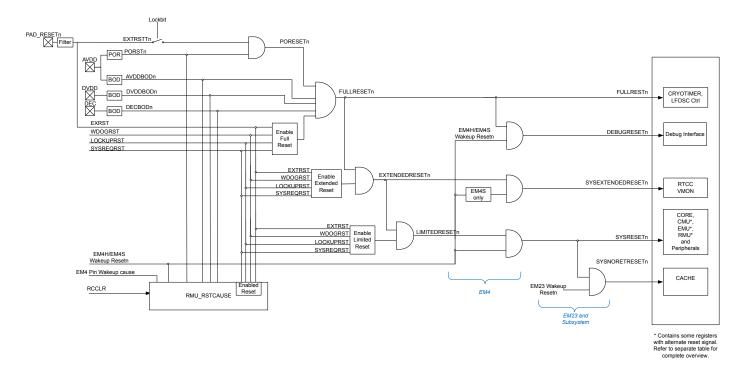


Figure 8.1. RMU Reset Input Sources and Connections

8.3.1 Reset Levels

The reset sources on EFM32 Tiny Gecko 11 can be divided in two main groups; Hard resets and Soft resets.

The soft resets can be configured to be either DISABLED, LIMITED, EXTENDED or FULL. The reset level for soft reset sources is configured in the xxxRMODE bitfields in RMU_CTRL.

Table 8.1. Reset Levels

RMU_CTRL_xxxRMODE	Parts of System Reset
DISABLED	Nothing is reset, request will not be registered in RMU_RSTCAUSE
LIMITED	Everything reset, with exception of CRYOTIMER, DEBUGGER, RTCC, VMON and parts of CMU, RMU and EMU.
EXTENDED	Everything reset, with exception of CRYOTIMER, DEBUGGER, and parts of CMU, RMU and EMU.
FULL	Everything reset, with exception of some registers in RMU and EMU.

The reset sources resulting in a soft reset are:

- · Watchdog reset
- · Lockup reset
- · System reset request
- Pin reset (Pin reset can be configured to be either a soft or a hard reset, see 8.3.5 RESETn Pin Reset for details.)

Note: LIMITED and EXTENDED resets are synchronized to HFSRCCLK. If HFSRCCLK is slow, there will be latency on reset assertion. If HFSRCCLK is not running, reset will be asserted after a timeout.

Hard resets will reset the entire chip, the reset sources resulting in a hard reset are:

- Power-on reset
- · Brown-out reset
- Pin reset (Pin reset can be configured to be either a soft or a hard reset, see 8.3.5 RESETn Pin Reset for details.)

8.3.2 RMU_RSTCAUSE Register

Whenever a reset source is active, the corresponding bit in the RMU_RSTCAUSE register is set. At startup the program code may investigate this register in order to determine the cause of the reset. The register is cleared upon POR and software write to RMU_CMD_RCCLR. The register should be cleared after the value has been read at startup, otherwise the register may indicate multiple causes for the reset at next startup.

RMU_RSTCAUSE should be interpreted according to Table 8.2 RMU Reset Cause Register Interpretation on page 214. In Table 8.2 RMU Reset Cause Register Interpretation on page 214, the reset causes are ordered by severity from right to left. A reset cause bit is invalidated (i.e. can not be trusted) if one of the bits to the right of it does not match the table. X bits are don't care.

Note: It is possible to have multiple reset causes. For example, an external reset and a watchdog reset may happen simultaneously.

Table 8.2. RMU Reset Cause Register Interpretation

RMU_F	RSTCAU	SE								Reset cause
EM4RST	BUMODERST	WDOGRST	SYSREQRST	LOCKUPRST	EXTRST	DECBOD	DVDDBOD	AVDDBOD	PORST	
Х	Х	Х	Х	Х	Х	Х	Х	Х	1	Power on reset
Х	Х	Х	Х	Х	Х	Х	Х	1	0	Brown-out on AVDD power
Х	Х	Х	Х	Х	х	Х	1	Х	0	Brown-out on DVDD power
Х	Х	Х	Х	Х	Х	1	Х	Х	0	Brown-out on DEC power
Х	Х	Х	Х	Х	1	Х	Х	Х	0	Pin reset
Х	Х	Х	Х	1	0/X ¹	0	0	0	0	Lockup reset
Х	Х	Х	1	Х	0/X ¹	0	0	0	0	System reset request
Х	Х	1	Х	Х	0/X ¹	0	0	0	0	Watchdog reset
1	1	Х	Х	Х	0/X ¹	0	0	X ²	0	System has been in backup mode
1	Х	Х	Х	Х	0/X ¹	0	0	0	0	System has been in EM4
4.5	٠.									•

^{1.} Pin reset configured as hard/soft

^{2.} AVDDBOD is set to 1 if the reset is caused by a BOD on BUVDD. AVDDBOD will not be set on AVDD recovery or a hard pin reset.

8.3.3 Power-On Reset (POR)

The POR ensures that the EFM32 Tiny Gecko 11 does not start up before the AVDD supply voltage has reached the threshold voltage VPORthr (roughly 1.2V). Before the POR threshold voltage is reached, the EFM32 Tiny Gecko 11 is kept in reset state. The operation of the POR is illustrated in Figure 8.2 RMU Power-on Reset Operation on page 215, with the active low POWERONn reset signal. The reason for the "unknown" region is that the corresponding supply voltage is too low for any reliable operation.

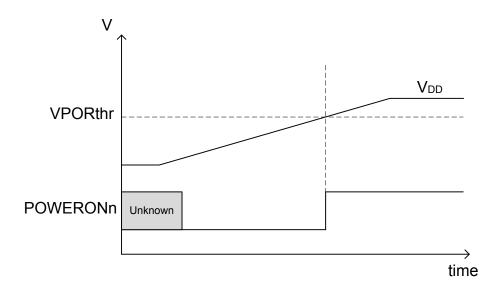


Figure 8.2. RMU Power-on Reset Operation

8.3.4 Brown-Out Detector (BOD)

The EFM32 Tiny Gecko 11 has 3 brownout detectors, one for the unregulated power (DVDD), one for the regulated internal power (DECOUPLE), and one for the Analog Power Domain (AVDD). The BODs are constantly monitoring these supply voltages. Whenever the unregulated or regulated power drops below the VBODthr value (see the Electrical Characteristics section of the data sheet for details), or if AVDD drops below the voltage at the DECOUPLE pin, the corresponding active low BROWNOUTn line is held low. The BODs also include hysteresis, which prevents instability in the corresponding BROWNOUTn line when the supply is crossing the VBODthr limit or the AVDD supply drops below the DECOUPLE pin. The operation of the BOD is illustrated in Figure 8.3 RMU Brown-out Detector Operation on page 215. The "unknown" regions are handled by the POR module.

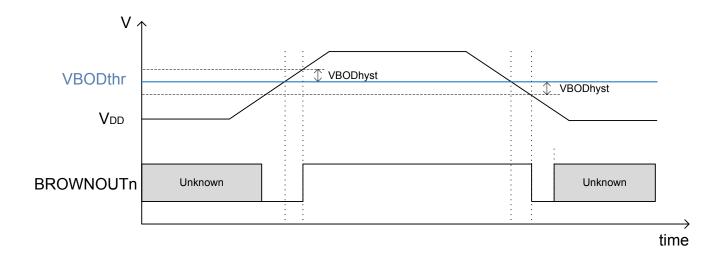


Figure 8.3. RMU Brown-out Detector Operation

8.3.5 RESETn Pin Reset

The pin reset on EFM32 Tiny Gecko 11 can be configured to be either hard or soft. By default, pin reset is configured as a soft reset source. To configure it as a hard reset, clear the PINRESETSOFT bit in CLW0 in the Lock bit page, see 6.3.2 Lock Bits (LB) Page Description for details. Forcing the RESETn pin low generates a reset of the EFM32 Tiny Gecko 11. The RESETn pin includes an on-chip pull-up resistor, and can therefore be left unconnected if no external reset source is needed. Also connected to the RESETn line is a filter which prevents glitches from resetting the EFM32 Tiny Gecko 11.

8.3.6 Watchdog Reset

The Watchdog circuit is a timer which (when enabled) must be cleared by software regularly. If software does not clear it, a Watchdog reset is activated. This functionality provides recovery from a software stalemate. Refer to the Watchdog section for specifications and description. The Watchdog reset can be configured to cause different levels of reset as determined by WDOGRMODE in the RMU_CTRL register.

8.3.7 Lockup Reset

A Cortex-M0+ lockup is the result of the core being locked up because of an unrecoverable exception following the activation of the processor's built-in system state protection hardware.

A Cortex-M0+ lockup gives immediate indication of seriously errant kernel software. This is the result of the core being locked up due to an unrecoverable exception following the activation of the processor's built in system state protection hardware. For more information about the Cortex-M0+ lockup conditions see the ARMv6-M Architecture Reference Manual. The Lockup reset does not reset the Debug Interface, unless configured as a FULL reset. The Lockup reset can be configured to cause different levels of reset as determined by the LOCKUPRMODE bits in the RMU_CTRL register. This includes disabling the reset.

8.3.8 System Reset Request

Software may initiate a reset (e.g. if it finds itself in a non-recoverable state). By asserting the SYSRESETREQ in the Application Interrupt and Reset Control Register, a reset is issued. The SYSRESETREQ does not reset the Debug Interface, unless configured as a FULL reset. The SYSRESTREQ reset can be configured to cause different levels of reset as determined by SYSRESETRMODE bits in the RMU_CTRL register. This includes disabling the reset.

8.3.9 Reset State

The RESETSTATE bitfield in RMU_CTRL is a read-write register intended for software use only, and can be used to keep track of state throughout a reset. This bitfield is only reset by POR and hard pin reset.

8.3.10 Register Reset Signals

Figure 8.1 RMU Reset Input Sources and Connections on page 212 shows an overview of how the different parts of the design are affected by the different levels of reset. For RMU, EMU and CMU there are some exceptions. These are given in the following tables.

8.3.10.1 Registers With Alternate Reset

Table 8.3. Alternate Reset for Registers in RMU

RMU Reset Levels	
POR and hard pin reset	RMU_CTRL_WDOGRMODE
	RMU_CTRL_LOCKUPRMODE
	RMU_CTRL_SYSRMODE
	RMU_CTRL_PINRMODE
	RMU_CTRL_RESETSTATE
FULL reset	RMU_LOCK_LOCKKEY

Table 8.4. Alternate Reset for Registers in CMU

CMU Reset Levels	
FULL reset	CMU_LFRCOCTRL
	CMU_LFXOCTRL
EXTENDED reset	CMU_LFECLKSEL
	CMU_LFECLKEN0
	CMU_LFEPRESC0

Table 8.5. Alternate Reset for Registers in EMU

EMU Reset Levels	
POR, BOD, and hard pin reset	EMU_BIASCONF_LSBIAS_SEL
POR, BOD, and hard pin reset	EMU_DCDCLNVCTRL
POR and hard pin reset	EMU_CTRL_EM2BODDIS
	EMU_BUCTRL
POR, BOD, and hard pin reset	EMU_PWRCTRL
	EMU_DCDCCTRL
	EMU_DCDCMISCCTRL
	EMU_DCDCZDETCTRL
	EMU_DCDCCLIMCTRL
	EMU_DCDCLNCOMPCTRL
	EMU_DCDCLPVCTRL
	EMU_DCDCLPCTRL
	EMU_DCDCLNFREQCTRL
	EMU_DCDCLPEM01CFG

EMU Reset Levels	
EXTENDED reset	EMU_VMONAVDDCTRL
	EMU_VMONALTAVDDCTRL
	EMU_VMONDVDDCTRL
	EMU_VMONIO0CTRL
	EMU_VMONBUVDDCTRL
FULL reset	EMU_EM4CTRL

8.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	RMU_CTRL	RW	Control Register
0x004	RMU_RSTCAUSE	R	Reset Cause Register
0x008	RMU_CMD	W1	Command Register
0x00C	RMU_RST	RW	Reset Control Register
0x010	RMU_LOCK	RWH	Configuration Lock Register

8.5 Register Description

8.5.1 RMU_CTRL - Control Register

0.0	10_011\L - 001111011\	og.010.	
Offset			Bit Position
0x000	33 33 34 25 28 29 29 29 29 29 29 29 29 29 29 29 29 29	22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	0 0 1 2 3 3 4 5 6 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Reset		0×0	X
Access		NN N	% % % % % % % % % % % % % % % % % % %
Name		RESETSTATE	PINRMODE SYSRMODE LOCKUPRMODE
Bit	Name	Reset Access	Description
31:26	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
25:24	RESETSTATE	0x0 RW	System Software Reset State
	Bit-field for software	use only. This field has no	effect on the RMU and is reset by power-on reset and hard pin reset only.
23:15	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
14:12	PINRMODE	0x4 RW	PIN Reset Mode
	Controls the reset le page is set.	vel for Pin reset request. Th	hese settings only apply when PINRESETSOFT in CLW0 in the Lock bit
	Value	Mode	Description
	0	DISABLED	Reset request is blocked.
	1	LIMITED	The CRYOTIMER, DEBUGGER, RTCC, are not reset.
	2	EXTENDED	The CRYOTIMER, DEBUGGER are not reset. RTCC is reset.
	4	FULL	The entire device is reset except some EMU and RMU registers.
11	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
10:8	SYSRMODE	0x2 RW	Core Sysreset Reset Mode
	Controls the reset le	vel for Core SYSREST rese	et request.
	Value	Mode	Description
	0	DISABLED	Reset request is blocked.
	1	LIMITED	The CRYOTIMER, DEBUGGER, RTCC, are not reset.
	2	EXTENDED	The CRYOTIMER, DEBUGGER are not reset. RTCC is reset.
	4	FULL	The entire device is reset except some EMU and RMU registers.
7	Reserved	To ensure compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-

tions

Bit	Name	Reset A	Access	Description
6:4	LOCKUPRMODE		RW	Core LOCKUP Reset Mode
	Controls the reset le	vel for Core LOCKU	JP reset	request.
	Value	Mode		Description
	0	DISABLED		Reset request is blocked.
	1	LIMITED		The CRYOTIMER, DEBUGGER, RTCC, are not reset.
	2	EXTENDED		The CRYOTIMER, DEBUGGER are not reset. RTCC is reset.
	4	FULL		The entire device is reset except some EMU and RMU registers.
3	Reserved	To ensure compa	atibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	WDOGRMODE	0x4 F	RW	WDOG Reset Mode
	Controls the reset le	vel for WDOG reset	request	
	Value	Mode		Description
	0	DISABLED		Reset request is blocked. This disable bit is redundant with enable/ disable bit in WDOG
	1	LIMITED		The CRYOTIMER, DEBUGGER, RTCC, are not reset.
	2	EXTENDED		The CRYOTIMER, DEBUGGER are not reset. RTCC is reset.

8.5.2 RMU_RSTCAUSE - Reset Cause Register

Offset											В	it	Pos	sitic	on														
0x004	30 31	27	56	25 24	23	22	21	20	19	8	17	(9	15	4	13	12	7	10	о	_∞	_	9	2	4	က	2	_	0
Reset	(5) (5) (4) (1 (1	(1)	(1)	14	(1	(4)	.,		1			o		_	_	0	0	0	0	0			47	0	0	0	`	0
Access													ץ ר				2	2	2	2	2				2	2	2		2
												ľ	_				 	ш.	-							<u> </u>			
Name												F C C E	EM4KSI				BUMODERST	WDOGRST	SYSREQRST	LOCKUPRST	EXTRST				DECBOD	DVDDBOD	AVDDBOD		PORST
Bit	Name			Reset			Acc	ess	S	Des	crip	oti	on																
31:17	Reserved			To ens	sure	com	patik	oility	/ W	ith f	ıture	e a	levi	ces	s, al	way	s wr	ite k	oits t	to 0.	Мо	re ir	nfori	matio	on ir	1.2	? Co	nvei	7-
16	EM4RST			0			R			EM	4 Re	ese	et																
	Set if the system has been in EM4. Must be cleared by software. See 8.3.2 RMU_RSTCAUSE Register for details on how to interpret this bit.															W													
15:13	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions															7-													
12	BUMODERST 0 R Backup Mode Reset																												
	Set if the system has been in Backup mode. Must be cleared by software. See EMU chapter for details on how to interpret this bit.															et													
11	WDOGRST			0			R			Wa	cho	ob	g R	ese	et														
	Set if a watch on how to int				en p	erfo	orme	d. N	/lus	t be	clea	are	ed b	y s	oftv	vare	. Se	ee 8.	3.2	RM	U_R	RST	CAL	JSE	Reg	iste	r for	deta	ails
10	SYSREQRS	Т		0			R			Sys	tem	ı R	Req	ues	t R	ese	t												
	Set if a syste details on ho					eer	n perf	orn	nec	d. Mu	ıst b	е	clea	are	d by	/ sof	ftwa	re. S	See	8.3.	2 RI	MU_	_RS	TCA	US	E Re	egist	er fo	or
9	LOCKUPRS	Т		0			R			LO	CKU	JΡ	Re	set															
	Set if a LOCk on how to int				en re	eque	ested	l. M	lust	t be	clea	re	d by	y so	oftw	are.	Se	e 8.3	3.2 I	RML	J_R	STC	CAU	SE F	Regi	ster	for	deta	ils
8	EXTRST			0			R			Ext	erna	al I	Pin	Re	set														
	Set if an exte details on ho					en p	erfor	med	d. N	Must	be	cle	eare	ed b	y s	oftw	are.	Se	e 8.3	3.2 I	RMU	J_R	STO	CAU	SE I	Regi	ster	for	
7:5	Reserved			To ens	sure	com	patik	oility	/ W	ith f	ıture	e a	levi	ces	s, al	way	s wr	rite k	oits t	to 0.	Мо	re ir	nfori	matio	on ir	1.2	? Co	nvei	า-
4	DECBOD			0			R			Bro	wn	Oı	ut C	Dete	ecto	or D	есо	uple	e Do	ma	in R	ese	t						
	Set if a regul 8.3.2 RMU_F																/lust	be	clea	red	by s	softv	vare	e. Se	e				
3	DVDDBOD			0			R			Bro	wn	Oı	ut C	Dete	ecto	or D	VDE) Re	set										
	Set if a unreg																l. Mu	ust t	oe c	lear	ed b	y so	oftw	are.	See				

0

R

Brown Out Detector AVDD Reset

Set if a unregulated domain brown out detector reset has been performed. Must be cleared by software. See 8.3.2 RMU_RSTCAUSE Register for details on how to interpret this bit.

AVDDBOD

2

Bit	Name	Reset	Access	Description
1	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	PORST	0	R	Power on Reset
	Set if a power on rese on how to interpret thi	•	ormed. Mu	st be cleared by software. See 8.3.2 RMU_RSTCAUSE Register for details

8.5.3 RMU_CMD - Command Register

Offset	Bit Position														
0x008	3 3 4 5 6 6 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 8 8 8 7 8 8 8 8 7 8	0													
Reset		0													
Access		×													
Name		RCCLR													

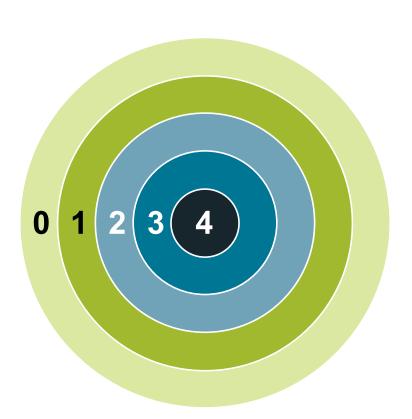
Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
0	RCCLR	0	W1	Reset Cause Clear
	Set this bit to clear th	e RSTCAUSE r	egister.	

8.5.4 RMU_RST - Reset Control Register

Offset	Bit Position																															
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	5	6	8	7	9	5	4	က	2	_	0
Reset					•									•		•		•			•				•		•		•			
Access																																
Name																																

Bit	Name	Reset	Access	Description
31:0	Reserved	To ensure contions	npatibility w	vith future devices, always write bits to 0. More information in 1.2 Conven-

8.5.5 RMU_LOCK - Configuration Lock Register


Offset		Bit Position																														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	. 9	5	4	က	2	_	0
Reset			•		•															•					0000x0				•	•		
Access																	RWH															
Name																	LOCKKEY															
Bit	Na	me					Re	set			Ac	cess	s I	Des	crip	tion																
21.16	Do	2012	, a d				т.					hilit.		th f.,	4	40	<i>i</i>				ita k	ita	to 0	1.1.		infor		- i	- 11	2 00	n	_

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	LOCKKEY	0x0000	RWH	Configuration Lock Key

Write any other value than the unlock code to lock RMU_CTRL and RMU_RST from editing. Write the unlock code to unlock. When reading the register, bit 0 is set when the lock is enabled.

Mode	Value	Description
Read Operation		
UNLOCKED	0	RMU registers are unlocked
LOCKED	1	RMU registers are locked
Write Operation		
LOCK	0	Lock RMU registers
UNLOCK	0xE084	Unlock RMU registers

9. EMU - Energy Management Unit

Quick Facts

What?

The EMU (Energy Management Unit) handles the different low energy modes in EFM32 Tiny Gecko 11

Why?

The need for performance and peripheral functions varies over time in most applications. By efficiently scaling the available resources in real time to match the demands of the application, the energy consumption can be kept at a minimum.

How?

With a broad selection of energy modes, a high number of low-energy peripherals available even in EM2 DeepSleep, and short wake-up time (2 µs from EM2 DeepSleep and EM3 Stop), applications can dynamically minimize energy consumption during program execution.

9.1 Introduction

The Energy Management Unit (EMU) manages all the low energy modes (EM) in EFM32 Tiny Gecko 11. Each energy mode manages whether the CPU and the various peripherals are available. The energy modes range from EM0 Active to EM4 Shutoff. EM0 Active mode provides the highest amount of features, enabling the CPU, and peripherals with the highest clock frequency. EM4 Shutoff Mode provides the lowest power state, allowing the part to return to EM0 Active on a wake-up condition. The EMU also controls the various power routing configurations, internal regulators settings, and voltage monitoring needed for optimal power configuration and protection.

9.2 Features

The primary features of the EMU are listed below:

- · Energy Modes control
 - Entry into EM4 Hibernate or EM4 Shutoff
 - · Configuration of regulators and clocks for each Energy Mode
 - · Configuration of various EM4 Hibernate/Shutoff wake-up conditions
 - · Configuration of RAM power and retention settings
 - · Configuration of GPIO retention settings
- · Power routing configurations
 - DCDC control
 - · Internal power switches allowing for extensible system power architecture
- · Temperature measurement control and status
- · Brown Out Detection
- · Voltage Monitoring
 - · Four dedicated continuous monitor channels
 - · Optional monitor features include interrupt generation and low power mode wake-up
- · State Retention
- · Voltage Scaling
 - EM0/EM1 voltage scaling
 - EM2/EM3 voltage scaling
 - · EM4H voltage scaling

9.3 Functional Description

The EMU is responsible for managing the wide range of energy modes available in EFM32 Tiny Gecko 11. The block works in harmony with the entire platform to easily transition between energy modes in the most efficient manner possible. The following diagram Figure 9.1 EMU Overview on page 226, shows the relative connectivity to the various blocks in the system.

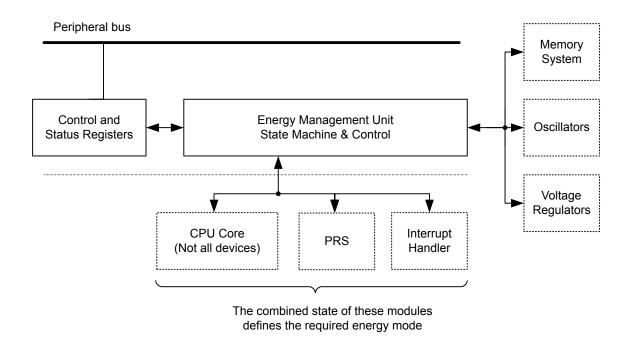


Figure 9.1. EMU Overview

The EMU is available on the peripheral bus. The energy management state machine controls the internal voltage regulators, oscillators, memories, and interrupt system. Events, interrupts, and resets can trigger the energy management state machine to return to the active state. This is further described in the following sections.

The power architecture is highly configurable to meet system power performance needs. Several external power configurations are supported. The EMU allows flexible control of internal DCDC, Digital LDO Regulator, and internal power switching.

9.3.1 Energy Modes

EFM32 Tiny Gecko 11 features six main energy modes, referred to as Energy Mode 0 (EM0 Active) through Energy Mode 4 (EM4 Shutoff). The Cortex-M0+ is only available for program execution in EM0 Active. In EM0 Active/EM1 Sleep any peripheral function can be enabled. EM2 DeepSleep through EM4 Shutoff, also referred to as low energy modes, provide a significantly reduced energy consumption while still allowing a rich set of peripheral functionality. The following Table 9.1 table on page 227 shows the possible transitions between different energy modes.

Table 9.1. Energy Mode Transitions

Current Mode	EM Transition Action									
	Enter EM0 Active	Enter EM1 Sleep	Enter EM2 DeepSleep	EnterEM3 Stop	EnterEM4 Hi- bernate	Enter EM4 Shutoff				
EM0 Active		Sleep (WFI, WFE)	Deep Sleep (WFI, WFE)	Deep Sleep (WFI, WFE)	EM4 Entry	EM4 Entry				
EM1 Sleep	IRQ		Peripheral wake up done ¹	Peripheral wake up done ¹						
EM2 DeepSleep	IRQ	Peripheral wake up req ¹								
EM3 Stop	IRQ	Peripheral wake up req ¹								
EM4 Hibernate	Wake Up									
EM4 Shutoff	Wake Up									
N. 4										

Note:

The CSEN, LESENSE, ADC and LEUART have the ability to temporarily wake up the part from either EM2 DeepSleep or EM3 Stop to EM1 Sleep in order to transfer data. Once completed, the part is automatically placed back into the EM2 DeepSleep or EM3 Stop mode.

The Core can always request to go to EM1 Sleep with the WFI or WFE command during EM0 Active. The core will be prevented from entering EM2 DeepSleep or EM3 Stop if Flash is programming or erasing.

An overview of supported energy modes and available functionality is shown in Table 9.2 EMU Energy Mode Overview on page 227. For each energy mode, the system will typically default to its lowest power configuration, with non-essential clocks and peripherals disabled. Functionality may be then selectively enabled by software.

Table 9.2. EMU Energy Mode Overview

	EM0 Active/EM1 Sleep	EM2 Deep- Sleep	EM3 Stop	EM4 Hiber- nate	EM4 Shutoff
Wake-up time to EM0 Active/EM1 Sleep	_	2 μs ¹	2 μs ¹	160 µs ¹	160 µs ¹
Core Active	Yes, in EM0 only	_	_	_	_
Debug	Available	See Note ²	See Note ²	_	_
Digital logic and system RAM retained	Yes	Yes	Yes	_	_
Flash Memory Access	Available	_	_	_	_
LDMA (Linked DMA Controller)	Available	Available ³	Available ³	_	_

^{1.} Peripheral wake-up from EM2/3 to EM1 and then automatically back to EM2/3 when done.

	EM0 Active/EM1 Sleep	EM2 Deep- Sleep	EM3 Stop	EM4 Hiber- nate	EM4 Shutoff
High Frequency Oscillators (HFRCO, HFXO) and Clocks (HFSRCLK, HFCLK, HFCORECLK, HFBUSCLK, HFPERCLK, HFPERCCLK, HFCLKLE)	Available	_	_	_	_
Auxiliary High Frequency Oscillator (AUXHFR-CO) and Clock (AUXCLK)	Available	Available ⁴	Available ⁴	_	_
Low Frequency Oscillators (LFRCO, LFXO)	Available	Available	_	Available	Available
Low Energy Clocks A and B (LFACLK, LFBCLK)	Available	Available	Available ⁶	_	_
Low Energy Clock E (LFECLK)	Available	Available	Available ⁶	Available	_
ULFRCO (Ultra Low Frequency Oscillator)	On	On	On	On	Available
CRYPTO (Crypto Accelerator)	Available	_	_	_	_
TRNG (True Random Number Generator)	Available	_	_	_	_
GPCRC (Cyclic Redundancy Check)	Available	_	_	_	_
RTCC (Real Time Counter and Calendar)	Available	Available	Available ⁶	Available	_
RTCC Memory Retained	Yes	Yes	Yes	Yes	_
USART (USART/SPI)	Available	_	_	_	_
LCD (Liquid Crystal Display)	Available	Available	_	_	_
CAN (Controller Area Network)	Available	_	_	_	_
LEUART (Low Energy UART)	Available	Available ³	_	_	_
I ² C	Available	Available ⁵	Available ⁵	_	_
TIMER (Timer/Counter)	Available	_	_	_	_
LETIMER (Low Energy Timer)	Available	Available	Available ⁶	_	_
CRYOTIMER (Ultra Low Energy Timer/Counter)	Available	Available	Available ⁶	Available	Available
WDOG (Watchdog)	Available	Available	Available ⁶	_	_
PCNT (Pulse Counter)	Available	Available	Available	_	_
CSEN (Capacitive Sense)	Available	Available ³	_	_	_
ACMP (Analog Comparator)	Available	Available ⁷	Available ⁷	_	_
ADC (Analog to Digital Converter)	Available	Available ^{3, 4}	Available ^{3, 4}	_	_
VDAC (Voltage Digital to Analog Converter)	Available	Available	Available	<u> </u>	_
OPAMP (Operational Amplifier)	Available	Available	Available	_	_
LESENSE (Low Energy Sensor)	Available	Available ³	_	_	_
EMU Temperature Sensor	Available	Available	Available	Available	_
DC-DC Converter	Available	Available	Available	Available	_
VMON Wake-up or Reset	Available	Available	Available	Available	_
Brown-Out Detect/Power-on Reset	Available	Available	Available	Available	Available
Pin Reset	Available	Available	Available	Available	Available

	EM0 Active/EM1 Sleep	EM2 Deep- Sleep	EM3 Stop	EM4 Hiber- nate	EM4 Shutoff
GPIO Pin Interrupts	Available	Available	Available	Available ⁸	Available ⁸
GPIO Pin State Retention	Yes	Yes	Yes	Available ⁹	Available ⁹

Note:

- 1. Approximate time. Refer to the data sheet
- 2. Leaving the debugger connected when in EM2 or EM3 will cause the system to enter a higher power EM2 mode in which the high frequency clocks are still enabled and certain core functionality is still powered-up in order to maintain debug-functionality.
- 3. The LDMA can be used with some low power peripherals (e.g., ADC, LEUART, LESENSE, CSEN) in EM2/3. Features required by the LDMA which are not supported in EM2/3 (e.g., HFCLK), will be automatically enabled prior to the LDMA transfer and then automatically disabled afterwards.
- 4. While in EM2/3, an asynchronous event can be routed through PRS (e.g. GPIO IRQ or ACMP output) to wake up the ADC. Features required by the ADC which are not supported in EM2/3 (e.g., AUXHFRCO) will be automatically enabled to allow the ADC to convert a sample, and then automatically disabled afterwards.
- 5. I2C functionality limited to receive address recognition
- 6. Must be using ULFRCO
- 7. ACMP functionality in EM2/3 limited to edge interrupt
- 8. Pin wake-up in EM4 supported only on GPIO_EM4WUx pins. Consult data sheet for complete list of pins.
- 9. If enabled in EMU->EM4CTRL.EM4IORETMODE.

The different energy modes are summarized in the following sections.

9.3.1.1 EM0 Active

EM0 Active provides all system features.

- · Cortex-M0+ is executing code
- · High and low frequency clock trees are active
- · All oscillators are available
- · All peripheral functionality is available

9.3.1.2 EM1 Sleep

EM1 Sleep disables the core but leaves the remaining system fully available.

- · Cortex-M0+ is in sleep mode. Clocks to the core are off
- · High and low frequency clock trees are active
- · All oscillators are available
- · All peripheral functionality is available

9.3.1.3 EM2 DeepSleep

This is the first level into the low power energy modes. Most of the high frequency peripherals are disabled or have reduced functionality. Memory and registers retain their values.

- · Cortex-M0+ is in sleep mode. Clocks to the core are off.
- · High frequency clock tree is inactive
- · Low frequency clock tree is active
- The following oscillators are available
 - LFRCO, LFXO, ULFRCO, AUXHFRCO (on demand, if used by the ADC)
- The following low frequency peripherals are available
 - RTCC, LCD, WDOG, LEUART, LETIMER, LESENSE, PCNT, CRYOTIMER
- The following analog peripherals are available (with potential limitations on functionality)
 - · ADC, VDAC, OPAMP, CSEN
- · Wake-up to EM0 Active through
 - Peripheral interrupt, reset pin, power on reset, asynchronous pin interrupt, I2C address recognition, or ACMP edge interrupt
- · RAM and register values are preserved
 - RAM blocks may be optionally powered down for lower power
- · GPIO pin state is retained
- · RTCC memory is retained
- The DC-DC converter can be configured to remain on in Low Power mode.

9.3.1.4 EM3 Stop

In this low energy mode, all low frequency oscillators (LFXO, LFRCO) and all low frequency clocks derived from them, are stopped, as well as all high frequency clocks. Most peripherals are disabled or have reduced functionality. Memory and registers retain their values.

- · Cortex-M0+ is in sleep mode. Clocks to the core are off.
- · High frequency clock tree is inactive
- · All low frequency clock trees derived from the low frequency oscillators (LFXO, LFRCO) are inactive
- · The following oscillators are available
 - ULFRCO, AUXHFRCO (on demand, if used by the ADC)
- · The following low frequency peripherals are available if clocked by the ULFRCO
 - · RTCC, WDOG, CRYOTIMER
- · The following analog peripherals are available (with potential limitations on functionality)
 - · ADC, VDAC, OPAMP, CSEN
- · Wake-up to EM0 Active through
 - · Peripheral interrupt, reset pin, power on reset, asynchronous pin interrupt, I2C address recognition, or ACMP edge interrupt
- · RAM and register values are preserved
 - · RAM blocks may be optionally powered down for lower power
- · GPIO pin state is retained
- · RTCC memory is retained
- The DC-DC converter can be configured to remain on in Low Power mode.

9.3.1.5 EM4 Hibernate

The majority of peripherals are shutoff to reduce leakage power. A few selected peripherals are available. System memory and registers do not retain values. GPIO PAD state and RTCC RAM are retained. Wake-up from EM4 Hibernate requires a reset to the system, returning it back to EM0 Active

- · Cortex-M0+ is off
- · High frequency clock tree is off
- · Some low frequency clock trees may be active
- · The following oscillators are available
 - · LFRCO, LFXO, ULFRCO
- The following low frequency peripherals are available
 - · RTCC, CRYOTIMER
- Wake-up to EM0 Active through
 - VMON, EMU Temperature Sensor, RTCC, CRYOTIMER, reset pin, power on reset, asynchronous pin interrupt (on GPIO_EM4WUx pins only)
- GPIO pin state may be retained (depending on EMU->EM4CTRL.EM4IORETMODE configuration)
- RTCC memory is retained
- The DC-DC converter can be configured to remain on in Low Power mode.

9.3.1.6 EM4 Shutoff

EM4 Shutoff is the lowest energy mode of the part. There is no retention except for GPIO PAD state. Wake-up from EM4 Shutoff requires a reset to the system, returning it back to EM0 Active

- · Cortex-M0+ is off
- · High frequency clock tree is off
- · Low frequency clock tree may be active
- · The following oscillators are available
 - LFRCO, LFXO, ULFRCO
- · The following low frequency peripherals are available
 - CRYOTIMER
- · Wake-up to EM0 Active through
 - CRYOTIMER, reset pin, power on reset, asynchronous pin interrupt (on GPIO_EM4WUx pins only)
- GPIO pin state may be retained (depending on EMU->EM4CTRL.EM4IORETMODE configuration)
- The DC-DC converter configuration is reset to its default Unconfigured configuration (DC-DC converter disabled and bypass switch is off)

9.3.2 Entering Low Energy Modes

The following sections describe the requirements for entering the various energy modes.

Note: If Voltage scaling is being used to save system energy, it is important to ensure the proper conditions for entry and exit of EM2 DeepSleep, EM3 Stop or EM4 Hibernate be met. See 9.3.9.2.1 EM2/EM3 Voltage Scaling Guidelines and 9.3.9.3.1 EM4H Voltage Scaling Guidelines for details.

9.3.2.1 Entry Into EM1 Sleep

Energy mode EM1 Sleep is entered when the Cortex-M0+ executes the Wait For Interrupt (WFI) or Wait For Event (WFE) instruction while the SLEEPDEEP bit the Cortex-M0+ System Control Register is cleared. The MCU can re-enter sleep automatically out of an Interrupt Service Routine (ISR) if the SLEEPONEXIT bit in the Cortex-M0+ System Control Register is set. Refer to ARM documentation on entering Sleep modes.

Alternately, EM1 Sleep can be entered from either EM2 DeepSleep or EM3 Stop from a Peripheral Wake-up Request allowing transfers between the Peripheral and System RAM or Flash. On EFM32, ADC, CSEN, LESENSE, and LEUART peripherals can request this wake-up event. Refer to their respective register specification to enable this option. The system will return back to EM2 DeepSleep or EM3 Stop once the ADC, CSEN, LESENSE, or LEUART have completed its transfers and processing.

9.3.2.2 Entry Into EM2 DeepSleep or EM3 Stop

Energy mode EM2 DeepSleep or EM3 Stop may be entered when all of the following conditions are true:

- Cortex-M0+ (if present) is in DEEPSLEEP state
- · Flash Program/Erase Inactive
- · DMA done with all current requests
- · A debugger is not currently connected.

Entry into EM2 DeepSleep and EM3 Stop can be blocked by setting the EMU_CTRL->EM2BLOCK bit.

Note: When EM2 DeepSleep or EM3 Stop entry is blocked, the part is not able to enter a lower energy state. The core will be in a sleep state, similar to EM1, where it is waiting for a proper interrupt of other valid wake-up event. Once the blocking conditions are removed, then the part will automatically enter a lower energy state.

Energy mode EM2 DeepSleep is entered from EM0 Active when the Cortex-M0+ executes the Wait For Interrupt (WFI) or Wait For Event (WFE) instruction while the SLEEPDEEP bit in the Cortex-M0+ System Control Register is set. The MCU can re-enter Deep-Sleep automatically out of an Interrupt Service Routine (ISR) if the SLEEPONEXIT bit in the Cortex-M0+ System Control Register is set. Refer to ARM documentation on entering Sleep modes.

9.3.2.3 Entry Into EM4 Hibernate or EM4 Shutoff

Energy mode EM4 Hibernate and EM4 Shutoff is entered through register access.

Software must ensure no modules are active when entering EM4 Hibernate/Shutoff. EM4CTRL->EM4STATE field must be configured to select either Hibernate (EM4H) or Shutoff (EM4S) mode prior to entering EM4.

Software may enter EM4 Hibernate/Shutoff from EM0 Active by writing the sequence 2,3,2,3,2,3,2,3,2 to EM4CTRL->EM4ENTRY bit field. If the EM4BLOCK bit in WDOGn_CTRL is set, the CPU will be prevented from entering EM4 Hibernate/Shutoff by software request.

An active debugger connection will prevent entry into EM4 Hibernate/Shutoff.

Note that upon entry into EM4 Shutoff, the DC-DC converter configuration is reset to its default (i.e. Unconfigured) configuration. In the Unconfigured configuration, the DC-DC converter will be disabled and the bypass switch will be turned off.

Note also that if entering EM4 Shutoff, additional supply current may result if EMU_PWRCTRL_ANASW is set to 1. To properly enter EM4 Shutoff, firmware should first clear EMU_PWRCTRL_ANASW to 0, then wait at least 30 us prior to entering EM4 Shutoff.

9.3.3 Exiting a Low Energy Mode

A system in EM2 DeepSleep and EM3 Stop can be woken up to EM0 Active through regular interrupt requests from active peripherals. Since state and RAM retention is available, the EFM32 is fully restored and can continue to operate as before it went into the Low Energy Mode.

Wake-Up from EM4 Hibernate or EM4 Shutoff is performed through reset. Wake-Up from a specific module must be enabled in that module's EM4WUEN register.

Enabled interrupts that can cause wake-up from a low energy mode are shown in Table 9.3 EMU Wake-Up Triggers from Low Energy Modes on page 233. The wake-up triggers always return the EFM32 to EM0 Active/EM1 Sleep. Additionally, any reset source will return to EM0 Active. VMON-based EM4 Hibernate wake-ups also set the corresponding rise or fall interrupt flag. These flags serve as the wake-up source for EM4 Hibernate and must be cleared by software on EM4 Hibernate exit. Not doing so will result in an immediate wake-up after next EM4 Hibernate entry.

Table 9.3. EMU Wake-Up Triggers from Low Energy Modes

Peripheral	Wake-Up Trigger	EM2 Deep- Sleep	EM3 Stop	EM4 Hiber- nate	EM4 Shut- off
LEUART (Low Energy UART)	Receive / transmit	Yes	_	_	_
LETIMER	Any enabled interrupt	Yes	_	_	_
WDOG	Any enabled interrupt	Yes	Yes	_	_
LESENSE	Any enabled interrupt	Yes	_	_	_
LFXO	Ready Interrupt	Yes	_	_	_
LFRCO	Ready Interrupt	Yes	_	_	_
LCD	Any enabled interrupt	Yes	_	_	_
I ² C	Receive address recognition	Yes	Yes	_	_
ACMP	Any enabled edge interrupt	Yes	Yes	_	_
ADC	SINGLE / SCAN FIFO events, window comparator, and VREF overvoltage	Yes	Yes	_	_
CSEN	Wake on threshold	Yes	Yes	_	_
VDAC	Any enabled interrupt except EM23ERRIF	Yes	Yes	_	_
PCNT	Any enabled interrupt	Yes	Yes ¹	_	_
RTCC	Any enabled interrupt	Yes	Yes	Yes ²	
VMON	Rising or falling edge on any monitored power	Yes	Yes	Yes ²	_
EMU Temperature Sensor	Measured temperature outside the defined limits	Yes	Yes	Yes ²	_
CRYOTIMER	Timeout	Yes	Yes	Yes ²	Yes ²
Pin Interrupts	Transition	Yes	Yes	Yes ^{2, 3}	Yes ^{2, 3}
Reset Pin	Assertion	Yes	Yes	Yes	Yes
Power	Cycle Off/On	Yes	Yes	Yes	Yes

Note:

- 1. When using an external clock
- 2. Corresponding bit in the module's EM4WUEN must be set.
- 3. Only available on a subset of the pins. Refer to the data sheet for details.

9.3.4 Power Configurations

The EFM32 Tiny Gecko 11 allows several power configurations with additional options giving flexible power architecture selection.

In order to provide the lowest power consuming solutions, the EFM32 Tiny Gecko 11 comes with a DC-DC module to power internal circuits. The DC-DC requires an external inductor and capacitor (refer to the data sheet for recommended values).

The EFM32 Tiny Gecko 11 has multiple internal power domains: IO Supply (IOVDD), Analog & Flash (AVDD), Input to Digital LDO (DVDD), and Low Voltage Digital Supply (DECOUPLE). Additional detail for each configuration and option is given in the following sections.

When assigning supply sources, the following requirement must be adhered to:

- VREGVDD = AVDD (Must be the highest voltage in the system)
- VREGVDD >= DVDD
- VREGVDD >= IOVDD

9.3.4.1 Power Configuration 0: Unconfigured

Upon power-on reset (POR) or entry into EM4 Shutoff, the system is configured in a safe state that supports all of the available Power Configurations. The Unconfigured Configuration is shown in the simplified diagram below.

In the Unconfigured Configuration:

- The DC-DC converter's Bypass switch is OFF.
- The internal digital LDO is powered from the AVDD pin (i.e. REGPWRSEL=0 in EMU_PWRCTRL). Note the maximum allowable current into the LDO when REGPWRSEL=0 is 20 mA. For this reason, immediately after startup firmware should configure RE-GPWRSEL=1 to power the digital LDO from DVDD.
- The analog blocks are powered from the AVDD supply pin (i.e., ANASW=0 in EMU_PWRCTRL).

After power on, firmware can configure the device to based on the external hardware configuration. Note that the PWRCFG register can only be written once to a valid value and is then locked. This should be done immediately out of boot to select the proper power configuration. The DC-DC and PWRCTRL registers will be locked until the PWRCFG register is configured.

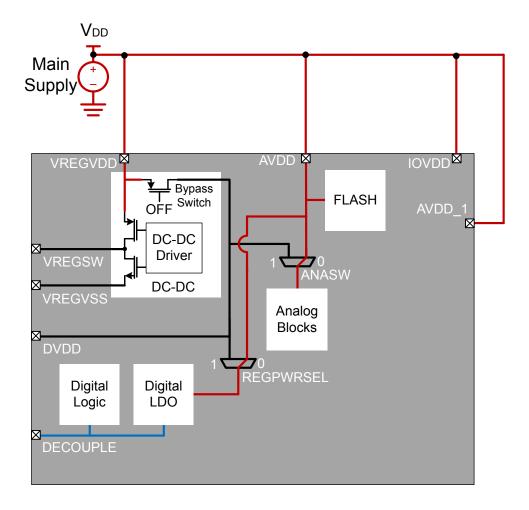


Figure 9.2. Unconfigured Power Configuration

9.3.4.2 Power Configuration 1: No DC-DC

In Power Configuration 1, the DC-DC converter is programmed in Off mode and the Bypass switch is Off. The DVDD pin must be powered externally - typically, DVDD is connected to the main supply. DVDD powers the internal Digital LDO (i.e., REGPWRSEL=1) which powers the digital circuits. IOVDD and AVDD are powered from the main supply as well.

VREGSW must be left disconnected in this configuration.

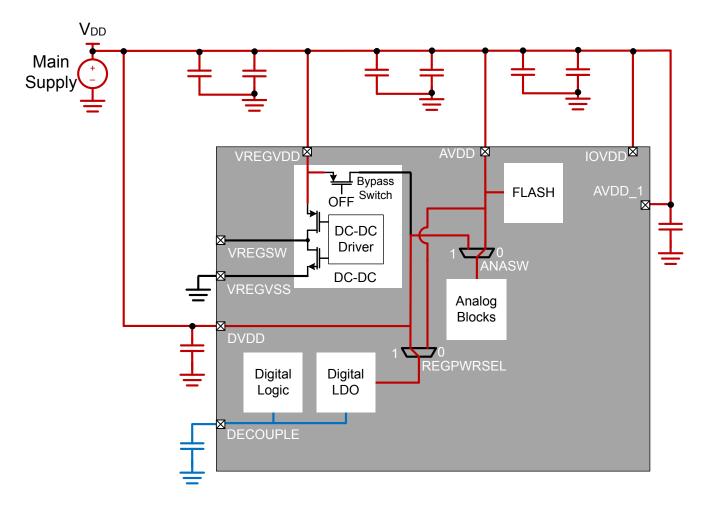


Figure 9.3. DC-DC Off Power Configuration

9.3.4.3 Power Configuration 2: DC-DC

For the lowest power applications, the DC-DC converter can be used to power the DVDD supply.

In Power Configuration 2, the DC-DC Output (V_{DCDC}) is connected to DVDD. DVDD powers the internal Digital LDO (i.e., RE-GPWRSEL=1) which powers the digital circuits. AVDD is connected to the main supply voltage. The internal analog blocks may be powered from AVDD or DVDD, depending on the ANASW configuration.

IOVDD could be connected to either the main supply (as shown below) or to V_{DCDC} , depending on the system IO requirements. Because V_{DCDC} will be unpowered (i.e., floating) at startup, if IOVDD is powered from the DC-DC converter then any circuit attached to IOVDD will not be powered until the DC-DC is configured (or the bypass switch is enabled). Refer to 9.3.8 IOVDD Connection section for further details and issues that may result when connecting IOVDD to V_{DCDC} .

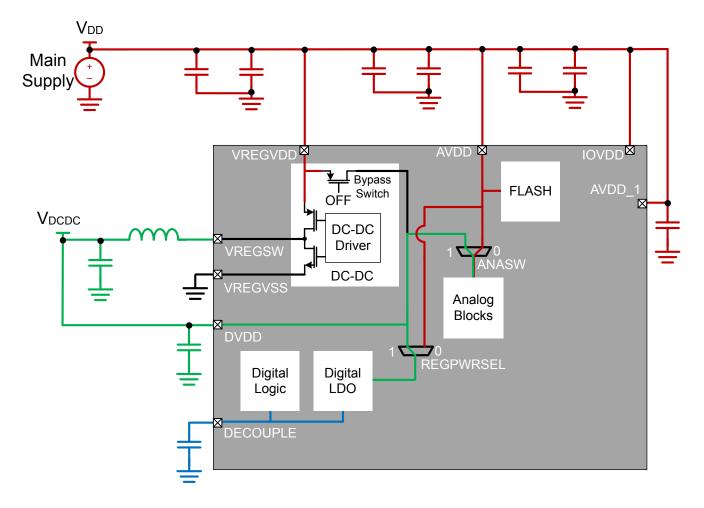


Figure 9.4. DC-DC Standard Power Configuration

As the Main Supply voltage approaches the DC-DC output voltage, it eventually reaches a point where becomes inefficient (or impossible) for the DC-DC module to regulate V_{DCDC} . At this point, firmware can enable bypass mode, which effectively disables the DC-DC and shorts the Main Supply voltage directly to the DC-DC output. If and when sufficient voltage margin on the Main Supply returns, the system can be switched back into DC-DC regulation mode.

9.3.5 DC-to-DC Interface

The EFM32 Tiny Gecko 11 devices feature a DC-DC buck converter which requires a single external inductor and a single external capacitor. The converter takes the VREGVDD input voltage and converts it down to an output voltage between VREGVDD and 1.8 V with a peak efficiency of approximately 90% in Low Noise (LN) mode and 85% in Low Power (LP) mode. Refer to the data sheet for full DC-DC specifications.

The DC-DC converter operates in either Low Noise (LN) or Low Power (LP) mode. LN mode is intended for higher current operation (e.g., >= 10 mA), whereas LP mode is intended for very low current operation (e.g., < 10 mA).

In addition, the DC-DC converter supports an unregulated Bypass mode, in which the input voltage is directly shorted to the DC-DC output.

9.3.5.1 Bypass Mode

In Bypass mode, the VREGVDD input voltage is directly shorted to the DC-DC converter output through an internal switch. Consult the data sheet for the Bypass switch impedance specification.

The Bypass Current Limit limits the maximum current drawn from the input supply in Bypass mode. This current limit is enabled by setting the BYPLIMEN bit in the EMU_DCDCCLIMCTRL register, and the limit value may be adjusted between 20 mA and 320 mA using the BYPLIMSEL bitfield in the EMU_DCDCMISCCTRL register. When the difference between the DC-DC output voltage (V_{DCDC}) and the DC-DC input voltage (V_{DCDC}) is large, applications should enable the Bypass Current Limit before enabling Bypass mode. For example, if Bypass mode is enabled with VREGVDD=3.8 V and V_{DCDC} =1.8 V with a 4.7 μ F capacitor, the peak current draw may be quite large as it is limited only by the bypass switch on-resistance, which could result in drooping on the input supply voltage. For smaller input / output voltage differences (e.g., VREGVDD=2.4 V and V_{DCDC} =1.8 V), it may not be necessary to enable the Bypass Current Limit at all.

Note that the device will see an additional \sim 10 μ A of current draw when both the Bypass Current Limiter and Bypass Mode are enabled. Applications should therefore disable the Bypass Current Limiter (i.e., set BYPLIMEN = 0) after the DVDD voltage has reached the main supply voltage in Bypass Mode.

9.3.5.2 Low Power (LP) Mode

The Low Power (LP) controller operates in a hysteretic mode to keep the output voltage within a defined voltage band. Once the DC-DC output voltage drops below a programmable internal reference, the LP controller generates a pulse train to control the powertrain PFET switch, which charges up the DC-DC output capacitor. When the output voltage is at the programmed upper level, the powertrain PFET is turned off. The output ripple voltage may be quite large (>100 mV) in LP mode.

The LP controller supports load currents up to approximately 10 mA, making it suitable for light loads in EM0 and EM1, as well as EM2, EM3, or EM4 low energy modes.

9.3.5.3 Low Noise (LN) Mode

The Low Noise (LN) controller continuously switches the powertrain NFET and PFET switches to maintain a constant programmed voltage at the DVDD pin. The LN controller supports load current from sub-mA up to 200 mA.

The LN controller switching frequency is programmable using the RCOBAND bitfield in the EMU_DCDCLNFREQCTRL register. See below for recommended RCOBAND settings for each mode.

The DC-DC Low Noise controller operates in one of two modes:

- 1. Continuous Conduction Mode (CCM)
- 2. Discontinuous Conduction Mode (DCM)

9.3.5.3.1 Low Noise (LN) Continuous Conduction Mode (CCM)

CCM operation is configured by setting the LNFORCECCM bit in the EMU_DCDCMISCCTRL register. CCM can be used to improve the DC-DC converter's output transient response time to quick load current changes, which minimizes voltage transients on the DC-DC output.

Note that all references to CCM in the documentation actually refer to Forced Continuous Conduction Mode (FCCM) - that is, if the LNFORCECCM bit is set and the output load current is very low, the DC-DC will be forced to operated in CCM. In this case, the current through the inductor may be negative and current may flow back into the battery.

In CCM, the recommended DC-DC converter switching frequency is 6.4 MHz (RCOBAND = 4).

9.3.5.3.2 Low Noise (LN) Discontinuous Conduction Mode (DCM)

To enable DCM, the LNFORCECCM bit in EMU_DCDCMISCCTRL must be cleared before entering LN. Typically, this configuration would occur while the part was in Bypass mode. Once DCM is enabled, the DC-DC should operate in DCM at light load currents. However, as the load current increases, the DC-DC will automatically transition into CCM without software intervention.

The advantage of DCM is improved efficiency for light load currents. However, in DCM the DC-DC has poorer dynamic response to changes in load current, leading to potentially larger changes in the regulated output voltage. For these reasons, DCM is not recommended for applications that expect large instantaneous load current steps. For example, if the DC-DC is in DCM, firmware may need to increment the core clock frequency in small steps to prevent a large sudden load increase.

In DCM, the recommended DC-DC converter switching frequency is 3 MHz (RCOBAND = 0).

9.3.5.4 DC-to-DC Programming Guidelines

Note: Refer to Application Note *AN0948: EFM32 and EFR32 Series 1 Power Configurations and DC-DC* detailed information on programming the DC-DC. Application Notes can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or using the [**Application Notes**] tile in Simplicity Studio.

9.3.6 Analog Peripheral Power Selection

The analog peripherals (e.g., ULFRCO, LFRCO, LFXO, HFRCO, AUXHFRCO, VMON, ADC, LCD, CSEN) are powered from an internal analog supply domain, VDDX_ANA. VDDX_ANA may be supplied from either the AVDD or DVDD supply pins, depending on the configuration of the ANASW bit in the EMU_PWRCTRL register. Changes to the ANASW setting should be made immediately out of reset (i.e., in the Unconfigured Configuration), before all clocks (with the exception of HFRCO and ULFRCO) are enabled. If the DCDC converter is used and ANASW is set to 1, the switch will not take effect until after the DCDC output voltage has reached its target level. To prevent supply transients, firmware should configure and enable the DCDC, configure ANASW, and then enable clocks. If the DCDC converter is not used, IMMEDIATEPWRSWITCH should be set prior to setting ANASW so hardware can immediately apply the switch without waiting for the DCDC to settle.

Once ANASW is configured it should not be changed. Note that the flash is always powered from the AVDD pin, regardless of the state of the ANASW bit.

Table 9.4. Analog Peripheral Power Configuration

ANASW	Analog Peripheral Power Supply Source (VDDX_ANA)	Comments
0 (default)	AVDD pin	This configuration may provide a quieter supply to the analog modules, but is less efficient as AVDD is typically at a higher voltage than DVDD.
1	DVDD pin	This configuration may provide a noisier supply to the analog modules, but is more efficient. However, because the maximum allowable input voltage to many of the analog modules using APORT is limited to MIN(VDDX_ANA,IOVDD), this setting could artificially limit your analog input range.

9.3.7 Digital LDO Power Selection

The digital LDO may be powered from one of two supply pins, depending on the configuration of the REGPWRSEL bit in the EMU_PWRCTRL register. At startup, the digital is powered from the AVDD pin. When powered from AVDD, the LDO current is limited to 20 mA. Out of startup, firmware should configure and enable the DCDC (if desired) and then set REGPWRSEL=1 before increasing the core clock frequency.

Table 9.5. Digital LDO Power Configuration

REGPWRSEL	Digital LDO Power Source	Comments
0 (default)	AVDD pin	Maximum LDO current in this configuration is 20 mA. Firmware should configure REGPWRSEL to 1 after startup.
1	DVDD pin	This configuration supports all core frequencies, and should be used after startup.

9.3.8 IOVDD Connection

The IOVDD supply(s) must be less than or equal to AVDD. IOVDD will typically be connected to either the DC-DC Output (V_{DCDC}) or the main supply.

Because V_{DCDC} will be unpowered (i.e., floating) at startup, if IOVDD is powered from the DC-DC converter then any circuit attached to IOVDD will not be powered until the DC-DC is configured (or the bypass switch is enabled).

Note: This constraint can have serious and unintended side-effects. For example, if IOVDD=V_{DCDC}:

- 1. It isn't directly possible to program an unprogrammed device on a PCB through the serial wire interface. Programming the device requires IOVDD to be present (i.e., for SWCLK, SWDIO, etc), and IOVDD won't be present until after the part is programmed (i.e., the DC-DC is enabled in firmware to power up V_{DCDC}). It is possible to work around this issue, however, by providing an external supply for V_{DCDC} during programming.
- 2. Some unprogrammed devices are preloaded with a bootloader. The bootloader is expecting to read a logic high on the SWCLK pin to determine if the bootloader should execute. With no valid IOVDD voltage present, the code may incorrectly decide to execute the bootloader, which will cause the system to wait in the bootloader until a reset occurs.

Additionally, upon entry into EM4 Shutoff, the DC-DC converter configuration is reset to its default (Unconfigured) configuration. If $IOVDD = V_{DCDC}$, then any circuits attached to IOVDD will remain unpowered until the system is reset to exit EM4 Shutoff, and the DC-DC is configured (or the bypass switch is enabled).

Any application with powering external loads from the DC-DC converter must take into consideration the maximum allowable DC-DC load current. Refer to the data sheet for DC-DC load current specification.

9.3.9 Voltage Scaling

The voltage scaling feature allows for a tradeoff between power and performance. Voltage scaling applies an adjustment to the supply voltage for the on-chip digital logic and memories. For EM0 and EM1 operation, full device performance is supported when the Voltage Scale Level is set to its highest value. The Voltage Scale Level may be set lower when operating the system at slower clock speeds to save power. Voltage scaling does not affect the input or output range for analog peripherals or digital I/O logic levels. For more information about max system frequency supported for different voltage scaling levels. Refer to the CMU chapter and the data sheet specification tables.

Note: Some device sub-systems and operations are only supported at Voltage Scale Level 2.

- Flash write/erase is only supported at Voltage Scale Level 2.
- TRNG operation is only supported at Voltage Scale Level 2.

Separate voltage scaling controls are available for the different energy modes. These are as follows:

- EM0/EM1 Voltage Scaling
- · EM2/EM3 Voltage Scaling
- · EM4H Voltage Scaling

9.3.9.1 EM0/EM1 Voltage Scaling

In energy modes EM0 and EM1, the user can dynamically scale voltages between Voltage Scale Level 2 and Voltage Scale Level 0 using the EM01VSCALE2 and EM01VSCALE0 bitfields in EMU_CMD register. A lower Voltage Scale Level can be used in conjunction with lower processor frequency to reduce power consumption. Once these commands are issued, hardware begins the process of voltage scaling and when done, the VSCALEDONE interrupt is triggered. Users can also poll VSCALEBUSY in EMU_STATUS which indicates that hardware is busy changing the voltage scale setting when set. VSCALE in EMU_STATUS shows the current voltage the system is in at any time.

Note:

- If more than one voltage scaling command is issued in EMU_CMD simultaneously, the lower voltage scaling level has higher priority.
 e.g. priority order: EM01VSCALE0 > EM01VSCALE2.
- The reset value of VSCALE for EM0 and EM1 operation is Voltage Scale Level 2.

When voltage scaling up or down, the user should follow the following sequences in order to ensure proper scaling.

- Voltage Scale Down
 - 1. Decrease system clock frequency to the target frequency
 - 2. Update the wait states of Flash for the target frequency
 - 3. Issue voltage scaling command by setting EM01VSCALE2 or EM01VSCALE0 in EMU_CMD
 - 4. Once Hardware completes voltage scaling up, VSCALEDONE interrupt is set.
- · Voltage Scale Up
 - 1. Issue voltage scaling command by setting EM01VSCALE2 or EM01VSCALE0 in EMU_CMD
 - 2. Wait for hardware to complete voltage scaling. When done, VSCALEDONE interrupt is set.
 - 3. Update the wait states of Flash for the target frequency
 - Increase system clock frequency to the target frequency

Multiple voltage scaling commands are allowed to be issued even when the current voltage scaling is not yet completed. In such a case, the current scaling will be aborted and the last command will be executed. VSCALEDONE interrupt will be issued for every voltage scaling command.

Note: When a hard reset occurs, VSCALE will be set to the reset value (Voltage Scale Level 2). In most cases, a soft reset will not affect the current VSCALE level. However, when a soft reset is issued in the middle of the voltage scaling process, the minimum voltage scale level indicated by VSCALE or the EMU_CMD which triggered the voltage scale operation will be applied and reflected in VSCALE.

9.3.9.2 EM2/EM3 Voltage Scaling

The EM23VSCALE bitfield in EMU_CTRL allows user to independently setup the voltage scaling value for EM2/EM3 energy mode. The EM23VSCALE in EMU_CTRL should be programmed to a level which is less than or equal to VSCALE in EMU_STATUS. This means that EM2/EM3 voltage scaling is always a voltage scaling down process. If EM23VSCALE level in EMU_CTRL is greater than VSCALE level in EMU_STATUS, the VSCALE level will be implemented in EM2/EM3 instead of EM23VSCALE. Upon EM2/EM3 entry, the system will scale down the voltage to a smaller level between VSCALE or EM23VSCALE.

Note: The reset value of EM23VSCALE is Voltage Scale Level 2. Therefore, if user scales EM0/EM1 voltage to Voltage Scale Level 0 (reflected in VSCALE in EMU_STATUS) and enters EM2/EM3, this VSCALE voltage of Voltage Scale Level 0 is maintained in EM2/EM3 as well since this is smaller level between VSCALE and EM23VSCALE.

9.3.9.2.1 EM2/EM3 Voltage Scaling Guidelines

Note that when using EM23VSCALE in EMU_CTRL to scale down EM2/EM3, the scaled down voltage in EM2/EM3 is maintained after waking from EM2/EM3 to EM0/EM1. For example, if VSCALE was at Voltage Scale Level 2 prior to EM2/EM3 entry, and EM23VSCALE was set to Voltage Scale Level 0, the system will scale down to Voltage Scale Level 0 on EM2/EM3 entry. When waking up to EM0/EM1, the system maintains its voltage at Voltage Scale Level 0. Therefore, user must ensure the system clock frequency and Flash wait states are programmed to correct values to support waking up to EM0/EM1 at the lower voltages prior to EM2/EM3 entry.

EM23VSCALEAUTOWSEN bitfield in EMU_CTRL enables hardware to automatically configure the system clock frequency and Flash wait states to support low voltage operation when waking up to EM0/EM1 from EM2/EM3. Therefore, this obviates the need for user to setup the clock frequency and Flash wait states prior to EM2/EM3 entry with EM23VSCALE. When waking up to EM0/EM1, while using EM23VSCALEAUTOWSEN set to 1, the HFRCO will default to its production calibrated 19 MHz frequency.

9.3.9.3 EM4H Voltage Scaling

EM4HVSCALE bitfield in EMU_CTRL allows user to independently setup the voltage scaling levels for EM4H energy mode. The EM4HVSCALE in EMU_CTRL should be programmed to a level which is smaller than or equal to VSCALE level in EMU_STATUS or EM23VSCALE in EMU_CTRL. This means that EM4H voltage scaling is always a voltage scaling down process. If EM4HVSCALE level in EMU_CTRL is greater than level of VSCALE in EMU_STATUS or level of EM23VSCALE in EMU_CTRL, the smaller of VSCALE, EM23VSCALE or EM4HVSCALE levels will be implemented in EM4H.

Note: The reset level of EM4HVSCALE is Voltage Scale Level 2. Therefore, if user scales EM0/EM1 voltage to Voltage Scale Level 0 (reflected in VSCALE in EMU_STATUS) and enters EM4H, this VSCALE voltage of Voltage Scale Level 0 is maintained in EM2/EM3 as well since this is minimum of VSCALE and EM23VSCALE.

9.3.9.3.1 EM4H Voltage Scaling Guidelines

Note that when using EM4HVSCALE in EMU_CTRL to scale down voltage in EM4H, the scaled down voltage in EM4H is maintained after waking from EM4H to EM0/EM1. For example prior to EM4H entry, if VSCALE was at Voltage Scale Level 2 and EM4HVSCALE was set to Voltage Scale Level 0, the system will scale down to Voltage Scale Level 0 on EM4H entry. When waking up to EM0/EM1, the system maintains its voltage at Voltage Scale Level 0.

9.3.9.4 Voltage Scaling Recommended Use

Refer to the data sheet for the maximum supported system frequencies for different Voltage Scaling Levels. Use of the lowest voltage scaling level is recommended for maximum power savings. For any voltage scaling level, it is recommend to use the highest frequency for performance benefits.

Voltage can then be scaled to higher voltage scale levels only when higher system clock frequency is required by the application for a period of time after which user can dynamically scale the voltage back to lower voltage scale levels to continue saving power.

9.3.10 EM2/EM3 Peripheral Retention Disable

Peripherals that are available in EM2 DeepSleep or EM3 Stop can optionally be powered down during EM2 DeepSleep or EM3 Stop. This allows lower energy consumption in these energy modes. However, when powering down, these peripherals are independently reset so the registers lose their configuration values. Therefore, they will have to be reconfigured upon wake-up to EM0 Active if they were previously configured to non reset values.

EMU_EM23PERNORETAINCTRL register can be used to setup unused peripherals for powering down prior to EM2/EM3 entry. Once setup, upon EM2/EM3 entry, all peripherals in the power-down domain will get powered down if all of them are setup to be disabled.

Note: User must ensure that the peripherals being powered down should have their clocks disabled in CMU prior to EM2/EM3 entry.

On waking up from EM2/EM3, EMU_EM23PERNORETAINSTATUS register indicates if the peripherals were powered down by the system and subsequently locked out from register access. Locking out peripherals prevents users from accidentally using peripherals with configurations at their reset state. EMU_EM23PERNORETAINCMD allows user to unlock these peripherals and hence grant access to their registers for updating their configurations.

9.3.11 Brown Out Detector (BOD)

The EFM32 Tiny Gecko 11 contains multiple supply brown out detectors (BODs).

9.3.11.1 AVDD BOD

The EFM32 Tiny Gecko 11 has a fast response BOD on AVDD that is always active. This BOD ensures the minimal supply is provided to the AVDD supply (typically also connected to VREGVDD). Once triggered, the BOD will cause the system to reset.

Note: In EM4 Hibernate/Shutoff a low power version of the AVDD BOD, called EM4BOD, is available to trigger a reset at level lower than in other energy modes. All other BODs are disabled during EM4 Hibernate/Shutoff

9.3.11.2 DVDD and DECOUPLE BOD

Additional BODs will monitor DVDD and DECOUPLE during EM0 Active through EM3 Stop. This can cause a reset to the internal logic, but will not cause a power-on reset or reset the EMU or RTCC.

9.3.12 Voltage Monitor (VMON)

The EFM32 features an extremely low energy Voltage Monitor (VMON) capable of running down to EM4 Hibernate. Trigger points are preloaded but may be reconfigured.

- AVDD X 2
- DVDD
- IOVDD0 and IOVDD1
- BUVDD

Table 9.6. VMON Events

Feature	Condition	AVDD	DVDD	BUVDD	IOVDD
Hysteresis (separate rise and fall triggers)	_	Yes	_	_	_
Supply switch to/from Backup	Fall/Rise	Yes	_	_	_
Interrupt	Fall or Rise	Yes	Yes	Yes	Yes
Wake-Up from EM4 Hibernate	Fall or Rise	Yes	Yes	Yes	Yes

The status of the VMON is reflected in the EMU_STATUS register.

The status of the sticky interrupt can be found at EMU_IF. These interrupt flags also serve as the wake-up source of EM4H when the associated RISEWU and FALLWU bits are set. This means that if these flags are set, EM4H entry will result in an immediate wake-up. To prevent this, these must be cleared by software before EM4H entry.

Note that the VMON has offset high hysteresis, specified in the device Data Sheet. For rising edge detection the threshold will be the threshold setting (as described below) + $V_{VMON\ HST}$, and for falling edge detection the threshold will simply be the threshold setting.

VMON channels are calibrated at two voltages: 1.86 V and 2.98 V. The calibration results (coarse thresholds and fine thresholds for 1.86 V and 2.98 V) are placed in the VMONCAL registers in the DI page. Using these thresholds it is possible to calculate thresholds for the entire supported VMON VDD range, i.e., 1.62 V to 3.4 V. Using the values given in VMONCAL registers, one can calculate $T_{1.86}$, $T_{2.98}$, V_a and V_b .

$$\begin{split} T_{1.86} = & (10 \text{ x VMONCALX_XVDD1V86THRESCOARSE}) + \text{VMONCALX_XVDD1V86THRESFINE}, \\ T_{2.98} = & (10 \text{ x VMONCALX_XVDD2V98THRESCOARSE}) + \text{VMONCALX_XVDD2V98THRESFINE}, \\ V_a = & (1.12) / (T_{2.98} - T_{1.86}), \\ V_b = & 1.86 - (V_a \text{ x T}_{1.86}), \end{split}$$

Figure 9.5. VMON Calibration Equations

Now if it is required to find the coarse and fine thresholds for a certain voltage Y, following equation can be used:

Thres_Y =
$$(Y - V_b) / V_a$$
,
 $Y_{calib} = (Thres_Y \times V_a) + V_b$,

Figure 9.6. VMON Threshold Equations

Thresy should be rounded to the nearest integer. The least significant digit of the rounded Thresy gives the fine threshold and remaining digits give the coarse threshold for Y. These can now be programmed in the relevant EMU_VMONXVDDCTRL register as the coarse and fine thresholds. It may not be possible to set threshold exactly for Y. In that case the closest possible voltage is used. Y_{calib} gives the value of this closest possible voltage.

Consider the example where it is required to set the AVDD rise threshold to 2.2 V (so Y=2.2 V). This means that the EMU_VMO-NAVDDCTRL_RISETHRESCOARSE and EMU_VMONAVDDCTRL_RISETHRESFINE need to be programmed. Here are the steps that should be followed:

- Check VMONCAL0 register. It has the VMON AVDD channel calibrated thresholds for 1.86 V and 2.98 V. Lets assume that the following values are present in the associated bitfields:
 - AVDD1V86THRESCOARSE = 3
 - AVDD1V86THRESFINE = 5
 - AVDD2V98THRESCOARSE = 8
 - AVDD2V98THRESFINE = 7
- Using the above numbers and the VMON calibration equations:
 - $T_{1.86} = 35$
 - $T_{2.98} = 87$
 - $V_a = 21.53 \text{ mV}$
 - $V_b = 1.106 \text{ V}$
- Using the VMON threshold equations (with Y=2.2 V), Thres_Y = 51 (rounded from 50.8) and Y_{calib} = 2.204 V

EMU_VMONAVDDCTRL_RISETHRESCOARSE should be programmed to 5 and EMU_VMONAVDDCTRL_RISETHRESFINE should be programmed to 1 (since Thres $_{Y}$ = 51). With these programmed values, VMON AVDD rise threshold is set for Y_{calib} = 2.204 V, which is the closest programmable threshold.

9.3.13 Powering Off SRAM Blocks

SRAM blocks may be powered off using the EMU_RAMxCTRL RAMPOWERDOWN fields. Selected blocks are powered down in order from the highest to lowest address in each bank. The lowest SRAM block in RAM0 cannot be powered off and will always remain powered on for proper system functionality. The stack must be located in retained memory. Refer to the EMU_RAMxCTRL register descriptions for power configuration options and the associated address ranges.

9.3.14 Temperature Sensor

EMU provides low energy periodic temperature measurement. A temperature measurement is taken every 250 ms, with the 8-bit result stored in EMU->TEMP register.

Note: The EMU temperature sensor is always running (except in EM4 Shutoff) and is independent from the ADC temperature sensor.

The EMU provides the following features around temperature changes

- · Wake-Up from EM4 Hibernate on Temperature Change
- Interrupt from High Level Trip
- Interrupt from Low Level Trip

During production test, the EMU temperature sensor for each device is calibrated at room temperature, with the corresponding calibration temperature and reading stored off in the DI page as follows:

- DEVINFO->CAL.TEMP: This bitfield contains the temperature in degrees C at calibration
- DEVINFO->EMUTEMP: This register contains the EMU->TEMP reading at the calibration temperature stored in DEVINFO->CAL.TEMP

The current calibrated EMU temperature sensor result from EMU->TEMP may be converted to degrees C using the following equation:

T_{J EMU} [°C] = (DEVINFO->CAL.TEMP) + (TEMPCO_{EMxx}) * [(DEVINFO->EMUTEMP) - (EMU->TEMP)]

Figure 9.7. Temperature Calculation

TEMPCO_{EMxx} is a temperature coefficient that varies based on the energy mode at the time of the EMU temperature sensor reading:

- TEMPCO_{EM01} = 0.278 + (DEVINFO->EMUTEMP) / 100
- TEMPCO_{EM234} = 0.268 + (DEVINFO->EMUTEMP) / 100

For maximum accuracy when using the high/low level temperature interrupts, firmware should ensure that TEMPCO_{EM234} is used to set the temperature thresholds in EMU->TEMPLIMITS before entering EM2/3/4. Similarly, when exiting EM2/3/4, the temperature thresholds should be updated using TEMPCO_{EM01}.

Note that an increasing reading in EMU->TEMP corresponds to a decreasing temperature, and vice-versa. If enabled, the TEMPHIGH High Level Limit in EMU-> TEMPLIMITS causes an interrupt flag on a increasing EMU->TEMP reading (i.e., decreasing temperature). Similarly, the TEMPLOW Low Level Limit causes a interrupt flag on a decreasing EMU->TEMP reading (i.e., increasing temperature).

The EMU temperature sensor accuracy is approximately ±10°C over most of the useable temperature range, but may be +15°C at higher temperatures. Accordingly, any use of the EMU temperature sensor should include margin to account for that accuracy.

9.3.15 Registers latched in EM4

The following registers will be latched when entering EM4. After wake-up from EM4, these registers will be reset and require reprogramming prior to writing the EMU_CMD_EM4UNLATCH command.

- CMU_LFRCOCTRL
- CMU LFXOCTRL
- CMU_LFECLKSEL
- CMU_LFECLKEN0
- CMU_LFEPRESC0

9.3.16 Register Resets

Each EMU register requires retaining state in various energy modes and power transitions and will consequently need to be reset with a different condition. The following reset conditions will apply to the appropriate set of registers as marked in the Register Description table.

- · Reset with POR or Hard Pin Reset
- · Reset with POR, Hard Pin Reset, or any BOD reset
- Reset with SYSEXTENDEDRESETn
- Reset with FULLRESETn (default)

If a register field is not marked with a specific reset condition then it is assumed to be reset with FULLRESETn.

9.3.17 Backup Power Domain

EFM32 Tiny Gecko 11 has the possibility to be partly powered by backup battery. The backup power input, BU_VIN, is connected to a power domain in the EFM32 Tiny Gecko 11 containing the RTCC, 128 bytes of data retention and the CRYOTIMER. Figure 9.8 Backup Power Domain Overview on page 246 shows an overview of the backup powering scheme. During normal operation, the entire chip is powered by the main power supply. If the main power supply drains out and the backup mode functionality is enabled, the system enters a low energy mode, equivalent to EM4 Hibernate, and automatically switches over to the backup power supply. The power relationship requirements given in the 9.3.4 Power Configurations must always be adhered to. This means that even when the main supply (VREGVDD/AVDD) falls, the power relationships must stay valid (I.e., IOVDD must be less than or equal to AVDD in all scenarios.

Note: If there is no backup battery inserted in the system, then DISMAXCOMP in EMU_BUCTRL can be set to 1 to save power. This bit must be set to 0 (default value) if the backup battery is present in the system (even if backup mode is not enabled).

Consult the data sheet for the allowable BU VIN input voltage range.

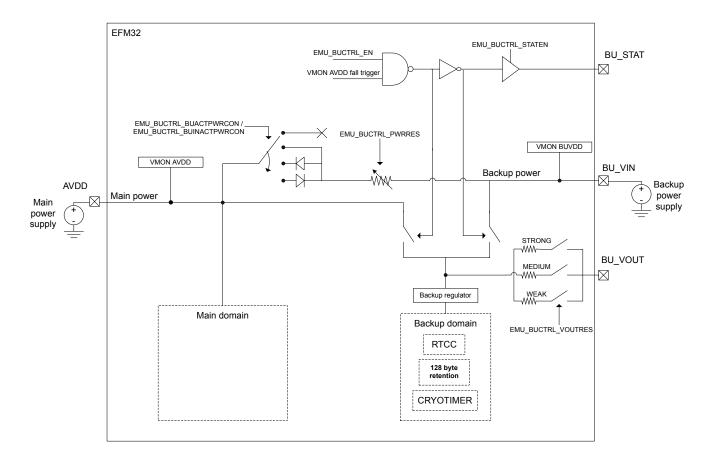


Figure 9.8. Backup Power Domain Overview

9.3.17.1 Entering Backup Mode

To be able to enter backup mode, the EN bit in EMU_BUCTRL and the EN bit in EMU_VMONAVDDCTRL have to be set. When these two are set, the BURDY interrupt flag will be set as soon as the VMON AVDD channel is ready. Status of the backup functionality is also available in the BURDY flag in the EMU_STATUS register. To enter backup mode, the voltage on AVDD has to drop below the programmed fall threshold of the VMON AVDD channel. This threshold is programmed using FALLTHRESCOARSE and FALLTHRESFINE in EMU_VMONAVDDCTRL.

In the above mentioned case, EFM32 Tiny Gecko 11 will try to enter backup mode even if there is no backup power supply present. If the EN bit in EMU_VMONBUVDDCTRL is set as well and AVDD falls below fall threshold, then backup mode will only be entered if BUVDD is above a programmed threshold. This threshold can be programmed using THRESCOARSE and THRESFINE in the EMU_VMONBUVDDCTRL. BURDY status flag will go high when the EN bit in EMU_BUCTRL and the EN bit in EMU_VMONAVDDCTRL are set. If the EN bit in EMU_VMONBUVDDCTRL is now set, then immediately after that the user should wait on the BURDY status flag to first go low and then go high again (the flag will go high when the VMON BUVDD has also become ready). Note that enabling the BUVDD VMON monitoring causes a drain of 2 µA from the backup power supply in EM0 Active.

The BU_STAT pin can be used to indicate whether or not the system is in backup mode. To enable exporting of the backup mode status to BU_STAT pin, set STATEN in EMU_BUCTRL. When enabled, BU_STAT pin is driven to BU_VIN if backup mode is active and to ground otherwise.

Note:

- When EN in EMU_BUCTRL is set, then EM4 Shutoff entry is blocked. All software based EM4 Shutoff entries will result in an entry
 to EM4 Hibernate. This is a safety feature since it is not possible to enter backup mode if the chip is in EM4 Shutoff.
- If DCDC is ON, it is turned off when entering backup mode.
- The RTCC includes functionality for storing a timestamp when the system enters backup mode. See the RTCC chapter for details.

9.3.17.2 Exiting Backup Mode

To exit backup mode, the voltage on AVDD has to be above the rise threshold programmed in EMU_VMONAVDDCTRL. RISETHRE-COARSE and RISETHRESFINE in EMU_VMONAVDDCTRL decides threshold for backup mode exit. When leaving backup mode, a system reset is triggered (same as EM4 Hibernate exit) in which backup domain is not reset. When backup mode has been active, the BUMODERST bit in RMU_RSTCAUSE is set (both EM4RST and BUMODERST bits in RMU_RSTCAUSE will be set if checked after backup mode exit). Figure 9.9 Entering and Leaving Backup Mode on page 247 illustrates how the VMON monitoring on AVDD can be programmed to implement hysteresis on entering and exiting backup mode.

Backup mode is also exited on a hard pin reset or if a brown out occurs on the backup power supply.

Note: Exit from backup mode on AVDD rise happens independent of whether the RISEWU bit in EMU_VMONAVDDCTRL is set or not.

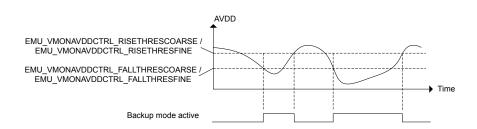


Figure 9.9. Entering and Leaving Backup Mode

9.3.17.3 Backup Pads

There are three backup pads, i.e., BU_VIN, BU_VOUT and BU_STAT. When these are being used for backup, then no other module should drive these pads. Following sequence can be followed to ensure this:

- These should be disabled using the Mode register (GPIO_Px_MODEL/GPIO_Px_MODEH)
- DOUT for these should be set to 0 using GPIO_Px_DOUT (if DOUT remains set, then these will be pulled-up even if disabled)
- These should be locked using GPIO_Px_PINLOCKN

9.3.17.4 Threshold Calibration

Thresholds for backup entry and backup exit are monitored by VMON. Calibrated threshold values (coarse, fine) for two voltages are given in DI page for all VMON channels. All other values between these two voltages can be found by linear interpolation.

9.3.17.5 Backup Battery Charging

The EFM32 Tiny Gecko 11 includes functionality for charging of the backup battery. This is done by connecting the main power and the backup power through a resistor, and optionally a diode. The connection is configured individually for when in backup mode and when in normal mode. When in normal mode, the connection is configured in BUINACTPWRCON in EMU_BUCTRL. BUACTPWRCON in EMU_BUCTRL configures the connection when in backup mode. The series resistance between the two power domains is configured in PWRRES in EMU_BUCTRL, this configuration applies both to backup mode and normal mode.

9.3.17.6 Supply Voltage Output

To be able to power external devices, the supply voltage for the backup domain is available as an output. Three switches connect the backup supply voltage to the BU_VOUT pin. To be able to control the series resistance, the switches have different strengths: weak, medium, and strong (strong connection has the lowest resistance). The switches are controlled using the VOUTRES in EMU_BUCTRL. For resistor values, refer to the device data sheet Electrical Characteristics.

9.3.17.7 Voltage Probing

It is possible to internally probe the voltage levels at AVDD and BU_VIN using the ADC. To probe AVDD, AVDD needs to be selected in POSSEL of ADCn_SINGLECTRL before performing the ADC conversion. In order to probe BU_VIN, BUVINPROBEEN in EMU_BUCTRL needs to be set first. Then BUVDD needs to be selected in the POSSEL of ADCn_SINGLECTRL before performing the conversion. The voltage measured by the ADC on the BUVDD channel will be 1/8 of the actual BU_VIN voltage, meaning that the result needs to be multiplied by 8 to get the correct measurement. BU_VOUT cannot be probed internally. However, BU_VOUT can be externally connected to any pin accessible by the ADC. When making the external connection, the user must ensure that the ADC pin is not driven to a voltage higher than the ADC power when the chip is in main mode (i.e., not in backup mode). This is already taken care of in the chip if the ADC is not powered by the DCDC (i.e., in main mode, BU_VOUT is the same as AVDD and AVDD also powers the ADC). If the DCDC is used to power the ADC, then the user must divide BU_VOUT outside the chip by at least a factor of 4 before feeding it to the ADC pin. In backup mode, external connection of BU_VOUT with the ADC pin does not create any issues (as the ADC is not available in backup mode).

9.3.17.8 EM4 Hibernate vs Backup Mode

Backup mode is a special version of EM4 Hibernate, with only three key differences:

- EM4 Hibernate has GPIO retention capability which is not present in backup mode.
- EM4 Hibernate has multiple wakeup sources shown in Table 9.3 EMU Wake-Up Triggers from Low Energy Modes on page 233. Backup mode can only be exited when AVDD goes above rise threshold, on a hard pin reset or on a brown out on BU_VIN.

9.3.17.9 Oscillators in Backup Mode

Backup mode is equivalent to EM4 Hibernate, therefore oscillators available in EM4 Hibernate are also available in backup mode. Note that the chosen oscillator may need to be retained (using EMU_EM4CTRL) in order to keep it running in backup mode (settings done for EM4 Hibernate also apply to backup mode).

9.3.17.10 Brown Out Detection in Backup Mode

When backup mode is entered, the EM4BOD switches from monitoring AVDD to monitoring BU_VIN. A brown out on BU_VIN (treated the same as AVDD brown out in EM4 Hibernate) results in an exit from backup mode.

9.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description			
0x000	EMU_CTRL	RW	Control Register			
0x004	EMU_STATUS	R	Status Register			
0x008	EMU_LOCK	RWH	Configuration Lock Register			
0x00C	EMU_RAM0CTRL	RW	Memory Control Register			
0x010	EMU_CMD	W1	Command Register			
0x018	EMU_EM4CTRL	RW	EM4 Control Register			
0x01C	EMU_TEMPLIMITS	RW	Temperature Limits for Interrupt Generation			
0x020	EMU_TEMP	R	Value of Last Temperature Measurement			
0x024	EMU_IF	R	Interrupt Flag Register			
0x028	EMU_IFS	W1	Interrupt Flag Set Register			
0x02C	EMU_IFC	(R)W1	Interrupt Flag Clear Register			
0x030	EMU_IEN	RW	Interrupt Enable Register			
0x034	EMU_PWRLOCK	RW	Regulator and Supply Lock Register			
0x03C	EMU_PWRCTRL	RW	Power Control Register			
0x040	EMU_DCDCCTRL	RW	DCDC Control			
0x04C	EMU_DCDCMISCCTRL	RW	DCDC Miscellaneous Control Register			
0x050	EMU_DCDCZDETCTRL	RW	DCDC Power Train NFET Zero Current Detector Control Register			
0x054	EMU_DCDCCLIMCTRL	RW	DCDC Power Train PFET Current Limiter Control Register			
0x058	EMU_DCDCLNCOMPCTRL	RW	DCDC Low Noise Compensator Control Register			
0x05C	EMU_DCDCLNVCTRL	RWH	DCDC Low Noise Voltage Register			
0x064	EMU_DCDCLPVCTRL	RW	DCDC Low Power Voltage Register			
0x06C	EMU_DCDCLPCTRL	RW	DCDC Low Power Control Register			
0x070	EMU_DCDCLNFREQCTRL	RW	DCDC Low Noise Controller Frequency Control			
0x078	EMU_DCDCSYNC	R	DCDC Read Status Register			
0x090	EMU_VMONAVDDCTRL	RW	VMON AVDD Channel Control			
0x094	EMU_VMONALTAVDDCTRL	RW	Alternate VMON AVDD Channel Control			
0x098	EMU_VMONDVDDCTRL	RW	VMON DVDD Channel Control			
0x09C	EMU_VMONIO0CTRL	RW	VMON IOVDD0 Channel Control			
0x0A4	EMU_VMONBUVDDCTRL	RW	VMON BUVDD Channel Control			
0x0BC	EMU_BUCTRL	RW	Backup Power Configuration Register			
0x0EC	EMU_DCDCLPEM01CFG	RW	Configuration Bits for Low Power Mode to Be Applied During EM01, This Field is Only Relevant If LP Mode is Used in EM01			
0x100	EMU_EM23PERNORETAINCMD	W1	Clears Corresponding Bits in EM23PERNORETAINSTATUS Unlocking Access to Peripheral			
0x104	EMU_EM23PERNORETAINSTATUS	R	Status Indicating If Peripherals Were Powered Down in EM23, Subsequently Locking Access to It			

Offset	Offset Name Type		Description				
0x108	EMU EM23PERNORETAINCTRL	RW	When Set Corresponding Peripherals May Get Powered Down in EM23				

9.5 Register Description

9.5.1 EMU_CTRL - Control Register

															_
Offset				Bit Po	osition										
0x000	30 30 29 27 27	24 24 23 23 22	20 20	18 19 19	15 4	13	1 2	6	<u></u>	2	4	က	7	_	0
Reset				0×0				0×0			0	0	0	0	
Access				RW				RW			Z.	Z M	RW	RW	
Name				EM4HVSCALE				EM23VSCALE			EM23VSCALEAUTOWSEN	EM01LD	EM2BODDIS	EM2BLOCK	
Bit	Name	Reset	Access	Description	1										
31:18	Reserved	To ensure com	patibility v	vith future de	vices, al	ways writ	te bits t	o 0. Mo	re info	rmati	on ir	1.2	? Co	nver	 -
17:16	EM4HVSCALE	0x0	RW	EM4H Volta	age Sca	le									
	Set EM4H voltage. Entry to EM4H will trigger voltage scaling to this voltage if voltage scale level in EM4HVSCALE is less than that of VSCALE										;				
	Value	Mode		Description											_
	0	VSCALE2		Voltage Sca	ile Level	2									
	2	VSCALE0	Voltage Scale Level 0												
	3	RESV		RESV											_
15:10	Reserved	To ensure com	patibility v	lity with future devices, always write bits to 0. More information in 1.2 Conven-											
9:8	EM23VSCALE	0x0	RW	EM23 Volta	ge Scal	е									
	Set EM23 voltage. En than that of VSCALE		trigger vol	Itage scaling	to this vo	oltage if v	/oltage	scale le	evel in	EM2	3VS(CAL	E is	less	er
	Value	Mode		Description											_
	0	VSCALE2		Voltage Sca	ile Level	2									_
	2	VSCALE0		Voltage Sca	ile Level	0									
	3	RESV		RESV											_
7:5	Reserved	To ensure com	patibility v	vith future de	vices, al	ways writ	te bits t	o 0. Mo	re info	rmati	on ir	1.2	? Co	nver	-
4	EM23VSCALEAU- TOWSEN	0	RW	Automatica EM2 or EM3				nd Fre	quenc	y to \	Nak	eup	Fro	m	
	With voltage scaling on EM2/3 entry, wakeup to EM0/1 will be at the same voltage as EM2. When this bit is set the Flash wait states and CMU clock frequency are automatically configured to safe value without needing software to configure it prior to EM2/3 entry.														

prior to EM2/3 entry.

Bit	Name	Reset	Access	Description					
3	EM01LD	0	RW	Reserved for internal use. Do not change.					
	Reserved for interna	al use. Do not ch	use. Do not change.						
2	EM2BODDIS	0	RW	Disable BOD in EM2					
	This bit is used to di	sable BODs to i	able BODs to minimize current in EM2. Reset with POR or Hard Pin Reset						
1	EM2BLOCK	0	RW	Energy Mode 2 Block					
	This bit is used to pr	is bit is used to prevent the MCU from entering Energy Mode 2 or 3.							
0	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-					

9.5.2 EMU_STATUS - Status Register

Offset										Bit I	P08	sitic	on														
0x004	33 30 29 28 27	56	25	23	22	72	20	9	8	17 9	2	15	4	13	12	7	10	О	ω	7	9	5	4	₈	2	-	0
Reset		0		1			0		0	000					0				0	0			0	0	0	0	0
Access		2					r		<u> </u>	2	+				2				2	2			2	2	2	2	<u>۳</u>
						'	_								_				<u> </u>	_			-	<u> </u>		_	_
Name		TEMPACTIVE				1	EM4IORE1		VSCALEBUSY	VSCALE					BURDY				VMONFVDD	VMONBUVDD			VMONIO0	VMONDVDD	VMONALTAVDD	VMONAVDD	VMONRDY
Bit	Name		Reset			Acc	ess	E)es	criptio	on																
31:27	Reserved		To ens	sure	сот	oatib	ility	with	h fu	ture d	evi	ces	, alv	vays	s wr	ite k	oits t	o 0.	Мо	re ir	nfor	mati	on ii	1.2	? Co	nver	7-
26	TEMPACTIVE		0			R		Т	em	perat	ure	e Me	eası	ıreı	mer	ıt A	ctiv	Э									
	This signal is set d	urin	g EMU	Tem	pera	ture	me	asuı	rem	ent																	
25:21	Reserved		To ens	sure	сот	oatib	ility	with	h fu	ture d	evi	ces	, alv	vays	s wr	ite k	oits t	o 0.	Мо	re ir	nfor	mati	on ii	1.2	? Co	nver	7-
20	EM4IORET		0			R		I	O R	etent	ion	Sta	atus	;													
	The status of IO re EM4UNLATCH in																E in	EM	1U_E	EM4	СТ	RL.	Clea	ired	by s	ettin	ng
	Value		Mode					С	Desc	criptio	n																
	0		DISAE	BLED)			10	O re	etentic	n is	s di	sabl	ed.													
	1		ENAB	LED				10	O re	etentic	n is	s er	nble	d.													_
19	Reserved		To ens	sure	сот	oatib	ility	with	h fu	ture d	evi	ces	, alv	vays	s wr	ite k	oits t	o 0.	Мо	re ir	nfor	mati	on ii	1.2	? Co	nver	7-
18	VSCALEBUSY		0			R		S	Syst	tem is	В	usy	Sca	alin	g V	olta	ge										
	Indicates that the ster while this is set																		/I01\	/SC	AL	E2 ir	n EM	1U_0	CMC	reg	is-
17:16	VSCALE		0x0			R		C	Curi	rent V	olt	age	Sc	ale	Val	ue											
	This shows the cur exit	rrent	systen	ı vol	tage	valu	e. T	his	get	s upda	ate	d af	ter \	/SC	CAL	EDC	ONE	inte	errup	ot or	on	EM	23 e	xit o	r EN	14H	
	Value		Mode					С	Desc	criptio	n																_
	0		VSCA	LE2				٧	/olta	age So	cale	e Le	evel	2													_
	2		VSCA	LE0				٧	/olta	age So	cale	e Le	evel	0													
	3		RESV					F	RES	V																	
15:13	Reserved		To ens	sure	сот	oatib	ility	with	h fu	ture d	evi	ces	, alv	vays	s wr	ite k	oits t	o 0.	Мо	re ir	nfor	mati	on ii	1.2	? Co	nver	7-
12	BURDY		0			R		Е	Bac	kup N	lod	le R	ead	ly													
	Set when the Back	kup p	ower f	uncti	onali	ty is	rea	dy.																			

Bit	Name	Reset	Access	Description
11:9	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
8	VMONFVDD	0	R	VMON VDDFLASH Channel
	Indicates the status	of the VDDFLAS	H channel	of the VMON.
7	VMONBUVDD	0	R	VMON BUVDD Channel
	Indicates the status	of the BUVDD ch	nannel of th	e VMON.
6:5	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
4	VMONIO0	0	R	VMON IOVDD0 Channel
	Indicates the status	of the IOVDD0 cl	hannel of th	ne VMON.
3	VMONDVDD	0	R	VMON DVDD Channel
	Indicates the status	of the DVDD cha	nnel of the	VMON.
2	VMONALTAVDD	0	R	Alternate VMON AVDD Channel
	Indicates the status	of the Alternate A	AVDD chan	nel of the VMON.
1	VMONAVDD	0	R	VMON AVDD Channel
	Indicates the status	of the AVDD cha	nnel of the	VMON.
0	VMONRDY	0	R	VMON Ready
	VMON status. When of the enabled chanr			all the enabled channels are ready. When low, it indicates that one or more

9.5.3 EMU_LOCK - Configuration Lock Register

	_				·					•																						
Offset															Bi	t Po	sitio	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	0	∞	7	9	5	4	. ო	2	_	0
Reset		•						•	•				•							•		•		0	nnnnn							
Access								A H																								
Name																								7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	LOCANET							
Bit	Na	me					Re	eset			Ac	ces	s	Des	crip	tior																
31:16	Re	serv	ed					ens ens	ure	com	pati	bilit	y wi	th fu	ıture	de	vices	s, alı	way	s wi	ite b	oits	to 0.	Мо	re ir	nforr	natio	on i	in 1.2	Coi	nven)-

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	LOCKKEY	0x0000	RWH	Configuration Lock Key

Write any other value than the unlock code to lock all EMU registers, except the interrupt registers and regulator control registers, from editing. Write the unlock code to unlock. When reading the register, bit 0 is set when the lock is enabled.

Mode	Value	Description
Read Operation		
UNLOCKED	0	EMU registers are unlocked
LOCKED	1	EMU registers are locked
Write Operation		
LOCK	0	Lock EMU registers
UNLOCK	0xADE8	Unlock EMU registers

9.5.4 EMU_RAM0CTRL - Memory Control Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	ω	7	9	2	4	က	7	- (0
Reset		•			•	•						•	•				•							•			•		•	·	0 0 0	
Access																															X ≷	
Name																															RAMPOWERDOWN	

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure cortions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	RAMPOWERDOWN	0x0	RW	RAM0 Blockset Power-down
	RAM blockset power-	down in EM23 v	vith full acc	ess in EM01. Block 0 may never be powered down.
	Mode	Value		Description
	NONE	0x00		None of the RAM blocks powered down
	BLK3	0x4		Power down RAM block 3 (address range 0x20006000-0x20007FFF)
	BLK2TO3	0x6		Power down RAM blocks 2 and above (address range 0x20004000-0x20007FFF)
	BLK1TO3	0x7		Power down RAM blocks 1 and above (address range 0x20002000-0x20007FFF)

9.5.5 EMU_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset					'							•		•		'	•									0		0		'		0
Access																										W		W				W1
Name																										EM01VSCALE2		EM01VSCALE0				EM4UNLATCH

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
6	EM01VSCALE2	0	W1	EM01 Voltage Scale Command to Scale to Voltage Scale Level 2
	Start EM01 voltage s 2 followed by an VS			vel 2. Write to this register will trigger voltage scaling to Voltage Scale Level
5	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
4	EM01VSCALE0	0	W1	EM01 Voltage Scale Command to Scale to Voltage Scale Level 0
	Start EM01 voltage s 0 followed by an VS			vel 0. Write to this register will trigger voltage scaling to Voltage Scale Level
3:1	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	EM4UNLATCH	0	W1	EM4 Unlatch
	wakeup, these registion from EM4 to EM	ters will be reset 10, the unlatch o	and can ha command sl	latched in order to maintain constant functionality throughout EM4. Upon ave contradictory values to the latched values. To ensure a seamless transihould be given after properly reconfiguring these latched registers. The uncondition but is only needed after EM4 wakeup.

9.5.6 EMU_EM4CTRL - EM4 Control Register

Offset				Bif	t Posi	tion											
0x018	330 239 228 227 228	23 24 25	20 21		9 t	1	5 7	11	10		T		.0 -				
Reset	w w a a a		1 0 0 7	XO					-	n ∞	7	9	0x0 4	က	7	_	0
														0	0	0	0 >
Access				>	:								N. N.	₩ N	R W	R.	N N N
Name				EM4FINTRY									EM4IORETMODE	RETAINULFRCO	RETAINLFXO	RETAINLFRCO	EM4STATE
Bit	Name	Reset	Access	Descript	tion												
31:18	Reserved	To ensure co	mpatibility v	with future	device	es, alv	vays w	rite b	its to	0. Mc	ore in	nform	nation ir	1.2	? Co	nven)-
17:16	EM4ENTRY	0x0	W1	Energy I	Mode	4 Ent	ry										
	This register is used t Energy Mode 4.	o enter the Ene	ergy Mode 4	l sequence	e. Writ	ing the	e sequ	ence	2,3,2	,3,2,3	3,2,3,	,2 wi	ll enter	the	part	into	
15:6	Reserved	To ensure co	mpatibility v	with future	device	es, alv	vays w	rite b	its to	0. Mc	ore in	nform	nation ir	1.2	? Co	nven)-
5:4	EM4IORETMODE	0x0	RW	EM4 IO I	Reten	tion [Disable	•									
	Determine when IO re	etention will be	applied and	I removed.													
	Value	Mode		Descripti	ion												_
	0	DISABLE		No Reter	ntion:	Pads	enter r	eset	state	when	ente	ering	EM4				
	1	EM4EXIT		Retentio	n thro	ıgh E	M4: Pa	ds e	nter re	eset s	state	whe	n exitin	g EN	Л4		
	2	SWUNLATC	H	Retention ter to ren				d Wa	keup:	softw	vare v	write	s UNLA	ATC	H re	gis-	
3	RETAINULFRCO	0	RW	ULFRCC) Reta	in Du	ring E	M4S									
	Retain the ULFRCO	•	,	•	dy rur	ning	ULFRO	CO w	ill be r	etain	ed in	its r	unning	stat	e in	EM4	١.
	ULFRCO will always	be retained if E	M4STATE I	IS IN EIVI4H	l.	J											
2	ULFRCO will always RETAINLFXO	be retained if E 0	RW	LFXO R			g EM4										
2		0	RW	LFXO R	etain l	Durin	_		be re	taine	d in i	ts ru	nning s	tate	in E	:M4.	
2	RETAINLFXO	0	RW	LFXO R	etain I eady r	Durin unnin	g LFX(D will	be re	taine	d in i	ts ru	nning s	tate	in E	M4.	
	RETAINLFXO Retain the LFXO upo	0 n EM4(SH/H) e 0	RW entry. If set to RW	LFXO Re o 1, an alre	etain I eady r Retair	Durin unnin	g LFX(O will									4.
	RETAINLFXO Retain the LFXO upo RETAINLFRCO	0 n EM4(SH/H) e 0	RW entry. If set to RW	LFXO Re o 1, an alre	etain I eady r Retair eady r	Durin unnin unnin unnin	g LFX(ing EM	O will									4.
1	RETAINLFXO Retain the LFXO upo RETAINLFRCO Retain the LFRCO up	0 n EM4(SH/H) e 0 oon EM4(S/H) e 0 n will enter Hibe CC. Otherwise	RW entry. If set to RW entry. If set to RW ernate state when enter	LFXO Ro o 1, an aire LFRCO I o 1, an aire Energy I (EM4H) w ring in EM-	etain I eady r Retair eady r Mode then e 4, the	During unning n Duri unnin 4 Sta	g LFX(ing EM g LFR(te g EM4	O will 14 CO w	ill be	retair	ned ir	n its	running will be	ı sta	te in	EM4	d
1	RETAINLFXO Retain the LFXO upo RETAINLFRCO Retain the LFRCO up EM4STATE When set, the system mode allowing for RT	0 n EM4(SH/H) e 0 oon EM4(S/H) e 0 n will enter Hibe CC. Otherwise	RW entry. If set to RW entry. If set to RW ernate state when enter	LFXO Ro o 1, an aire LFRCO I o 1, an aire Energy I (EM4H) w ring in EM-	etain I eady r Retair eady r Mode when e 4, the	During unning n Duri unnin 4 Sta	g LFX(ing EM g LFR(te g EM4	O will 14 CO w	ill be	retair	ned ir	n its	running will be	ı sta	te in	EM4	d
1	RETAINLFXO Retain the LFXO upo RETAINLFRCO Retain the LFRCO up EM4STATE When set, the system mode allowing for RT Shutoff state (EM4S)	0 n EM4(SH/H) e 0 non EM4(S/H) e 0 n will enter Hibe CC. Otherwise	RW entry. If set to RW entry. If set to RW ernate state when enter	LFXO Ro o 1, an alro to 1, an alro Energy I (EM4H) w ring in EMard Pin Re	etain I eady r Retair eady r Mode when e 4, the eset	Durin unnin unnin unnin 4 Sta nterin regula	g LFX(ing EM g LFR(te g EM4 ator wil	O will 14 CO w	ill be	retair	ned ir	n its	running will be	ı sta	te in	EM4	d

9.5.7 EMU_TEMPLIMITS - Temperature Limits for Interrupt Generation

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•		•	•		•			•	•	•	•		0		•) 	L			•			•	0	noxo			
Access																₩				7	<u>}</u>							Ž	≩ Y			
Name																EM4WUEN												Č	I EMPLOW			

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
16	EM4WUEN	0	RW	Enable EM4 Wakeup Due to Low/high Temperature
	Enable EM4 wake	up from low or hi	gh temperati	ure from EM4H
15:8	TEMPHIGH	0xFF	RW	Temperature High Limit
		ed during a temp	•	riodic temperature measurement is equal to or higher than this value. If the surement (TEMPACTIVE=1), the limit update will be delayed until the end of
7:0	TEMPLOW	0x00	RW	Temperature Low Limit

The TEMPLOW interrupt flag is set when a periodic temperature measurement is equal to or lower than this value. If the low limit is changed during a temperature measurement (TEMPACTIVE=1), the limit update will be delayed until the end of the temperature measurement.

9.5.8 EMU_TEMP - Value of Last Temperature Measurement

Offset															Bi	t Pc	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																												>>>	\			
Access																												Δ	۷			
Name																												TEMD	L 2 1			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	TEMP	0xXX	R	Temperature Measurement

Value of last periodic temperature measurement. Value is asynchronously updated. Value is stable for 250 ms after a temperature-based interrupt (TEMPHIGH, TEMPLOW, or TEMP) and can be read with a single read operation. If register is read not in response to a temperature-based interrupt, multiple readings should be taken until two consecutive values are the same.

9.5.9 EMU_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	56	25	24	23	22	71	20	9	8	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	1	0
Reset	0	0	0				0	0		0		0	0	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0
Access	~	22	2				<u>~</u>	<u>~</u>		2		<u>~</u>	<u>~</u>	22	22	~	22	<u>~</u>	<u>~</u>	œ					2	~	~	~	22	<u>~</u>	2	<u>~</u>
Name	TEMPHIGH	TEMPLOW	TEMP				VSCALEDONE	EM23WAKEUP		BURDY		DCDCINBYPASS	DCDCLNRUNNING	DCDCLPRUNNING	NFETOVERCURRENTLIMIT	PFETOVERCURRENTLIMIT	VMONFVDDRISE	VMONFVDDFALL	VMONBUVDDRISE	VMONBUVDDFALL					VMONIOORISE	VMONIO0FALL	VMONDVDDRISE	VMONDVDDFALL	VMONALTAVDDRISE	VMONALTAVDDFALL	VMONAVDDRISE	VMONAVDDFALL
Bit	Name Reset Access Description TEMPHIGH 0 R Temperature High Limit Reached Set when the value of a periodic temperature measurement is higher or equal than TEMPHIGH in EMU_TEMPLIMITS TEMPLOW 0 R Temperature Low Limit Reached																															
31	Set when the value of a periodic temperature measurement is higher or equal than TEMPHIGH in EMU_TEMPLIMITS TEMPLOW 0 R Temperature Low Limit Reached																															
	Set when the value of a periodic temperature measurement is higher or equal than TEMPHIGH in EMU_TEMPLIMITS															S																
30	Set when the value of a periodic temperature measurement is higher or equal than TEMPHIGH in EMU_TEMPLIMITS TEMPLOW 0 R Temperature Low Limit Reached																															
	Set when the value of a periodic temperature measurement is higher or equal than TEMPHIGH in EMU_TEMPLIMITS TEMPLOW 0 R Temperature Low Limit Reached Set when the value of a periodic temperature measurement is lower or equal than TEMPHIGH in EMU_TEMPLIMITS																															
29	TEMPLOW 0 R Temperature Low Limit Reached Set when the value of a periodic temperature measurement is lower or equal than TEMPHIGH in EMU_TEMPLIMITS																															
28:26		serv		ne	w pe	HIOC											ices/	s alı	wav	s wr	ite h	its t	·ο 0	Mo	re in	forn	natio	an ir	12	Col	nver)_
20.20	710	3010	cu				tior		uic	COIII	pati	Omic	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.ii iu	turc	uci	71000	s, an	way	S WI	ne b	nis i	<i>O 0.</i>	1010	ic iii	10111	iatic	<i>311 11</i>	1 1.2	001	1001	
25	VS	CAL	ED	ONI	Ε		0				R		•	Volt	age	Sca	ale S	Step	s D	one	IRC)										
	clo	ck fr	equ	enc	en a y af f BO	ter tl	nis iı	nteri	rupt.	For	vol	tage	do	wng	rade	e, th	is wi	ill in	dica	te th	nat h	ard	war	e ha	s fin	ishe	ed a	ll the				
24	EM	123V	VAK	EU	Р		0				R		1	Wak	eup	IR	Q Fr	om	EM	2 an	d E	М3										
					en th												nis ir	nterr	upt	can	be ı	used	d to	run	initia	aliza	tion	coc	le ne	eed '	to	
23	Re	serv	red				To tion		ure	com	pati	bility	/ wit	th fu	ture	de	/ices	s, alı	way	s wr	ite b	its t	o 0.	Мо	re in	forn	natio	on ir	1.2	Col	nver	7-
22	BU	'RD	Y				0				R		ı	Вас	kup	Fu	nctio	onal	lity	Rea	dy I	nter	rup	t Fla	ag							
	Se	t wh	en tl	he I	Back	up f	unc	tiona	ality	is re	ady	for	use	٠.																		
21	Re	serv	red				To tion		ure	com	pati	bility	y wit	th fu	ture	de	/ices	s, alı	way	s wr	ite b	its t	o 0.	Мо	re in	forn	natio	on ir	1.2	Col	nver	1-
20	DC	DCI	INB	ΥPΑ	SS		0				R		I	DCE	C is	s in	Вур	ass	•													
	DC	DC	is in	by	pass	3																										
19					NIN		0				R						Rui		_													
					onc		e Do	CDC	reg	julat		as s																				
18					NIN		0				R						Rui		_													
	Thi	is fla	ig is	set	onc	e th	e Do	CDC	reg	julat	or h	as s	start	ed t	o rui	n in	LP r	nod	е													

				Livio - Energy Management Offic
Bit	Name	Reset	Access	Description
17	NFETOVERCUR- RENTLIMIT	0	R	NFET Current Limit Hit
	Reserved for internal	use.		
16	PFETOVERCUR- RENTLIMIT	0	R	PFET Current Limit Hit
	Reserved for internal	use.		
15	VMONFVDDRISE	0	R	VMON VDDFLASH Channel Rise
	A rising edge on VMC	N VDDFLASH	channel ha	s been detected.
14	VMONFVDDFALL	0	R	VMON VDDFLASH Channel Fall
	A falling edge on VM	ON VDDFLASH	channel ha	as been detected.
13	VMONBUVDDRISE	0	R	VMON BUVDD Channel Rise
	A rising edge on VMC	ON BUVDD chai	nnel has be	een detected.
12	VMONBUVDDFALL	0	R	VMON BACKUP Channel Fall
	A falling edge on VM0	ON BUVDD cha	nnel has b	een detected.
11:8	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7	VMONIO0RISE	0	R	VMON IOVDD0 Channel Rise
	A rising edge on VMC	N IOVDD0 cha	nnel has b	een detected.
6	VMONIO0FALL	0	R	VMON IOVDD0 Channel Fall
	A falling edge on VM0	ON IOVDD0 cha	annel has b	een detected.
5	VMONDVDDRISE	0	R	VMON DVDD Channel Rise
	A rising edge on VMC	ON DVDD chanr	nel has bee	n detected.
4	VMONDVDDFALL	0	R	VMON DVDD Channel Fall
	A falling edge on VM0	ON DVDD chan	nel has bee	en detected.
3	VMONALTAVDD- RISE	0	R	Alternate VMON AVDD Channel Rise
	A rising edge on Alter	nate VMON AV	DD channe	el has been detected.
2	VMONALTAVDD- FALL	0	R	Alternate VMON AVDD Channel Fall
	A falling edge on Alte	rnate VMON AV	/DD chann	el has been detected.
1	VMONAVDDRISE	0	R	VMON AVDD Channel Rise
	A rising edge on VMC	N AVDD chanr	nel has bee	n detected.
0	VMONAVDDFALL	0	R	VMON AVDD Channel Fall
	A falling edge on VM0	ON AVDD chan	nel has bee	en detected.
-				

9.5.10 EMU_IFS - Interrupt Flag Set Register

Offset															Bi	t Pc	siti	on														
0x028	33	99	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	7	_	0
Reset	0	0	0				0	0		0		0	0	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0
Access	W	W1	W1				N K	W1		W1		W1	W1	W1	W1	W	W1	W	W1	W					N V	W	W	W1	W1	W1	W1	W
Name	TEMPHIGH	TEMPLOW	TEMP				VSCALEDONE	EM23WAKEUP		BURDY		DCDCINBYPASS	DCDCLNRUNNING	DCDCLPRUNNING	NFETOVERCURRENTLIMIT	PFETOVERCURRENTLIMIT	VMONFVDDRISE	VMONFVDDFALL	VMONBUVDDRISE	VMONBUVDDFALL					VMONIOORISE	VMONIO0FALL	VMONDVDDRISE	VMONDVDDFALL	VMONALTAVDDRISE	VMONALTAVDDFALL	VMONAVDDRISE	VMONAVDDFALL
Bit	Na	me					Re	set			Ac	ces	s l	Des	crip	tion																
31	TE	MPI	HIGH	Н			0				W1		;	Set '	TEN	1PH	IGH	Inte	erru	pt F	lag											
	Wr	Write 1 to set the TEMPHIGH interrupt flag TEMPLOW 0 W1 Set TEMPLOW Interrupt Flag Write 1 to set the TEMPLOW interrupt flag																														
30	TE	Vrite 1 to set the TEMPHIGH interrupt flag EMPLOW 0 W1 Set TEMPLOW Interrupt Flag Vrite 1 to set the TEMPLOW interrupt flag																														
	Wr	TEMPLOW 0 W1 Set TEMPLOW Interrupt Flag Write 1 to set the TEMPLOW interrupt flag																														
29	TE	Vrite 1 to set the TEMPHIGH interrupt flag EMPLOW 0 W1 Set TEMPLOW Interrupt Flag Vrite 1 to set the TEMPLOW interrupt flag																														
	Wr	ite 1	to s	set	the	TEM	P in	terrı	ıpt f	lag																						
28:26	Re	serv	red				To tion		ure	com	pati	bility	y wit	th fu	ture	dev	/ices	s, alı	way.	s wr	rite b	oits t	to 0	. Мо	re ir	forn	natio	on in	1.2	Co	nver	1-
25	VS	CAL	.ED	ON	E		0				W1		;	Set '	vsc	AL	EDC	NE	Inte	erru	pt F	lag										
	Wr	ite 1	to s	set	the	VSC	ALE	DO	NE i	nter	rupt	flag	1																			
24	ΕM	123V	VAK	Œυ	IP		0				W1		;	Set	EM2	23W	AKE	EUP	Inte	erru	pt F	lag										
	Wr	ite 1	to s	set	the	EM2	3W <i>A</i>	ΙKΕ	UP	inter	rupt	flaç	9																			
23	Re	serv	⁄ed				To tion		ure	com	pati	bility	y wit	th fu	ture	dev	/ices	s, alı	way.	s wr	ite b	oits t	to 0	. Мо	re ir	forn	natio	on in	1.2	Co	nver	7-
22	BU	RD'	Y				0				W1		;	Set	BUF	RDY	Inte	erru	pt F	lag												
	Wr	ite 1	to s	set	the	BUR	DY	inte	rup	flaç	3																					
21	Re	serv	⁄ed				To tion		ure	com	pati	bility	y wit	th fu	ture	dev	/ices	s, alı	way.	s wr	ite b	oits t	to 0	. Мо	re ir	nforn	natio	on in	1.2	Co	nver	7-
20	DC	DCI	INB'	ΥP	ASS		0				W1		;	Set	DCE	CIN	NBY	PAS	SS I	nter	rup	t Fla	ag									
	Wr	ite 1	to s	set	the	DCD	CIN	BYF	PAS	S int	terru	ıpt fl	lag																			
19	DC	DCI	LNR	UN	ININ	IG	0				W1		;	Set	DCE	CL	NRI	JNN	ING	Int	erru	ıpt F	Flaç)								•
	Wr	ite 1	to s	set	the	DCD	CLN	IRU	NNI	NG	inte	rrup	t fla	g																		
18	DC	DCI	LPR	UN	ININ	IG	0				W1		;	Set	DCE	CL	PRU	JNN	ING	Int	erru	pt F	Flaç	I								

Write 1 to set the DCDCLPRUNNING interrupt flag

				EMO - Energy Management Ont
Bit	Name	Reset	Access	Description
17	NFETOVERCUR- RENTLIMIT	0	W1	Set NFETOVERCURRENTLIMIT Interrupt Flag
	Write 1 to set the NFI	ETOVERCURR	ENTLIMIT i	nterrupt flag
16	PFETOVERCUR- RENTLIMIT	0	W1	Set PFETOVERCURRENTLIMIT Interrupt Flag
	Write 1 to set the PF	ETOVERCURRI	ENTLIMIT i	nterrupt flag
15	VMONFVDDRISE	0	W1	Set VMONFVDDRISE Interrupt Flag
	Write 1 to set the VM	ONFVDDRISE i	nterrupt fla	g
14	VMONFVDDFALL	0	W1	Set VMONFVDDFALL Interrupt Flag
	Write 1 to set the VM	ONFVDDFALL	nterrupt fla	g
13	VMONBUVDDRISE	0	W1	Set VMONBUVDDRISE Interrupt Flag
	Write 1 to set the VM	ONBUVDDRISE	interrupt f	lag
12	VMONBUVDDFALL	0	W1	Set VMONBUVDDFALL Interrupt Flag
	Write 1 to set the VM	ONBUVDDFAL	_ interrupt f	ilag
11:8	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7	VMONIO0RISE	0	W1	Set VMONIO0RISE Interrupt Flag
	Write 1 to set the VM	ONIO0RISE inte	errupt flag	
6	VMONIO0FALL	0	W1	Set VMONIO0FALL Interrupt Flag
	Write 1 to set the VM	ONIO0FALL into	errupt flag	
5	VMONDVDDRISE	0	W1	Set VMONDVDDRISE Interrupt Flag
	Write 1 to set the VM	ONDVDDRISE	interrupt fla	g
4	VMONDVDDFALL	0	W1	Set VMONDVDDFALL Interrupt Flag
	Write 1 to set the VM	ONDVDDFALL	interrupt fla	ng
3	VMONALTAVDD- RISE	0	W1	Set VMONALTAVDDRISE Interrupt Flag
	Write 1 to set the VM	ONALTAVDDR	SE interrup	ot flag
2	VMONALTAVDD- FALL	0	W1	Set VMONALTAVDDFALL Interrupt Flag
	Write 1 to set the VM	ONALTAVDDF	ALL interru	ot flag
1	VMONAVDDRISE	0	W1	Set VMONAVDDRISE Interrupt Flag
	Write 1 to set the VM	ONAVDDRISE	nterrupt fla	g
0	VMONAVDDFALL	0	W1	Set VMONAVDDFALL Interrupt Flag
	Write 1 to set the VM	ONAVDDFALL	interrupt fla	g

9.5.11 EMU_IFC - Interrupt Flag Clear Register

Offset														Bi	t Po	siti	on														
0x02C	31	30	59	78	72	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	6	ω	7	9	2	4	က	7	_	0
Reset	0	0	0			0	0		0		0	0	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0
Access	(R)W1	(R)W1	(R)W1			(R)W1	(R)W1		(R)W1		(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1					(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1
Name	TEMPHIGH	TEMPLOW	TEMP			VSCALEDONE	EM23WAKEUP		BURDY		DCDCINBYPASS	DCDCLNRUNNING	DCDCLPRUNNING	NFETOVERCURRENTLIMIT	PFETOVERCURRENTLIMIT	VMONFVDDRISE	VMONFVDDFALL	VMONBUVDDRISE	VMONBUVDDFALL					VMONIOORISE	VMONIO0FALL	VMONDVDDRISE	VMONDVDDFALL	VMONALTAVDDRISE	VMONALTAVDDFALL	VMONAVDDRISE	VMONAVDDFALL
Bit	Na	Name Reset Access Description TEMPHIGH 0 (R)W1 Clear TEMPHIGH Interrupt Flag Write 1 to clear the TEMPHIGH interrupt flag. Reading returns the value of the IF and clears the corresponding interruftlags (This feature must be enabled globally in MSC.).																													
31	TEMPHIGH 0 (R)W1 Clear TEMPHIGH Interrupt Flag Write 1 to clear the TEMPHIGH interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt																														
	TEMPHIGH 0 (R)W1 Clear TEMPHIGH Interrupt Flag Write 1 to clear the TEMPHIGH interrupt flag. Reading returns the value of the IF and clears the corresponding interruftlags (This feature must be enabled globally in MSC.). TEMPLOW 0 (R)W1 Clear TEMPLOW Interrupt Flag Write 1 to clear the TEMPLOW interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flag.														upt																
30	TEMPHIGH 0 (R)W1 Clear TEMPHIGH Interrupt Flag Write 1 to clear the TEMPHIGH interrupt flag. Reading returns the value of the IF and clears the corresponding interruft flags (This feature must be enabled globally in MSC.). TEMPLOW 0 (R)W1 Clear TEMPLOW Interrupt Flag																														
	TEMPHIGH 0 (R)W1 Clear TEMPHIGH Interrupt Flag Write 1 to clear the TEMPHIGH interrupt flag. Reading returns the value of the IF and clears the corresponding interriging (This feature must be enabled globally in MSC.). TEMPLOW 0 (R)W1 Clear TEMPLOW Interrupt Flag														upt																
29	TE	MP				0				(R)	W1	(Clea	ır TE	EMF	Int	erru	ıpt F	Flag												
				clear t re mu									etur	ns t	he v	alue	e of	the	IF a	nd c	lear	s th	e co	rres	pon	ding	inte	errup	ot fla	ags	
28:26	Re	serv	⁄ed				ens ens	ure	com	pati	bility	/ wit	th fu	ture	dev	vices	s, al	way	s wr	ite b	its t	o 0.	Мо	re in	forn	natio	on in	1.2	Co.	nvei	1-
25	VS	CAL	ED	ONE		0				(R)	W1	(Clea	ır V	SCA	LEI	001	IE li	nter	rupt	Fla	g									
				clear t featu											reti	urns	the	valı	ue o	f the	e IF	and	clea	ars t	he c	orre	espo	ndir	ng in	terr	upt
24	EM	123V	VAK	EUP		0				(R)	W1	(Clea	ır El	W23	WA	ΚEι	JP I	nter	rup	t Fla	ıg									
				clear t featu											ret	urns	the	val	ue o	of the	e IF	and	l cle	ars t	he o	corre	espo	ndir	ng ir	iterr	upt
23	Re	serv	⁄ed				ens ens	ure	com	pati	bility	/ wit	th fu	ture	dev	vices	s, al	way	s wr	ite b	its t	o 0.	Мо	re in	forn	natio	on in	1.2	? Co	nvei	7-
22	BU	IRD'	Y			0				(R)	W1	(Clea	ır Bl	URE)Y lı	nter	rup	t Fla	ıg											
				clear t re mu									ret	urns	the	val	ue c	of the	e IF	and	clea	ars t	the o	corre	espo	ndir	ng ir	nterr	upt	flags	6
21	Re	serv	/ed				ens ens	ure	com	pati	bility	wit	th fu	ture	dev	vices	s, al	way	s wr	ite b	its t	o 0.	Мо	re in	forn	natio	on in	1.2	Co	nvei	7-
20	DC	DCI	INB	YPAS	S	0				(R)	W1	(Clea	ır D	CDC	INE	3YP.	ASS	S Int	erru	ıpt F	Flag	J								
				clear t This f												etur	ns t	he v	alue	e of	the I	IF a	nd c	lear	s the	e co	rres	pon	ding	inte	er-

Bit	Name	Reset	Access	Description
19	DCDCLNRUNNING	0	(R)W1	Clear DCDCLNRUNNING Interrupt Flag
	Write 1 to clear the D interrupt flags (This for			t flag. Reading returns the value of the IF and clears the corresponding bally in MSC.).
18	DCDCLPRUNNING	0	(R)W1	Clear DCDCLPRUNNING Interrupt Flag
	Write 1 to clear the D interrupt flags (This for			t flag. Reading returns the value of the IF and clears the corresponding bally in MSC.).
17	NFETOVERCUR- RENTLIMIT	0	(R)W1	Clear NFETOVERCURRENTLIMIT Interrupt Flag
				Γ interrupt flag. Reading returns the value of the IF and clears the corre- nabled globally in MSC.).
16	PFETOVERCUR- RENTLIMIT	0	(R)W1	Clear PFETOVERCURRENTLIMIT Interrupt Flag
				r interrupt flag. Reading returns the value of the IF and clears the corre- nabled globally in MSC.).
15	VMONFVDDRISE	0	(R)W1	Clear VMONFVDDRISE Interrupt Flag
	Write 1 to clear the V rupt flags (This feature			lag. Reading returns the value of the IF and clears the corresponding intervin MSC.).
14	VMONFVDDFALL	0	(R)W1	Clear VMONFVDDFALL Interrupt Flag
	Write 1 to clear the V rupt flags (This feature			flag. Reading returns the value of the IF and clears the corresponding intervin MSC.).
13	VMONBUVDDRISE	0	(R)W1	Clear VMONBUVDDRISE Interrupt Flag
	Write 1 to clear the V interrupt flags (This fe			t flag. Reading returns the value of the IF and clears the corresponding bally in MSC.).
12	VMONBUVDDFALL	0	(R)W1	Clear VMONBUVDDFALL Interrupt Flag
	Write 1 to clear the V interrupt flags (This fe			t flag. Reading returns the value of the IF and clears the corresponding bally in MSC.).
11:8	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7	VMONIO0RISE	0	(R)W1	Clear VMONIO0RISE Interrupt Flag
	Write 1 to clear the V flags (This feature mu			g. Reading returns the value of the IF and clears the corresponding interrupt $^{\prime\prime}$ SC.).
6	VMONIO0FALL	0	(R)W1	Clear VMONIO0FALL Interrupt Flag
	Write 1 to clear the V flags (This feature mu			g. Reading returns the value of the IF and clears the corresponding interrupt (ISC.).
5	VMONDVDDRISE	0	(R)W1	Clear VMONDVDDRISE Interrupt Flag
	Write 1 to clear the V rupt flags (This feature			flag. Reading returns the value of the IF and clears the corresponding intervin MSC.).
4	VMONDVDDFALL	0	(R)W1	Clear VMONDVDDFALL Interrupt Flag
	Write 1 to clear the V rupt flags (This feature			flag. Reading returns the value of the IF and clears the corresponding intervin MSC.).
3	VMONALTAVDD- RISE	0	(R)W1	Clear VMONALTAVDDRISE Interrupt Flag
	Write 1 to clear the V			upt flag. Reading returns the value of the IF and clears the corresponding bally in MSC.).

Bit	Name	Reset	Access	Description
2	VMONALTAVDD- FALL	0	(R)W1	Clear VMONALTAVDDFALL Interrupt Flag
	Write 1 to clear the Vinterrupt flags (This f			rupt flag. Reading returns the value of the IF and clears the corresponding obally in MSC.).
1	VMONAVDDRISE	0	(R)W1	Clear VMONAVDDRISE Interrupt Flag
	Write 1 to clear the Vrupt flags (This featu		•	flag. Reading returns the value of the IF and clears the corresponding intery in MSC.).
0	VMONAVDDFALL	0	(R)W1	Clear VMONAVDDFALL Interrupt Flag
	Write 1 to clear the Vrupt flags (This featu		•	flag. Reading returns the value of the IF and clears the corresponding intery in MSC.).

9.5.12 EMU_IEN - Interrupt Enable Register

Offset														D.	t Ba	oiti	012-														
				<u>~</u> .					<u>.</u>			_	~~		I	siti			<u>.</u>												
0x030	3	30	53	28	56	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	တ	∞	/	9	5	4	က	7	_	0
Reset	0	0	0			0	0		0		0	0	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0
Access	₽ N	S. S.	₹			S. S.	Σ ≷		RW		S N	S N	R N	R W	R N	R W	S S S	R	₹ §					R M	R ₩	₹ §	₽ N	S S S	R W	R W	ΑM
Name	TEMPHIGH	TEMPLOW	TEMP			VSCALEDONE	EM23WAKEUP		BURDY		DCDCINBYPASS	DCDCLNRUNNING	DCDCLPRUNNING	NFETOVERCURRENTLIMIT	PFETOVERCURRENTLIMIT	VMONFVDDRISE	VMONFVDDFALL	VMONBUVDDRISE	VMONBUVDDFALL					VMONIOORISE	VMONIO0FALL	VMONDVDDRISE	VMONDVDDFALL	VMONALTAVDDRISE	VMONALTAVDDFALL	VMONAVDDRISE	VMONAVDDFALL
Bit	Na	me				Re	set			Ac	ces	s I	Des	crip	tion																
31	TE	MPH	HIGH	4		0				RW	/		TEN	IРН	IGH	Inte	erru	pt E	nab	le											
	En	able	/disa	able th	e TE	MPH	HIGH	I int	erru	pt																					
30	TE	MPL	.OW	/		0				RW	/		TEN	IPL	wc	Inte	rru	ot E	nab	le											
	En	able	/disa	able th	e TE	MPL	_OW	/ inte	errup	ot																					
29	TE	MP				0				RW	/	•	TEN	IP Ir	nter	rupt	En	able	•												
	En	able	/disa	able th	e TE	MP	inte	rupt	•																						
28:26	Re	serv	ed			To tio		ure	com	pati	bilit <u>.</u>	y wi	th fu	ture	dev	/ices	s, al	way	s wr	rite k	oits i	to 0	Мо	re ir	forr	natio	on ir	1.2	? Co	nvei	า-
25	VS	CAL	.ED	ONE		0				RV	/	,	vsc	ALI	EDC	NE	Inte	erru	pt E	nab	le										
	En	able	/disa	able th	e VS	CAL	.ED	ONE	inte	erru	ot																				
24	ΕN	123V	VAK	EUP		0				RV	/	I	EM2	23W	AKE	EUP	Inte	erru	pt E	nab	ole										
	En	able	/disa	able th	e EN	123V	VAK	EUF	o inte	erru	pt																				
23	Re	serv	red			To tio		ure	com	pati	bilit _.	y wi	th fu	ture	dev	/ices	s, al	way	s wr	rite k	oits i	to 0	Мо	re ir	forr	natio	on ir	1.2	? Co	nvei	7-
22	BU	RD'	′			0				RW	/	I	BUF	RDY	Inte	erru	pt E	nak	ole												
	En	able	/disa	able th	e BU	RD'	Y int	erru	pt																						
21	Re	serv	red			To tio		ure	com	pati	bilit _.	y wii	th fu	ture	dev	/ices	s, al	way	s wr	ite k	oits i	to 0	Мо	re ir	nforr	natio	on ir	1.2	? Co	nvei	7-
20	DC	DCI	NΒ\	/PASS		0				RW	/	ļ	DCE	CIN	IBY	PAS	SS II	nter	rupt	t En	able	9									
	En	able	/disa	able th	e DC	DCI	NB)	/PA	SS i	nter	rupt	:																			
19	DC	DCI	NR	UNNIN	IG	0				RW	/		DCE	CL	NRU	JNN	ING	Int	erru	pt E	Enal	ole									
	En	able	/disa	able th	e DC	DCI	LNR	INU	NINC	3 int	erru	ıpt																			
18	DC	DCI	_PR	UNNIN	IG	0				RW	/	I	DCE	CL	PRU	JNN	ING	Int	erru	pt E	Enal	ole									
		_1_1 .	/-1:-	-1-1-10		יחכו			118.10	· : •		4																			

Enable/disable the DCDCLPRUNNING interrupt

				EWO - Energy Wanagement Onit
Bit	Name	Reset	Access	Description
17	NFETOVERCUR- RENTLIMIT	0	RW	NFETOVERCURRENTLIMIT Interrupt Enable
	Enable/disable the NF	FETOVERCURF	RENTLIMIT	interrupt
16	PFETOVERCUR- RENTLIMIT	0	RW	PFETOVERCURRENTLIMIT Interrupt Enable
	Enable/disable the PF	FETOVERCURF	RENTLIMIT	interrupt
15	VMONFVDDRISE	0	RW	VMONFVDDRISE Interrupt Enable
	Enable/disable the VI	MONFVDDRISE	interrupt	
14	VMONFVDDFALL	0	RW	VMONFVDDFALL Interrupt Enable
	Enable/disable the VI	MONFVDDFALL	interrupt	
13	VMONBUVDDRISE	0	RW	VMONBUVDDRISE Interrupt Enable
	Enable/disable the VI	MONBUVDDRIS	E interrupt	
12	VMONBUVDDFALL	0	RW	VMONBUVDDFALL Interrupt Enable
	Enable/disable the VI	MONBUVDDFAL	L interrupt	
11:8	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7	VMONIO0RISE	0	RW	VMONIO0RISE Interrupt Enable
	Enable/disable the VI	MONIO0RISE in	terrupt	
6	VMONIO0FALL	0	RW	VMONIO0FALL Interrupt Enable
	Enable/disable the VI	MONIO0FALL in	terrupt	
5	VMONDVDDRISE	0	RW	VMONDVDDRISE Interrupt Enable
	Enable/disable the VI	MONDVDDRISE	interrupt	
4	VMONDVDDFALL	0	RW	VMONDVDDFALL Interrupt Enable
	Enable/disable the VI	MONDVDDFALL	interrupt	
3	VMONALTAVDD- RISE	0	RW	VMONALTAVDDRISE Interrupt Enable
	Enable/disable the VI	MONALTAVDDF	RISE interru	upt
2	VMONALTAVDD- FALL	0	RW	VMONALTAVDDFALL Interrupt Enable
	Enable/disable the VI	MONALTAVDDF	ALL interro	upt
1	VMONAVDDRISE	0	RW	VMONAVDDRISE Interrupt Enable
	Enable/disable the VI	MONAVDDRISE	interrupt	
0	VMONAVDDFALL	0	RW	VMONAVDDFALL Interrupt Enable
	Enable/disable the VI	MONAVDDFALL	. interrupt	

9.5.13 EMU_PWRLOCK - Regulator and Supply Lock Register

Offset															Bi	t Po	siti	on														
0x034	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•							•		•											•		nnnxn							
Access																								2	≥ Y							
Name																								\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LOCKAET							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	LOCKKEY	0x0000	RW	Regulator and Supply Configuration Lock Key

Write any other value than the unlock code to lock all regulator control registers, from editing. Write the unlock code to unlock. When reading the register, bit 0 is set when the lock is enabled. Registers that are locked: PWRCFG, PWRCTRL and DCDC* registers.

Mode	Value	Description
Read Operation		
UNLOCKED	0	EMU Regulator registers are unlocked
LOCKED	1	EMU Regulator registers are locked
Write Operation		
LOCK	0	Lock EMU Regulator registers
UNLOCK	0xADE8	Unlock EMU Regulator registers

9.5.14 EMU_PWRCTRL - Power Control Register

	_									
Offset			Bit Position							
0x03C	30 30 27 27 27 27	22 23 24 25 25 27 29 29 29	0 0 2 7 8 8 1 1 2 1 2 1 3 1 4 8 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9							
Reset			0 0 0							
Access			NA N							
Name			IMMEDIATEPWRSWITCH REGPWRSEL ANASW							
Bit	Name	Reset Acce	ss Description							
31:14	Reserved	To ensure compatibil tions	ity with future devices, always write bits to 0. More information in 1.2 Conven-							
13	IMMEDIATEPWRS- WITCH	0 RW	Allows Immediate Switching of ANASW and REGPWRSEL Bit-fields							
			WRSEL switching. When cleared, Hardware protects switching of ANASW/ ardware only when DCDC is stable							
12:11	Reserved	To ensure compatibil tions	ity with future devices, always write bits to 0. More information in 1.2 Conven-							
10	REGPWRSEL	0 RW	This Field Selects the Input Supply Pin for the Digital LDO							
	DCDC is not configur	ed to drive DVDD, IMM	the Digital LDO. Firmware should select DVDD as the input after startup. If EDIATEPWRSWITCH needs to be set to prior to setting this bit to immediately ive DVDD, hardware will make the switch to DVDD only when DCDC is stable							
	Value	Mode	Description							
	0	AVDD	The AVDD pin is the supply for the digital LDO. LDO current is limited to 20 mA in this configuration.							
	1	DVDD	The DVDD pin is the supply for the digital LDO. Firmware should set REGPWRSEL=1 after startup, before increasing the core clock frequency.							
9:6	Reserved	To ensure compatibil tions	ity with future devices, always write bits to 0. More information in 1.2 Conven-							
5	ANASW	0 RW	Analog Switch Selection							
	LFRCO, LFXO, HFRO is not configured to d	CO, AUXHFRCO, VMO rive DVDD, IMMEDIAT	analog supply (VDDX_ANA) used by the analog peripherals (e.g., ULFRCO, N, IDAC, and ADC). Reset with POR, Hard Pin Reset, or BOD Reset. If DCDC EPWRSWITCH needs to be set to prior to setting this bit to immediately make /DD, hardware will make the switch to DVDD only when DCDC is stable							
	Value	Mode	Description							
	0	AVDD	Select AVDD as the analog power supply							
	1	DVDD	Select DVDD as the analog power supply							
4:0	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions								

9.5.15 EMU_DCDCCTRL - DCDC Control

Offset										Bi	t Pos	sitior)											
0x040	30 29 29	28	26	25	23	22	20 2	19	18	17	16	5 5	<u>t</u> 6	5	1 =	10	6	8	7	9	2	4	е 2	- 0
Reset				1																	-	_		0x3
Access																					RW	Z.		A S
																								_
Name																					DCDCMODEEM4	DCDCMODEEM23		DCDCMODE
Bit	Name			Reset		F	Acces	ss	Des	crip	tion													
31:6	Reserved			To en tions	sure	comp	atibili	ty w	ith fu	ıture	devi	ces,	alwa _.	ys v	vrite	bits i	to 0	. Мо	re in	nforn	natio	on in	1.2 Cd	onven-
5	DCDCMO	DEEM4		1		F	RW		DCI	OC N	/lode	EM4	Н											
	Determines BOD Rese		CDC	mode	in EN	/4Н. Т	This b	it is	igno	red	if DC	DCM	IODE	E=B	ypas	s. Re	ese	t witl	n PC	PR, H	Harc	l Pin	Reset	, or
	Value			Mode					Des	cript	ion													
	0			EM4S	W				DCI	OC n	node	is ac	cord	ing	to D0	CDC	МО	DE 1	field.	•				
	1			EM4L	OWF	OWE	R		DCI	OC n	node	is lov	w pov	wer	•									
4	DCDCMOI	DEEM2	3	1		F	RW		DCI	OC N	/lode	EM2	:3											
	Determines set, or BOI			mode	in EN	/12 and	d EM:	3. TI	his b	it is	ignor	ed if	DCD	CM	ODE	=Ву	pas	s. R	eset	with	n PC	PR, I	Hard Pi	n Re-
	Value			Mode					Des	cript	ion													
	0			EM23	SW				DCI	DC n	node	is ac	cord	ing	to D0	CDC	МО	DE 1	ield.					
	1			EM23	LOW	POW	ER		DC	OC n	node	is lov	v pov	wer										
3:2	Reserved			To en	sure	сотр	atibili	ty w	ith fu	ıture	devi	ces,	alwa _.	ys v	vrite	bits 1	to 0	. Mo	re in	nforn	natio	on in	1.2 Co	onven-
1:0	DCDCMOI	DE		0x3		F	RW		Reg	ulat	or M	ode												
	Determines	s the op	erati	ing mo	de of	the D	CDC	reg	ulato	r. R	eset	with I	POR	, Ha	ard P	in Re	ese	t, or	BOE) Re	set.			
	Value			Mode					Des	cript	ion													
	0			BYPA	SS				DCI EMI	DCM J_D	IODE	=BYI CLIM	PASS CTR	S, L.B	YPLI	sc MEN	oftw N=1	are to p		r	nus	t	nfigurir s e curre	et
	1			LOWN	NOIS	E			DCI	OC r	egula	tor is	ope	rati	ng in	low	noi	se m	ode	-				
	2			LOWF	POWI	ER			DC	OC r	egula	tor is	ope	rati	ng in	low	pov	ver r	node	э.				
	3			OFF							egula lied e			and	the b	ура	SS S	switc	h is	off. I	Note	e: D\	√DD m	ust

9.5.16 EMU_DCDCMISCCTRL - DCDC Miscellaneous Control Register

Offset							Bit Po	sition							
0x04C	33	29	27	25 24 24	23	22 21 20 20	19 19 19 19	5 4 5 5 4 5 5 5	11 0 0 8	7	5	4 0	s <	_	0
Reset		0x0		0x3		0x1	0x0	0x7	0x7		0		_	_	0
Access		S N		A. W.		Ŋ. M.	RW	RW	RW		Z.		¥ N	Z N	RW
Name		LPCMPBIASEM234H		LNCLIMILIMSEL		LPCLIMILIMSEL	BYPLIMSEL	NFETCNT	PFETCNT		LNFORCECCMIMM		LPCMPHYSHI	LPCMPHYSDIS	LNFORCECCM
Bit	Name			Reset		Acces	s Description								
31:30	Reserv	red		To ens	ure	compatibility	with future dev	rices, always wr	ite bits to 0. Mo	re infor	matio	on in 1	.2 C	onve	n-
29:28	LPCMF	PBIASE	M23	4H 0x0		RW	LP Mode Co	omparator Bias	Selection for	EM23	or EN	/14H			
	LP mod	de comp	oara	tor bias sele	ectio	n. Reset wit	h POR, Hard Pi	n Reset, or BOI	D Reset.						
	Value			Mode			Description								
	0			BIAS0											
	1			BIAS1	BIAS1 Maximum load current less than 500uA.										
	2			BIAS2				ad current less							
	3			BIAS3			Maximum lo	ad current less	than 10mA.						
27	Reserv	red		To ens	ure	compatibility	/ with future dev	rices, always wr	ite bits to 0. Mo	re infor	matio	on in 1	.2 C	onve	n-
26:24	LNCLI	MILIMSI	EL	0x3		RW	Current Lim	nit Level Select	ion for Current	t Limite	er in	LN M	ode		
23	MILIMS and 40 tions. F	SEL=(I_ mA repression strong the	MAX rese ng (i	(+40mA)*1. nts the curro .e., low inte 0mA to avoi	5/(5 ent r rnal d re	mA*(PFETC ipple with so impedance) liability issue	NT+1))-1, wher ome margin, and battery, it is re es. Reset with P	e I_MAX is the d the factor of 1 commended to OR, Hard Pin R	recommended maximum avera .5 accounts for o have I_MAX=20 eset, or BOD re ite bits to 0. Mod	nge cur detectir 00mA. eset.	rent ang er	allowe ror an X sho	d to d oth ould i	he lo er va nevel	oad, aria- r be
22:20	LPCLIN	MILIMSE	EL	0x1		RW	Current Lim	nit Level Select	ion for Current	t Limite	er in	LP M	ode		
-	Sets hi setting	gh-side LPCLIN	curr /IILIN	ent limit in I MSEL=1, co	rres	oower mode ponding to a	, with maxixum	current equal to ent of 80 mA fo	40 mA*(1+LPC or optimal efficie	LIMILI	MSE	L). Re	com		
19:16	BYPLI	MSEL		0x0		RW	Current Lim	nit in Bypass M	lode						
				bypass mod n Reset, or			/IEN equals one	. The limit is fro	m 20mA to 320	mA, wi	th 20	mA/st	ep. F	eset	
15:12	NFETO	CNT		0x7		RW	NFET Switc	h Number Sele	ection						
							mber. The select. R, Hard Pin Rese		switches are NF et.	ETCN	T+1.	This r	nay o	ause	∍ a

Bit	Name	Reset	Access	Description
11:8	PFETCNT	0x7	RW	PFET Switch Number Selection
	Low Noise mode PFE Hard Pin Reset, or B0	•	count num	nber. The selected number of switches are PFETCNT+1. Reset with POR,
7:6	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
5	LNFORCECCMIMM	0	RW	Force DCDC Into CCM Mode Immediately, Based on LNFOR-CECCM
				FORCECCM bit and have the change take effect while DCDC is running. ed prior to enabling the DCDC.
4:3	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
2	LPCMPHYSHI	1	RW	Comparator Threshold on the High Side
	Reserved for internal	use. Should alw	ays be set	t to 1.
1	LPCMPHYSDIS	1	RW	Disable LP Mode Hysteresis in the State Machine Control
	Reserved for internal	use. Should alw	ays be set	to 1.
)	LNFORCECCM	0	RW	Force DCDC Into CCM Mode in Low Noise Operation
	in forced CCM mode. zero detector is config	The threshold s gured as reverse In low power	set by ZDE e-current lir	zero detector is configured as zero-crossing detector and the DCDC will be ETILIMSEL will be ignored. When this bit is set to 1 in low noise mode, the miter and the DCDC will be in DCM mode. The reverse current limit level is zero detector is always configured as zero-crossing detector. Reset with

9.5.17 EMU_DCDCZDETCTRL - DCDC Power Train NFET Zero Current Detector Control Register

	_																				_									
Offset													Bi	it Po	ositi	on														
0x050	31	29	28	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	_	0
Reset																					3	Š			0x5					
Access																					2	≥ Y			R					
Name																					7 14 14	ZDE I BLANKULY			ZDETILIMSEL					
Bit	Name				Re	eset			Ac	ces	S	Des	crip	tior	า															
31:10	Reser	ved			To tio		ure	con	npati	ibility	y wi	th fu	ıture	de	vice	s, al	way	's WI	rite t	oits t	o 0.	Мо	re in	forr	natio	on in	1.2	? Co	nven	-
9:8	ZDETE	BLAN	IKDL'	Y	0x	1			RV	V		Res	erve	ed f	or ir	nteri	nal	use.	Do	not	cha	ange	Э.							
	Reserv	ved fo	or inte	ernal	use.	Do	not (char	nge.																					
7	Reser	ved			To tio		ure	con	npati	ibility	y wi	th fu	ıture	de	vice	s, al	way	's WI	rite t	oits t	o 0.	Мо	re in	forr	natio	on in	1.2	? Co	nven	-
6:4	ZDETI	LIMS	EL		0x	5			RV	V		Rev	erse	e Cı	ırre	nt L	imit	Lev	el S	Sele	ctio	n fo	r Ze	ro l	Dete	cto	r			
	Zero d this re +40m/ counts have I LIMSE When ignore	gister A)*1.5 s for c _RM/ EL=0, LNF(is ca 5/(2.5 detec AX=1 the D	alcula mA*(l ting e 60m/ DCDC ECCN	NFE NFE error A to C's b N=0,	by the TCN and max ehave the	ne all NT+1 othe imize vior v zero	llow l)), v er v e Zl will o de	ed awher ariat DET be vector	re 40 tions ILIM ery or w	age Om <i>A</i> s. W ISE sim ill o	reventage revenue reve	erse the 7 wito wideted	cur ents bat ith N	rent the ttery NFE	L_R curr can TCN TOR	MA rent tol IT=	X th ripp erate 15. N CCN	roug le w e lar lote 1=0	gh the vith some general some g	ne e som eve t wh at is	quate manderse the	tion: argir curr _NF(DC	ZD n, ai ent, OR(DC	ETII nd th it is CEC will	LIMS ne fa rec CM: be i	SEL ictor comi =1 t n D	=(I_I f of 1 mena out Z CM	RMA 1.5 ad ded t DET mode	X c- to II- e.

3:0 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions

9.5.18 EMU_DCDCCLIMCTRL - DCDC Power Train PFET Current Limiter Control Register

Offset														Bi	t Po	sitio	on													
0x054	33	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	2	4	3	2	- 0
Reset	·	•	•		•													0				3	<u>-</u> 							·
Access																		RW				Š	<u>}</u>							
Name																		BYPLIMEN				> 10/14	CLIMBLAINFULT							
Bit	Name					Re	set			Ac	ces	s I	Des	crip	tion															
31:14	Reser	ved				To tion		ure	con	pati	bility	y wi	th fu	ture	dev	rices	s, alı	ways	s wr	ite b	its t	o 0.	Мо	re in	forn	natio	on in	1.2	Coi	nven-
13	BYPL	IMEN	1			0				RV	/	I	Вур	ass	Cur	ren	t Lir	mit I	Ena	ble										
	Bypas PASS enable DVDD	mod ed. T	le. N o pr	lote eve	that nt th	the	dev	/ice ss c	will urre	see nt, a	an a appl	addi icati	tiona ons	al ~1 sho	l0 μ. uld	A of disa	cur ble	rent the	dra Byp	w w ass	hen Cur	BYI rent	PLIN t Lin	/EN nit (E	-1 a 3YP	and LIM	Bypa EN=	ass :0) o	Mod nce	le is the
12:10	Reser	ved				To tion		ure	con	pati	bility	y wi	th fu	ture	dev	rices	s, alı	ways	s wr	ite b	oits t	o 0.	Мо	re in	forn	natio	on in	1.2	Coi	nven-
9:8	CLIM	BLAN	IKDI	LY		0x1	1			RW	/	I	Res	erve	d fo	r in	terr	าal เ	ıse.	Do	not	cha	ange	э.						
	Reser	ved f	for ir	nterr	nal u	ıse.	Do i	not (char	nge.																				

To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-

7:0

Reserved

tions

9.5.19 EMU_DCDCLNCOMPCTRL - DCDC Low Noise Compensator Control Register

Offset															Bi	t Po	siti	on														
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	ω	7	9	5	4	က	2	-	0
Reset		, Y	CYO				0x7	•			ç	ZXO		•	•	•		2	5 5 7							0x07					0x2	
Access		y y y								2	≥ Y						2	<u>}</u>							R≪					Z.		
Name	COMPENC3															COMPENDS								COMPENR2					COMPENR1			

Bit	Name	Reset	Access	Description
31:28	COMPENC3	0x5	RW	Low Noise Mode Compensator C3 Trim Value
	LN mode compensato	r C3 trim, 0.5pF	-8pF in 0.	5pF steps. Reset with POR, Hard Pin Reset, or BOD Reset.
27	Reserved	To ensure con tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
26:24	COMPENC2	0x7	RW	Low Noise Mode Compensator C2 Trim Value
	LN mode compensato	r C2 trim, 1pF-8	pF in 1pF	steps. Reset with POR, Hard Pin Reset, or BOD Reset.
23:22	Reserved	To ensure con tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
21:20	COMPENC1	0x2	RW	Low Noise Mode Compensator C1 Trim Value
	LN mode compensato	r C1 trim, 0.15p	F-0.60pF i	in 0.15pF step. Reset with POR, Hard Pin Reset, or BOD Reset.
19:16	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:12	COMPENR3	0x4	RW	Low Noise Mode Compensator R3 Trim Value
	LN mode compensato	r r3 trim, 5-80K0	Ohm in 5K	hom steps. Reset with POR, Hard Pin Reset, or BOD Reset.
11:9	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
8:4	COMPENR2	0x07	RW	Low Noise Mode Compensator R2 Trim Value
	LN mode compensato	r r2 trim, 50-160	00KOhm, i	n 50KOhm steps. Reset with POR, Hard Pin Reset, or BOD Reset.
3	Reserved	To ensure con tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	COMPENR1	0x7	RW	Low Noise Mode Compensator R1 Trim Value
	LN mode compensato	r r1 trim, 500-12	200kOhm,	in 100KOhm steps. Reset with POR, Hard Pin Reset, or BOD Reset.

9.5.20 EMU_DCDCLNVCTRL - DCDC Low Noise Voltage Register

Offset															Bi	t Po	siti	on														
0x05C	31	33	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset						•		•	•	•		•		•	•					•	0x71	•	•				•		•	•	0	
Access																					RWH										Z.	
Name																					LNVREF										LNATT	

Bit	Name	Reset	Access	Description
31:15	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
14:8	LNVREF	0x71	RWH	Low Noise Mode VREF Trim
				set the output of the DCDC to 3*(1+LNATT)*(235.48+3.226*LNVREF). onfiguring this field. Reset with POR, Hard Pin Reset, or BOD Reset.
7:2	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
1	LNATT	0	RW	Low Noise Mode Feedback Attenuation
	Low noise mode Hard Pin Reset,		ion. Custome	ers should use the emlib functions for configuring this field. Reset with POR,
	Value	Mode		Description
	0	DIV3		Feedback Ratio is 1/3
	1	DIV6		Feedback Ratio is 1/6
0	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-

9.5.21 EMU_DCDCLPVCTRL - DCDC Low Power Voltage Register

DIV4

DIV8

Offset															Bi	t Pc	siti	on															
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	ေ	r.)	4	က	7	_	0
Reset																												0xB4					0
Access																												₩ 					RW
Name																												LPVREF					LPATT
Bit	Na	me					Re	set			Ac	ces	s I	Des	crip	tion																	
31:9	Re	serv	/ed				To tion		ure	com	pati	bility	y wi	th fu	ture	dev	rices	s, alı	way.	s wr	rite b	oits t	o 0.	Мо	re i	infor	mat	ioi	n in	1.2	Coi	nvei	n-
8:1	LP	VRE	F				0xE	34			RW	/		LP I	Mod	e Re	efer	enc	e Se	elec	tion	for	EM	23 a	anc	IEN	14H						
	4*(1+L		T)*((30+	LP∖	/RE	F)*2	.2m					b11′ houl																			
0	LP	ATT					0				RW	/		Low	Po	wer	Fee	dba	ick .	Atte	nua	atio	1										
			wer Hard								t. C	usto	me	rs sh	noul	d us	e th	e en	nlib	func	ction	s fo	r co	nfigu	urir	ng th	is fi	elc	d. Re	ese	t wit	th	
	Va	lue					Mo	de						Des	cript	ion																	_

Feedback Ratio is 1/4

Feedback Ratio is 1/8

0

1

9.5.22 EMU_DCDCLPCTRL - DCDC Low Power Control Register

Offset															Bi	t Po	sitio	on														
0x06C	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset						2	5	_										2	3								•					
Access) O	2	₩ M										N N	2													
Name						- DBI ANK		LPVREFDUTYEN										I PCMPHYSSEI EM234H														
Bit	Na	me					Re	set			Acc	cess	s 1	Des	crip	tion																

-				
Bit	Name	Reset	Access	Description
31:27	Reserved	To ensure comp tions	atibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
26:25	LPBLANK	0x1 I	RW	Reserved for internal use. Do not change.
	Reserved for internal	l use. Do not chang	ge.	
24	LPVREFDUTYEN	1 1	RW	LP Mode Duty Cycling Enable
	Allow duty cycling of	the bias. This is to	minimize	e DC bias. Reset with POR, Hard Pin Reset, or BOD Reset.
23:16	Reserved	To ensure comp tions	atibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
15:12	LPCMPHYSSE- LEM234H	0x0 I	RW	LP Mode Hysteresis Selection for EM23 and EM4H
		PHYSSEL*3.13mv.		e low power comparator. Hysteresis voltage at the output is ers should use the emlib functions for configuring this field. Reset with
11:0	Reserved	To ensure comp tions	atibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

9.5.23 EMU_DCDCLNFREQCTRL - DCDC Low Noise Controller Frequency Control

Offset															Bi	t Po	siti	on														
0x070	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	5	4	က	2	_	0
Reset						0x10					•				•	•	•			•				•		•	•				0×0	
Access						M																									Ŋ N	
Name						RCOTRIM																									RCOBAND	

Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
28:24	RCOTRIM	0x10	RW	Reserved for internal use. Do not change.
	Reserved for interna	l use. Do not ch	ange.	
23:3	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	RCOBAND	0x0	RW	LN Mode RCO Frequency Band Selection
	Low noise mode RC set, or BOD Reset.	O frequency sel	ection. 0~7	: 3~8.95MHz, approximately 0.85MHz/step. Reset with POR, Hard Pin Re-

9.5.24 EMU_DCDCSYNC - DCDC Read Status Register

Offset															Ві	t Po	siti	on														
0x078	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•		•			•							•					•								•	•				0
Access																																2
Name																																DCDCCTRLBUSY

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
0	DCDCCTRLBUSY	0	R	DCDC CTRL Register Transfer Busy
	Indicates the status o register until this sign		RL transfer	to the EMU OSC clock domain. Software cannot re-write the DCDCCTRL

9.5.25 EMU_VMONAVDDCTRL - VMON AVDD Channel Control

Offset															Bi	t Po	sitio	on														
0x090	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	9	. o.	ω	7	9	2	4	က	7	_	0
Reset			•	•	•	•	•			OXO	3			2	e X			2	OXO				000			•			0	0		0
Access										8	2			2	<u>}</u>			<u> </u>	2				S. ≷						% ≷	S.		RW
Name										RISETHRESCOARSE					KIOE I TREOFINE				LAFFILINESCOARSE				FALLTHRESFINE						FALLWU	RISEWU		Z

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
23:20	RISETHRES- COARSE	0x0	RW	Rising Threshold Coarse Adjust
	Check VMON section	n for programmir	ng the thres	shold value. Reset with SYSEXTENDEDRESETn.
19:16	RISETHRESFINE	0x0	RW	Rising Threshold Fine Adjust
	Check VMON section	n for programmir	ng the thres	shold value. Reset with SYSEXTENDEDRESETn.
15:12	FALLTHRES- COARSE	0x0	RW	Falling Threshold Coarse Adjust
	Check VMON section	n for programmir	ng the thres	shold value. Reset with SYSEXTENDEDRESETn.
11:8	FALLTHRESFINE	0x0	RW	Falling Threshold Fine Adjust
	Check VMON section	n for programmir	ng the thres	shold value. Reset with SYSEXTENDEDRESETn.
7:4	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
3	FALLWU	0	RW	Fall Wakeup
	When set, a wakeup	from EM4H will	take place	upon a falling edge. Reset with SYSEXTENDEDRESETn.
2	RISEWU	0	RW	Rise Wakeup
	When set, a wakeup	from EM4H will	take place	upon a rising edge. Reset with SYSEXTENDEDRESETn.
1	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	EN	0	RW	Enable
	Set this bit to enable	the AVDD VMO	N. Reset w	vith SYSEXTENDEDRESETn.

9.5.26 EMU_VMONALTAVDDCTRL - Alternate VMON AVDD Channel Control

Offset															Bi	it Po	ositi	on														
0x094	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset				•										•					S S	•			0X0						0	0		0
Access																		Š	≩ Ƴ				₽						\ N	₩ M		S.
Name																		L 0 0 0 0 0	IHKESCOAKSE				THRESFINE						FALLWU	RISEWU		N H

Bit	Name	Reset	Access	Description
31:16	Reserved			with future devices, always write bits to 0. More information in 1.2 Conven-
15:12	THRESCOARSE	0x0	RW	Threshold Coarse Adjust
	Check VMON section	for programmin	g the thres	shold value. Reset with SYSEXTENDEDRESETn.
11:8	THRESFINE	0x0	RW	Threshold Fine Adjust
	Check VMON section	for programmin	g the thres	shold value. Reset with SYSEXTENDEDRESETn.
7:4	Reserved	To ensure cortions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
3	FALLWU	0	RW	Fall Wakeup
	When set, a wakeup	from EM4H will t	ake place	upon a falling edge. Reset with SYSEXTENDEDRESETn.
2	RISEWU	0	RW	Rise Wakeup
	When set, a wakeup	from EM4H will t	ake place	upon a rising edge. Reset with SYSEXTENDEDRESETn.
1	Reserved	To ensure cortions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	EN	0	RW	Enable
	Set this bit to enable	the ALTAVDD V	MON. Res	eet with SYSEXTENDEDRESETn.

9.5.27 EMU_VMONDVDDCTRL - VMON DVDD Channel Control

Offset	Bit Po	sition
0x098	33 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	10 4 11 12 14 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
Reset		000 00 0
Access		R R F W
Name		THRESCOARSE THRESFINE FALLWU RISEWU EN

Bit	Name	Reset	Access	Description
31:16	Reserved			with future devices, always write bits to 0. More information in 1.2 Conven-
15:12	THRESCOARSE	0x0	RW	Threshold Coarse Adjust
	Check VMON section	for programmir	g the thres	shold value. Reset with SYSEXTENDEDRESETn.
11:8	THRESFINE	0x0	RW	Threshold Fine Adjust
	Check VMON section	for programmin	g the thres	shold value. Reset with SYSEXTENDEDRESETn.
7:4	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
3	FALLWU	0	RW	Fall Wakeup
	When set, a wakeup	from EM4H will	take place	upon a falling edge. Reset with SYSEXTENDEDRESETn.
2	RISEWU	0	RW	Rise Wakeup
	When set, a wakeup	from EM4H will	take place	upon a rising edge. Reset with SYSEXTENDEDRESETn.
1	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
0	EN	0	RW	Enable
	Set this bit to enable	the DVDD VMO	N. Reset w	vith SYSEXTENDEDRESETn.

9.5.28 EMU_VMONIO0CTRL - VMON IOVDD0 Channel Control

Offset	Bit Po	sition
0x09C	33 30 29 28 28 27 27 27 27 27 27 27 19 19 19	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reset		000000000000000000000000000000000000000
Access		R R
Name		THRESCOARSE THRESFINE FALLWU RISEWU EN

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
15:12	THRESCOARSE	0x0	RW	Threshold Coarse Adjust
	Check VMON section	for programmin	g the thres	shold value. Reset with SYSEXTENDEDRESETn.
11:8	THRESFINE	0x0	RW	Threshold Fine Adjust
	Check VMON section	for programmin	g the thres	shold value. Reset with SYSEXTENDEDRESETn.
7:5	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4	RETDIS	0	RW	EM4 IO0 Retention Disable
	When set, the IO0 ReDEDRESETn.	tention will be d	isabled wh	en this IO0 voltage drops below the threshold set. Reset with SYSEXTEN-
3	FALLWU	0	RW	Fall Wakeup
	When set, a wakeup	from EM4H will t	ake place	upon a falling edge. Reset with SYSEXTENDEDRESETn.
2	RISEWU	0	RW	Rise Wakeup
	When set, a wakeup	from EM4H will t	ake place	upon a rising edge. Reset with SYSEXTENDEDRESETn.
1	Reserved	To ensure cortions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	EN	0	RW	Enable
	Set this bit to enable	the IO0 VMON.	Reset with	SYSEXTENDEDRESETn.

9.5.29 EMU_VMONBUVDDCTRL - VMON BUVDD Channel Control

Offset															Ві	it Po	siti	on														
0x0A4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	19	6	8	7	9	2	4	က	7	_	0
Reset			'		'	'		•					'	•		'			O X O				0 X O	'			'	'	0	0		0
Access																		i	≩ Y			;	X ≷						Z.	W.		₹ §
Name																		L () () () ()	IHKESCOAKSE			1	THRESFINE						FALLWU	RISEWU		EN

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
15:12	THRESCOARSE	0x0	RW	Threshold Coarse Adjust
	Check VMON section	for programmin	g the thres	shold value. Reset with SYSEXTENDEDRESETn.
11:8	THRESFINE	0x0	RW	Threshold Fine Adjust
	Check VMON section	for programmin	g the thres	shold value. Reset with SYSEXTENDEDRESETn.
7:4	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
3	FALLWU	0	RW	Fall Wakeup
	When set, a wakeup t	from EM4H will t	ake place	upon a falling edge. Reset with SYSEXTENDEDRESETn.
2	RISEWU	0	RW	Rise Wakeup
	When set, a wakeup t	from EM4H will t	ake place	upon a rising edge. Reset with SYSEXTENDEDRESETn.
1	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	EN	0	RW	Enable
	Set this bit to enable t	the BUVDD VM	ON.	

9.5.30 EMU_BUCTRL - Backup Power Configuration Register

Offset

Oliset															EA		Silic	411															
0x0BC	3	30	53	7 28	7 8	97	22	24	23	22	21	20	19	9	17	16	15	4	5 5	7	9	6	ω	7	9	2	4	က	2	_	0		
Reset	0	•	·	·	•	•					2	OX OX		•	OXO	QY)	·		0x0			2	OXO			•	•	•	0	0	0		
Access	Z.										2	<u>}</u>			<u>8</u>	2			A W			2	<u>}</u>						Z.	S S S	W M		
Name	DISMAXCOMP										INCOCUMENT OF A PART OF A	BOINAC I PWRCON			BUACTPWRCON				PWRRES			SHER	00v						BUVINPROBEEN	STATEN	EN		
Bit	Nar	ne					Re	set			Ac	ces	s	Des	cript	tion																	
31	DIS	MA.	хсо	MP			0				RV	V		Disa	able	MAI	N-B	U C	Compar	rato	r												
	Sho	ould	be s	et to	1 if	no	ba	cku	p ba	atter	/ is o	conr	nec	ted.																			
30:22	Res	serv	ed				To tior		ure	con	npati	ibilit <u>.</u>	y w	ith fu	ıture	dev	ices	, alı	ways wi	rite l	bits t	o 0.	Мо	re in	forr	natio	on i	n 1.	2 Co	nvei	7-		
21:20	BU	INA	CTP\	NRC	ON		0x0)			RV	V		Pow	er C	onr	ecti	ion	Config	jura	tion	Wh	en l	Not	in E	Back	кuр	Мо	de				
	Val	ue		Mode Description											_																		
	0						NC	NE						No o	conne	ectio	n.																
	1						MA	AINE	BU					ing (nt to	o flo	w fr	kup po om ma y.														
	2						BU	MA	IN					ing (nt to	o flo	w fr	om bac										de, allow- er source,				
	3						NC	DIC	DE					Mair	n pov	ver a	and	bac	kup po	wer	are	conr	nect	ed v	vith	out o	dioc	le.					
19:18	Res	serv	ed				To tion		ure	con	npati	ibilit _.	y w	ith fu	ıture	dev	ices,	, alı	ways wi	rite l	bits t	o 0.	Мо	re in	forr	natio	on i	in 1	2 Co	nvei	7-		
17:16	BU	ACT	PWF	RCOI	N		0x0)			RV	V		Pow	er C	onr	necti	ion	Config	jura	tion	in E	Back	kup	Мо	de							
	Val	ue					Мо	de						Des	cripti	on															_		
	0						NC	NE						No d	conne	ectio	n.																
	1					MAINBU Main power and backup power are connected through a diode, allow ing current to flow from backup power source to main power source but not the other way.																											
	2						BU	MA	IN					ing (nt to	o flo	w fr	kup po om ma y.														
	3						NC	DIC	DE					Mair	n pov	ver a	and	bac	kup po	wer	are	conr	nect	ed v	vitho	out o	dioc	le.			_		
15:14	Res	serv	ed				To tion		ure	con	npati	ibilit _.	y w	ith fu	ıture	dev	ices,	, alı	ways w	rite l	bits t	ю О.	Мо	re in	forr	natio	on i	in 1	2 Co	nvei	7-		

Bit Position

Bit	Name	Reset	Access	Description										
13:12	PWRRES	0x0	RW	Power Domain Resistor Select										
	Select value of serie	s resistor betwee	en main pov	ver domain and backup power domain.										
	Value	Mode		Description										
	0	RES0		Main power and backup power connected with RES0 series resistance										
	1	RES1		Main power and backup power connected with RES1 series resistance.										
	2	RES2		Main power and backup power connected with RES2 series resistance.										
	3	RES3		Main power and backup power connected with RES3 series resistance.										
11:10	Reserved	To ensure cor	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-										
9:8	VOUTRES	0x0	RW	BU_VOUT Resistor Select										
	Disconnect or select and BU_VOUT.	resistance betwe	een backup	domain power supply (AVDD in main mode and BU_VIN in backup mode)										
	Value	Mode		Description										
	0	DIS		BU_VOUT is not connected										
	1	WEAK		Enable weak switch between BU_VOUT and backup domain power supply.										
	2	WEAK MED												
				supply. Enable medium switch between BU_VOUT and backup domain power										
7:3	2	MED STRONG	mpatibility v	supply. Enable medium switch between BU_VOUT and backup domain power supply. Enable strong switch between BU_VOUT and backup domain power										
7:3	3	MED STRONG To ensure con	mpatibility v	Enable medium switch between BU_VOUT and backup domain power supply. Enable strong switch between BU_VOUT and backup domain power supply.										
	2 3 Reserved BUVINPROBEEN	MED STRONG To ensure contions 0	RW	Enable medium switch between BU_VOUT and backup domain power supply. Enable strong switch between BU_VOUT and backup domain power supply. with future devices, always write bits to 0. More information in 1.2 Conven-										
2	2 3 Reserved BUVINPROBEEN	MED STRONG To ensure contions 0	RW	Enable medium switch between BU_VOUT and backup domain power supply. Enable strong switch between BU_VOUT and backup domain power supply. with future devices, always write bits to 0. More information in 1.2 Conventionable BU_VIN Probing										
2	2 Reserved BUVINPROBEEN When enabled, BU_	MED STRONG To ensure contions 0 VIN/8 is generate 0	RW ed (to be mo	Enable medium switch between BU_VOUT and backup domain power supply. Enable strong switch between BU_VOUT and backup domain power supply. with future devices, always write bits to 0. More information in 1.2 Conventionable BU_VIN Probing easured using the ADC). Enable Backup Mode Status Export										
	2 Reserved BUVINPROBEEN When enabled, BU_ STATEN	MED STRONG To ensure contions 0 VIN/8 is generate 0	RW ed (to be mo	Enable medium switch between BU_VOUT and backup domain power supply. Enable strong switch between BU_VOUT and backup domain power supply. with future devices, always write bits to 0. More information in 1.2 Conventionable BU_VIN Probing easured using the ADC). Enable Backup Mode Status Export										

9.5.31 EMU_DCDCLPEM01CFG - Configuration Bits for Low Power Mode to Be Applied During EM01, This Field is Only Relevant If LP Mode is Used in EM01

Offset															Bit P	ositi	ion														
0x0EC	31	30	29	28	27	26	25	24	23	22	21	20 5	13	18	16	15	4	13	12	7	9	o	∞	7	9	5	4	က	2	_	0
Reset																	2	2				2	S								
Access																	<u> </u>	<u>}</u>				2	<u>}</u>								
Name																	POMBHYSSEI EMO1	LT CIVITATIONE TO SELECTIVIO				DOMDBIA SEMO									
Bit	Na	me					Re	set			Acc	cess	D)esc	riptio	n															
04.40							_																		_						

Bit	Name	Reset	Access	S Description
31:16	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:12	LPCMPHYSSE- LEM01	0x0	RW	LP Mode Hysteresis Selection for EM01
	LP mode hysteresis functions for configur		e output is 4	4*(1+LPATT)*LPCMPHYSSEL*3.13mV. Customers should use the emlib
11:10	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
9:8	LPCMPBIASEM01	0x3	RW	LP Mode Comparator Bias Selection for EM01
	Reserved for internal	use. Do not ch	nange.	
	Value	Mode		Description
	0	BIAS0		Maximum load current less than 75uA.
	1	BIAS1		Maximum load current less than 500uA.
	2	BIAS2		Maximum load current less than 2.5mA.
	3	BIAS3		Maximum load current less than 10mA.
7:0	Reserved	To ensure co	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

9.5.32 EMU_EM23PERNORETAINCMD - Clears Corresponding Bits in EM23PERNORETAINSTATUS Unlocking Access to Peripheral

Offset															Bi	t Po	ositi	on														
0x100	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	က	2	_	0
Reset			'		'	•	'				•		•	•	0		0	0	0		0	0	0		0	0	0			0	0	0
Access															W1		W1	W1	W1		M	W1	W1		W1	W1	W1			W1	W1	M1
Name															CDUNLOCK		LEUART0UNLOCK	CSENUNLOCK	LESENSE0UNLOCK		WDOG0UNLOCK	LETIMER0UNLOCK	ADC0UNLOCK		DACOUNLOCK	I2C1UNLOCK	I2C0UNLOCK			PCNT0UNLOCK	ACMP1UNLOCK	ACMPOUNLOCK

Bit	Name	Reset	Access	Description
31:18	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
17	LCDUNLOCK	0	W1	Clears Status Bit of LCD and Unlocks Access to It
	clears status bit of LC	D and unlocks	access to it	t
16	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15	LEUART0UNLOCK	0	W1	Clears Status Bit of LEUART0 and Unlocks Access to It
	clears status bit of LE	UART0 and unl	ocks acces	ss to it
14	CSENUNLOCK	0	W1	Clears Status Bit of CSEN and Unlocks Access to It
	clears status bit of CS	SEN and unlock	s access to	o it
13	LESENSE0UNLOCK	0	W1	Clears Status Bit of LESENSE0 and Unlocks Access to It
	clears status bit of LE	SENSE0 and u	nlocks acc	ess to it
12	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
11	WDOG0UNLOCK	0	W1	Clears Status Bit of WDOG0 and Unlocks Access to It
	clears status bit of WI	DOG0 and unlo	cks access	s to it
10	LETIMEROUNLOCK	0	W1	Clears Status Bit of LETIMER0 and Unlocks Access to It
	clears status bit of LE	TIMER0 and ur	locks acce	ess to it
9	ADC0UNLOCK	0	W1	Clears Status Bit of ADC0 and Unlocks Access to It
	clears status bit of AD	C0 and unlocks	s access to	o it
8	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7	DAC0UNLOCK	0	W1	Clears Status Bit of DAC0 and Unlocks Access to It
	clears status bit of DA	AC0 and unlocks	s access to	o it
6	I2C1UNLOCK	0	W1	Clears Status Bit of I2C1 and Unlocks Access to It
	clears status bit of I20	C1 and unlocks	access to i	it
5	I2C0UNLOCK	0	W1	Clears Status Bit of I2C0 and Unlocks Access to It
	clears status bit of I20	CO and unlocks	access to i	it

Bit	Name	Reset	Access	Description
4:3	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
2	PCNT0UNLOCK	0	W1	Clears Status Bit of PCNT0 and Unlocks Access to It
	clears status bit of P	CNT0 and unlo	cks access t	to it
1	ACMP1UNLOCK	0	W1	Clears Status Bit of ACMP1 and Unlocks Access to It
	clears status bit of A	CMP1 and unlo	ocks access	to it
0	ACMP0UNLOCK	0	W1	Clears Status Bit of ACMP0 and Unlocks Access to It
	clears status bit of A	.CMP0 and unlo	ocks access	to it

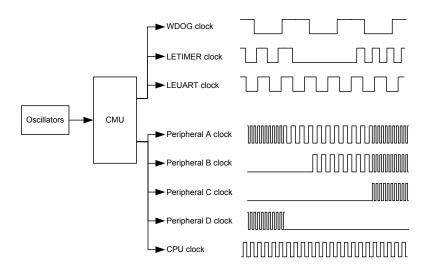
9.5.33 EMU_EM23PERNORETAINSTATUS - Status Indicating If Peripherals Were Powered Down in EM23, Subsequently Locking Access to It

Offset															Bi	t Po	siti	on													
0x104	31	30	59	28	27	56	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	 7	9	2	4	က	7	_	0
Reset		1,,						,,,							0	`	0	0	0		0	0	0	0	0	0			0	0	0
Access															2		2	œ	<u>~</u>		~	œ	~	œ	22	œ			œ	œ	~
Name															LCDLOCKED		LEUART0LOCKED	CSENLOCKED	LESENSEOLOCKED		WDOG0LOCKED	LETIMER0LOCKED	ADC0LOCKED	DACOLOCKED	I2C1LOCKED	12C0LOCKED			PCNT0LOCKED	ACMP1LOCKED	ACMPOLOCKED
Bit	Na	me					Re	set			Ac	ces	s I	Des	crip	tion															
04.40							_								,						., ,		_	 ·	,						

Bit	Name	Reset	Access	Description
31:18	Reserved	To ensure co tions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
17	LCDLOCKED	0	R	Indicates If LCD Powered Down During EM23
	Indicates if LCD power TAINCMD	ered down durin	g EM23. A	ccess to this peripheral locked until this bit cleared using EM23PERNORE-
16	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15	LEUART0LOCKED	0	R	Indicates If LEUART0 Powered Down During EM23
	Indicates if LEUARTO NORETAINCMD) powered down	during EM	123. Access to this peripheral locked until this bit cleared using EM23PER-
14	CSENLOCKED	0	R	Indicates If CSEN Powered Down During EM23
	Indicates if CSEN por ETAINCMD	wered down dur	ing EM23.	Access to this peripheral locked until this bit cleared using EM23PERNOR-
13	LESENSE0LOCKED	0	R	Indicates If LESENSE0 Powered Down During EM23
	Indicates if LESENSE NORETAINCMD	E0 powered dow	n during E	M23. Access to this peripheral locked until this bit cleared using EM23PER-
12	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
11	WDOG0LOCKED	0	R	Indicates If WDOG0 Powered Down During EM23
	Indicates if WDOG0 p	powered down o	during EM2	3. Access to this peripheral locked until this bit cleared using EM23PER-
10	LETIMER0LOCKED	0	R	Indicates If LETIMER0 Powered Down During EM23
	Indicates if LETIMER NORETAINCMD	0 powered dow	n during EN	M23. Access to this peripheral locked until this bit cleared using EM23PER-
9	ADC0LOCKED	0	R	Indicates If ADC0 Powered Down During EM23
	Indicates if ADC0 pov ETAINCMD	wered down dur	ing EM23.	Access to this peripheral locked until this bit cleared using EM23PERNOR-
8	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-

Bit	Name	Reset	Access	Description
7	DAC0LOCKED	0	R	Indicates If DAC0 Powered Down During EM23
	Indicates if DAC0 po	owered down du	uring EM23.	Access to this peripheral locked until this bit cleared using EM23PERNOR-
6	I2C1LOCKED	0	R	Indicates If I2C1 Powered Down During EM23
	Indicates if I2C1 pov TAINCMD	wered down dur	ing EM23. A	ccess to this peripheral locked until this bit cleared using EM23PERNORE-
5	I2C0LOCKED	0	R	Indicates If I2C0 Powered Down During EM23
	Indicates if I2C0 pov TAINCMD	wered down dur	ing EM23. A	ccess to this peripheral locked until this bit cleared using EM23PERNORE-
4:3	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
2	PCNT0LOCKED	0	R	Indicates If PCNT0 Powered Down During EM23
	Indicates if PCNT0 p	oowered down o	during EM23	. Access to this peripheral locked until this bit cleared using EM23PER-
1	ACMP1LOCKED	0	R	Indicates If ACMP1 Powered Down During EM23
	Indicates if ACMP1 NORETAINCMD	powered down	during EM23	3. Access to this peripheral locked until this bit cleared using EM23PER-
0	ACMP0LOCKED	0	R	Indicates If ACMP0 Powered Down During EM23
	Indicates if ACMP0 NORETAINCMD	powered down	during EM23	3. Access to this peripheral locked until this bit cleared using EM23PER-

9.5.34 EMU_EM23PERNORETAINCTRL - When Set Corresponding Peripherals May Get Powered Down in EM23


Offset															Bi	t Po	siti	on														
0x108	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset															0		0	0	0		0	0	0		0	0	0			0	0	0
Access															₩ M		W.	RW W	RW		RW	₩ N	RW		Z.	₩ N	W.			RW	₩ W	RW
Name															CCDDIS		LEUART0DIS	CSENDIS	LESENSEODIS		WDOG0DIS	LETIMERODIS	ADCODIS		VDAC0DIS	I2C1DIS	I2C0DIS			PCNT0DIS	ACMP1DIS	ACMP0DIS

Bit	Name	Reset	Access	Description
31:18	Reserved	To ensure con tions	npatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
17	LCDDIS	0	RW	Allow Power Down of LCD During EM23
	Allow power down of	of LCD during EM2	23	
16	Reserved	To ensure con tions	npatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15	LEUART0DIS	0	RW	Allow Power Down of LEUART0 During EM23
	Allow power down of	of LEUART0 during	g EM23	
14	CSENDIS	0	RW	Allow Power Down of CSEN During EM23
	Allow power down of	of CSEN during EN	/123	
13	LESENSE0DIS	0	RW	Allow Power Down of LESENSE0 During EM23
	Allow power down of	of LESENSE0 duri	ng EM23	
12	Reserved	To ensure contions	npatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
11	WDOG0DIS	0	RW	Allow Power Down of WDOG0 During EM23
	Allow power down of	of WDOG0 during	EM23	
10	LETIMER0DIS	0	RW	Allow Power Down of LETIMER0 During EM23
	Allow power down of	of LETIMER0 durin	ng EM23	
9	ADC0DIS	0	RW	Allow Power Down of ADC0 During EM23
	Allow power down of	of ADC0 during EM	123	
8	Reserved	To ensure contions	npatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7	VDAC0DIS	0	RW	Allow Power Down of DAC0 During EM23
	Allow power down of	of DAC0 during EM	123	
6	I2C1DIS	0	RW	Allow Power Down of I2C1 During EM23
	Allow power down o	of I2C1 during EM2	23	
5	I2C0DIS	0	RW	Allow Power Down of I2C0 During EM23
	Allow power down o	of I2C0 during EM2	23	
4:3	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-

Bit	Name	Reset	Access	Description
2	PCNT0DIS	0	RW	Allow Power Down of PCNT0 During EM23
	Allow power down	of PCNT0 during	g EM23	
1	ACMP1DIS	0	RW	Allow Power Down of ACMP1 During EM23
	Allow power down	of ACMP1 durin	g EM23	
0	ACMP0DIS	0	RW	Allow Power Down of ACMP0 During EM23
	Allow power down	of ACMP0 durin	g EM23	

10. CMU - Clock Management Unit

Quick Facts

What?

The CMU controls oscillators and clocks. EFM32 Tiny Gecko 11 supports 6 different oscillators with minimized power consumption and short start-up time. The CMU has HW support for calibration of RC oscillators.

Why?

Oscillators and clocks contribute significantly to the power consumption of an MCU. Low power oscillators combined with a flexible clock control scheme make it possible to minimize the energy consumption in any given application.

How?

The CMU can configure different clock sources, enable/disable clocks to peripherals on an individual basis and set the prescaler for the different clocks. The short oscillator start-up times makes duty-cycling between active mode and the different low energy modes (EM2 DeepSleep, EM3 Stop, and EM4 Hibernate/Shutoff) very efficient. The calibration feature ensures high accuracy RC oscillators. Several interrupts are available to avoid CPU polling of flags.

10.1 Introduction

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks in the EFM32 Tiny Gecko 11. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that do not need to be active.

10.2 Features

- · Multiple clock sources available:
 - 4 MHz 48 MHz High Frequency Crystal Oscillator (HFXO)
 - 1 MHz 48 MHz High Frequency RC Oscillator (HFRCO)
 - 1 MHz 48 MHz Auxiliary High Frequency RC Oscillator (AUXHFRCO)
 - 32768 Hz Low Frequency Crystal Oscillator (LFXO)
 - · 32768 Hz Low Frequency RC Oscillator (LFRCO)
 - 1000 Hz Ultra Low Frequency RC Oscillator (ULFRCO)
- · All oscillator sources are low power.
- · Fast start-up times.
- · Spectrum-Spreading Digital Phase-Locked Loop.
- Separate prescalers for High Frequency Core Clocks (HFCORECLK), Bus Clocks (HFBUSCLK), and Peripheral Clocks (HFPERCLK, HFPERBCLK, HFPERCCLK).
- · Individual clock prescaler selection for each Low Energy Peripheral.
- · Clock gating on an individual basis to core modules and all peripherals.
- Selectable clock output to external pins and/or PRS.
- Wakeup interrupt for LFRCO or LFXO ready allows entry into EM2 DeepSleep while waiting for low-frequency oscillator startup. This
 avoids the need for software polling and saves power during oscillator startup.
- Auxiliary 1 MHz 48 MHz RC oscillator (AUXHFRCO), which is asynchronous to the HFSRCCLK system clock, can be selected for ADC operation, LESENSE timing and debug trace.

10.3 Functional Description

An overview of the high frequency portion of the CMU is shown in Figure 10.1 CMU Overview - High Frequency Portion on page 297. An overview of the low frequency portion is shown in Figure 10.2 CMU Overview - Low Frequency Portion on page 298. These figures show the CMU for the largest device in the EFM32 family. Refer to the Configuration Summary in the device data sheet to see which core, and peripheral modules, and therefore clock connections, are present in a specific device.

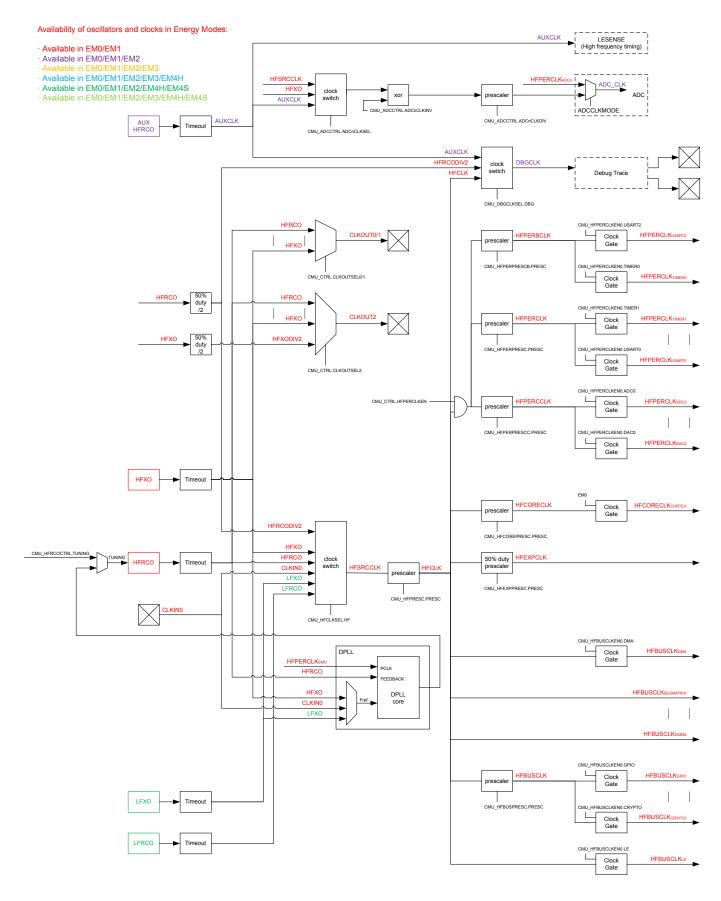


Figure 10.1. CMU Overview - High Frequency Portion

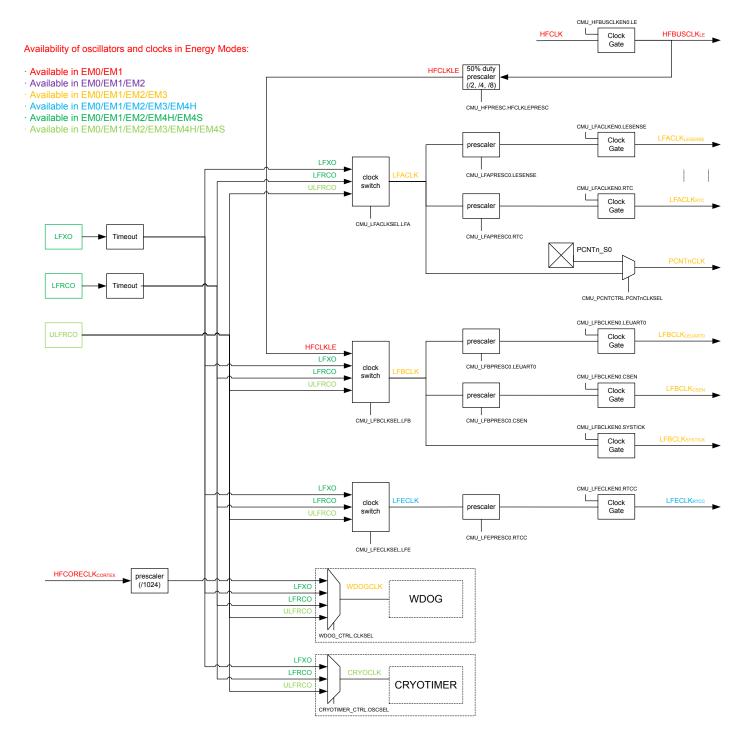


Figure 10.2. CMU Overview - Low Frequency Portion

10.3.1 System Clocks

Available system clock sources are detailed in the following sections.

10.3.1.1 HFCLK - High Frequency Clock

HFSRCCLK is the selected High Frequency Source Clock. HFCLK is an optionally prescaled version of HFSRCCLK. The HFSRCCLK, and therefore HFCLK, can be driven by a high-frequency oscillator, such as HFRCO, HFRCODIV2 (see DPLL 10.3.12.1 Enabling and Disabling) or HFXO, or one of the low-frequency oscillators (LFRCO or LFXO). Additionally, HFSRCCLK can also be driven from a pin (CLKIN0) described in 10.3.6 Clock Input From a Pin. By default the HFRCO is selected. In most applications, one of the high frequency oscillators will be the preferred choice. To change the selected clock source, write to the HF bitfield in CMU_HFCLKSEL. The high frequency clock source can also be changed automatically by hardware as explained in 10.3.2.4.1 Automatic HFXO Start. The currently selected source for HFSRCCLK and HFCLK can be read from CMU_HFCLKSTATUS. The HFSRCCLK is running in EM0 Active and EM1 Sleep and is automatically stopped in EM2 DeepSleep. During Voltage Scaling (see 9.3.9 Voltage Scaling), if a fixed frequency oscillator source (i.e. HFXO or CLKIN0) exceeds the maximum system frequency supported, it must be disabled or not selected. Likewise, an adjustable oscillator source (i.e. HFRCO or AUXHFRCO) must be configured to not exceed the maximum system frequency supported before voltage scaling is applied.

Note: If a low frequency clock (i.e. LFRCO or LFXO) is selected as source clock for HFSRCCLK via the HF bitfield in CMU_HFCLKSEL, then no register reads should be performed from Low Energy Peripherals for registers which can change value every clock cycle (e.g., a counter register). In addition to the peripherals on LFACLK, LFBCLK and LFECLK, this restriction applies in general to any low frequency peripheral, which is not directly or indirectly clocked from HFSRCCLK (e.g., WDOGn).

HFCLK can optionally be prescaled by setting PRESC in CMU_HFPRESC to a non-zero value. This prescales HFCLK to all high frequency components and is typically used to save energy in applications where the system is not required to run at the highest frequency. The prescaler setting can be changed dynamically and the new setting takes effect immediately. HFCLK is used by the CMU and drives the prescalers that generate HFCORECLK, HFBUSCLK and HFPERCLK, HFPERBCLK, HFPERCCLK allowing for flexible clock prescaling. HFCLK is used for Bus and Memory System modules as for example the Bus Matrix, MSC and DMEM. HFCLK is also used to drive the bus interface to the Low Energy Peripherals as described further in 10.3.1.6 LFACLK - Low Frequency a Clock, 10.3.1.7 LFBCLK - Low Frequency B Clock and 10.3.1.8 LFECLK - Low Frequency E Clock. Some of the modules that are driven by HFCLK can be clock gated completely when not in use. This is done by clearing the clock enable bit for the specific module in CMU_HFBUSCLKEN0. Table 10.1 Clock Domain (HFCLK, HFBUSCLK) Per Peripheral on page 300 shows which peripherals are in the HFCLK domain.

10.3.1.2 HFCORECLK - High Frequency Core Clock

HFCORECLK is a prescaled version of HFCLK. This clock drives the Core Modules, which consists of the CPU and modules that are tightly coupled to the CPU (e.g., the cache). The prescale factor for prescaling HFCLK into HFCORECLK is set using the CMU_HFCOREPRESC register. The setting can be changed dynamically and the new setting takes effect immediately.

Note: If HFPERCLK, HFPERBCLK, HFPERCCLK runs faster than HFCORECLK, the number of clock cycles for each bus-access to peripheral modules will increase with the ratio between the clocks. Refer to 4.2.4 Bus Matrix for more details.

10.3.1.3 HFBUSCLK - High Frequency Bus Clock

HFBUSCLK is a prescaled version of HFCLK. HFBUSCLK is used to drive modules such as GPIO and GPCRC. The prescale factor for prescaling HFCLK into HFBUSCLK is set using the CMU_HFBUSPRESC register. The setting can be changed dynamically and the new setting takes effect immediately. Some of the modules that are driven by HFBUSCLK can be clock gated completely when not in use. This is done by clearing the clock enable bit for the specific module in CMU_HFBUSCLKENO.

Table 10.1 Clock Domain (HFCLK, HFBUSCLK) Per Peripheral on page 300 shows which peripheral is in what clock domain (HFCLK or HFBUSCLK).

Table 10.1. Clock Domain (HFCLK, HFBUSCLK) Per Peripheral

Peripheral	Bus Clock
LE	HFCLK
PRS	HFCLK
LDMA	HFCLK
MSC	HFCLK
SMU	HFCLK
CRYPTO0	HFBUSCLK
GPIO	HFBUSCLK
GPCRC	HFBUSCLK

10.3.1.4 HFPERCLK, HFPERBCLK, HFPERCCLK - High Frequency Peripheral Clocks

Like HFCORECLK, also HFPERCLK, HFPERBCLK, and HFPERCCLK are prescaled versions of HFCLK. These clocks drive the High-Frequency Peripherals. All the peripherals that are driven by these clocks can be clock gated individually when not in use. This is done by clearing the clock enable bit for the specific peripheral in CMU_HFPERCLKEN0 or CMU_HFPERCLKEN1. All high frequency peripheral clocks can be universally and simultaneously gated by clearing the HFPERCLKEN bit in the CMU_CTRL register. The prescale factors for prescaling HFCLK into HFPERCLK, HFPERBCLK, and HFPERCCLK are set using the CMU_HFPERPRESC, CMU_HFPERPRESCB, and CMU_HFPERPRESCC registers respectively. The setting can be changed dynamically and the new setting takes effect immediately.

Table 10.2 Peripheral Clock Domains (HFPERCLK, HFPERBCLK, HFPERBCLK) Per Peripheral on page 301 shows which peripheral is in what peripheral clock domain.

Table 10.2. Peripheral Clock Domains (HFPERCLK, HFPERBCLK, HFPERCCLK) Per Peripheral

Peripheral	Peripheral Clock
TIMER1	HFPERCLK
WTIMER0	HFPERCLK
WTIMER1	HFPERCLK
USART0	HFPERCLK
USART1	HFPERCLK
USART3	HFPERCLK
UART0	HFPERCLK
CAN0	HFPERCLK
TRNG0	HFPERCLK
TIMER0	HFPERBCLK
USART2	HFPERBCLK
ACMP0	HFPERCCLK
ACMP1	HFPERCCLK
I2C0	HFPERCCLK
I2C1	HFPERCCLK
ADC0	HFPERCCLK
CRYOTIMER	HFPERCCLK
VDAC0	HFPERCCLK
CSEN	HFPERCCLK

Note: If HFPERCLK, HFPERBCLK or HFPERCCLK runs faster than HFCORECLK, the number of clock cycles for each bus-access to peripheral modules will increase with the ratio between the clocks. E.g. if a bus-access normally takes three cycles, it will take 9 cycles of HFCORECLK if HFPERCLK runs three times as fast as HFCORECLK.

10.3.1.5 ADCnCLK - ADC Core Clock

ADCnCLK is a selectable core clock for ADCn. There are three selectable sources for ADCnCLK: HFSRCCLK, HFXO and AUXHFR-CO. In addition, the ADCnCLK can be disabled, which is the default setting. The selection is configured using the ADCnCLKSEL field in CMU_ADCCTRL. The ADCnCLKINV bit in CMU_ADCCTRL can be used to invert ADCnCLK. The ADCnCLKDIV bitfield in CMU_ADCCTRL can be used to prescale ADCnCLK. The bus interface of ADCn is clocked with HFBUSCLK.

10.3.1.6 LFACLK - Low Frequency a Clock

LFACLK is the selected clock for the Low Energy A Peripherals. There are several selectable sources for LFACLK: LFRCO, LFXO and ULFRCO. In addition, the LFACLK can be disabled, which is the default setting. The selection is configured using the LFA field in CMU LFACLKSEL.

The bus interface to the Low Energy A Peripherals is clocked by HFCLK_{LE} and this clock therefore needs to be enabled when programming a Low Energy (LE) peripheral.

Each Low Energy Peripheral that is clocked by LFACLK has its own prescaler setting and enable bit. The prescaler settings are configured using CMU LFAPRESC0 and the clock enable bits can be found in CMU LFACLKEN0.

When operating in oversampling mode, the pulse counters are clocked by LFACLK. This is configured for each pulse counter (n) individually by setting PCNTnCLKSEL in CMU PCNTCTRL.

10.3.1.7 LFBCLK - Low Frequency B Clock

LFBCLK is the selected clock for the Low Energy B Peripherals. There are several selectable sources for LFBCLK: LFRCO, LFXO, HFCLKLE and ULFRCO. In addition, the LFBCLK can be disabled, which is the default setting. The selection is configured using the LFB field in CMU_LFBCLKSEL. The HFCLKLE setting allows the Low Energy B Peripherals to be used as high-frequency peripherals.

The bus interface to the Low Energy B Peripherals is clocked by HFCLK_{LE} and this clock therefore needs to be enabled when programming a LE peripheral.

Note: If HFCLKLE is selected as LFBCLK, the clock will stop in EM2 DeepSleep and EM3 Stop.

Each Low Energy Peripheral that is clocked by LFBCLK has its own prescaler setting and enable bit. The prescaler settings are configured using CMU LFBPRESC0 and the clock enable bits can be found in CMU LFBCLKEN0.

10.3.1.8 LFECLK - Low Frequency E Clock

LFECLK is the selected clock for the Low Energy E Peripherals. There are several selectable sources for LFECLK: LFRCO, LFXO and ULFRCO. In addition, the LFECLK can be disabled, which is the default setting. The selection is configured using the LFE field in CMU_LFECLKSEL.

The bus interface to the Low Energy E Peripherals is clocked by HFCLK_{LE} and this clock therefore needs to be enabled when programming a LE peripheral.

Note: LFECLK is in a different power domain than LFACLK and LFBCLK, which makes it available all the way down to EM4 Hibernate.

Each Low Energy Peripheral that is clocked by LFECLK has its own prescaler setting and enable bit. The prescaler settings are configured using CMU_LFEPRESC0 and the clock enable bits can be found in CMU_LFECLKEN0.

10.3.1.9 PCNTnCLK - Pulse Counter N Clock

Each available pulse counter is driven by its own clock, PCNTnCLK where n is the pulse counter instance number. Each pulse counter can be configured to use an external pin (PCNTn S0) or LFACLK as PCNTnCLK.

10.3.1.10 WDOGnCLK - Watchdog Timer Clock

The Watchdog Timer (WDOGn) can be configured to use one of many different clock sources. Refer to CLKSEL field in WDOGn_CTRL for a complete list.

10.3.1.11 CRYOCLK - CRYOTIMER Clock

The CRYOTIMER clock can be configured to use one of many different clock sources. Refer to OSCSEL field in CRYOTIMER_CTRL for a complete list. The CRYOTIMER can also run in EM4 Hibernate/Shutoff provided that its selected clock is kept enabled as configured in EMU EM4CTRL.

10.3.1.12 AUXCLK - Auxiliary Clock

AUXCLK is a 1 MHz - 48 MHz clock driven by a separate RC oscillator, the AUXHFRCO. This clock can be used for ADC operation LESENSE operation. When the AUXHFRCO is selected as the ADCn clock via the ADCnCLKSEL bitfield in the CMU_ADCCTRL register, or if needed by LESENSE, this clock will become active automatically when needed. Even if the AUXHFRCO has not been enabled explicitly by software, the ADC or LESENSE can automatically start and stop it. The AUXHFRCO is explicitly enabled by writing a 1 to AUXHFRCOEN in CMU_OSCENCMD. This explicit enabling is required when selecting the AUXCLK for SWO operation.

10.3.1.13 Debug Trace Clock

The CMU selects the clock used for debug trace via the DBGCLKSEL register. The user can use HFRCODIV2, AUXHFRCO or the HFCLK. The selected debug trace clock will be used to run the Cortex-M0+ trace logic.

Note: When using AUXHFRCO as the debug trace clock, it must be stopped before entering EM2 or EM3.

10.3.2 Oscillators

Control of the various oscillators available in the device is detailed in the following sections.

10.3.2.1 Enabling and Disabling

The different oscillators can typically be enabled and disabled via both hardware and software mechanisms. Enabling via software is done by setting the corresponding enable bit in the CMU_OSCENCMD register. Disabling via software is done by setting the corresponding disable bit in CMU_OSCENCMD. Enabling via hardware can be performed by various peripherals and varies per oscillator. Disabling via hardware is typically performed on entry of low energy modes. The enable and disable mechanisms for each of the oscillators are summarized in Table 10.3 Software Based and Hardware Based Enabling and Disabling of Oscillators on page 304 and described in more detail below.

Table 10.3. Software Based and Hardware Based Enabling and Disabling of Oscillators

Oscillator	SW Enable	SW Disable	HW Enable	HW Disable
ULFRCO	-	-	Enabled when in EM0/EM1/EM2/EM3/ EM4H.	EM4S entry depending on configuration in EMU_EM4CTRL.
LFRCO	Via LFRCOEN in CMU_OSCENCMD.	Via LFRCODIS in CMU_OSCENCMD.	Via WDOGn if it is configured to use LFRCO as its clock source via the CLKSEL bitfield in WDOGn_CTRL while SWOSCBLOCK is set.	EM3 entry. EM4 entry depending on configuration in EMU_EM4CTRL.
LFXO	Via LFXOEN in CMU_OSCENCMD.	Via LFXODIS in CMU_OSCENCMD.	Via WDOGn if it is configured to use LFXO as its clock source via the CLKSEL bitfield in WDOGn_CTRL while SWOSCBLOCK is set.	EM3 entry. EM4 entry depending on configuration in EMU_EM4CTRL.
HFRCO	Via HFRCOEN in CMU_OSCENCMD.	Via HFRCODIS in CMU_OSCENCMD.	Reset exit. EM2/EM3 exit. Automatic control by LEUART RX/TX DMA wake-up as configured in LEUARTn_CTRL.	EM2/EM3/EM4 entry. Automatic control by LEUART RX/TX DMA wake-up as configured in LEUARTn_CTRL. Automatic start and selection of HFXO causes HFRCO disable.
AUXHFRCO	Via AUXHFRCOEN in CMU_OSCENCMD.	Via AUXHFRCODIS in CMU_OSCENCMD.	Automatic control by ADC and LESENSE.	EM2/EM3/EM4 entry. Automatic control by ADC and LESENSE even in EM2/EM3.
HFXO	Via HFXOEN in CMU_OSCENCMD.	Via HFXODIS in CMU_OSCENCMD.	Automatic start by EM0/EM1 entry as configured in CMU_HFXOCTRL.	EM2/EM3/EM4 entry.

10.3.2.1.1 LFRCO and LFXO

The LFXO and LFRCO can be enabled and disabled by software via the CMU_OSCENCMD register. WDOGn can be configured to force the LFXO or LFRCO to become (and remain) enabled when such an oscillator is selected as its clock source via the CLKSEL bitfield in the WDOGn_CTRL register while SWOSCBLOCK is set. In that case LFXODIS and LFRCODIS commands are blocked. They are automatically disabled when entering EM3. Upon EM4 entry they are default turned off, but they can optionally be retained depending on the EMU_EM4CTRL configuration. Retaining of the LFXO or LFRCO in EM4 is needed if such an oscillator is required by a specific peripheral in EM4. Retaining can also be used to guarantee quick oscillator availability after EM4 exit.

The oscillators should never be retained in case they are off before entering EM4. The following are the valid ways of using the LFXO/LFRCO retention mechanism:

- Turn on LFXO/LFRCO always (even in EM4):
 - 1. POR
 - 2. Enable LFXO/LFRCO
 - 3. Enable RETAINLFXO/RETAINLFRCO
 - 4. EM4 entry
 - 5. LFXO/LFRCO are retained and remain running in EM4
 - 6. EM4 wakeup
 - 7. Enable LFXO/LFRCO
 - 8. Set EM4UNLATCH in EMU CMD
- Turn off LFXO/LFRCO in EM4:
 - 1. POR
 - 2. Disable RETAINLFXO/RETAINLFRCO (default)
 - 3. Enable LFXO/LFRCO
 - 4. EM4 entry
 - 5. LFXO/LFRCO are off in EM4
 - 6. EM4 wakeup
 - 7. Enable LFXO/LFRCO
 - 8. Set EM4UNLATCH in EMU CMD
- · Turn on LFXO/LFRCO after EM4 exit:
 - 1. POR
 - 2. Disable RETAINLFXO/RETAINLFRCO (default)
 - 3. Enable LFXO/LFRCO
 - 4. EM4 entry
 - 5. LFXO/LFRCO are off in EM4
 - 6. EM4 wakeup
 - 7. Enable LFXO/LFRCO
 - 8. Set EM4UNLATCH in EMU_CMD
 - 9. Enable RETAINLFXO/RETAINLFRCO

In summary RETAINLFXO/RETAINLFRCO should either be changed once after POR and kept static, or they can be changed on-the-fly only after asserting EM4UNLATCH.

Note:

- In order to support usage of LFRCO and LFXO in EM4, their settings are automatically latched upon EM4 entry. These settings
 remain latched upon wake-up from EM4 to EM0 although the related registers (CMU_LFRCOCTRL, CMU_LFXOCTRL,
 CMU_LFECLKSEL, CMU_LFECLKEN0 and CMU_LEEPRESC0) will have been reset. The registers can be rewritten by software,
 but they will only affect the LFRCO and LFXO after unlatching their settings by setting EM4UNLATCH in the EMU_CMD register.
- Turning off the LFRCO and LFXO upon EM4 Hibernate/Shutoff entry is most easily done by using the RETAINLFRCO and RETAINLFXO bitfields from the EMU_EM4CTRL register, which are default such that the LFRCO and LFXO are turned off automatically upon EM4 Hibernate/Shutoff entry. Alternatively the LFRCO and LFXO can be disabled via the CMU_OSCENCMD register, in which case software should wait for the oscillators to be properly disabled before executing the EM4 Hibernate/Shutoff entry routine.

After enabling the LFRCO (or LFXO), it should not be disabled before it has been signaled to be ready. Similarly, after disabling the LFRCO (or LFXO), it should not be re-enabled before it has been signaled to be non-ready. Before entering EM4, software should check that the LFRCO (or LFXO) is signaled to be ready before allowing or initiating the EM4 entry if that oscillator is required in EM4. Also, to guarantee latching the latest settings, no control write should be ongoing upon EM4 entry as can be checked via the CMU SYNCBUSY register. Typical enable and disable sequences are as follows:

```
CMU->OSCENCMD = CMU_OSCENCMD_LFRCOEN;
while ((CMU->STATUS & CMU_STATUS_LFRCORDY) != CMU_STATUS_LFRCORDY);

CMU->OSCENCMD = CMU_OSCENCMD_LFRCODIS;
while ((CMU->STATUS & CMU_STATUS_LFRCORDY) == CMU_STATUS_LFRCORDY);
```

When the LFXO is disabled, the interface to the LFXTAL_N and LFXTAL_P pins are set in a high-Z state. The XTAL oscillations will not stop immediately when LFXO is disabled, but typically die out gradually over some 100 ms. If the LFXO is enabled before XTAL oscillations have had time to reach zero amplitude, startup time can be significantly shorter.

Note: The LFRCORDY and LFXORDY interrupts can be used to wake up the system from EM2 DeepSleep. In this way busy waiting for the LFRCO or LFXO to become ready can be avoided by going into EM2 after enabling these oscillators and sleeping until the interrupt causes a wakeup.

10.3.2.1.2 ULFRCO

The ULFRCO is automatically enabled in EM0, EM1, EM2, EM3, and EM4H and cannot be controlled via CMU_OSCENCMD. It is automatically disabled upon entering EM4S unless prevented by the configuration in EMU_EM4CTRL.

10.3.2.1.3 HFRCO

The HFRCO can be enabled and disabled by software via the CMU_OSCENCMD register. The HFRCO is disabled automatically when entering EM2, EM3, or EM4. Further hardware based enabling and disabling can be performed by the LEUART when using automatic RX/TX DMA wakeup as controlled by the RXDMAWU and TXDMAWU bits in the LEUARTn_CTRL register. An automatic start and selection of the HFXO will lead to an automatic HFRCO disabling. Since HFRCO also serves as the local oscillator for DPLL (10.3.12 Digital Phase-Locked Loop), it is enabled/disabled when DPLL is enabled/disabled.

The supported HFRCO frequency range is from 1 MHz to 48 MHz. The default HFRCO frequency is 19 MHz

10.3.2.1.4 HFXO

The HFXO can be enabled and disabled by software via the CMU_OSCENCMD register. The HFXO is disabled automatically when entering EM2, EM3, or EM4. Hardware based HFXO enabling can be initiated by various peripherals as configured via the AUTOSTARTEM0EM1, and AUTOSTARTSELEM0EM1 bits in the CMU_HFXOCTRL register. The interaction between hardware based and software based control of the HFXO is further explained in 10.3.2.4.1 Automatic HFXO Start.

The supported HFXO frequency range is from 4 MHz to 48 MHz.

After enabling the HFXO, it should not be disabled before it has been signaled to be enabled. Similarly, after disabling the HFXO it should not be re-enabled before it has been signaled to be non-enabled. Typical enable and disable sequences are as follows:

```
CMU->OSCENCMD = CMU_OSCENCMD_HFXOEN;
while ((CMU->STATUS & CMU_STATUS_HFXOENS) != CMU_STATUS_HFXOENS);

CMU->OSCENCMD = CMU_OSCENCMD_HFXODIS;
while ((CMU->STATUS & CMU_STATUS_HFXOENS) == CMU_STATUS_HFXOENS);
```

10.3.2.1.5 AUXHFRCO

The AUXHFRCO can be enabled and disabled by software via the CMU_OSCENCMD register. The AUXHFRCO is disabled automatically when entering EM2, EM3, or EM4. Hardware based AUXHFRCO enabling and disabling is however performed by the ADC module when AUXCLK is selected for its operation and by the LESENSE module making it available even when being in EM2/EM3.

The supported AUXHFRCO frequency range is from 1 MHz to 48 MHz. The default AUXHFRCO frequency is 19 MHz

After enabling the AUXHFRCO, it should not be disabled before it has been signaled to be enabled. Similarly, after disabling the AUXHFRCO, it should not be re-enabled before it has been signaled to be non-enabled. Typical enable and disable sequences are as follows:

```
CMU->OSCENCMD = CMU_OSCENCMD_AUXHFRCOEN;
while ((CMU->STATUS & CMU_STATUS_AUXHFRCOENS) != CMU_STATUS_AUXHFRCOENS);

CMU->OSCENCMD = CMU_OSCENCMD_AUXHFRCODIS;
while ((CMU->STATUS & CMU_STATUS_AUXHFRCOENS) == CMU_STATUS_AUXHFRCOENS);
```

Note: When using AUXHFRCO as the debug trace clock (as selected in CMU_DBGCLKSEL), it must be stopped before entering EM2 or EM3.

10.3.2.2 Oscillator Start-up Time and Time-out

The start-up time differs per oscillator and the usage of an oscillator clock can further be delayed by a time-out. The LFRCO, LFXO and the HFXO have a configurable time-out which is set by software in the (various) TIMEOUT bitfields of the CMU_LFRCOCTRL, CMU_LFXOCTRL and CMU_HFXOTIMEOUTCTRL registers respectively. The time-out delays the assertion of the READY signal for LFRCO, LFXO and HFXO and should allow for enough time for the oscillator to stabilize. The time-out can be optimized for the chosen crystal (for LFXO and HFXO) used in the application. In case LFRCO and/or LFXO has been retained throughout EM4 Hibernate/Shutoff, such retained oscillators can be quickly restarted for use as LFACLK, LFBCLK or LFECLK by using the minimum TIMEOUT settings for them. For the other RC oscillators (HFRCO, AUXHFRCO, and ULFRCO), the start-up time is known and a fixed time-out is used.

There are individual bits in the CMU STATUS register for each oscillator indicating the status of the oscillator:

- · ENABLED Indicates that the oscillator is enabled
- · READY Start-up time including time-out is exceeded

These status bits are located in the CMU STATUS register.

Additionally, the HFXO has a second time-out counter which can be used to achieve deterministic start-up time based on timing from the LFXO, ULFRCO, or LFRCO. This second counter runs off LFECLK and can be programmed via the LFTIMEOUT bitfield in the CMU_HFXOCTRL register. It can be used when waking up from EM2 when either ULFRCO, LFRCO or LFXO is already running and stable. In this case the HFXO ready assertion can be delayed with the number of LFECLK cycles as programmed in LFTIMEOUT. The HFXO ready signal is asserted when both the TIMEOUT counter (configured via the CMU_HFXOTIMEOUTCTRL register) and the LFTIMEOUT counter (configured via CMU_HFXOCTRL register) have timed out as shown in Figure 10.3 CMU Deterministic HFXO startup using LFTIMEOUT on page 308. The TIMEOUT should cover the actual crystal startup time. Typically the time base used for the TIMEOUT counter is not as accurate as the time base accuracy that can be achieved for the LFTIMEOUT counter, specifically if that one is based on the LFXO timing. If LFTIMEOUT is triggered before TIMEOUT is triggered, then the LFTIMEOUTERR bitfield in CMU_IF will be set to 1. Note that use of LFTIMEOUT requires that the peripheral causing the wake-up is on the LFECLK domain.

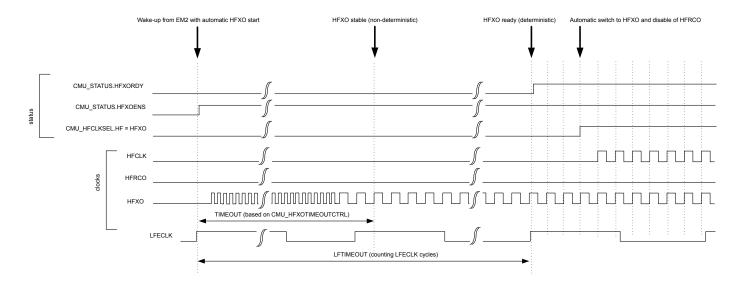


Figure 10.3. CMU Deterministic HFXO startup using LFTIMEOUT

The startup behavior of the HFXO also depends on how and how long the HFXO is disabled.

10.3.2.3 Switching Clock Source

The HFRCO oscillator is a low energy oscillator with extremely short start-up time. Therefore, this oscillator is always chosen by hardware as the clock source for HFCLK when the device starts up (e.g., after reset and after waking up from EM2 DeepSleep and EM3 Stop). After reset, the HFRCO frequency is 19 MHz.

Software can switch between the different clock sources at run-time. For example, when the HFRCO is the clock source, software can switch to HFXO by writing the field HF in the CMU_HFCLKSEL command register. See Figure 10.4 CMU Switching from HFRCO to HFXO before HFXO is ready on page 309 for a description of the sequence of events for this specific operation.

Note: Before switching the HFCLKSRC to HFXO via the HF bitfield in CMU_HFCLKSEL it is important to first enable the HFXO. Switching to a disabled oscillator will effectively stop HFSRCCLK and only a reset can recover the system.

When selecting an oscillator which has been enabled, but which is not ready yet, the HFSRCCLK will stop for the duration of the oscillator start-up time since the oscillator driving it is not ready. This effectively stalls the Core Modules and the High-Frequency Peripherals. It is possible to avoid this by first enabling the target oscillator (e.g., HFXO) and then waiting for that oscillator to become ready before switching the clock source. This way, the system continues to run on the HFRCO until the target oscillator (e.g., HFXO) has timed out and provides a reliable clock. This sequence of events is shown in Figure 10.5 CMU Switching from HFRCO to HFXO after HFXO is ready on page 310.

A separate flag is set when the oscillator is ready. This flag can also be configured to generate an interrupt.

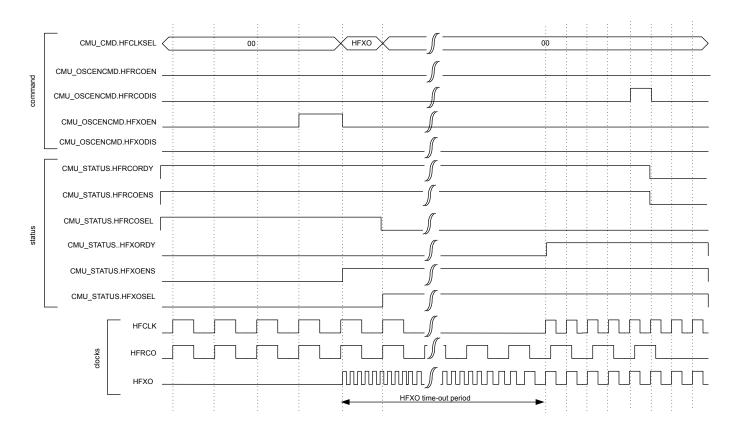


Figure 10.4. CMU Switching from HFRCO to HFXO before HFXO is ready

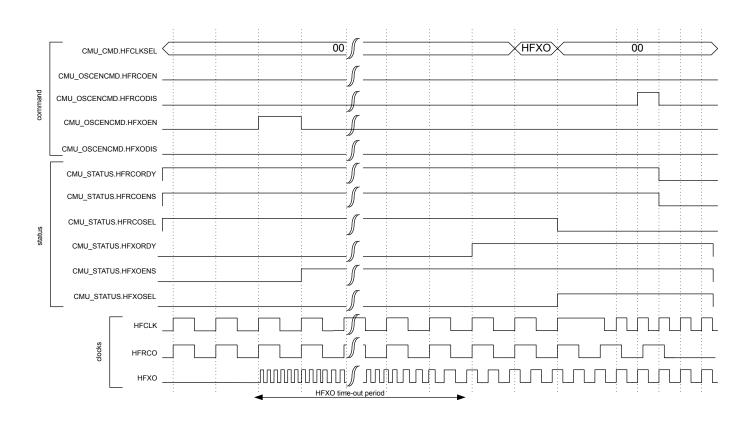


Figure 10.5. CMU Switching from HFRCO to HFXO after HFXO is ready

Switching clock source for LFACLK, LFBCLK, and LFECLK is done by setting the LFA, LFB and LFE bitfields in CMU_LFACLKSEL, CMU_LFBCLKSEL and CMU_LFECLKSEL respectively. To ensure no stalls in the Low Energy Peripherals, the clock source should be ready before switching to it.

Note: To save energy, remember to turn off all oscillators not in use.

10.3.2.4 HFXO Configuration

The High Frequency Crystal Oscillator needs to be configured to ensure safe startup for the given crystal. Refer to the device data sheet and application notes for guidelines in selecting correct components and crystals as well as for configuration trade-offs.

The HFXO crystal is connected to the HFXTAL N/HFXTAL P pins as shown in Figure 10.6 HFXO Pin Connection on page 311

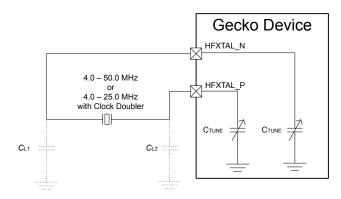


Figure 10.6. HFXO Pin Connection

By default the HFXO is started in crystal mode (XTAL), but it is possible to connect an active external sine wave or square wave clock source to the HFXTAL_N pin of the HFXO. By configuring the MODE field in CMU_HFXOCTRL to ACBUFEXTCLK (for external AC coupled sine wave) or DCBUFEXTCLK (for external DC coupled sine wave) or DIGEXTCLK (for external square wave), the HFXO can be bypassed and the source clock can be provided through the HFXTAL_N pin. When using external clock source, the HFXTAL_P pin is available to be used as regular GPIO.

Upon enabling the HFXO, a hardware state machine sequentially applies the configurable startup state and steady state control settings from the CMU_HFXOSTARTUPCTRL and CMU_HFXOSTEADYSTATECTRL registers. Configuration is required for both the startup state and the steady state of the HFXO. After reaching the steady operation state of the HFXO, further optimization can optionally be performed to optimize the HFXO for current consumption by an automatic Peak Detection Algorithm (PDA). HFXO operation is possible without PDA at the cost of higher current consumption than required. Furthermore, the oscillator amplitude can be kept stable by an automatic Peak Monitoring Algorithm (PMA) implemented in hardware. PMA is performed at every rising edge of ULFRCO, when it is enabled via the PEAKMONEN bitfield of CMU_HFXOSTEADYSTATECTRL register (enabled by default). PDA and PMA can only be activated in XTAL mode.

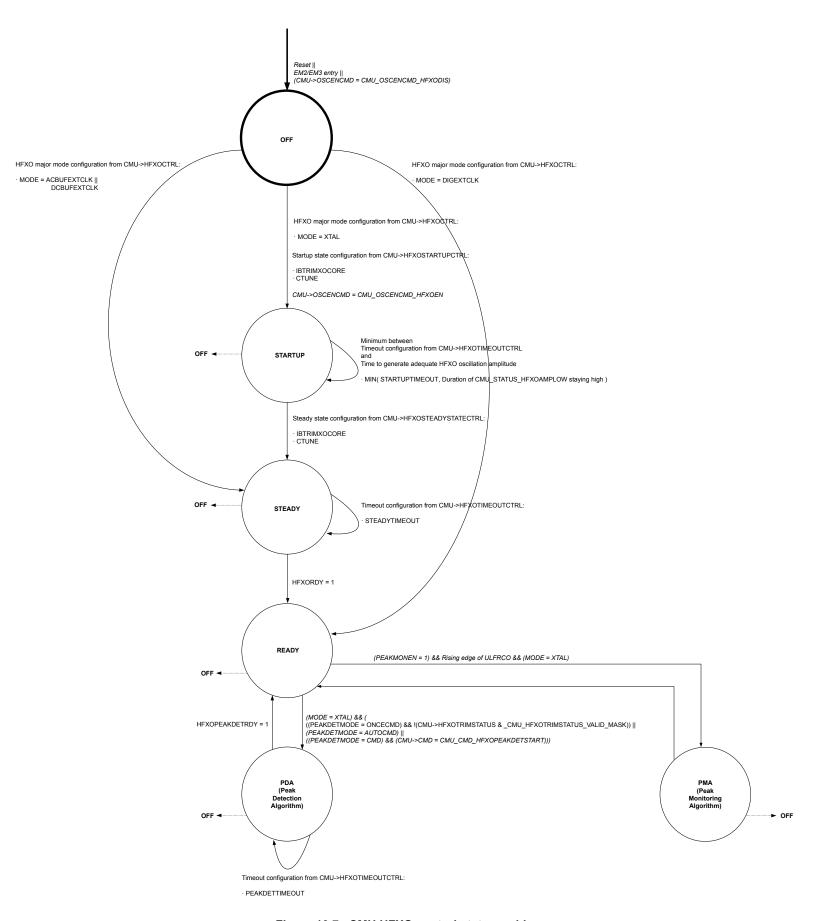


Figure 10.7. CMU HFXO control state machine

Refer to the device data sheet to find the configuration values for a given crystal. The startup state configuration needs to be written into the IBTRIMXOCORE and CTUNE bitfields of the CMU_HFXOSTARTUPCTRL register. The duration of the startup phase is configured in the STARTUPTIMEOUT bitfield of the CMU_HFXOTIMEOUTCTRL register. Similarly, the device data sheet provides the steady state configuration depending on the crystal's CL, RESR and oscillation frequency. This configuration is programmed into the IBTRIMXOCORE and CTUNE bitfields of the CMU_HFXOSTEADYSTATECTRL register. The duration of the steady phase is configured in the STEADYTIMEOUT bitfield of the CMU_HFXOTIMEOUTCTRL register.

All HFXO configuration needs to be performed prior to enabling the HFXO via HFXOEN in CMU_OSCENCMD unless noted otherwise. The HFXOENS flag in CMU_STATUS indicates if the HFXO has been successfully enabled. Once the HFXO startup time (STARTUP-TIMEOUT plus STEADYTIMEOUT) has exceeded, the HFXO is ready for use as indicated by the HFXORDY flag in CMU_STATUS. If PDA is enabled, the HFXOPEAKDETRDY flag in the CMU_STATUS register indicates when this algorithm is ready and it is advised to also wait for this flag before using the HFXO.

The HFXO crystal bias current may be optimized and set to a value which decreases output phase noise without sacrificing PSR. This is done by programming the recommended IBTRIMXOCORE value into the CMU_HFXOSTEADYSTATECTRL register. The built-in Peak Detector Algorithm (PDA) performs further optimization to accommodate for process variations. Once PDA is ready as indicated by the HFXOPEAKDETRDY flag, the VALID flag in CMU_HFXOTRIMSTATUS register becomes 1 indicating that PDA found optimal bias current setting and this setting is available in the IBTRIMXOCORE bitfield of the CMU_HFXOTRIMSTATUS register. This IBTRIMXOCORE setting should be saved and can be applied directly during a future HFXO startup as a low power setting by programming it into the corresponding bitfield in CMU_HFXOSTEADYSTATECTRL while the HFXO is off. This is done automatically if HFXO is started with PEAKDETMODE register field of CMU_HFXOCTRL set to ONCECMD and in this case PDA is skipped upon repeated HFXO startup.

Default PDA is started automatically once the HFXO has become ready. Repeated PDA can be triggered by writing HFXOPEAKDET-START to 1 in the CMU_CMD register. PDA can also be triggered only by the command register by configuring PEAKDETMODE to CMD in the CMU_HFXOCTRL register before starting the HFXO. The PEAKDETTIMEOUT bitfield in the CMU_HFXOTIMEOUTCTRL register is used to time the PDA steps and needs to be configured according to the device data sheet for the given crystal. The PEAKDETEN bitfield of the CMU_HFXOSTEADYSTATECTRL register is only used during manual (i.e. fully software controlled) peak detection and is ignored during automatic or command based triggering of the PDA. Note that the manual PDA mode is not recommended for general usage and therefore it is not further described. PDA and PMA should not be used when using an external wave as clock source.

10.3.2.4.1 Automatic HFXO Start

The enabling of the HFXO and its selection as HFSRCCLK source can be performed automatically by hardware. Automatic control of the HFXO is controlled via the AUTOSTARTSELEM0EM1 and AUTOSTARTEM0EM1 bits in the CMU_HFXOCTRL register. It further depends on the energy mode of the EFM32.

An automatic HFXO enable is performed only if any of the following conditions are met:

• EFM32 is in EM0/EM1 and AUTOSTARTEM0EM1 or AUTOSTARTSELEM0EM1 are set to 1.

An automatic HFXO select is performed only if any of the following conditions is met:

• EFM32 is in EM0/EM1 and AUTOSTARTSELEM0EM1 is set to 1.

Whenever any of the conditions for automatic HFXO enable is met, software is not allowed to disable the HFXO. An attempt to do so (e.g., by writing 1 to the HFXODIS bit) is ignored and causes the HFXODISERR bit in the CMU_IF register to be set to 1. Similarly, whenever any of the conditions for automatic HFXO selection is met, software is not allowed to deselect the HFXO as clock source for HFSRCCLK. An attempt to do so (e.g., by selecting another clock source via CMU_HFCLKSEL) is ignored and causes the HFXODISERR bit in the CMU_IF register to be set to 1. Note that CMUERR is not implied by HFXODISERR. CMUERR will not get set to 1 for the above scenarios in which HFXODISERR gets set.

Software can only disable or deselect the HFXO after removing all of the HFXO automatic enable or select reasons. The HFXO is only disabled by hardware upon EM2, EM3 or EM4 entry.

In case that AUTOSTARTSELEM0EM1 is set to 1 in EM0/EM1 (irrespective of the other autostart bits), the HFXO select will occur immediately, even if HFXO is not ready yet. Upon wake-up into EM0/EM1 this can therefore lead to a relatively long startup time as the system will not start operating from the HFRCO as it would otherwise do.

Note that the user should take care that the settings in the MSC_READCTRL and CMU_CTRL registers, as described in 10.3.3 Configuration for Operating Frequencies, are compatible with HFXO frequency before enabling the HFXO automatic startup feature. A basic automatic HFXO start scenario is shown in Figure 10.8 CMU Automatic Startup and Selection of HFXO on page 314.

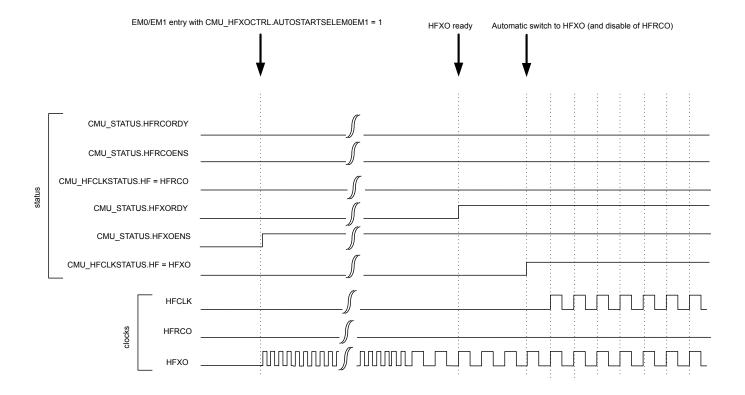


Figure 10.8. CMU Automatic Startup and Selection of HFXO

If an automatic selection of HFXO is performed, which switches the clock source used for HFSRCCLK, then the HFXOAUTOSW bit in CMU_IF is set to 1. After automatic enable and selection of the HFXO, the HFRCO is automatically disabled in case it is running. The disabling of a running HFRCO is signalled via the HFRCODIS bit in CMU_IF. This only applies to the HFRCO. If for example the LFXO was used as HFSRCCLK at the time of automatic selection of the HFXO, the LFXO remains unaffected.

The interaction between automatic HFXO startup and selection with startup and selection of HFRCO is shown in Figure 10.9 CMU HFRCO Startup/Selection While Awaiting Automatic HFXO Startup/Selection on page 315.

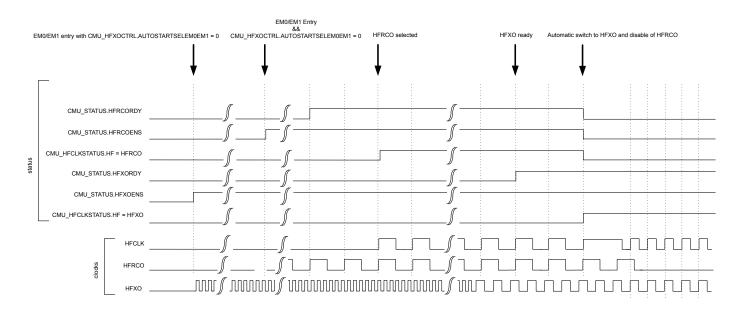


Figure 10.9. CMU HFRCO Startup/Selection While Awaiting Automatic HFXO Startup/Selection

10.3.2.5 LFXO Configuration

The Low Frequency Crystal Oscillator (LFXO) is default configured to ensure safe startup for all crystals. In order to optimize startup time and power consumption for a given crystal, it is possible to adjust the startup gain in the oscillator by programming the GAIN field in CMU LFXOCTRL. Recommendations for the GAIN setting are as follows:

- 1. C0 must be < 2 pF
- 2. For 12.5 pF < CL < 18 pF, GAIN = 3
- 3. For 8 pF < CL < 12.5 pF, GAIN = 2
- 4. For 6 pF < CL < 8 pF, GAIN = 1
- 5. For CL = 6 pF, GAIN = 0

Refer to the device data sheet and application notes for guidelines in selecting correct components and crystals as well as for configuration trade-offs.

The LFXO can be retained on in EM4 Hibernate/Shutoff. In that case its required configuration is latched/retained throughout EM4 even though the CMU_LFXOCTRL register itself will be reset. Upon EM4 exit, the CMU_LFXOCTRL register therefore needs to be reconfigured to its original settings and the LFXO needs to be restarted via CMU_OSCENCMD, before optionally unlatching the retained LFXO configuration by writing 1 to EM4UNLATCH in the EMU_CMD register. The LFXO startup time is configured via the TIMEOUT bitfield of the CMU_LFXOCTRL register. If the LFXO has been retained throughout EM4 Hibernate/Shutoff, it can be quickly restarted for use as LFACLK, LFBCLK or LFECLK by using its minimum TIMEOUT setting. While retained, the LFXO can be used down to EM4 Hibernate as source for LFECLK and down to EM4 Shutoff as source for CRYOCLK.

The LFXO crystal is connected to the LFXTAL_N/LFXTAL_P pins as shown in Figure 10.10 LFXO Pin Connection on page 316.

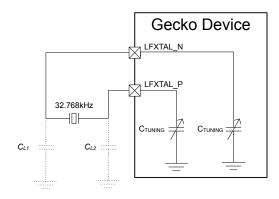


Figure 10.10. LFXO Pin Connection

By configuring the MODE field in CMU_LFXOCTRL, the LFXO can be bypassed, and an external clock source can be connected to the LFXTAL_N pin of the LFXO oscillator. If MODE is set to BUFEXTCLK, an external active sine source can be used as clock source. If MODE is set to DIGEXTCLK, an external active CMOS source can be used as clock source.

The LFXO includes on-chip tunable capacitance, which can replace external load capacitors. The TUNING bitfield of the CMU_LFXOCTRL register is used to tune the internal load capacitance connected between LFXTAL_P and ground and LFXTAL_N and ground symmetrically. The capacitance range and step size information is available in the device data sheets. Use the formula below to calculate the TUNING bitfield:

TUNING = ((desiredTotalLoadCap * 2 - Min(C_{LFXO T})) / C_{LFXO TS})

Figure 10.11. CMU LFXO Tuning Capacitance Equation

These tunable capacitors can also be used to compensate for temperature drift of the XTAL in software. Crystals normally have a temperature dependency which is given by a parabolic function. The crystal has highest frequency at its turnover temperature, normally 25C. The frequency is reduced following a parabola for higher and lower temperatures. The LFXO offers a mechanism to internally add capacitance on the LFXTAL_N and LFXTAL_P pins (in parallel to an optional external load capacitance). The variation in frequency as a function of temperature can therefore be compensated by adjusting the load capacitance. When the temperature compensation scheme is used, the maximum internal capacitance should be used to obtain good frequency matching at the turnover temperature. For higher and lower temperatures software then has the maximum range available to adjust the tuning. The external load capacitance

must then of course be reduced accordingly. Note that the ADC0 (27. ADC - Analog to Digital Converter) includes an embedded temperature sensor and that the EMU (9. EMU - Energy Management Unit) offers a temperature management interface, both of which can be used in combination with this LFXO temperature compensation scheme.

The XTAL oscillation amplitude can be controlled via the HIGHAMPL bitfield in CMU_LFXOCTRL. Setting HIGHAMPL to 1 will result in higher amplitude, which in turn provides safer operation, somewhat improved duty cycle, and lower sensitivity to noise at the cost of increased current consumption.

The AGC bit of the CMU_LFXOCTRL register is used to turn on or off the Automatic Gain Control module that adjusts the amplitude of the XTAL. When disabled, the LFXO will run at the startup current and the XTAL will oscillate rail to rail, again providing safer operation, improved duty cycle, and lower sensitivity to noise at the cost of increased current consumption.

10.3.2.6 HFRCO and AUXHFRCO Configuration

It is possible to calibrate the HFRCO and AUXHFRCO to achieve higher accuracy (see the device data sheets for details on accuracy). The frequency is adjusted by changing the TUNING and FINETUNING bitfields in CMU_HFRCOCTRL and CMU_AUXHFRCOCTRL. Changing to a higher value will result in a lower frequency. Refer to the data sheet for stepsize details.

The HFRCO can be set to one of several different frequency bands from 1 MHz to 48 MHz by setting the FREQRANGE field in CMU_HFRCOCTRL. Similarly the AUXHFRCO can be set to one of several different frequency bands from 1 MHz to 48 MHz by setting the FREQRANGE field in CMU_AUXHFRCOCTRL. The HFRCO and AUXHFRCO frequency bands are calibrated during production test, and the production tested calibration values can be read from the Device Information (DI) page. The DI page contains separate tuning values for various frequency bands. During reset, HFRCO and AUXHFRCO tuning values are set to the production calibrated values for the 19 MHz band, which is the default frequency band. When changing to a different HFRCO or AUXHFRCO band, make sure to also update the TUNING value and other bitfields in the CMU_HFRCOCTRL and CMU_AUXHFRCOCTRL registers. Typically the entire register is written with a value obtained from the Device Information (DI) page. Refer to 4.6 DI Page Entry Map for information on which frequency band settings are stored in the DI page.

The frequency can be tuned more accurately via the FINETUNING bitfield if fine tuning has been enabled via the FINETUNINGEN bit. Note that there will be a slight increase in the oscillator current consumption when fine tuning is enabled. Note also that changing the value of FINETUNINGEN will result in a frequency shift, regardless of the FINETUNING field value. If the oscillator is to be used at different times with fine tuning enabled and disabled, it should be tuned separately for both settings. The HFRCO and AUXHFRCO contain a local prescaler, which can be used in combination with any FREQRANGE setting. These prescalers allow the output clocks to be divided by 1, 2, or 4 as configured in the CLKDIV bitfield.

When using 10.3.2.8 RC Oscillator Calibration to tune HFRCO and AUXHFRCO to the desired frequency, linear search must be used to avoid over clocking the calibration counters. Before changing the FREQRANGE field in CMU_HFRCOCTRL, TUNING and FINE-TUNING fields should initially be set to the highest value (slowest frequency). After changing the FREQRANGE, linearly step TUNING value until desired frequency is reached. Likewise, before changing the TUNING field, FINETUNING field should initially be set to the highest value (lowest frequency). After changing the TUNING field, linearly step FINETUNING until accuracy is reached.

10.3.2.7 LFRCO Configuration

It is possible to calibrate the LFRCO to achieve higher accuracy (see the device data sheets for details on accuracy). The frequency is adjusted by changing the TUNING bitfield in CMU_LFRCOCTRL. Changing to a higher value will result in a lower frequency. Refer to the data sheet for stepsize details.

The LFRCO can be retained on in EM4 Hibernate/Shutoff. In that case its required configuration is latched/retained throughout EM4 even though the CMU_LFRCOCTRL register itself will be reset. Upon EM4 exit the CMU_LFRCOCTRL register therefore needs to be reconfigured to its original settings and the LFRCO needs to be restarted via CMU_OSCENCMD, before optionally unlatching the retained LFRCO configuration by writing 1 to EM4UNLATCH in the EMU_CMD register. The LFRCO startup time is configured via the TIMEOUT bitfield of the CMU_LFRCOCTRL register. Default its 16 cycle startup should be used. However, in case the LFRCO has been retained throughout EM4 Hibernate/Shutoff, it can be quickly restarted for use as LFACLK or LFBCLK by using its minimum TIMEOUT setting. While retained, the LFRCO can be used down to EM4 Hibernate as source for LFECLK and down to EM4 Shutoff as source for CRYOCLK.

The LFRCO is also calibrated in production and its TUNING values are set to the correct value during reset.

The LFRCO can be put in duty cycle mode by setting the ENVREF bit in CMU_LFRCOCTRL to 1 before starting the LFRCO. This will reduce current consumption, but will result in slightly worse accuracy especially at high temperatures. Setting the ENCHOP and/or ENDEM bitfields to 1 in the CMU_LFRCOCTRL register will improve the average LFRCO frequency accuracy at the cost of a worse cycle-to-cycle accuracy.

10.3.2.8 RC Oscillator Calibration

The CMU has built-in HW support to efficiently calibrate the RC oscillators (LFRCO, HFRCO, AUXHFRCO, etc) at run-time. For a complete list of supported oscillators, refer to DOWNSEL and UPSEL fields in CMU_CALCTRL. See Figure 10.12 HW-support for RC Oscillator Calibration on page 318 for an illustration of this circuit. The concept is to select a reference and compare the RC frequency with the reference frequency. When the calibration circuit is started, one down-counter running on a selectable clock (DOWNSEL in CMU_CALCTRL) and one up-counter running on a selectable clock (UPSEL in CMU_CALCTRL) are started simultaneously. The top value for the down-counter must be written to CMU_CALCNT before calibration is started. The down-counter counts for CMU_CALCNT +1 cycles. When the down-counter has reached 0, the up-counter is sampled and the CALRDY interrupt flag is set. If CONT in CMU_CALCTRL is cleared, the counters are stopped after finishing the ongoing calibration. If continuous mode is selected by setting CONT in CMU_CALCTRL the down-counter reloads the top value and continues counting and the up-counter restarts from 0. Software can then read out the sampled up-counter value from CMU_CALCNT. The up-counter has counted (the sampled value)+1 cycles. The ratio between the reference and the oscillator subject to the calibration can easily be found using top+1 and sample+1. Overflows of the up-counter will not occur. If the up-counter reaches its top value before the down-counter reaches 0, the up-counter stays at its top value. Calibration can be stopped by writing CALSTOP in CMU_CMD. With this HW support, it is simple to write efficient calibration algorithms in software.

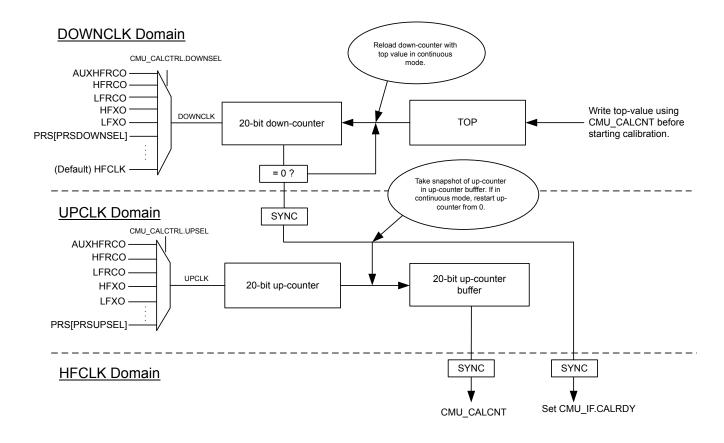


Figure 10.12. HW-support for RC Oscillator Calibration

The counter operation for single and continuous mode are shown in Figure 10.13 Single Calibration (CONT=0) on page 319 and Figure 10.14 Continuous Calibration (CONT=1) on page 319 respectively.

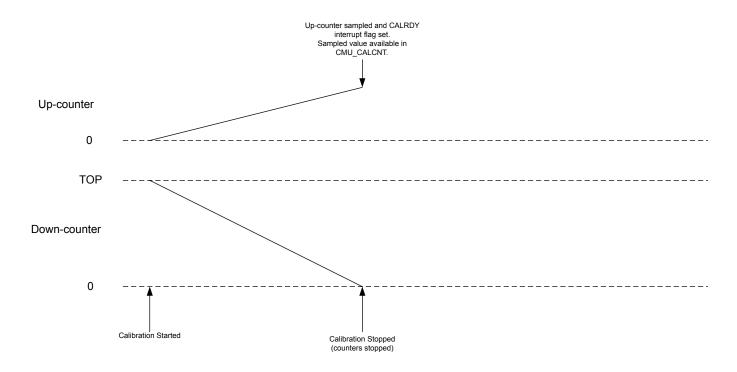


Figure 10.13. Single Calibration (CONT=0)

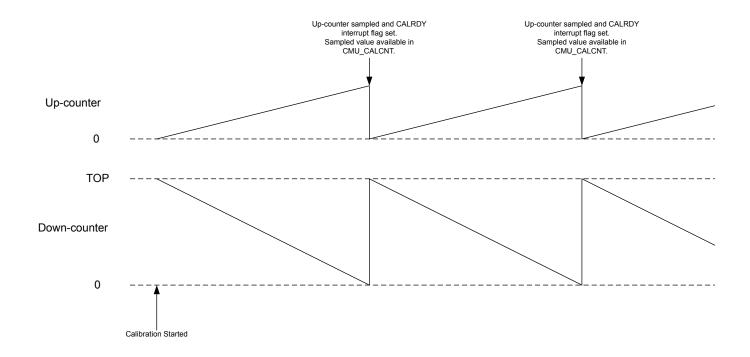


Figure 10.14. Continuous Calibration (CONT=1)

10.3.3 Configuration for Operating Frequencies

The HFXO is capable of frequencies up to 48 MHz, which allows the EFM32 to run at up to this frequency. However, not all High Frequency clocks are allowed to run at this maximum frequency. Clocks need to be limited to the frequencies shown in Table 10.4 Maximum Allowed Clock Frequencies on page 320, for example by prescaling them or by selecting an appropriate clock source. Also modules such as the Memory System Controller (MSC), Low Energy Peripheral Interface, and DMEM must be configured correctly to allow operation at higher frequencies as explained further below.

Table 10.4. Maximum Allowed Clock Frequencies

Clock	VSCALE2 (1.2V)	VSCALE0 (1.0V)
HFRCO	<= 48 MHz	<= 20 MHz
AUXHFRCO	<= 48 MHz	<= 20 MHz
HFXO	<= 48 MHz	<= 20 MHz ¹
HFSRCCLK, HFPERBCLK	<= 48 MHz	<= 20 MHz
HFBUSCLK, HFPERCLK, HFPERCCLK	<= 48 MHz	<= 20 MHz
Note:		

Note:

The MODE bitfield in MSC_READCTRL makes sure the flash is able to operate at the given HFCLK frequency by inserting wait states for flash accesses. The required settings for controlling flash wait states are shown in Table 10.5 MSC Configuration for Operating Frequencies, at VSCALE2: Flash Wait States on page 320. The WSHFLE bitfield in CMU_CTRL is used to ensure that the Low Energy Peripheral Interface is able to operate at the given HFCLK_{LE} frequency by inserting wait states when using this interface. The required settings are shown in Table 10.7 LE Configuration for Operating Frequencies: Low Energy Peripheral Interface on page 320.

Before going to a high frequency, make sure the registers in the table have the correct values. When going down in frequency, make sure to keep the registers at the values required by the higher frequency until after the switch has been done.

Table 10.5. MSC Configuration for Operating Frequencies, at VSCALE2: Flash Wait States

Condition	MODE in MSC_READCTRL	
HFCLK <= 25 MHz	WS0 or above	
25 MHz < HFCLK <= 48 MHz	WS1 or above	

Table 10.6. MSC Configuration for Operating Frequencies, at VSCALE0: Flash Wait States

Condition	MODE in MSC_READCTRL	
HFCLK <= 10 MHz	WS0 or above	
10 MHz < HFCLK <= 20 MHz	WS1 or above	

Table 10.7. LE Configuration for Operating Frequencies: Low Energy Peripheral Interface

Condition	WSHFLE in CMU_CTRL
HFCLK _{LE} <= 32 MHz	0 / 1
HFCLK _{LE} > 32 MHz	1

^{1.48} MHz allowed when not selected.

10.3.4 Energy Modes

The availability of oscillators and system clocks depends on the chosen energy mode. Default the high frequency oscillators (HFRCO, AUXHFRCO, and HFXO) and high frequency clocks (HFSRCLK, HFCLK, HFCORECLK, HFBUSCLK, HFPERCLK, HFPERCLK,

The low frequency oscillators (LFRCO and LFXO) are available in all energy modes except in EM3 Stop when they are off by definition. Default these oscillators are also off in EM4 Hibernate and EM4 Shutoff, but they can be retained on in these states as well if needed. The ultra low frequency oscillator (ULFRCO) is default on in all energy modes, except for EM4 Shutoff, but it can be retained on in that mode as well if needed. The low frequency clocks (LFACLK, LFECLK, WDOGnCLK, and CRYOCLK) are in various power domains and therefore their availability not only depends on the chosen clock source, but also on the chosen energy mode as indicated in Table 10.8 Oscillator and Clock Availability in Energy Modes on page 321.

Table 10.8. Oscillator and Clock Availability in Energy Modes

	EM0 Active/EM1 Sleep	EM2 DeepSleep	EM3 Stop	EM4 Hibernate	EM4 Shutoff
HFRCO	On ¹	Off	Off	Off	Off
HFXO	On ¹	Off	Off	Off	Off
AUXHFRCO	On ¹	On ²	On ²	Off	Off
LFRCO, LFXO	On ¹	On ¹	Off	Retained on ³	Retained on ³
ULFRCO	On	On	On	On	Retained on ³
HFSRCLK, HFCLK, HFCORECLK, HFBUSCLK, HFPERCLK, HFPERBCLK, HFPERCCLK, HFCLKLE	On ¹	Off	Off	Off	Off
AUXCLK	On ¹	On ²	On ²	Off	Off
ADCnCLK	On ¹	On ⁴	On ⁴	Off	Off
LFACLK, LFBCLK	On ¹	On ¹	On ⁵	Off	Off
LFECLK	On ¹	On ¹	On ⁵	Retained on ³	Off
WDOGnCLK	On ¹	On ¹	On ⁵	Off	Off
CRYOCLK	On ¹	On ¹	On ⁵	Retained on ³	Retained on ³

Note:

- 1. Under software control.
- 2. Default off, but kept active if used by the ADC.
- 3. Default off, but can be retained on.
- 4. Will be kept on if AUXHFRCO is selected as clock source.
- 5. On only if ULFRCO is used as clock source.

10.3.5 Clock Output on a Pin

It is possible to configure the CMU to output clocks on the CMU_CLK0, CMU_CLK1 and CMU_CLK2 pins. This clock selection is done using the CLKOUTSEL0, CLKOUTSEL1 and CLKOUTSEL2 bitfields respectively in CMU_CTRL. The required output pins must be enabled in the CMU_ROUTEPEN register and the pin locations can be configured in the CMU_ROUTELOC0 register. The following clocks can be output on a pin:

- HFSRCCLK and HFEXPCLK. The HFSRCCLK is the high frequency clock before any prescaling has been applied. The HFEXPCLK
 is a prescaled version of HFCLK as controlled by the HFEXPPRESC bitfield in the CMU_HFPRESC register.
- The unqualified clock output from any of the oscillators (ULFRCO, LFRCO, LFXO, HFXO). Note that these unqualified clocks can
 exhibit glitches or skewed duty-cycle during startup and therefore these clock outputs are normally not used before observing the
 related ready flag being set to 1 in CMU_STATUS.
- The qualified clock from any of the oscillators (ULFRCO, LFRCO, LFXO, HFXO, HFRCO, AUXHFRCO). A qualified clock will not
 have any glitches or skewed duty-cycle during startup. For LFRCO, LFXO and HFXO correct configuration of the TIMEOUT bitfield(s) in CMU_LFRCOCTRL, CMU_LFXOCTRL and CMU_HFXOTIMEOUTCTRL respectively is required to guarantee a properly
 qualified clock.
- The qualified HFXO clock divided by 2 (HFXODIV2Q).

HFCLK will not have a 50-50 duty cycle when any other division factor than 1 is used in CMU_HFPRESC (i.e. if PRESC is not equal to 0). In such a case, the exported HFEXPCLK will therefore also not be 50-50 when its division factor is not set to an even number in CMU_HFEXPPRESC.

10.3.6 Clock Input From a Pin

It is possible to configure the CMU to input a low-frequency (< 1 MHz) clock from the CMU_CLKI0. This clock can be selected to drive HFSRCCLK and DPLL reference using CMU_HFCLKSEL and CMU_DPLLCTRL respectively. The required input pin must be enabled in the CMU_ROUTEPEN register and the pin location can be configured in the CMU_ROUTELOC1 register.

10.3.7 Clock Output on PRS

The CMU can be used as a PRS producer. It can output clocks onto PRS which can be selected by a consumer as CMUCLKOUT0, CMUCLKOUT1 and CMUCLKOUT2. The clocks which can be produced via CMUCLKOUT0, CMUCLKOUT1 and CMUCLKOUT2 are selected via the CLKOUTSEL0, CLKOUTSEL1 and CLKOUTSEL2 fields respectively in CMU_CTRL.

Note that the CLKOUTSEL0 and CLKOUTSEL1 fields are also used for selecting which clock is output onto a pin as described in 10.3.5 Clock Output on a Pin. In contrast with clock output on a pin however, output of a clock onto PRS does not depend on any configuration of the CMU_ROUTEPEN and CMU_ROUTELOC0 registers.

10.3.8 Error Handling

Certain restrictions apply to how and when the CMU registers can be configured as is described for the respective registers. Not adhering to these restrictions can lead to unpredictable and non-defined behaviour. Some of these software restrictions are checked in hardware and not adhering to them will cause the CMUERR interrupt flag in CMU_IF to be set to 1. The restrictions impacting CMUERR are as follows:

- · CMU HFRCOCTRL should not be written while HFRCOBSY in the CMU SYNCBUSY register is set to 1.
- CMU_AUXHFRCOCTRL should not be written while AUXHFRCOBSY in the CMU_SYNCBUSY register is set to 1.
- CMU_HFXOSTARTUPCTRL, CMU_HFXOSTEADYSTATECTRL and CMU_HFXOTIMEOUTCTRL should not be written while HFXOBSY in the CMU_SYNCBUSY register is set to 1. Note that writes to CMU_HFXOCTRL do not impact CMUERR. Although most of its bitfields need to be configured before enabling the HFXO, it it allowed to change the AUTOSTART bits (i.e. AUTOSTARTSELEM0EM1 and AUTOSTARTEM0EM1) at any time.
- HFXO should not be enabled before it has been properly disabled (so only enable HFXO when HFXOENS=0 or HFXOBSY=0). Likewise, HFXO should not be disabled before it has been properly enabled (so only disable HFXO when HFXOENS=1 or HFXOBSY=0).
- CMU_LFRCOCTRL should not be written while LFRCOBSY in the CMU_SYNCBUSY register is set to 1. The GMCCURTUNE bit-field should not be written with a differing value while the LFRCOVREFBSY flag is set to 1.
- · CMU LFXOCTRL should not be written while LFXOBSY in the CMU SYNCBUSY register is set to 1.

10.3.9 Interrupts

The interrupts generated by the CMU module are combined into one interrupt vector. If CMU interrupts are enabled, an interrupt will be made if one or more of the interrupt flags in CMU IF and their corresponding bits in CMU IEN are set.

10.3.10 Wake-up

The CMU can be (partially) active all the way down to EM4 Shutoff. It can wake up the CPU from EM2 upon LFRCO or LFXO becoming ready as LFRCORDY and LFXORDY can be used as wake-up interrupt.

10.3.11 Protection

It is possible to lock the control- and command registers to prevent unintended software writes to critical clock settings. This is control-led by the CMU_LOCK register.

10.3.12 Digital Phase-Locked Loop

The Digital Phase-Locked Loop (DPLL) uses the HFRCO to generate a clock as a ratio of a reference clock source. It provides the following features:

- Frequency-lock mode. Only the output frequency is controlled, phase error is allowed to accumulate between the output and reference clock.
- Phase-lock mode. Both the output frequency and phase are controlled.
- Output frequency = FREF*(N+1)/(M+1), where N and M are 12-bit values
- Very fast lock time.
- · Very fast transient tracking.
- · Low output jitter.
- · Lock detection with an interrupt.
- · Lock fail detection with interrupts.
- Output spectrum-spreading. The DPLL can randomize the generated output period by a configurable amount of spread.

It is important to note that when DPLL is enabled, the HFRCO output frequency will be generated according to the DPLL configuration.

10.3.12.1 Enabling and Disabling

The DPLL feature can be enabled and disabled by software via the CMU_OSCENCMD register. The FINETUNINGEN bit in the CMU_HFRCOCTRL must also be set for proper DPLL operation. When enabled, the DPLL feature controls the output frequency of the HFRCO. Before enabling DPLL, all clock muxes selecting HFRCO should be switched to HFRCODIV2 temporarily until the DPLL is locked, to avoid over-clocking the circuit. After DPLL is enabled and running, the clock muxes may be switched back to HFRCO to use the new output frequency. The DPLL is disabled automatically when entering EM2, EM3, or EM4.

10.3.12.2 Lock Modes

DPLL provides two lock modes, referred to as frequency-lock loop mode (FREQLL) and phase-lock loop mode (PHASELL). FREQLL mode keeps the DCO frequency-locked to the reference clock, which means the DCO frequency will be accurate. But the phase error can accumulate over time and cause the average frequency error non-zero. FREQLL mode also provide better jitter and transient performance. PHASELL mode keeps the DCO phase-locked to the reference clock, which means the phase error does not accumulate over time and make the average frequency error zero. FREQLL mode should be used unless specific phase requirement exists.

10.3.12.3 Configurations

Output frequency = FREF*(N+1)/(M+1). User should calculate N and M to achieve the target frequency. Note that with N increases, the DCO lock time would increase and DCO jitter would decrease. Both directions are approximately linear. This relationship can be used to select N for a given application to strike a compromise between lock time and output jitter. For example if an ratio of 3 is desired, the DPLL could be configured as {N=299, M=99} for fast lock time but high jitter, or as {N=2999, M=999} for lower jitter but longer lock time. For a good balance, N is suggested to be larger than 300 unless specific lock time is required.

Note: All configuration setting should be done before enabling the DPLL. They should not be changed when DPLL is running. The final tunning values can be read back from TUNING and FINETUNING in CMU_HFRCOCTRL, after DPLL is disabled and DPLLENS in CMU_STATUS is low.

10.3.12.4 Lock Detection

The DPLL has 3 different types of output event: ready, lock fail due to period underflow and lock fail due to period overflow. Each of the event has its own interrupt flag. DPLLRDY is set when DPLL successfully locks to the reference clock based on user's configuration. DPLLLOCKFAILLOW is set when DPLL fails to lock because the period lower boundary is hit. DPLLLOCKFAILHIGH is set when DPLL fail to lock because the period upper boundary is hit. If the interrupt flags are set and the corresponding interrupt enable bits in CMU_IEN are set, the CMU will send out an interrupt request. Based on different interrupt sequence, user should take different actions:

- · If DPLLRDY interrupt is received first, it means target clock is ready and it is safe to switch to use DCO's output.
- If DPLLLOCKFAILLOW interrupt is received first, it indicates the RANGE in CMU_HFRCOCTRL is too small. User should disable DPLL and write a larger value to RANGE, then enable DPLL again to lock.
- If DPLLLOCKFAILHIGH interrupt is received first, it indicates the RANGE in CMU_HFRCOCTRL is too large. User should disable DPLL and write a smaller value to RANGE, then enable DPLL again to lock.
- If DPLLRDY interrupt is received first and then DPLLLOCKFAILLOW or DPLLLOCKFAILHIGH is received later, it means reference clock drifted over 2% and made DPLL lost its locked status.
 - If AUTORECOVER in CMU_DPLLCTRL is not set, user should disable DPLL and enable DPLL again to lock.
 - If AUTORECOVER in CMU_DPLLCTRL is set, hardware would re-lock automatically. When the target frequency is near the boundary of a range, the drift may cause underflow or overflow. In this case the fail interrupt would still be received. User should disable DPLL and modify RANGE in CMU_HFRCOCTRL in corresponding direction like the second and third cases. Then enable DPLL again to lock.

10.3.12.5 Spectrum Spreading

Spreading of the DCO output spectrum is accomplished by driving a dedicated 5-bit DCO trim control with a digitally-generated, pseudo-random value. A centered, uniform, random spreading algorithm was selected. The spectrum-spreading pattern is generated by a single 10-bit linear feedback shift register (LFSR). To avoid high correlation between nearby values, a 5-step leap-forward LFSR update method is employed in the DPLL. The DCO output period can be randomized with a peak-to-peak amplitude given approximately by: 2^((SSAMP-1))*0.2%, where SSAMP is a register field in CMU_HFRCOSS. The generated random values are applied at regular intervals given by: 4*T_DCO*(SSINV+1), where T_DCO is DCO period and SSINV is a register field in CMU_HFRCOSS.

10.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	CMU_CTRL	RW	CMU Control Register
0x010	CMU_HFRCOCTRL	RWH	HFRCO Control Register
0x018	CMU_AUXHFRCOCTRL	RW	AUXHFRCO Control Register
0x020	CMU_LFRCOCTRL	RW	LFRCO Control Register
0x024	CMU_HFXOCTRL	RW	HFXO Control Register
0x028	CMU_HFXOCTRL1	RW	HFXO Control 1
0x02C	CMU_HFXOSTARTUPCTRL	RW	HFXO Startup Control
0x030	CMU_HFXOSTEADYSTATECTRL	RW	HFXO Steady State Control
0x034	CMU_HFXOTIMEOUTCTRL	RW	HFXO Timeout Control
0x038	CMU_LFXOCTRL	RW	LFXO Control Register
0x040	CMU_DPLLCTRL	RW	DPLL Control Register
0x044	CMU_DPLLCTRL1	RW	DPLL Control Register
0x050	CMU_CALCTRL	RW	Calibration Control Register
0x054	CMU_CALCNT	RWH	Calibration Counter Register
0x060	CMU_OSCENCMD	W1	Oscillator Enable/Disable Command Register
0x064	CMU_CMD	W1	Command Register
0x070	CMU_DBGCLKSEL	RW	Debug Trace Clock Select
0x074	CMU_HFCLKSEL	W1	High Frequency Clock Select Command Register
0x080	CMU_LFACLKSEL	RW	Low Frequency A Clock Select Register
0x084	CMU_LFBCLKSEL	RW	Low Frequency B Clock Select Register
0x088	CMU_LFECLKSEL	RW	Low Frequency E Clock Select Register
0x090	CMU_STATUS	R	Status Register
0x094	CMU_HFCLKSTATUS	R	HFCLK Status Register
0x09C	CMU_HFXOTRIMSTATUS	R	HFXO Trim Status
0x0A0	CMU_IF	R	Interrupt Flag Register
0x0A4	CMU_IFS	W1	Interrupt Flag Set Register
0x0A8	CMU_IFC	(R)W1	Interrupt Flag Clear Register
0x0AC	CMU_IEN	RW	Interrupt Enable Register
0x0B0	CMU_HFBUSCLKEN0	RW	High Frequency Bus Clock Enable Register 0
0x0C0	CMU_HFPERCLKEN0	RW	High Frequency Peripheral Clock Enable Register 0
0x0C4	CMU_HFPERCLKEN1	RW	High Frequency Peripheral Clock Enable Register 1
0x0E0	CMU_LFACLKEN0	RW	Low Frequency a Clock Enable Register 0 (Async Reg)
0x0E8	CMU_LFBCLKEN0	RW	Low Frequency B Clock Enable Register 0 (Async Reg)
0x0F0	CMU_LFECLKEN0	RW	Low Frequency E Clock Enable Register 0 (Async Reg)
0x100	CMU_HFPRESC	RW	High Frequency Clock Prescaler Register

Offset	Name	Type	Description
0x104	CMU_HFBUSPRESC	RW	High Frequency Bus Clock Prescaler Register
0x108	CMU_HFCOREPRESC	RW	High Frequency Core Clock Prescaler Register
0x10C	CMU_HFPERPRESC	RW	High Frequency Peripheral Clock Prescaler Register
0x114	CMU_HFEXPPRESC	RW	High Frequency Export Clock Prescaler Register
0x118	CMU_HFPERPRESCB	RW	High Frequency Peripheral Clock Prescaler B Register
0x11C	CMU_HFPERPRESCC	RW	High Frequency Peripheral Clock Prescaler C Register
0x120	CMU_LFAPRESC0	RW	Low Frequency a Prescaler Register 0 (Async Reg)
0x128	CMU_LFBPRESC0	RW	Low Frequency B Prescaler Register 0 (Async Reg)
0x130	CMU_LFEPRESC0	RW	Low Frequency E Prescaler Register 0 (Async Reg)
0x140	CMU_SYNCBUSY	R	Synchronization Busy Register
0x144	CMU_FREEZE	RW	Freeze Register
0x150	CMU_PCNTCTRL	RWH	PCNT Control Register
0x15C	CMU_ADCCTRL	RWH	ADC Control Register
0x170	CMU_ROUTEPEN	RW	I/O Routing Pin Enable Register
0x174	CMU_ROUTELOC0	RW	I/O Routing Location Register
0x178	CMU_ROUTELOC1	RW	I/O Routing Location Register
0x180	CMU_LOCK	RWH	Configuration Lock Register
0x184	CMU_HFRCOSS	RW	HFRCO Spread Spectrum Register

10.5 Register Description

10.5.1 CMU_CTRL - CMU Control Register

Offset															Bi	t Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- (_ >
Reset								•				-				0		•		,	OXO				ć	OX O				0×0		
Access												₽				₩ M				2	<u>}</u>				Ž	≥ Y				Z.		
Name												HFPERCLKEN				WSHFLE				2 2 2 3					5	CLYOUISELI				CLKOUTSEL0		

Bit	Name	Reset	Access	Description
31:21	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
20	HFPERCLKEN	1	RW	HFPERCLK Enable
	Set to enable the HFI	PERCLK.		
19:17	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
16	WSHFLE	0	RW	Wait State for High-Frequency LE Interface
	Set to allow access to	LE peripherals	when runr	ning HFBUSCLK _{LE} at frequencies higher than 32 MHz
15:14	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
13:10	CLKOUTSEL2	0x0	RW	Clock Output Select 2

Controls the clock output 2 multiplexer. To actually output on the pin, set CLKOUT2PEN in CMU_ROUTE.

Value	Mode	Description
0	DISABLED	Disabled
1	ULFRCO	ULFRCO (directly from oscillator)
2	LFRCO	LFRCO (directly from oscillator)
3	LFXO	LFXO (directly from oscillator)
5	HFXODIV2Q	HFXO divided by two (qualified)
6	HFXO	HFXO (directly from oscillator)
7	HFEXPCLK	HFEXPCLK
9	ULFRCOQ	ULFRCO (qualified)
10	LFRCOQ	LFRCO (qualified)
11	LFXOQ	LFXO (qualified)
12	HFRCOQ	HFRCO (qualified)
13	AUXHFRCOQ	AUXHFRCO (qualified)
14	HFXOQ	HFXO (qualified)
15	HFSRCCLK	HFSRCCLK

Bit	Name	Reset Acce	ss Description
9	Reserved	To ensure compatibil tions	ity with future devices, always write bits to 0. More information in 1.2 Conven-
8:5	CLKOUTSEL1	0x0 RW	Clock Output Select 1
	Controls the clock	output 1 multiplexer. To a	ctually output on the pin, set CLKOUT1PEN in CMU_ROUTE.
	Value	Mode	Description
	0	DISABLED	Disabled
	1	ULFRCO	ULFRCO (directly from oscillator)
	2	LFRCO	LFRCO (directly from oscillator)
	3	LFXO	LFXO (directly from oscillator)
	6	HFXO	HFXO (directly from oscillator)
	7	HFEXPCLK	HFEXPCLK
	9	ULFRCOQ	ULFRCO (qualified)
	10	LFRCOQ	LFRCO (qualified)
	11	LFXOQ	LFXO (qualified)
	12	HFRCOQ	HFRCO (qualified)
	13	AUXHFRCOQ	AUXHFRCO (qualified)
	14	HFXOQ	HFXO (qualified)
	15	HFSRCCLK	HFSRCCLK
4	Reserved	To ensure compatibil tions	ity with future devices, always write bits to 0. More information in 1.2 Conven-
3:0	CLKOUTSEL0	0x0 RW	Clock Output Select 0
	Controls the clock	output multiplexer. To acti	ually output on the pin, set CLKOUT0PEN in CMU_ROUTE.
	Value	Mode	Description
	0	DISABLED	Disabled
	1	ULFRCO	ULFRCO (directly from oscillator)
	2	LFRCO	LFRCO (directly from oscillator)
	3	LFXO	LFXO (directly from oscillator)
	6	HFXO	HFXO (directly from oscillator)
	7	HFEXPCLK	HFEXPCLK
			LU EDOO (115 1)
	9	ULFRCOQ	ULFRCO (qualified)
	9	ULFRCOQ LFRCOQ	LFRCO (qualified)
			· · · · · · · · · · · · · · · · · · ·
	10	LFRCOQ	LFRCO (qualified)
	10 11	LFRCOQ LFXOQ	LFRCO (qualified) LFXO (qualified)
	10 11 12	LFRCOQ LFXOQ HFRCOQ	LFRCO (qualified) LFXO (qualified) HFRCO (qualified)

10.5.2 CMU_HFRCOCTRL - HFRCO Control Register

Write this register to set the frequency band in which the HFRCO is to operate. Always update all fields in this register at once by writing the value for the desired band, which has been obtained from the Device Information page entry for that band. The TUNING, FINE-TUNING, FINETUNINGEN and CLKDIV bitfields can be used to tune a specific band (FREQRANGE) of the oscillator to a non-preconfigured frequency. When changing this setting there will be no glitches on the HFRCO output, hence it is safe to change this setting

even while the system is running on the HFRCO. Only write CMU_HFRCOCTRL when it is ready for an update as indicated by HFRCOBSY=0 in CMU_SYNCBUSY.

Offset															Ві	it Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	5	4	က	2	-	0
Reset		2	a XD		0	ç	e X	-		0x2			•	0x08	•			•			7	Ľ Š						•	0x7F		·	
Access			E A Y		RWH	1,74	L 2 2	RWH		RWH				RWH								[} Y							RWH			
Name			VREFIC		FINETUNINGEN	2	CLADIV	ГРОНР		CMPBIAS				FREQRANGE															TUNING			

	5 1		Ö		
Bit	Name	Reset	Access	Description	
31:28	VREFTC	0xB	RWH	HFRCO Temperature Coefficient Trim on Comparator Refer	ence
	Writing this field a	djusts the tempera	ature coeffici	ient trim on comparator reference.	
27	FINETUNINGEN	0	RWH	Enable Reference for Fine Tuning	
	Settings this bit e	nables HFRCO fin	e tuning.		
26:25	CLKDIV	0x0	RWH	Locally Divide HFRCO Clock Output	
	Writing this field of	onfigures the HFF	RCO clock ou	utput divider.	
	Value	Mode		Description	
	0	DIV1		Divide by 1.	
	1	DIV2		Divide by 2.	
	2	DIV4		Divide by 4.	
24	LDOHP	1	RWH	HFRCO LDO High Power Mode	
	Settings this bit p	uts the HFRCO LE	OO in high po	ower mode.	
23:21	CMPBIAS	0x2	RWH	HFRCO Comparator Bias Current	
	Writing this field a	djusts the HFRCC	ocomparator	r bias current.	
20:16	FREQRANGE	0x08	RWH	HFRCO Frequency Range	
	Writing this field a	djusts the HFRCC) frequency i	range.	
15:14	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2	Conven-
13:8	FINETUNING	0x1F	RWH	HFRCO Fine Tuning Value	
	Writing this field a when FINETUNIN) fine tuning	value. Higher value means lower frequency. Fine tuning is only en	nabled
7	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2	Conven-
6:0	TUNING	0x7F	RWH	HFRCO Tuning Value	
	Writing this field a	djusts the HFRCC) tuning valu	e. Higher value means lower frequency.	

10.5.3 CMU_AUXHFRCOCTRL - AUXHFRCO Control Register

Write this register with the production calibrated values from the Device Info pages. The TUNING, FINETUNINGEN and CLKDIV bitfields can be used to tune a specific band (FREQRANGE) of the oscillator to a non-preconfigured frequency. Only write CMU_AUXHFRCOCTRL when it is ready for an update as indicated by AUXHFRCOBSY=0 in CMU_SYNCBUSY.

Offset															В	it Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		2	9	•	0	Š	2	-		0x2				0x08				•			2	<u> </u>						•	0x7F			
Access		20	2		₹	2	<u>}</u>	₩ M		Z ≪				X ≷							2	<u> </u>							Z.			
Name		VDECTO) 		FINETUNINGEN	2	CLADIV	ГРОНР		CMPBIAS				FREQRANGE							CALLA	_							TUNING			

	VRE	르	C Lx	ГБ	CM		FR		Z Z		<u> </u>
Bit	Name		Re	set	Ac	cess	Description				
31:28	VREFTC		0xl	В	RW	/	AUXHFRCO ence	Tempe	erature Coefficient Trii	n on Co	mparator Refer-
	Writing this fiel	d ad	justs th	e ter	mperature c	oeffici	ent trim on cor	nparato	or reference.		
27	FINETUNINGE	ΞN	0		RW	1	Enable Refe	rence 1	for Fine Tuning		
	Settings this bi	t ena	ables A	UXH	FRCO fine	tuning					
26:25	CLKDIV		0x0)	RW	/	Locally Divi	de AUX	(HFRCO Clock Output		
	Writing this fiel	d co	nfigure	s the	AUXHFRC	O cloc	ck output divid	er.			
	Value		Мс	de			Description				
	0		DI	/ 1			Divide by 1.				
	1		DI	/2			Divide by 2.				
	2		DI	/4			Divide by 4.				
24	LDOHP		1		RW	/	AUXHFRCO	LDO H	ligh Power Mode		
	Settings this bi	t put	s the A	UXH	FRCO LDC	in hig	gh power mode) .			
23:21	CMPBIAS		0x2	2	RW	/	AUXHFRCO	Comp	arator Bias Current		
	Writing this fiel	d ad	justs th	e AL	JXHFRCO o	compa	rator bias curr	ent.			
20:16	FREQRANGE		0x0	08	RW	1	AUXHFRCO	Frequ	ency Range		
	Writing this fiel	d ad	justs th	e AL	JXHFRCO f	requei	ncy range.				
15:14	Reserved		To tio		ure compati	bility v	vith future devi	ces, al	ways write bits to 0. Mo	re informa	ation in 1.2 Conven-
13:8	FINETUNING		0x	1F	RW	/	AUXHFRCO	Fine T	uning Value		
	Writing this fiel bled when FIN					ine tur	ning value. Hig	her val	ue means lower frequer	າcy. Fine	tuning is only ena-
7	Reserved		To tio		ure compati	bility v	vith future devi	ices, alı	ways write bits to 0. Mo	re informa	ation in 1.2 Conven-
6:0	TUNING		0x	7F	RW	I	AUXHFRCO	Tuning	g Value		
	Writing this fiel	d ad	justs th	e AL	JXHFRCO t	uning	value. Higher	value m	neans lower frequency.		

10.5.4 CMU_LFRCOCTRL - LFRCO Control Register

Offset									Bi	it Po	siti	on													
0x020	30 33 28 28	27	25 24	23	22	20	19	92	17	16	15	4	13	12	7	. 5	2 0	1 00	_	2 0	4	· 60	2	_	0
Reset	0×8		0x1			0×0		-	_	0		1		'		'				1	0x100		•	•	
Access	RW		RW W			RW		¥ ≷	Z.	S ≷											X				
Name	GMCCURTUNE		TIMEOUT			VREFUPDATE		ENDEM	ENCHOP	ENVREF											ÜNINGE				
Bit	Name		Reset			Acces	s I	Des	crip	tion	1														
31:28	GMCCURTUN	E	0x8			RW		Tun	ing	of G	mc	Cu	rrei	nt											
	Set to tune GM therefore vary				is u	ıpdated	with	h the	e pro	oduc	tion	cal	ibra	ted	valu	ue c	durin	g reset	, and	d the	res	et va	alue	migh	nt
27:26	Reserved		To ens	ure c	om	patibility	y wi	th fu	ıture	dev	/ice	s, al	wa)	/S W	rite	bits	s to (. More	info	rmat	ion	in 1.	2 Co	nvei	n-
25:24	TIMEOUT		0x1			RW		LFR	co	Tim	eou	ıt													
	Configures the been complete cles configuration	ly turne	d off, us	e TII	ИEC	DUT=16	Сус	les.	If th	e LF	FRC	O h	as	bee	n re	tair	ned o	n in El	M4, 1						
	Value		Mode					Des	cript	ion															
	0		2CYCL	ES				Time	eout	per	iod	of 2	сус	les											
	1		16CYC	LES			•	Time	eout	per	iod	of 1	6 cy	/cles	8										
	2		32CYC	LES				Time	eout	per	iod	of 3	2 cy	/cles	5										_
23:22	Reserved		To ens	ure c	om	patibility	y wi	th fu	ıture	dev	/ice	s, al	wa)	/S W	rite	bits	s to (. More	info	rmat	ion	in 1.	2 Co	nvei	n-
21:20	VREFUPDATE		0x0			RW	-	Con	trol	Vre	f U	odat	te F	Rate											
	Specify Vref up therefore differ		te. This	field	can	be upd	late	d wi	th th	ne pr	odu	ıctio	n te	st v	alue	e dı	ıring	reset,	and	the r	ese	t val	ue m	ight	
	Value		Mode					Des	cript	ion															_
	0		32CYC	LES			;	32 c	lock	S.															
	1		64CYC	LES			(64 c	lock	S.															
	2		128CY	CLE	S			128	cloc	ks.															
	3		256CY	CLE	S			256	cloc	ks.															_
19	Reserved		To ens	ure c	om	patibility	y wi	th fu	iture	dev	/ice	s, al	wa)	/s w	rite	bits	s to (. More	info	rmat	ion	in 1.	2 Co	nvei	n-
18	ENDEM		1			RW		Ena	ble	Dyn	am	ic E	lem	ent	Ма	tch	ing								
	Set to enable of	lynamic	elemen	t ma	tchi	ng. This	im	prov	es a	avera	age	freq	quer	псу а	accı	ura	cy at	the co	st of	incr	ease	ed ji	ter.		

Bit	Name	Reset	Access	Description
17	ENCHOP	1	RW	Enable Comparator Chopping
	Set to enable cor	nparator chopping	j. This improv	ves average frequency accuracy at the cost of increased jitter.
16	ENVREF	0	RW	Enable Duty Cycling of Vref
	Set to enable dut	y cycling of vref. (Clear during o	calibration of LFRCO. Only change when LFRCO is off.
15:9	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	TUNING	0x100	RW	LFRCO Tuning Value
	•	•	, ,	the higher the value, the lower the frequency). This field is updated with the ereset value might therefore vary between devices.

10.5.5 CMU_HFXOCTRL - HFXO Control Register

Offset													Bit F	Posit	ion												
0x024	33	29	78	27	26	25	53	22	21	20	19	1 18	- 4	15	4	13	12	=	9	n	2	9	2	4	e (۷,	- 0
Reset		0	0			0x0		•				,								•	•		>	2	'		0×0
Access		S.	₹			S.																	>	2			S.
Name		AUTOSTARTSELEM0EM1	AUTOSTARTEM0EM1			LFTIMEOUT																	DEAKDETMODE	ן מאַ מאַ			MODE
Bit	Name					Rese	t		Ac	cess	; [Descr	iptic	on													
31:30	Reserv	/ed				To en	sure	con	npati	bility	wit	h futu	re de	evice	s, al	ways	writ	e bit	's to	0. M	ore i	infori	matic	n in	1.2 (Conv	/en-
29	AUTOS LEM0E		RTS	SE-		0			RW	V		Auton From				t and	l Sel	lect	of H	FXO	Upo	on E	MO/E	EM1	Entr	y	
		s bit enables automatic start-up and immediate selection of the HFXO when in EM0/EM1 (also after entry from EM2/ 3). Note that setting this bit to 1 will stall HFSRCCLK until HFXO becomes ready. Allowed to change at any time.																									
28	AUTOS TEMOS		R-			0			RW	/	•	Auton	natio	cally	Star	t of F	łFX(O UI	oon	EM0	/EM	1 En	itry F	rom	EM2	2/EN	13
	This bi													IO/EN	/11 (a	lso at	fter e	entry	/ fror	n EN	12/E	M3)	witho	out c	ausin	ng a	n
27	Reserv	/ed				To en	sure	con	npati	bility	wit	h futu	re de	evice	s, al	ways	writ	e bit	's to	0. M	ore i	infori	matic	n in	1.2 (Con	/en-
26:24	LFTIM	EOL	JT			0x0			RW	/	ŀ	HFXO	Lov	v Fre	que	ncy 1	Time	out									
	Config	ures	the	sta	rt-up	delay	for H	ΗFX	O me	easu	red	in LF	ECL	К су	cles.	Only	cha	nge	whe	n bo	th H	FXC	and	LFE	CLK	are	off.
	Value					Mode						Descri	ptior	n													
	0					0CYC	LES					Гітео	ut pe	eriod	of 0	cycle	s (d	isab	led)								
	1					2CYC	LES				٦	Гimeo	ut pe	eriod	of 2	cycle	s										
	2					4CYC						Гimeo				•											
	3					16CY						Гітео	-			-											
	4					32CY						Γimeo 															
	5					64CY						Γimeo						_									
	6					1KCY						Γimeo	•				•										
23:6	7 Reserv	/ed				To en			npati	ibility		Timeo h futu							's to	0. M	ore i	infori	matic	on in	1.2 (Conv	/en-

Bit	Name	Reset	Access	Description
5:4	PEAKDETMODE	0x0	RW	HFXO Automatic Peak Detection Mode
	Set to AUTOCMD to and PEAKDETEN).	allow automatic	HFXO pea	k detection (MANUAL mode provides direct control of IBTRIMXOCORE
	Value	Mode		Description
	0	ONCECMD		Automatic control of HFXO peak detection sequence. Only performs peak detection on initial HFXO startup. CMU_CMD HFXOPEAKDET-START allowed to be used after HFXORDY=1.
	1	AUTOCMD		Automatic control of HFXO peak detection sequence. CMU_CMD HFXOPEAKDETSTART allowed to be used after HFXORDY=1.
	2	CMD		CMU_CMD HFXOPEAKDETSTART can be used to trigger the peak detection sequence after HFXORDY=1.
	3	MANUAL		CMU_HFXOSTEADYSTATECTRL IBTRIMXOCORE and PEAKDET-EN are under full software control and are allowed to be changed once HFXO is ready.
3:2	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
1:0	MODE	0x0	RW	HFXO Mode
	Set this to configure to CMU_OSCENCMD.	the external sou	rce for the I	HFXO. The oscillator setting takes effect when 1 is written to HFXOEN in
	Value	Mode		Description
	0	XTAL		4 MHz - 48 MHz crystal oscillator
	1	ACBUFEXTC	LK	An AC coupled buffer is coupled in series with HFXTAL_N pin, suitable for external sinus wave.
	2	DCBUFEXTC	ELK	A DC coupled buffer is coupled in series with HFXTAL_N pin, suitable for external sinus wave.
	3	DIGEXTCLK		Digital external clock can be supplied on HFXTAL_N pin.

10.5.6 CMU_HFXOCTRL1 - HFXO Control 1

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset							'												0x2	'		'				'	'		1	1		
Access																			W.													
Name																			PEAKDETTHR													

Bit	Name	Reset	Access	Description
31:15	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
14:12	PEAKDETTHR	0x2	RW	Sets the Amplitude Detection Level (mV)

Configures the Peak Detection threshold. It is not allowed to change when hardware based Peak Detection Algorithm or Peak Monitoring Algorithm is being performed. Allowed to change when HFXOBSY=0. Allowed to change after completing automatic Peak Detection (HFXOBSY=1, PEAKMONEN=0, HFXOPEAKDETRDY=1). Allowed to change after completing HFXO startup when not using automatic Peak Detection (HFXOBSY=1, PEAKMONEN=0, HFXORDY=1)

	Value	Mode	Description
	0	THR0	50mV amplitude detection level
	1	THR1	75mV amplitude detection level
	2	THR2	115mV amplitude detection level
	3	THR3	160mV amplitude detection level
	4	THR4	220mV amplitude detection level
	5	THR5	260mV amplitude detection level
	6	THR6	320mV amplitude detection level
	7	THR7	Same as THR6
0	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-

10.5.7 CMU_HFXOSTARTUPCTRL - HFXO Startup Control

Offset		Bit Position	
0x02C	2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	9	0
Reset		000×0	009x0
Access		RW	X W
Name		CTUNE	IBTRIMXOCORE

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure co tions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
19:11	CTUNE	0x000	RW	Sets Oscillator Tuning Capacitance
		N and HFXTAL	_P (pF) =	phase of the HFXO. The required CTUNE value is XTAL specific. Capaci- C_tune = Min (C_HFXO_T) + CTUNE<8:0> x SS_HFXO. Please find
10:0	IBTRIMXOCORE	0x600	RW	Sets the Startup Oscillator Core Bias Current
				ne startup phase of the HFXO. Current (uA) = IBTRIMXOCORE<10:9> X commended to use IBTRIMXOCORE<8:0>=0.

10.5.8 CMU_HFXOSTEADYSTATECTRL - HFXO Steady State Control

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	æ	7	9	5	4	က	2	_	0
Reset			•		_	0								•		•	000x0	•			•		•				0x100				•	
Access					Σ	RW											X ≪										₩ M					
Name					PEAKMONEN	PEAKDETEN											CTUNE										IBTRIMXOCORE					

	□			ΰ	<u> </u>
Bit	Name	Reset	Access	Description	
31:28	Reserved	To ensure comp tions	oatibility (with future devices, always write b	oits to 0. More information in 1.2 Conven-
27	PEAKMONEN	1	RW	Automatically Perform Peak M Edge of ULFRCO	Monitoring Algorithm on Every Rising
	This bit enables Peatime.	ak Monitoring Algori	thm to be	e performed on every rising edge	of ULFRCO. Allowed to change at any
26	PEAKDETEN	0	RW	Enables Oscillator Peak Detec	ctors
	Direct control allowers matic Peak Detection			`	DY=1) or when HFXO is ready and auto-
25:20	Reserved	To ensure comp tions	patibility (with future devices, always write b	oits to 0. More information in 1.2 Conven-
19:11	CTUNE	0x000	RW	Sets Oscillator Tuning Capac	itance
	current optimization	algorithms). Direct XTAL_N and HFXT	control is	s allowed when HFXORDY=1. The	ell as during the peak detection and shunt e required CTUNE value is XTAL specific. + CTUNE<8:0> x SS_HFXO. Please find
10:0	IBTRIMXOCORE	0x100	RW	Sets the Steady State Oscillat	or Core Bias Current.
	specific. It is also us SHUNTOPTMODE:	sed as the initial val =MANUAL and HF	ue durino XO is rea	g the peak detection algorithm. Di	D. Required IBTRIMXOCORE is XTAL irect control allowed when PEAKDET-CORE<10:9> x 1280uA + IBTRIMXO-

10.5.9 CMU HFXOTIMEOUTCTRL - HFXO Timeout Control

10.5.9 C	MU_HFXOTIMEOUTC	TRL - HFXO Tir	neout Co	ntrol														
Offset				E	Bit Po	sition												
0x034	30 39 29 29 27 27 26 26	25 24 23 23 22 22	20	19 19 7	- 19	5 4	13	12	7	10	တ ထ	7	9	2	4	ო ი	-	0
Reset							i X			·	•		0X8				OXE	
Access							 } Ƴ										S S	
						Ć L	PEAKUE I IIMEOU I						STEADYTIMEOUT	 			STARTUPTIMEOUT	
Name						Ē	= _ _						M L				JP ∏	
						2	AK						EAD				ARTI	
						Č							S				S	
Bit	Name	Reset	Access	Descri	ption													
31:16	Reserved	To ensure cor tions	mpatibility	with futur	re devi	ices, al	ways	s wri	ite b	its to	0. M	ore ir	nform	ation	in	1.2 Co	onven	-
15:12	PEAKDETTIMEOUT	0xD	RW	Wait D	uratio	n in H	FXO	Pea	ak D	ete	ction	Nait	State)				
	Wait duration depends measured in cycles of			xpected v	alue is	betwe	en 2	5 us	and	d 20	0 us).	Prog	ıram t	he d	esi	red du	ration	
	Value	Mode		Descri	ption													•
	0	2CYCLES		Timeou	ut peri	od of 2	cycl	es										
	1	4CYCLES		Timeou	ut peri	od of 4	cycl	es										
	2	16CYCLES		Timeou	ut peri	od of 1	6 сус	cles										
	3	32CYCLES		Timeou	ut perio	od of 3	2 cyc	cles										
	4	64CYCLES		Timeou	ut perio	od of 6	4 cyc	cles										
	5	128CYCLES		Timeou	ut peri	od of 1	28 cy	ycles	S									
	6	256CYCLES		Timeou	ut peri	od of 2	56 cy	ycles	S									
	7	1KCYCLES		Timeou	ut peri	od of 1	024	cycle	es									
	8	2KCYCLES		Timeou	ut perio	od of 2	048	cycle	es									
	9	4KCYCLES		Timeou	ut perio	od of 4	096	cycle	es									
	10	8KCYCLES		Timeou	ut peri	od of 8	192	cycle	es									
	11	16KCYCLES		Timeou	ut peri	od of 1	6384	Сус	eles									
	12	32KCYCLES		Timeou	ut peri	od of 3	2768	В сус	eles									
	13	64KCYCLES		Timeou	ut peri	od of 6	5536	сус	les									
	14	128KCYCLES	S	Timeou	ut peri	od of 1	3107	'2 cy	/cles	3								-
11:8	Reserved	To ensure cortions	mpatibility	with futur	re devi	ices, al	ways	s wri	ite b	its to	0. M	ore ir	nform	ation	in	1.2 Co	onven	
7:4	STEADYTIMEOUT	0x8	RW	Wait D	uratio	n in H	FXO	Sta	rtup	Ste	eady \	Vait	State)				
	Wait duration depends cycles of (at least) 83		XTAL (e)	xpected v	alue is	aroun	d 10	0 us). Pı	rogra	am the	des	ired o	durat	ion	meas	ured ii	1
	Value	Mode		Descri	ption													-

Bit	Name	Reset	Access	Description
	0	2CYCLES		Timeout period of 2 cycles
	1	4CYCLES		Timeout period of 4 cycles
	2	16CYCLES		Timeout period of 16 cycles
	3	32CYCLES		Timeout period of 32 cycles
	4	64CYCLES		Timeout period of 64 cycles
	5	128CYCLES		Timeout period of 128 cycles
	6	256CYCLES		Timeout period of 256 cycles
	7	1KCYCLES		Timeout period of 1024 cycles
	8	2KCYCLES		Timeout period of 2048 cycles
	9	4KCYCLES		Timeout period of 4096 cycles
	10	8KCYCLES		Timeout period of 8192 cycles
	11	16KCYCLES		Timeout period of 16384 cycles
	12	32KCYCLES		Timeout period of 32768 cycles
	13	64KCYCLES		Timeout period of 65536 cycles
	14	128KCYCLES		Timeout period of 131072 cycles
3:0	STARTUPTIMEOUT	0xE	RW	Wait Duration in HFXO Startup Enable Wait State

Wait duration depends on the chosen XTAL (expected value is between 100 us and 1600 us). Program the desired duration measured in cycles of (at least) 83 ns.

Value	Mode	Description
0	2CYCLES	Timeout period of 2 cycles
1	4CYCLES	Timeout period of 4 cycles
2	16CYCLES	Timeout period of 16 cycles
3	32CYCLES	Timeout period of 32 cycles
4	64CYCLES	Timeout period of 64 cycles
5	128CYCLES	Timeout period of 128 cycles
6	256CYCLES	Timeout period of 256 cycles
7	1KCYCLES	Timeout period of 1024 cycles
8	2KCYCLES	Timeout period of 2048 cycles
9	4KCYCLES	Timeout period of 4096 cycles
10	8KCYCLES	Timeout period of 8192 cycles
11	16KCYCLES	Timeout period of 16384 cycles
12	32KCYCLES	Timeout period of 32768 cycles
13	64KCYCLES	Timeout period of 65536 cycles
14	128KCYCLES	Timeout period of 131072 cycles

10.5.10 CMU_LFXOCTRL - LFXO Control Register

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset							0x2					0		•	2) X	_	0		Ş	7		2	Š			•		00×0			
Access							S N					W.			<u> </u>	<u>}</u>	₩ N	₩ M		2	<u> </u>		2	<u>}</u>					Z.			
Name							TIMEOUT					BUFCUR			<u>-</u>	۲ 2	AGC	HIGHAMPL		2	NIKO		ПОСР	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					TUNING			

Bit	Name	Reset	Access	Description
31:27	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
26:24	TIMEOUT	0x7	RW	LFXO Timeout

Configures the start-up delay for LFXO. Do not change while LFXO is enabled. When starting up the LFXO after it has been completely turned off, use the TIMEOUT setting required by the XTAL. If the LFXO has been retained on in EM4, then the TIMEOUT=2cycles configuration is also allowed when re-enabling the LFXO after EM4 exit (as it is still running).

	Value	Mode		Description
	0	2CYCLES		Timeout period of 2 cycles
	1	256CYCLES		Timeout period of 256 cycles
	2	1KCYCLES		Timeout period of 1024 cycles
	3	2KCYCLES		Timeout period of 2048 cycles
	4	4KCYCLES		Timeout period of 4096 cycles
	5	8KCYCLES		Timeout period of 8192 cycles
	6	16KCYCLES		Timeout period of 16384 cycles
	7	32KCYCLES		Timeout period of 32768 cycles
23:21	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
20	BUFCUR	0	RW	LFXO Buffer Bias Current
	The default value is enabled.	intended to cove	r all use c	cases and reprogramming is not recommended. Do not change while LFXO is
19:18	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
17:16	CUR	0x0	RW	LFXO Current Trim
	The default value is enabled.	intended to cover	r all use o	cases and reprogramming is not recommended. Do not change while LFXO is
15	AGC	1	RW	LFXO AGC Enable
	Set this bit to enable	e automatic gain o	control wh	nich limits XTAL oscillation amplitude. Do not change while LFXO is enabled.
14	HIGHAMPL	0	RW	LFXO High XTAL Oscillation Amplitude Enable
	Set this bit to enable	e high XTAL oscill	lation am	plitude. Do not change while LFXO is enabled.
13	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-

tions

Bit	Name	Reset	Access	Description
12:11	GAIN	0x2	RW	LFXO Startup Gain
	The optimal values Studio for more		rtup margin o	depends on the chosen XTAL. Refer to the device data sheet or Simplicity
10	Reserved	To ensure o	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
9:8	MODE	0x0	RW	LFXO Mode
	effect when 1 is			LFXO. Do not change while LFXO is enabled. The oscillator setting takes SCENCMD. The oscillator setting is reset to default when 1 is written to
	Value	Mode		Description
	0	XTAL		32768 Hz crystal oscillator
	1	BUFEXTCL	K	An AC coupled buffer is coupled in series with LFXTAL_N pin, suitable for external sinus wave (32768 Hz).
	2	DIGEXTCLI	<	Digital external clock on LFXTAL_N pin. Oscillator is effectively by-passed.
7	Reserved	To ensure o	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
6:0	TUNING	0x00	RW	LFXO Internal Capacitor Array Tuning Value
		ically (the higher th		citance connected between LFXTAL_P and ground and LFXTAL_N and higher the capacitance, the lower the frequency). Only increment or decre-

10.5.11 CMU_DPLLCTRL - DPLL Control Register

Offset				Bit Position						
0x040	33 28 29 30 37 27 28 29 30	23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	20 27	7 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	2	4 κ	2	_	0
Reset					0		0x0	0	0	0
Access					X N		§ S	RW	RW	RW
							ш.	-		
N 1								AUTORECOVER	٦	
Name					DITHEN		REFSEL	ORE	EDGESEL	핃
					DIT		RE	AUT	EDG	MODE
Bit	Name	Reset	Access	Description						
31:7	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More in	nforn	natic	on in 1.2	Con	iver	1-
6	DITHEN	0	RW	Dither Enable Control						_
	Set to enable the dith	er function								
5	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More in	nforn	natic	on in 1.2	Con	iver	1-
4:3	REFSEL	0x0	RW	Reference Clock Selection Control						
	This field selects which	ch clock as the re	eference cl	lock						
	Value	Mode		Description						_
	0	HFXO		HFXO selected						_
	1	LFXO		LFXO selected						
	3	CLKIN0		CLKIN0 selected						_
2	AUTORECOVER	0	RW	Automatic Recovery Ctrl						
	Set to enable automa	tic recovery fund	ction.							
1	EDGESEL	0	RW	Reference Edge Select						
	This bit controls whic	n edge of refere	nce is dete	cted						
	Value	Mode		Description						=
	0	FALL		Falling edge						_
	1	RISE		Rising edge						_
0	MODE	0	RW	Operating Mode Control						
	This bit controls whic	n mode DPLL is	operating	when enabled						
	Value	Mode		Description						_
	0	FREQLL		DPLL operates in frequency-lock mode.						_
	1	PHASELL		DPLL operates in phase-lock mode.						_

10.5.12 CMU_DPLLCTRL1 - DPLL Control Register

Offset															Bi	t Pos	sitio	on															
0x044	31	30												17	16	15	14	13	12	11	10	6	∞	7		Ľ	n	4	က	2	_	0	
Reset		000												000x0	·	·			·														
Access			X X O																							R							
Name			ž z																								Σ						

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure c	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
27:16	N	0x000	RW	Factor N
	The locked DCO fre	equency is given	by: Fdco =	Fref * (N + 1) / (M + 1). N is required to be larger than 32.
15:12	Reserved	To ensure c	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
11:0	M	0x000	RW	Factor M
	The locked DCO fre	equency is given	by: Fdco =	Fref * (N + 1) / (M + 1). M can be any value.

10.5.13 CMU_CALCTRL - Calibration Control Register

Offset								Bit Po	neiti	on_														
0x050	7 0 0 8 1	~ (0 l0 4	m 0		0	0					დ (v .	_	0										
	30 30 31 53 53		23	21	70	19	1 18		15	4	13	2	=	9	6	∞	7	9	0	4	က	7	0	_
Reset		0X0					2									0			000				000	_
Access		RW W					<u> </u>	2								₩ M			Z.				₩ M	
Name		PRSDOWNSEL					ISAG									CONT			DOWNSEL				UPSEL	_
Bit	Name	Reset		Ac	cess	s I	Descri	iptior	1															
31:27	Reserved	To ens	sure coi	mpati	bility	/ wit	th futui	re de	/ices	s, alı	ways	writ	e b	its t	o 0.	Мо	re in	forn	natio	on in	1.2	? Co	nven-	
26:24	PRSDOWNSEL	0x0		RV	/	ı	PRS S	elect	for	PRS	S Inpu	ıt V	Vhe	n S	elec	cted	l in	DΟ\	WNS	SEL				_
	Select PRS input	for PRS bas	ed calib	oratio	n. O	nly	chang	e whe	en ca	alibra	ation	circ	uit i	s o	ff.									
	Value	Mode					Descri	ption																
	0	PRSC	H0			F	PRS C	hann	el 0	sele	cted	as i	npu	ıt										
	1	PRSC	H1			F	PRS C	hann	el 1	sele	cted	as i	npu	ıt										
	2	PRSC	H2			F	PRS C	hann	el 2	sele	cted	as i	npu	ıt										
	3	PRSC	H3			F	PRS C	hann	el 3	sele	cted	as i	npu	ıt										
	4	PRSC	H4				PRS C																	
	5	PRSC	H5			F	PRS C	hann	el 5	sele	cted	as i	npu	ıt										
	6	PRSC					PRS C						-											
	7	PRSC	H7			F	PRS C	hann	el 7	sele	cted	as i	npu	ıt										
23:19	Reserved	To ens	sure coi	mpati	bility	/ wit	th futui	re de	/ices	s, alı	ways	writ	e b	its t	o 0.	Мо	re in	forn	natio	on in	1.2	? Co	nven-	
18:16	PRSUPSEL	0x0		RW	/	F	PRS S	elect	for	PRS	S Inpu	ıt V	Vhe	n S	elec	cted	l in	UPS	SEL					_
	Select PRS input	for PRS bas	ed calib	oratio	n. O	nly	chang	e whe	en ca	alibr	ation	circ	uit i	is o	ff.									
	Value	Mode				[Descri	ption																
	0	PRSC	H0			F	PRS C	hann	el 0	sele	cted	as i	npu	ıt										
	1	PRSC	H1			F	PRS C	hann	el 1	sele	cted	as i	npu	ıt										
	2	PRSC	H2			F	PRS C	hann	el 2	sele	cted	as i	npu	ıt										
	3	PRSC	H3			F	PRS C	hann	el 3	sele	cted	as i	npu	ıt										
	4	PRSC	H4			F	PRS C	hann	el 4	sele	cted	as i	npu	it										
	5	PRSC	H5			F	PRS C	hann	el 5	sele	cted	as i	npu	ıt										
	6	PRSC	H6			F	PRS C	hann	el 6	sele	cted	as i	npu	ıt										
	7	PRSC	H7			F	PRS C	hann	el 7	sele	cted	as i	npu	ıt										
																								_

Bit	Name	Reset Ac	cess Description
15:9	Reserved	To ensure compati	bility with future devices, always write bits to 0. More information in 1.2 Conven-
8	CONT	0 RW	Continuous Calibration
	Set this bit to ena	ble continuous calibration	ı
7	Reserved	To ensure compati	bility with future devices, always write bits to 0. More information in 1.2 Conven-
6:4	DOWNSEL	0x0 RW	Calibration Down-counter Select
	Selects clock sou	rce for the calibration dov	wn-counter. Only change when calibration circuit is off.
	Value	Mode	Description
	0	HFCLK	Select HFCLK for down-counter
	1	HFXO	Select HFXO for down-counter
	2	LFXO	Select LFXO for down-counter
	3	HFRCO	Select HFRCO for down-counter
	4	LFRCO	Select LFRCO for down-counter
	5	AUXHFRCO	Select AUXHFRCO for down-counter
	6	PRS	Select PRS input selected by PRSDOWNSEL as down-counter
3	Reserved	To ensure compatitions	bility with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	UPSEL	0x0 RW	Calibration Up-counter Select
	Selects clock sou	rce for the calibration up-	counter. Only change when calibration circuit is off.
	Value	Mode	Description
	0	HFXO	Select HFXO as up-counter
	1	LFXO	Select LFXO as up-counter
	2	HFRCO	Select HFRCO as up-counter
	3	LFRCO	Select LFRCO as up-counter
	4	AUXHFRCO	Select AUXHFRCO as up-counter
	5	PRS	Select PRS input selected by PRSUPSEL as up-counter

10.5.14 CMU_CALCNT - Calibration Counter Register

Offset															Bi	t Po	siti	on															
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	0 00)	7	9	2	4	3	2	_	0
Reset							•																00000×0	•	·								
Access																							RWH										
Name																							CALCNT										
Bit	Na	me					Re	set			Ac	ces	s I	Des	crip	tion																	
31:20	Re	serv	ed				To tion		ure	con	pati	bility	/ wi	th fu	ture	dev	/ices	s, alı	way	's wi	rite k	oits	to C). M	ore	e ini	forn	natio	on i	n 1	2 Co	nve	en-
19:0	CA	LCN	ΙΤ				0x0	0000	0		RW	/H		Cali	brat	ion	Cou	ınte	r														
	Wr	ite to	p va	alue	bef	fore	calil	brati	on.	Rea	id ca	alibra	atio	n res	sult f	rom	this	reg	jiste	er wh	nen	Са	libra	ition	R	eac	ly fl	ag h	nas	bee	n se	t.	

10.5.15 CMU_OSCENCMD - Oscillator Enable/Disable Command Register

Offset					it Positio	,												
							ı			1								
0x060	31 29 29 27 27	26 24 23 23	22 23 29	19 17	15 16	<u>t</u> 5	12	7	9	∞	7	9	2	4	က	7	_	(
Reset						0	0		0	0	0	0	0	0	0	0	0	,
Access						X	×		X	X	×	X	×	X	×	W1	X	
Name						DPLLDIS	DPLLEN		LFXODIS	LFXOEN	LFRCODIS	LFRCOEN	AUXHFRCODIS	AUXHFRCOEN	HFXODIS	HFXOEN	HFRCODIS	
Bit	Name	Reset	Access	Descri	otion													
31:14	Reserved	To ensure o	compatibility	with future	e devices,	alway	's wr	rite bi	ts to C	. Мо	re in	forn	natio	on in	1.2	? Coi	nve	n-
13	DPLLDIS	0	W1	DPLL [Disable													
	Disables the DPLL.																	
12	DPLLEN	0	W1	DPLL E	Enable													
	Enables the DPLL.																	
11:10	Reserved	To ensure o	compatibility	with future	e devices,	alway	's wr	rite bi	ts to C	. Мо	re in	forn	natio	on in	1.2	? Coi	nve	n-
9	LFXODIS	0	W1	LFXO [Disable													
	Disables the LFXO. lator is selected as this to take effect																	
8	LFXOEN	0	W1	LFXO E	Enable													
	Enables the LFXO.	When waking ι	ıp from EM4	make sur	e EM4UNI	ATC	H in	EMU _.	_CME	is s	et fo	r thi	s to	take	e eff	ect		
7	LFRCODIS	0	W1	LFRCC	Disable													
	Disables the LFRCC oscillator is selected for this to take effect	as the source																
6	LFRCOEN	0	W1	LFRCC	Enable													
	Enables the LFRCC). When waking	up from EM	14 make s	ure EM4UI	NLAT	CH i	n EM	U_CN	ID is	set	for t	his t	to ta	ke e	effec	t	
5	AUXHFRCODIS	0	W1	AUXHF	RCO Disa	ble												_
	Disables the AUXHI	FRCO. AUXHF	RCOEN has	higher pr	iority if writ	ten si	mult	aneo	usly.									
		•	W1	ΔΙΙΧΗΕ	RCO Ena	hle												
4	AUXHFRCOEN	0	VVI	AOAIII	IXCO LIIA	0.0												
4	AUXHFRCOEN Enables the AUXHF		VVI	AOAH	NOO LIIA	010												

Disables the HFXO. HFXOEN has higher priority if written simultaneously. WARNING: Do not disable the HFXO if this os-

HFXO Enable

Enables the HFXO.

HFXOEN

2

cillator is selected as the source for HFCLK.

Bit	Name	Reset	Access	Description
1	HFRCODIS	0	W1	HFRCO Disable
	Disables the HFR oscillator is select			ority if written simultaneously. WARNING: Do not disable the HFRCO if this
0	HFRCOEN	0	W1	HFRCO Enable
	Enables the HFR	CO.		

10.5.16 CMU_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	_	0
Reset			•				•		•		•							•						•	•	•		0			0	0
Access																												W			W1	W
Name																												HFXOPEAKDETSTART			CALSTOP	CALSTART

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
4	HFXOPEAKDET- START	0	W1	HFXO Peak Detection Start
	Starts the HFXO pe	ak detection and	runs it one	time.
3:2	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
1	CALSTOP	0	W1	Calibration Stop
	Stops the calibration	n counters.		
0	CALSTART	0	W1	Calibration Start
	Starts the calibration	n, effectively loadi	ng the CM	U_CALCNT into the down-counter and start decrementing.

10.5.17 CMU_DBGCLKSEL - Debug Trace Clock Select

Offset															Bi	t Po	siti	on													
0x070	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset				•												•								•		•					0x0
Access																															RW
Name																															DBG

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
1:0	DBG	0x0	RW	Debug Trace Clock
	Select clock used	for debug trace.		
	Value	Mode		Description
	0	AUXHFRCO		AUXHFRCO is the debug trace clock
	1	HFCLK		HFCLK is the debug trace clock
	2	HFRCODIV2		HFRCO divided by 2 is the debug trace clock

10.5.18 CMU_HFCLKSEL - High Frequency Clock Select Command Register

Offset															Bi	it Po	ositi	on														
0x074	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	5	4	က	2	_	0
Reset		•												•		•			•								•		•		0x0	
Access																															W	
Name																															生	

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	HF	0x0	W1	HFCLK Select

Selects the clock source for HFCLK. Note that selecting an oscillator that is disabled will cause the system clock to stop. Check the status register and confirm that oscillator is ready before switching. If the system can deal with a temporarily stopped system clock, then it is okay to switch to an oscillator as soon as the status register indicates that the oscillator has been enabled successfully.

Value	Mode	Description
1	HFRCO	Select HFRCO as HFCLK
2	HFXO	Select HFXO as HFCLK
3	LFRCO	Select LFRCO as HFCLK
4	LFXO	Select LFXO as HFCLK
5	HFRCODIV2	Select HFRCO divided by 2 as HFCLK
7	CLKIN0	Select CLKIN0 as HFCLK

10.5.19 CMU_LFACLKSEL - Low Frequency A Clock Select Register

Offset	Bit Position	
0x080	31 31 32 33 33 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35	0 1 2
Reset		0x0
Access		S S
Name		LFA

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	LFA	0x0	RW	Clock Select for LFA
	Selects the clock	source for LFACL	≺.	
	Value	Mode		Description
	0	DISABLED		LFACLK is disabled
	1	LFRCO		LFRCO selected as LFACLK
	2	LFXO		LFXO selected as LFACLK
	4	ULFRCO		ULFRCO selected as LFACLK

10.5.20 CMU_LFBCLKSEL - Low Frequency B Clock Select Register

Offset	Bit Position	
0x084	3 3 3 5 7 7 8 8 7 7 9 8 7 7 9 8 8 7 7 9 8 8 7 7 9 8 8 7 7 9 8 8 8 8	0 1 2
Reset		0×0
Access		S S
Name		LFB

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure co	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	LFB	0x0	RW	Clock Select for LFB
	Selects the clock	k source for LFBCLK		
	Value	Mode		Description
	0	DISABLED		LFBCLK is disabled
	1	LFRCO		LFRCO selected as LFBCLK
	2	LFXO		LFXO selected as LFBCLK
	3	HFCLKLE		HFCLK divided by two/four is selected as LFBCLK
	4	ULFRCO		ULFRCO selected as LFBCLK

10.5.21 CMU_LFECLKSEL - Low Frequency E Clock Select Register

Offset	Bit Position	
0x088	30 30 50 50 50 50 50 50 50 50 50 50 50 50 50	0 7 0
Reset		0x0
Access		A N
Name		E

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	LFE	0x0	RW	Clock Select for LFE
	Selects the clock sour take effect	ce for LFECLK.	When wal	king up from EM4 make sure EM4UNLATCH in EMU_CMD is set for this to

Value	Mode	Description
0	DISABLED	LFECLK is disabled
1	LFRCO	LFRCO selected as LFECLK
2	LFXO	LFXO selected as LFECLK
4	ULFRCO	ULFRCO selected as LFECLK

10.5.22 CMU_STATUS - Status Register

Offset															Bi	t Po	ositi	on														
0x090	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset			0	0	0		0			0			•			_		•	0	0			0	0	0	0	0	0	0	0	_	-
Access			22	22	22		22			2						~			2	2			<u>~</u>	22	2	22	2	2	22	2	22	<u>~</u>
Name			ULFRCOPHASE	LFRCOPHASE	LFXOPHASE		HFXOAMPLOW			HFXOPEAKDETRDY						CALRDY			DPLLRDY	DPLLENS			LFXORDY	LFXOENS	LFRCORDY	LFRCOENS	AUXHFRCORDY	AUXHFRCOENS	HFXORDY	HFXOENS	HFRCORDY	HFRCOENS

Bit	Name	Reset	Access	Description
31:30	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
29	ULFRCOPHASE	0	R	ULFRCO Clock Phase
	Used to determine if I	JLFRCO is in hi	gh or low p	phase.
28	LFRCOPHASE	0	R	LFRCO Clock Phase
	Used to determine if I	FRCO is in high	h or low ph	ase.
27	LFXOPHASE	0	R	LFXO Clock Phase
	Used to determine if I	FXO is in high	or low phas	se.
26	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
25	HFXOAMPLOW	0	R	HFXO Amplitude Tuning Value Too Low
	HFXO oscillation amp			ng PEAKDETSHUNTOPTMODE=MANUAL, the IBTRIMXOCORE value in ned up by 1 LSB.
24:23	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
22	HFXOPEAKDETRDY	0	R	HFXO Peak Detection Ready
	HFXO peak detection	is ready.		
21:17	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
16	CALRDY	1	R	Calibration Ready
	Calibration is Ready (0 when calibrati	on is ongo	ing).
15:14	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
13	DPLLRDY	0	R	DPLL Ready
	DPLL is enabled and	locked		
12	DPLLENS	0	R	DPLL Enable Status
	DPLL is enabled			
11:10	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

Bit	Name	Reset	Access	Description
9	LFXORDY	0	R	LFXO Ready
	LFXO is enabled and	d start-up time ha	as exceede	d.
8	LFXOENS	0	R	LFXO Enable Status
	LFXO is enabled (sh	ows disabled sta	atus if EM4	repaint is required).
7	LFRCORDY	0	R	LFRCO Ready
	LFRCO is enabled a	nd start-up time	has exceed	ded.
6	LFRCOENS	0	R	LFRCO Enable Status
	LFRCO is enabled (shows disabled	status if EM	4 repaint is required).
5	AUXHFRCORDY	0	R	AUXHFRCO Ready
	AUXHFRCO is enab	led and start-up	time has ex	xceeded.
4	AUXHFRCOENS	0	R	AUXHFRCO Enable Status
	AUXHFRCO is enab	led.		
3	HFXORDY	0	R	HFXO Ready
	HFXO is enabled an	d start-up time h	as exceede	ed.
2	HFXOENS	0	R	HFXO Enable Status
	HFXO is enabled.			
1	HFRCORDY	1	R	HFRCO Ready
	HFRCO is enabled a	and start-up time	has excee	ded.
0	HFRCOENS	1	R	HFRCO Enable Status
	HFRCO is enabled.			

10.5.23 CMU_HFCLKSTATUS - HFCLK Status Register

Offset			Bit Position
0x094	31 30 29 29 27 27 27	22 23 24 25 25 27 20 24	2
Reset			7
Access			<u>~</u>
Name			SELECTED
Bit	Name	Reset Access	Description
31:3	Reserved	To ensure compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	SELECTED	0x1 R	HFCLK Selected
	Clock selected as HF	CLK clock source.	
	Value	Mode	Description
	1	HFRCO	HFRCO is selected as HFCLK clock source
	2	HFXO	HFXO is selected as HFCLK clock source
	3	LFRCO	LFRCO is selected as HFCLK clock source
	4	LFXO	LFXO is selected as HFCLK clock source
	5	HFRCODIV2	HFRCO divided by 2 is selected as HFCLK clock source
	7	CLKIN0	CLKIN0 is selected as HFCLK clock source

10.5.24 CMU_HFXOTRIMSTATUS - HFXO Trim Status

Offset															Ві	it Po	siti	on														
0x09C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset	0	0		•							000x0				•										•	•	000x0	•			•	
Access	2	2									<u>~</u>																2					
Name	MONVALID	VALID									IBTRIMXOCOREMON																IBTRIMXOCORE					

Bit	Name	Reset	Access	Description
31	MONVALID	0	R	Peak Detection Algorithm or Peak Monitoring Algorithm Found a Value for IBTRIMXOCOREMON
30	VALID	0	R	Peak Detection Algorithm Found a Value for IBTRIMXOCORE
	If HFXO is started ag will be used and peal			E=ONCECMD the IBTRIMXOCORE value from CMU_HFXOTRIMSTATUS e skipped.
29:27	Reserved	To ensure co tions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
26:16	IBTRIMXOCORE- MON	0x000	R	Value of IBTRIMXOCORE Found By Automatic HFXO Peak Detection Algorithm or Peak Monitoring Algorithm (completion of Either Algorithm Will Cause an Update of IBTRIMXOCOREMON)
15:11	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
10:0	IBTRIMXOCORE	0x000	R	Value of IBTRIMXOCORE Found By Automatic HFXO Peak Detection Algorithm
				E=ONCECMD this value will be used as steady state value for the HFXO IU_HFXOSTEADYSTATECTRL) and peak detection algorithm will be skip-

10.5.25 CMU_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x0A0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	0		0	0	0		•		•					•	0	0	0	0	0		0		0	0		0	0	0	0	0	0	-
Access	2		2	22	22										22	22	2	22	22		2		22	22		22	2	2	22	2	22	~
Name	CMUERR		ULFRCOEDGE	LFRCOEDGE	LFXOEDGE										DPLLLOCKFAILHIGH	DPLLLOCKFAILLOW	DPLLRDY	LFTIMEOUTERR	HFRCODIS		HFXOPEAKDETRDY		HFXOAUTOSW	HFXODISERR		CALOF	CALRDY	AUXHFRCORDY	LFXORDY	LFRCORDY	HFXORDY	HFRCORDY

	SO JU F			
Bit	Name	Reset	Access	Description
31	CMUERR	0	R	CMU Error Interrupt Flag
	Set upon illegal CMU	write attempt (e.g	. writing	CMU_LFRCOCTRL while LFRCOBSY is set).
30	Reserved	To ensure comp tions	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
29	ULFRCOEDGE	0	R	ULFRCO Clock Edge Detected Interrupt Flag
	Sets when ULFRCO	clock switches pha	ases.	
28	LFRCOEDGE	0	R	LFRCO Clock Edge Detected Interrupt Flag
	Sets when LFRCO cl	ock switches phas	ses.	
27	LFXOEDGE	0	R	LFXO Clock Edge Detected Interrupt Flag
	Sets when LFXO cloc	ck switches phase	S.	
26:18	Reserved	To ensure comp tions	oatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
17	DPLLLOCKFAIL- HIGH	0	R	DPLL Lock Failure Low Interrupt Flag
	Set when DPLL fail to	lock because of p	period ov	erflow.
16	DPLLLOCKFAILLOW	/ 0	R	DPLL Lock Failure Low Interrupt Flag
	Set when DPLL fail to	lock because of p	period un	derflow.
15	DPLLRDY	0	R	DPLL Lock Interrupt Flag
	Set when DPLL achie	eve the lock.		
14	LFTIMEOUTERR	0	R	Low Frequency Timeout Error Interrupt Flag
	Set when LFTIMEOU the CMU_HFXOTIME			ggers before the combined STARTUPTIMEOUT plus STEADYTIMEOUT of s.
13	HFRCODIS	0	R	HFRCO Disable Interrupt Flag
	Set when a running H	IFRCO is disabled	l because	e of automatic HFXO start and selection.
12	Reserved	To ensure comp tions	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
11	HFXOPEAKDETRDY	0	R	HFXO Automatic Peak Detection Ready Interrupt Flag
	Set when automatic l	HFXO peak detect	ion is rea	dy.

Bit	Name	Reset A	ccess Description
10	Reserved	To ensure compa tions	tibility with future devices, always write bits to 0. More information in 1.2 Conven-
9	HFXOAUTOSW	0 R	HFXO Automatic Switch Interrupt Flag
	Set when automatic	selection of HFXO ca	auses a switch of the source clock used for HFCLKSRC.
8	HFXODISERR	0 R	HFXO Disable Error Interrupt Flag
	Set when software tr not disabled/deselec		ct the HFXO in case the automatic enable/select reason is met. The HFXO was
7	Reserved	To ensure compa tions	tibility with future devices, always write bits to 0. More information in 1.2 Conven-
6	CALOF	0 R	Calibration Overflow Interrupt Flag
	Set when calibration	overflow has occurre	ed (i.e. if a new calibration completes before CMU_CALCNT has been read).
5	CALRDY	0 R	Calibration Ready Interrupt Flag
	Set when calibration	is completed.	
4	AUXHFRCORDY	0 R	AUXHFRCO Ready Interrupt Flag
	Set when AUXHFRC	O is ready (start-up	time exceeded).
3	LFXORDY	0 R	LFXO Ready Interrupt Flag
	Set when LFXO is re	ady (start-up time ex	ceeded). LFXORDY can be used as wake-up interrupt.
2	LFRCORDY	0 R	LFRCO Ready Interrupt Flag
	Set when LFRCO is	ready (start-up time	exceeded). LFRCORDY can be used as wake-up interrupt.
1	HFXORDY	0 R	HFXO Ready Interrupt Flag
	Set when HFXO is re	eady (start-up time ex	cceeded).
0	HFRCORDY	1 R	HFRCO Ready Interrupt Flag
	Set when HFRCO is	ready (start-up time	exceeded).

10.5.26 CMU_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x0A4	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	တ	∞	7	9	5	4	က	2	_	0
Reset	0		0	0	0		•		•	•				•	0	0	0	0	0		0		0	0		0	0	0	0	0	0	0
Access	×		W 1	W 1	W 1										W 1	×	N 1	N N	W 1		W 1		W1	W 1		×	N 1	W 1	W 1	W1	×	W
Name	CMUERR		ULFRCOEDGE	LFRCOEDGE	LFXOEDGE										DPLLLOCKFAILHIGH	DPLLLOCKFAILLOW	DPLLRDY	LFTIMEOUTERR	HFRCODIS		HFXOPEAKDETRDY		HFXOAUTOSW	HFXODISERR		CALOF	CALRDY	AUXHFRCORDY	LFXORDY	LFRCORDY	HFXORDY	HFRCORDY

	S S S S S S S S S S S S S S S S S S S			
Bit	Name	Reset	Access	Description
31	CMUERR	0	W1	Set CMUERR Interrupt Flag
	Write 1 to set the CMUERR interrupt flag			
30	Reserved	To ensure con tions	npatibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
29	ULFRCOEDGE	0	W1	Set ULFRCOEDGE Interrupt Flag
	Write 1 to set the ULFRCOEDGE interrupt flag			
28	LFRCOEDGE	0	W1	Set LFRCOEDGE Interrupt Flag
	Write 1 to set the LFRCOEDGE interrupt flag			
27	LFXOEDGE	0	W1	Set LFXOEDGE Interrupt Flag
	Write 1 to set the LFXOEDGE interrupt flag			
26:18	Reserved	To ensure con tions	npatibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
17	DPLLLOCKFAIL- HIGH	0	W1	Set DPLLLOCKFAILHIGH Interrupt Flag
	Write 1 to set the DPLLLOCKFAILHIGH interrupt flag			
16	DPLLLOCKFAILLOW	0	W1	Set DPLLLOCKFAILLOW Interrupt Flag
	Write 1 to set the DPLLLOCKFAILLOW interrupt flag			
15	DPLLRDY	0	W1	Set DPLLRDY Interrupt Flag
	Write 1 to set the DPLLRDY interrupt flag			
14	LFTIMEOUTERR	0	W1	Set LFTIMEOUTERR Interrupt Flag
	Write 1 to set the LFTIMEOUTERR interrupt flag			
13	HFRCODIS	0	W1	Set HFRCODIS Interrupt Flag
	Write 1 to set the HFRCODIS interrupt flag			
12	Reserved	To ensure con tions	npatibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
11	HFXOPEAKDETRDY	0	W1	Set HFXOPEAKDETRDY Interrupt Flag
	Write 1 to set the HFXOPEAKDETRDY interrupt flag			

Bit	Name	Reset /	Access	Description
10	Reserved	To ensure comp tions	atibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
9	HFXOAUTOSW	0 \	W1	Set HFXOAUTOSW Interrupt Flag
	Write 1 to set the HF	XOAUTOSW interr	rupt flag	
8	HFXODISERR	0 \	W1	Set HFXODISERR Interrupt Flag
	Write 1 to set the HF	XODISERR interru	pt flag	
7	Reserved	To ensure comp tions	atibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
6	CALOF	0 \	W1	Set CALOF Interrupt Flag
	Write 1 to set the CA	LOF interrupt flag		
5	CALRDY	0 \	W1	Set CALRDY Interrupt Flag
	Write 1 to set the CA	LRDY interrupt flag	9	
4	AUXHFRCORDY	0 \	W1	Set AUXHFRCORDY Interrupt Flag
	Write 1 to set the AU	XHFRCORDY inte	rrupt flag	I
3	LFXORDY	0 \	W1	Set LFXORDY Interrupt Flag
	Write 1 to set the LF	XORDY interrupt fla	ag	
2	LFRCORDY	0 \	W1	Set LFRCORDY Interrupt Flag
	Write 1 to set the LF	RCORDY interrupt	flag	
1	HFXORDY	0 \	W1	Set HFXORDY Interrupt Flag
	Write 1 to set the HF	XORDY interrupt fl	ag	
0	HFRCORDY	0 \	W1	Set HFRCORDY Interrupt Flag
	Write 1 to set the HF	RCORDY interrupt	flag	

10.5.27 CMU_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	siti	on														
0x0A8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	-	0
Reset	0		0	0	0				•		•		•	•	0	0	0	0	0		0		0	0		0	0	0	0	0	0	0
Access	(R)W1		(R)W1	(R)W1	(R)W1										(R)W1	(R)W1	(R)W1	(R)W1	(R)W1		(R)W1		(R)W1	(R)W1		(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1
Name	CMUERR		ULFRCOEDGE	LFRCOEDGE	LFXOEDGE										DPLLLOCKFAILHIGH	DPLLLOCKFAILLOW	DPLLRDY	LFTIMEOUTERR	HFRCODIS		HFXOPEAKDETRDY		HFXOAUTOSW	HFXODISERR		CALOF	CALRDY	AUXHFRCORDY	LFXORDY	LFRCORDY	HFXORDY	HFRCORDY
Bit	Na	me					Re	eset			Ac	ces	s	Des	crip	tion																
31	CN	1UE	RR				0				(R)W1		Clea	ar C	MUE	ERR	Int	erru	pt F	lag											
					r the nust									ing ı	etur	ns tl	he v	alue	e of t	the I	F ar	nd c	lears	s the	e co	rres	pon	ding	inte	errup	t fla	gs
30	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Convetions ULFRCOEDGE 0 (R)W1 Clear ULFRCOEDGE Interrupt Flag															nver	1-															
29	ULFRCOEDGE 0 (R)W1 Clear ULFRCOEDGE Interrupt Flag Write 1 to clear the ULFRCOEDGE interrupt flag. Reading returns the value of the IF and clears the corresponding inter																															
	ULFRCOEDGE 0 (R)W1 Clear ULFRCOEDGE Interrupt Flag Write 1 to clear the ULFRCOEDGE interrupt flag. Reading returns the value of the IF and clears the corresponding interflags (This feature must be enabled globally in MSC.).														iterri	upt																
28	LFI	RCC	DED	GE			0				(R)W1		Clea	ar Ll	FRC	OEI	DGE	E Int	erru	ıpt F	lag										
					r the ure											etur	ns t	he v	/alue	e of	the I	F a	nd c	lear	s th	e co	rres	pon	ding	inte	errup	ot
27	LF	XOE	DG	E			0				(R)W1		Clea	ar Ll	FXO	ED	GE I	ntei	rup	t Fla	ag										
					r the ure											turns	s the	e va	lue (of th	e IF	and	l cle	ars	the	corr	esp	ondi	ng ii	nter	rupt	
26:18	Re	serv	/ed					ens ens	sure	cor	npat	ibilit	'y wi	ith fu	ıture	dev	/ices	s, al	way.	s wr	ite b	its t	o 0.	Moi	re in	forn	natio	on in	1.2	Co	nver	7-
17	DP HI		OCł	<fα< th=""><th>IL-</th><th></th><th>0</th><th></th><th></th><th></th><th>(R</th><th>)W1</th><th></th><th>Clea</th><th>ar D</th><th>PLL</th><th>LO</th><th>CKF</th><th>AIL</th><th>HIG</th><th>H In</th><th>terr</th><th>upt</th><th>Flag</th><th>g</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></fα<>	IL-		0				(R)W1		Clea	ar D	PLL	LO	CKF	AIL	HIG	H In	terr	upt	Flag	g							
					r the (This													retu	rns 1	the v	/alu	e of	the	IF a	nd o	clea	rs th	e co	rres	pon	ding)
16	DP	LLL	OC!	ΚFΑ	ILLC	OW	0				(R)W1		Clea	ar D	PLL	LO	CKF	AIL	LOV	V In	terr	upt	Flaç)							
					r the (This													etur	ns t	he v	alue	of t	the I	F aı	nd c	lear	s the	e co	rres	pon	ding	
15	DP	LLF	RDY				0				(R)W1		Clea	ar D	PLL	RD	Y In	terrı	upt l	Flag											
					r the nust									ding	retu	rns t	the v	/alu	e of	the	IF a	nd c	lear	s th	e cc	rres	pon	ding	g inte	erru	pt fla	ags
14	LF	TIM	EOL	JTEI	RR		0				(R)W1		Clea	ar Ll	FTIN	ΙEΟ	UTI	ERR	Inte	erru	pt F	lag									
					r the												etur	ns tl	he v	alue	of t	he I	F ar	nd cl	lear	s the	e co	rres	pond	ding	inte	r-

				Civio - Clock Management Onit
Bit	Name	Reset	Access	Description
13	HFRCODIS	0	(R)W1	Clear HFRCODIS Interrupt Flag
	Write 1 to clear the H			eading returns the value of the IF and clears the corresponding interrupt //ISC.).
12	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
11	HFXOPEAKDETRD)	/ O	(R)W1	Clear HFXOPEAKDETRDY Interrupt Flag
	Write 1 to clear the Hinterrupt flags (This for			upt flag. Reading returns the value of the IF and clears the corresponding bally in MSC.).
10	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
9	HFXOAUTOSW	0	(R)W1	Clear HFXOAUTOSW Interrupt Flag
	Write 1 to clear the Frupt flags (This feature			g. Reading returns the value of the IF and clears the corresponding intervin MSC.).
8	HFXODISERR	0	(R)W1	Clear HFXODISERR Interrupt Flag
	Write 1 to clear the H			Reading returns the value of the IF and clears the corresponding interrupt MSC.).
7	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
6	CALOF	0	(R)W1	Clear CALOF Interrupt Flag
	Write 1 to clear the C (This feature must be			ng returns the value of the IF and clears the corresponding interrupt flags .
5	CALRDY	0	(R)W1	Clear CALRDY Interrupt Flag
	Write 1 to clear the C (This feature must be			ding returns the value of the IF and clears the corresponding interrupt flags .
4	AUXHFRCORDY	0	(R)W1	Clear AUXHFRCORDY Interrupt Flag
	Write 1 to clear the A rupt flags (This feature			ag. Reading returns the value of the IF and clears the corresponding intervin MSC.).
3	LFXORDY	0	(R)W1	Clear LFXORDY Interrupt Flag
	Write 1 to clear the L flags (This feature m			ading returns the value of the IF and clears the corresponding interrupt MSC.).
2	LFRCORDY	0	(R)W1	Clear LFRCORDY Interrupt Flag
	Write 1 to clear the L flags (This feature m			leading returns the value of the IF and clears the corresponding interrupt MSC.).
1	HFXORDY	0	(R)W1	Clear HFXORDY Interrupt Flag
	Write 1 to clear the H			ading returns the value of the IF and clears the corresponding interrupt MSC.).
0	HFRCORDY	0	(R)W1	Clear HFRCORDY Interrupt Flag
	Write 1 to clear the H			Reading returns the value of the IF and clears the corresponding interrupt //SC.).

10.5.28 CMU_IEN - Interrupt Enable Register

		_			•				Ŭ																							
Offset															Bi	t Po	siti	on														
0x0AC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	စ	∞	7	9	5	4	က	2	_	0
Reset	0		0	0	0		•	•				•			0	0	0	0	0		0		0	0		0	0	0	0	0	0	0
Access	RW		M	₩ M	% M										₩ M	% M	R M	₩ M	RW		RW		₩ M	₩ M		M M	% M	R M M	% M	₩ M	% M	A M
Name	CMUERR		ULFRCOEDGE	LFRCOEDGE	LFXOEDGE										DPLLLOCKFAILHIGH	DPLLLOCKFAILLOW	DPLLRDY	LFTIMEOUTERR	HFRCODIS		HFXOPEAKDETRDY		HFXOAUTOSW	HFXODISERR		CALOF	CALRDY	AUXHFRCORDY	LFXORDY	LFRCORDY	HFXORDY	HFRCORDY
Bit	Na	me					Re	set			Ac	ces	s I	Des	crip	tion																

Bit	Name	Reset /	Access	Description
31	CMUERR	0 F	₹W	CMUERR Interrupt Enable
	Enable/disable the CN	MUERR interrupt		
30	Reserved	To ensure comp tions	atibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
29	ULFRCOEDGE	0 F	₹W	ULFRCOEDGE Interrupt Enable
	Enable/disable the UL	FRCOEDGE inter	rrupt	
28	LFRCOEDGE	0 F	₹W	LFRCOEDGE Interrupt Enable
	Enable/disable the LF	RCOEDGE interru	upt	
27	LFXOEDGE	0 F	₹W	LFXOEDGE Interrupt Enable
	Enable/disable the LF	XOEDGE interrup	ot	
26:18	Reserved	To ensure comp tions	atibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
17	DPLLLOCKFAIL- HIGH	0 0	₹W	DPLLLOCKFAILHIGH Interrupt Enable
	Enable/disable the DF	PLLLOCKFAILHIG	iH interru	pt
16	DPLLLOCKFAILLOW	0 [₹W	DPLLLOCKFAILLOW Interrupt Enable
	Enable/disable the DF	PLLLOCKFAILLOV	N interru	pt
15	DPLLRDY	0 F	₹W	DPLLRDY Interrupt Enable
	Enable/disable the DF	PLLRDY interrupt		
14	LFTIMEOUTERR	0 6	₹W	LFTIMEOUTERR Interrupt Enable
	Enable/disable the LF	TIMEOUTERR int	terrupt	
13	HFRCODIS	0 6	₹W	HFRCODIS Interrupt Enable
	Enable/disable the HF	RCODIS interrupt	t	
12	Reserved	To ensure comp tions	atibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
11	HFXOPEAKDETRDY	0 0	₹W	HFXOPEAKDETRDY Interrupt Enable
	Enable/disable the HF	XOPEAKDETRD	Y interru	ot

Bit	Name	Reset A	Access	Description
10	Reserved	To ensure compa tions	atibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
9	HFXOAUTOSW	0 F	RW	HFXOAUTOSW Interrupt Enable
	Enable/disable the H	IFXOAUTOSW inter	rrupt	
8	HFXODISERR	0 F	RW	HFXODISERR Interrupt Enable
	Enable/disable the H	IFXODISERR interro	upt	
7	Reserved	To ensure compa	atibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
6	CALOF	0 F	RW	CALOF Interrupt Enable
	Enable/disable the C	ALOF interrupt		
5	CALRDY	0 F	RW.	CALRDY Interrupt Enable
	Enable/disable the C	CALRDY interrupt		
4	AUXHFRCORDY	0 F	RW.	AUXHFRCORDY Interrupt Enable
	Enable/disable the A	UXHFRCORDY inte	errupt	
3	LFXORDY	0 F	RW	LFXORDY Interrupt Enable
	Enable/disable the L	FXORDY interrupt		
2	LFRCORDY	0 F	RW	LFRCORDY Interrupt Enable
	Enable/disable the L	FRCORDY interrup	t	
1	HFXORDY	0 F	RW	HFXORDY Interrupt Enable
	Enable/disable the H	IFXORDY interrupt		
0	HFRCORDY	0 F	RW.	HFRCORDY Interrupt Enable
	Enable/disable the H	IFRCORDY interrup	ot	

10.5.29 CMU_HFBUSCLKEN0 - High Frequency Bus Clock Enable Register 0

Offset															Bi	t Po	siti	on														
0x0B0	31	30	29	28	27	26	25	24	23	22	21	20	9	9	17	16	15	4	13	12	7	9	6	ω	7	9	5	4	က	2	_	0
Reset																											0	0	0	0	0	0
Access																											% ≷	% ≷	% ≷	₩ M	₩	RW
Name																											GPCRC	LDMA	PRS	GPIO	CRYPT00	Ш

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
5	GPCRC	0	RW	General Purpose CRC Clock Enable
	Set to enable the	clock for GPCRC		
4	LDMA	0	RW	Linked Direct Memory Access Controller Clock Enable
	Set to enable the	clock for LDMA.		
3	PRS	0	RW	Peripheral Reflex System Clock Enable
	Set to enable the	clock for PRS.		
2	GPIO	0	RW	General purpose Input/Output Clock Enable
	Set to enable the	clock for GPIO.		
1	CRYPTO0	0	RW	Advanced Encryption Standard Accelerator Clock Enable
	Set to enable the	clock for CRYPTO	00.	
0	LE	0	RW	Low Energy Peripheral Interface Clock Enable
	Set to enable the	clock for LE. Inter	face used for	r bus access to Low Energy peripherals.

10.5.30 CMU_HFPERCLKEN0 - High Frequency Peripheral Clock Enable Register 0

Offset	Bit Position	
0x0C0	33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 38 39 30 30 30 30 30 40 <th>0 1 2 3 4 5 6 7 8 8 6 1 1 12</th>	0 1 2 3 4 5 6 7 8 8 6 1 1 12
Reset		0 0 0 0 0 0 0 0 0 0 0
Access		W
Name		ADC0 CRYOTIMER ACMP1 ACMP0 I2C1 I2C0 TIMER1 TIMER0 USART2 USART1

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
12	TRNG0	0	RW	True Random Number Generator 0 Clock Enable
	Set to enable the o	clock for TRNG0.		
11	ADC0	0	RW	Analog to Digital Converter 0 Clock Enable
	Set to enable the o	clock for ADC0.		
10	CRYOTIMER	0	RW	CRYOTIMER Clock Enable
	Set to enable the o	clock for CRYOTIM	IER.	
9	ACMP1	0	RW	Analog Comparator 1 Clock Enable
	Set to enable the o	clock for ACMP1.		
8	ACMP0	0	RW	Analog Comparator 0 Clock Enable
	Set to enable the o	clock for ACMP0.		
7	I2C1	0	RW	I2C 1 Clock Enable
	Set to enable the o	clock for I2C1.		
6	I2C0	0	RW	I2C 0 Clock Enable
	Set to enable the o	clock for I2C0.		
5	TIMER1	0	RW	Timer 1 Clock Enable
	Set to enable the o	clock for TIMER1.		
4	TIMER0	0	RW	Timer 0 Clock Enable
	Set to enable the o	clock for TIMER0.		
3	USART3	0	RW	Universal Synchronous/Asynchronous Receiver/Transmitter 3 Clock Enable
	Set to enable the o	clock for USART3.		
2	USART2	0	RW	Universal Synchronous/Asynchronous Receiver/Transmitter 2 Clock Enable
	Set to enable the o	clock for USART2.		
1	USART1	0	RW	Universal Synchronous/Asynchronous Receiver/Transmitter 1 Clock Enable
	Set to enable the o	clock for USART1.		

Bit	Name	Reset	Access	Description
0	USART0	0	RW	Universal Synchronous/Asynchronous Receiver/Transmitter 0 Clock Enable
	Set to enable the clock	k for USART0.		

10.5.31 CMU_HFPERCLKEN1 - High Frequency Peripheral Clock Enable Register 1

Offset															Bi	t Po	siti	on														
0x0C4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	2	4	က	2	_	0
Reset			•	•	•				•						•			•					•		•		0	0	0	0	0	0
Access																											R M	RW	R W	RW	W.	RW
Name																											CSEN	VDAC0	CANO	WTIMER1	WTIMERO	UARTO

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
5	CSEN	0	RW	Capacitive touch sense module Clock Enable
	Set to enable the cloc	k for CSEN.		
4	VDAC0	0	RW	Digital to Analog Converter 0 Clock Enable
	Set to enable the cloc	k for VDAC0.		
3	CAN0	0	RW	CAN 0 Clock Enable
	Set to enable the cloc	k for CAN0.		
2	WTIMER1	0	RW	Wide Timer 1 Clock Enable
	Set to enable the cloc	k for WTIMER1		
1	WTIMER0	0	RW	Wide Timer 0 Clock Enable
	Set to enable the cloc	k for WTIMER0		
0	UART0	0	RW	Universal Asynchronous Receiver/Transmitter 0 Clock Enable
	Set to enable the cloc	k for UART0.		

10.5.32 CMU_LFACLKEN0 - Low Frequency a Clock Enable Register 0 (Async Reg)

Offset															Bi	t Po	siti	on														
0x0E0	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																														0	0	0
Access																														W.	W.	RW
Name																														CCD	LETIMER0	LESENSE

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
2	LCD	0	RW	Liquid Crystal Display Controller Clock Enable
	Set to enable the cl	ock for LCD.		
1	LETIMER0	0	RW	Low Energy Timer 0 Clock Enable
	Set to enable the cl	ock for LETIME	R0.	
0	LESENSE	0	RW	Low Energy Sensor Interface Clock Enable
	Set to enable the cl	ock for LESENS	SE.	

10.5.33 CMU_LFBCLKEN0 - Low Frequency B Clock Enable Register 0 (Async Reg)

Offset															Bi	t Po	siti	on														
0x0E8	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	တ	8	7	9	5	4	က	2	_	0
Reset			•				•					•				•	•						•		•	•	•	•		0	0	0
Access																														₩ M	₩	R W
Name																														CSEN	LEUART0	SYSTICK

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure cortions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2	CSEN	0	RW	Capacitive touch sense module Clock Enable
	Set to enable the clos	k for CSEN.		
1	LEUART0	0	RW	Low Energy UART 0 Clock Enable
	Set to enable the clos	ck for LEUARTO		
0	SYSTICK	0	RW	Clock Enable
	Set to enable the clo	ck for SYSTICK.		

10.5.34 CMU_LFECLKEN0 - Low Frequency E Clock Enable Register 0 (Async Reg)

tions

Set to enable the clock for RTCC.

 RW

RTCC

Offset															Bi	t Po	sitio	on														
0x0F0	31	30	53	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																					1											0
Access																																RW W
Name																																RTCC
																																ĭ
Bit	Nan	1е					Re	set			Ac	ces	s I	Des	crip	tion																
31:1	Res	erve	ed				То	ens	ure	com	pati	bility	y wii	th fu	ture	dev	rices	s, alı	way	's wi	rite b	its t	to 0.	Мо	re in	forn	natio	on in	1.2	Cor	ıvei	n-

Real-Time Counter and Calendar Clock Enable

10.5.35 CMU_HFPRESC - High Frequency Clock Prescaler Register

Offset															Bi	t Po	siti	on														
0x100	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset							Ş	OXO						•								00×0										
Access							20	≥ Y														X M										
Name							Jen Ki Ebbes	H C L K L E L K E S C														PRESC										

Bit	Name	Reset	Access	Description
31:26	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
25:24	HFCLKLEPRESC	0x0	RW	HFCLKLE Prescaler
	Specifies the clock d	ivider for HFCL	KLE.	
	Value	Mode		Description
	0	DIV2		HFCLKLE is HFBUSCLK _{LE} divided by 2.
	1	DIV4		HFCLKLE is HFBUSCLK _{LE} divided by 4.
	2	DIV8		HFCLKLE is HFBUSCLK _{LE} divided by 8.
23:13	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
12:8	PRESC	0x00	RW	HFCLK Prescaler
	Specifies the clock d	ivider for HFCL	.K (relative to	HFSRCCLK).
	Value			Description
	PRESC			Clock division factor of PRESC+1.
7:0	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-

10.5.36 CMU_HFBUSPRESC - High Frequency Bus Clock Prescaler Register

Offset															Bi	t Po	siti	on														
0x104	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	3	2	_	0
Reset			•							'	•			1						000x0				•			•	1		'		
Access																				Z N												
Name																				PRESC												

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
16:8	PRESC	0x000	RW	HFBUSCLK Prescaler
	Specifies the clock div	vider for the HFE	BUSCLK (r	elative to HFCLK).
	Value			Description
	PRESC			Clock division factor of PRESC+1.
7:0	Reserved	To ensure cortions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

10.5.37 CMU_HFCOREPRESC - High Frequency Core Clock Prescaler Register

Offset															Bi	t Po	siti	on														
0x108	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	∞	7	9	2	4	က	2	_	0
Reset			<u>~ </u>															•		000×0		•		•		•	•		•			
Access																				Ŋ.												
Name																				PRESC												

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
16:8	PRESC	0x000	RW	HFCORECLK Prescaler
	Specifies the cloc	k divider for HFC	ORECLK (rel	ative to HFCLK).
	Value			Description
	PRESC			Clock division factor of PRESC+1.
7:0	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-

10.5.38 CMU_HFPERPRESC - High Frequency Peripheral Clock Prescaler Register

Offset															Bi	t Po	siti	on														
0x10C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset				•						•	•	•			•					000x0				•					•			
Access																				Z N												
Name																				PRESC												

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure c	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
16:8	PRESC	0x000	RW	HFPERCLK Prescaler
	Specifies the clock	k divider for the H	FPERCLK (r	elative to HFCLK).
	Value			Description
	PRESC			Clock division factor of PRESC+1.
7:0	Reserved	To ensure c	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

10.5.39 CMU_HFEXPPRESC - High Frequency Export Clock Prescaler Register

Offset															Bi	t Po	siti	on														
0x114	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	တ	∞	7	9	5	4	3	2	_	0
Reset			•		•													•				00X0					•					
Access																						¥ §										
Name																						PRESC										

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure cortions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
12:8	PRESC	0x00	RW	HFEXPCLK Prescaler
	Specifies the clock d	vider for HFEXP	CLK (relati	ve to HFCLK).
	Value			Description
	PRESC			Clock division factor of PRESC+1.
7:0	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

10.5.40 CMU_HFPERPRESCB - High Frequency Peripheral Clock Prescaler B Register

Offset	Bit	Position	
0x118	1	6 6 7 7 7 7 1 1 0 0 8	L 0
Reset		000×0	
Access		ЖW	
Name		PRESC	

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
16:8	PRESC	0x000	RW	HFPERCLK Prescaler
	Specifies the clock d	ivider for the HFF	PERCLK (r	elative to HFCLK).
	Value			Description
	PRESC			Clock division factor of PRESC+1.
7:0	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

10.5.41 CMU_HFPERPRESCC - High Frequency Peripheral Clock Prescaler C Register

Offset															Ві	t Po	siti	on														
0x11C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	တ	8	7	9	2	4	က	2	_	0
Reset		•		•	•						•		•		•					000×0		•				•	'			'		
Access																				∑												
Name																				PRESC												

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure o	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
16:8	PRESC	0x000	RW	HFPERCLK Prescaler
	Specifies the clock	divider for the H	FPERCLK (r	relative to HFCLK).
	Value			Description
	PRESC			Clock division factor of PRESC+1.
7:0	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-

10.5.42 CMU_LFAPRESC0 - Low Frequency a Prescaler Register 0 (Async Reg)

Offset												В	it Po	ositi	on										
0x120	30	29	28	26	25	24	23	22	2 2	6	2 6	17	16	15	4	13	12	7	10	6 8	7	9 4	o 4	e <	1 - 0
Reset		'		1		'		'		•	'		1	•						0x0		0×0	'		0x0
Access																				Z.		RW			A N
																									SE
Name																				CCD		LETIMERO			LESENSE
Bit	Name				Res	et			Acces	ss	De	scrip	otion	1											
31:11	Reserv	ed			To e		ıre d	comp	atibili	<i>ty</i> и	vith t	uture	e de	vices	s, alı	way.	s wri	te b	its t	o 0. Mc	re in	forma	ition ir	n 1.2 C	onven-
10:8	LCD				0x0				RW		Liq	juid (Crys	stal l	Disp	olay	Cor	itro	ller	Presca	aler				
	Configu	ıre Li	quid C	Cryst	al Dis	spla	у Со	ontro	ller pı	esc	aler														
	Value				Mod	de					De	scrip	tion												
	0				DIV	1					LF	ACL	K LCD) = L	FAC	LK									
	1				DIV	2					LF	ACL	< _{LCD}) = L	FAC	LK/	2								
	2				DIV	4					LF	ACL	< _{LCD}) = L	FAC	LK/	4								
	3				DIV	8					LF	ACL	K LCD) = L	FAC	LK/	8								
	4				DIV	16					LF	ACL	< _{LCD}) = L	FAC	LK/	16								
	5				DIV	32					LF	ACL	< _{LCD}) = L	FAC	LK/	32								
	6				DIV	64					LF	ACL	< _{LCD}) = L	FAC	LK/	64								
	7				DIV	128					LF	ACL	< _{LCD}) = L	FAC	LK/	128								
7:4	LETIME	ER0			0x0				RW		Lo	w En	erg	y Tir	ner	0 P	resc	ale	r						
	Configu	ure Lo	ow En	ergy	Time	er 0	pres	scale	er																
	Value				Mod	de					De	scrip	tion												
	0				DIV	1					LF	ACL	S LET	IMER	20 =	LFA	CLK								
	1				DIV	2					LF	ACL	S LET	IMER	₂₀ =	LFA	CLK	/2							
	2				DIV	4					LF	ACL	S LET	IMER	₂₀ =	LFA	CLK	/4							
	3				DIV	8					LF	ACL	S LET	IMER	₁₀ =	LFA	CLK	3/8							
	4				DIV	16					LF	ACL	< _{LET}	IMER	₁₀ =	LFA	CLK	/16							
	5				DIV	32					LF	ACL	S LET	IMER	₂₀ =	LFA	CLK	/32							
	6				DIV	64					LF	ACL	S LET	IMER	₂₀ =	LFA	CLK	/64							
	7				DIV	128					LF	ACL	< _{LET}	IMER	₂₀ =	LFA	CLK	/12	8						
	8				DIV	256					LF	ACL	< _{LET}	IMER	₂₀ =	LFA	CLK	/25	6						
	9				DIV	512					LF	ACL	S LET	IMER	₁₀ =	LFA	CLK	/51	2						

Bit	Name	Reset	Access	Description
	10	DIV1024		LFACLK _{LETIMER0} = LFACLK/1024
	11	DIV2048		LFACLK _{LETIMER0} = LFACLK/2048
	12	DIV4096		LFACLK _{LETIMER0} = LFACLK/4096
	13	DIV8192		LFACLK _{LETIMER0} = LFACLK/8192
	14	DIV16384		LFACLK _{LETIMER0} = LFACLK/16384
	15	DIV32768		LFACLK _{LETIMER0} = LFACLK/32768
3:2	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
1:0	LESENSE	0x0	RW	Low Energy Sensor Interface Prescaler
	Configure Low E	nergy Sensor Interfa	ce prescal	er
	Value	Mode		Description
	0	DIV1		LFACLK _{LESENSE} = LFACLK
	1	DIV2		LFACLK _{LESENSE} = LFACLK/2
	2	DIV4		LFACLK _{LESENSE} = LFACLK/4
	3	DIV8		LFACLK _{LESENSE} = LFACLK/8

10.5.43 CMU_LFBPRESC0 - Low Frequency B Prescaler Register 0 (Async Reg)

		· · · · · · · · · · · · · · · · · · ·				,	,	3/											
Offset				В	it Po	sition													
0x128	30 30 29 28 27 27	25 24 23 23 23	21 20 5	19 17 17	16	15 4	13	12	: 6	6	∞	7	9	5	4	3	7	_	0
Reset										OXO				2	OXO		OXO	2	
Access										N N				2	}				
Name										Z U	I						SYSTICK	5	
										ے ا	<u> </u>			_			Ú)	
Bit	Name	Reset	Access	Descrip	otion														
31:10	Reserved	To ensure co tions	mpatibility	with future	e devi	ices, a	lway	s write	bits	to 0.	Мо	re in	forn	natio	on in	1.2	Cor	ıve	า-
9:8	CSEN	0x0	RW	Capaci	tive t	ouch	sens	e mod	lule	Pres	ale	er							
	Configure Capacitive	touch sense me	odule preso	caler															
	Value	Mode		Descrip	tion														_
	0	DIV16		LFBCL	K _{CSEN}	ı = LFI	3CLI	K/16											_
	1	DIV32		LFBCL	K _{CSEN}	ı = LFI	3CLI	K/32											
	2	DIV64		LFBCL	K _{CSEN}	ı = LFI	3CLI	K/64											
	3	DIV128		LFBCL	K _{CSEN}	ı = LFI	3CLI	K/128											
7:6	Reserved	To ensure co	mpatibility	with future	e devi	ices, a	lway	s write	bits	to 0.	Мо	re in	nforn	natio	on in	1.2	Cor	nve	n-
5:4	LEUART0	0x0	RW	Low Er	nergy	UART	0 P	rescal	er										
	Configure Low Energ	y UART 0 preso	caler																
	Value	Mode		Descrip	tion														_
	0	DIV1		LFBCLI	K _{LEU}	RT0 =	LFB	CLK											_
	1	DIV2		LFBCL	K _{LEUA}	RT0 =	LFB	CLK/2											
	2	DIV4		LFBCL	K _{LEUA}	RT0 =	LFB	CLK/4											
	3	DIV8		LFBCL	K _{LEUA}	RT0 =	LFB	CLK/8											
3:0	SYSTICK	0x0		Presca	ler														
	Configure prescaler																		
	Value	Mode		Descrip	tion														_
	0	DIV1		LFBCL	K _{SYST}	ICK = I	_FB0	CLK											_

10.5.44 CMU_LFEPRESC0 - Low Frequency E Prescaler Register 0 (Async Reg)

When waking up from EM4 make sure EM4UNLATCH in EMU_CMD is set for this to take effect

Offset															Bi	t Po	siti	on														
0x130	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																															2	8
Access																															8	2
Name																															RTCC	2

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure tions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
1:0	RTCC	0x0	RW	Real-Time Counter and Calendar Prescaler
	Configure Real-	Γime Counter and	Calendar pres	scaler
	Value	Mode		Description
	0	DIV1		LFECLK _{RTCC} = LFECLK
	1	DIV2		LFECLK _{RTCC} = LFECLK/2
	2	DIV4		LFECLK _{RTCC} = LFECLK/4

10.5.45 CMU_SYNCBUSY - Synchronization Busy Register

Offset													Bit	Pos	ition													
0x140	33	29	28	27	26	25	24	23	22	20	19	18	17	16	7 7	13	12	7	10	6	α	7	9	5	4	3	7	- 0
Reset		0	0	0	0	0	0	·	•			0		0	•	•		•		'	•		0		0		0	0
Access		2	~	<u>~</u>	œ	œ	œ					œ		~									~		<u>~</u>		<u>~</u>	2
Name		LFXOBSY	HFXOBSY	LFRCOVREFBSY	LFRCOBSY	AUXHFRCOBSY	HFRCOBSY					LFEPRESC0		LFECLKENO									LFBPRESC0		LFBCLKEN0		LFAPRESC0	LFACLKENO
Bit	Name					Res	set		Α	cces	s l	Desc	ript	ion														
31:30	Reser	ved				To tion		re c	ompa	tibilit	y wit	h fut	ure	devi	ces, a	lway	's wr	ite b	its t	o 0. N	/lore	e info	orm	atio	n in	1.2	Con	/en-
29	LFXO	BSY				0			R		ı	LFXC	ЭΒι	ısy														
	Used t	to ch	eck	the	synd	chro	nizat	ion	status	of C	MU_	_LFX	OC	TRL.														
	Value										l	Desc	ripti	on														
	0											CMU	_LF	XOC	TRL i	s rea	ady 1	or u	pda	te								
	1										(CMU	_LF	XOC	TRLi	s bu	sy s	yncł	ron	izing	nev	v val	ue					
28	HFXO	BSY				0			R		I	HFX	ЭΒ	usy														
	Used t														, CML	J_HF	XOS	STA	RTL	IPCT	RL,	СМ	U_I	HFX	(OS	TEA	DYS	TA-
	Value											Desc																
	0														CTRL,	CN	1U I	HFX	OST	ART	UP	CTR	L,	СМ	U F	IFX	OSTE	 EA-
												OYS [*] eady			RL, C ate	MU_	HF)	OT	IME	OUT	CTF	RL, C	СМ	J_H	FXC	OCT	RL1	are
	1										(_HF	XOC	TRI	CI	/III F			۸рт	ΙD	CTR	L,			OCT		are
											I	ousy	syn	ECT chro	RL, C nizing	MU_ nev	_HF> v val	(OT ue.	IME HF>	OUT((O is	CTF als	RL, C o Bl	JSY	/ wh		thes		
27		OV.R	FFR	SV		0			P		1	ers a	syn are a	ECT chro active	RL, C nizing ely bei	MU_ nev ng ເ	_HF> v val	(OT ue.	IME HF>	OUT((O is	CTF als	RL, C o Bl	JSY	/ wh		thes		
27	LFRC0				sync	0 chro	nizat	ion	R		1	ers a	syn are a	ECT chro active	RL, C nizing	MU_ nev ng ເ	_HF> v val	(OT ue.	IME HF>	OUT((O is	CTF als	RL, C o Bl	JSY	/ wh		thes		
27					sync		nizat	ion			I I SMC	ers a	syn are a CO V	ECT chro active VRE	RL, C nizing ely bei	MU_ nev ng ເ	_HF> v val	(OT ue.	IME HF>	OUT((O is	CTF als	RL, C o Bl	JSY	/ wh		thes		
27	Used t				sync		nizat	ion			i I iMC	LFR(CUR	synare a	ECT chro active VRE	RL, C nizing ely bei	MU_ new ng ι y	HF) v val	(OT ue. (e.g	IME HFX . wh	OUT((O is len H	als FX	RL, (o Bl OEN	JSY IS=	/ wh	nen i			
27	Used to				syno		nizat	ion			I I I I I	LFR(CUR	Synare a	VREI	RL, C nizing ely bei	MU_ neving u y	HF) v valused	(OTue. (e.g	TUNI	OUT((O is en H	eld	is re	ead	y foi	r upo	date		ew
27	Value 0	to ch	eck		syno		nizat	ion		of G		CMU	syn are a CO V TUN ripti _LF _LF	ECT chro chro active	RL, C nizing ely bei F Bus DCTRL	MU_ neving u y	HF) v valused	(OTue. (e.g	TUNI	OUT((O is en H	eld	is re	ead	y foi	r upo	date		ew
	Value 0	OBS	eck	the		0			status	of G		Dusy ers a series and the control of	syn CO V TUNLFLF	ECT chro chro chro chro chro chro chro chro	RL, C nizing ely bei F Bus DCTRL	MU_ neving u y	HF) v valused	(OTue. (e.g	TUNI	OUT((O is en H	eld	is re	ead	y foi	r upo	date		ew
	Value 0 1	OBS	eck	the		0			status	of G	I I I I I I I I I I I I I I I I I I I	Dusy ers a series and the control of	Synnare a	ECTT chro	RL, C nizing ely bei F Bus DCTRL	MU_ neving u y	HF) v valused	(OTue. (e.g	TUNI	OUT((O is en H	eld	is re	ead	y foi	r upo	date		ew

Bit	Name	Reset	Access	Description
	1			CMU_LFRCOCTRL is busy synchronizing new value
25	AUXHFRCOBSY	0	R	AUXHFRCO Busy
	Used to check the	synchronization	status of CM	U_AUXHFRCOCTRL.
	Value			Description
	0			CMU_AUXHFRCOCTRL is ready for update
	1			CMU_AUXHFRCOCTRL is busy synchronizing new value
24	HFRCOBSY	0	R	HFRCO Busy
	Used to check the	synchronization	status of CM	U_HFRCOCTRL.
	Value			Description
	0			CMU_HFRCOCTRL is ready for update
	1			CMU_HFRCOCTRL is busy synchronizing new value
23:19	Reserved	To ensure c	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
18	LFEPRESC0	0	R	Low Frequency E Prescaler 0 Busy
	Used to check the	synchronization	status of CM	U_LFEPRESC0.
	Value			Description
	0			CMU_LFEPRESC0 is ready for update
	1			CMU_LFEPRESC0 is busy synchronizing new value
17	Reserved	To ensure c	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
16	LFECLKEN0	0	R	Low Frequency E Clock Enable 0 Busy
	Used to check the	synchronization	status of CM	U_LFECLKEN0.
	Value			Description
	0			CMU_LFECLKEN0 is ready for update
	1			CMU_LFECLKEN0 is busy synchronizing new value
15:7	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
6	LFBPRESC0	0	R	Low Frequency B Prescaler 0 Busy
	Used to check the	synchronization	status of CM	U_LFBPRESC0.
	Value			Description
	0			CMU_LFBPRESC0 is ready for update
	1			CMU_LFBPRESC0 is busy synchronizing new value
5	Reserved	To ensure o	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-

Bit	Name	Reset	Access	Description
4	LFBCLKEN0	0	R	Low Frequency B Clock Enable 0 Busy
	Used to check the	synchronization	status of CM	U_LFBCLKEN0.
	Value			Description
	0			CMU_LFBCLKEN0 is ready for update
	1			CMU_LFBCLKEN0 is busy synchronizing new value
3	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
			П	Low Frequency a Prescaler 0 Busy
2	LFAPRESC0	0	R	Low Frequency a Prescaler o busy
2	LFAPRESC0 Used to check the			• •
2				• •
2	Used to check the			U_LFAPRESC0.
2	Used to check the			U_LFAPRESC0. Description
2	Value 0	synchronization	status of CM	U_LFAPRESC0. Description CMU_LFAPRESC0 is ready for update
	Value 0 1	e synchronization	status of CM	U_LFAPRESCO. Description CMU_LFAPRESCO is ready for update CMU_LFAPRESCO is busy synchronizing new value
1	Value 0 1 Reserved	To ensure tions	compatibility	U_LFAPRESCO. Description CMU_LFAPRESCO is ready for update CMU_LFAPRESCO is busy synchronizing new value with future devices, always write bits to 0. More information in 1.2 Conven- Low Frequency a Clock Enable 0 Busy
1	Value 0 1 Reserved LFACLKEN0	To ensure tions	compatibility	U_LFAPRESCO. Description CMU_LFAPRESCO is ready for update CMU_LFAPRESCO is busy synchronizing new value with future devices, always write bits to 0. More information in 1.2 Conven- Low Frequency a Clock Enable 0 Busy
1	Used to check the Value 0 1 Reserved LFACLKEN0 Used to check the	To ensure tions	compatibility	U_LFAPRESCO. Description CMU_LFAPRESCO is ready for update CMU_LFAPRESCO is busy synchronizing new value with future devices, always write bits to 0. More information in 1.2 Conventow Frequency a Clock Enable 0 Busy U_LFACLKENO.

10.5.46 CMU_FREEZE - Freeze Register

1

FREEZE

Offset															Bi	t Po	siti	on														
0x144	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	2 2	7	9	6	8		. 9	2	4	. 6	2	_	0
Reset																																0
Access																																RW
Name																																REGFREEZE
Bit	Na	me					Re	eset			Ac	ces	s I	Des	crip	tior																
31:1	Re	serv	/ed					ens ns	ure	con	npati	bility	y wi	th fu	ture	de	/ice	s, al	wa	iys w	rite l	bits	to 0	. Мс	re	infor	mat	ion i	in 1.	2 Cc	nve	n-
0	RE	GFI	REE	ZE			0				RV	/		Reg	iste	r Up	odat	e Fr	ree	eze												
								ne Lo ultar				cy cl	ock	con	trol	regi	ster	s is	po	stpo	ned	unti	l this	s bit	is c	elear	ed.	Use	this	bit t	o up)-
	Va	lue					М	ode						Des	cript	ion																_
	0						UF	PDA	ΓE					Eacl	n wr	ite a	ссе	ss to	o a	Lov	Fre	que	ency	clo	ck c	ontr	ol re	gist	er is	s upo	late	d d

value.

into the Low Frequency domain as soon as possible.

The LE Clock Control registers are not updated with the new written

10.5.47 CMU_PCNTCTRL - PCNT Control Register

Offset												Bi	t Pos	itior	1													
0x150	33	29	27	26	25	24	23	52	21	202	<u> </u>	17	16	5 2	<u>t</u> (5	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		'	'		· · · · ·			Ţ,		'	'	'	'		'	'			<u>'</u>	'	'		'			•	0	0
Access																											RWH	RWH
Name																											PCNT0CLKSEL	PCNT0CLKEN
Bit	Name				Res	set			Acc	ess	Des	crip	tion															
31:2	Reserve	ed			To e		ıre c	omp	oatib	ility v	with fo	uture	devi	ces, a	alwa _:	ys wi	rite k	oits to	0 0.	Mor	e inf	form	atio	n ir	1.2	Co	nvei	n-
1	PCNT00	CLKS	ΞL		0				RWI	1	PCI	NT0	Clock	c Sel	ect													
1	PCNT00 This bit			hich		k tha	at is						Clock	Sel	ect													
1				hich			at is				PCN ⁻			c Sel	ect													_
1	This bit			hich	clocl						PCN ⁻ Des	T. script				OT/O	1											_
1	This bit			hich	Mod LFA	de	<				PCN ⁻ Des	T. script	ion	ockin	ıg PC			king	PCN	IT0								_

PCNT0 Clock Enable

PCNT0CLKEN

0

This bit enables/disables the clock to the PCNT.

RWH

10.5.48 CMU_ADCCTRL - ADC Control Register

10.0.40	omo_Aboo	· · · · · ·	7,5				9.01	•.																				
Offset												Bi	t Po	sitio	n													
0x15C	30 29 29	28	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset				'			'				•										0				S S			000
Access																					RWH				I A Y			RWH
Name																					ADC0CLKINV				ADCUCLKSEL			ADC0CLKDIV
Name																					2000				2			0000
																					¥				₹			A
Bit	Name			Re	eset			Acc	ess	s	Des	crip	tion															
31:9	Reserved			To tio		ure	com	patib	oility	/ Wii	th fu	ture	dev	ices,	, alv	vays	s wr	ite k	its t	o 0.	Мог	re in	forn	nati	on ir	1.2	2 Co	nven-
8	ADC0CLK	INV		0				RW	Н		Inve	rt C	lock	Sel	ect	ed I	Ву А	ADC	0CL	KS	EL							
-	This bit en	ables i	inver	ting t	the s	elec	cted	clock	c to	AD	C0.																	
7:6	Reserved			To tio		ure	com	patib	oility	/ Wii	th fu	ture	dev	ices,	, alv	vays	s wr	ite k	its t	o 0.	Мог	re in	forn	nati	on ir	1.2	2 Co	nven-
5:4	ADC0CLK	SEL		0x0	0			RW	Н		ADC	:0 C	lock	Sel	ect													
	This bit co changed w when disal	vhen A	DCC	LKM	1ODE	Ξin.	ADC	Cn_C	TR	L is	set	to S																
	Value			Mo	ode						Des	cript	ion															
	0			DIS	SAB	LED)				ADC	0 is	not	cloc	ked													
	1			AU	JXHF	FRC	0				AUX	HFF	RCO	is c	lock	king	AD	C0										
	2			HF	XO					ļ	HFX	O is	cloc	cking	j AE	OC0												
	3			HF	SRO	CCLI	K				HFS	RC	CLK	is cl	ock	ing .	ADO	CO										
3:2	Reserved			To tio		ure	com	patib	oility	/ Wii	th fu	ture	dev	ices,	, alv	vays	s wr	ite k	its t	o 0.	Мог	re in	forn	nati	on ir	1.2	2 Co	nven-
1:0	ADC0CLK	DIV		0x0	0			RW	Н	-	ADC	:0 C	lock	Pre	sca	aler												
	Specifies t	he clo	ck di	vider	for A	ADC	0.																					
	Value										Des	cript	ion															
	PRESC										Cloc	k di	visio	n fac	ctor	of F	PRE	SC-	⊦ 1.									

10.5.49 CMU_ROUTEPEN - I/O Routing Pin Enable Register

Offset															Ві	t Po	siti	on														
0x170	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	_	0
Reset			•	0					•		•								•											0	0	0
Access				RW W																										RW	Z.	Z.
Name				CLKINOPEN																										CLKOUT2PEN	CLKOUT1PEN	CLKOUTOPEN
Bit	Na	me					Re	set			Δc	cess	2	Des	crin	tion																

Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
28	CLKIN0PEN	0	RW	CLKIN0 Pin Enable
	When set, the CLKIN	0 pin is enabled		
27:3	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2	CLKOUT2PEN	0	RW	CLKOUT2 Pin Enable
	When set, the CLKO	JT2 pin is enabl	ed.	
1	CLKOUT1PEN	0	RW	CLKOUT1 Pin Enable
	When set, the CLKO	JT1 pin is enabl	ed.	
0	CLKOUT0PEN	0	RW	CLKOUT0 Pin Enable
	When set, the CLKO	JT0 pin is enabl	ed.	

10.5.50 CMU_ROUTELOC0 - I/O Routing Location Register

				- -												
Offset				В	it Pos	sition										
0x174	30 30 29 29 29 29 29	25 24 23 22 23	20 20	1 18 1	16	5 4	13	12	10	6 8	7	9	5 4	- ო	7	- 0
Reset				00x0				-	00X0					OXO		
Access				₹ §					 }					×		
Name				IT2L(į	11L(O	1	
rumo				CLKOUT2LOC					CLKOUT1LOC					CIRCITOLOGI	2	
				ਹ					ਹ 					<u> </u>	5	
Bit	Name	Reset	Access	Descrip	otion											
31:22	Reserved	To ensure com tions	npatibility v	with future	e devi	ces, al	ways	write	bits to	o 0. Mo	ore in	form	ation	in 1.2	Cor	nven-
21:16	CLKOUT2LOC	0x00	RW	I/O Loc	ation											
	Decides the loca	tion of the CLKOUT2.														
	Value	Mode		Descrip	tion											
	0	LOC0		Location	า 0											
	1	LOC1		Location	า 1											
	2	LOC2		Location	າ 2											
	3	LOC3		Location	า 3											
	4	LOC4		Location	ո 4											
	5	LOC5		Location	า 5											
15:14	Reserved	To ensure com tions	patibility v	with future	e devi	ces, al	ways	write	bits to	o 0. Mo	ore in	form	ation	in 1.2	Cor	nven-
13:8	CLKOUT1LOC	0x00	RW	I/O Loc	ation											
	Decides the loca	tion of the CLKOUT1.														
	Value	Mode		Descrip	tion											
	0	LOC0		Location	า 0											
	1	LOC1		Location	า 1											
	2	LOC2		Location	າ 2											
	3	LOC3		Location	า 3											
	4	LOC4		Location												
	5	LOC5		Location	า 5											
7:6	Reserved	To ensure com tions	patibility v	with future	e devi	ces, al	ways	write	bits to	o 0. Mo	ore in	form	ation	in 1.2	Cor	nven-
5:0	CLKOUT0LOC	0x00	RW	I/O Loc	ation											
	Decides the loca	tion of the CMU CLK	OUT0.													
	Value	Mode		Descrip	tion											

Bit	Name	Reset	Access	Description
	0	LOC0		Location 0
	1	LOC1		Location 1
	2	LOC2		Location 2
	3	LOC3		Location 3
	4	LOC4		Location 4
	5	LOC5		Location 5

10.5.51 CMU_ROUTELOC1 - I/O Routing Location Register

Offset	Bit Position	
0x178	31 32 33 34 35 37 37 37 37 37 37 37 37 37 37 37 37 37	ω 4 m 0 - 0
Reset		00x0
Access		RW
Name		CLKINOLOC

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
5:0	CLKIN0LOC	0x00	RW	I/O Location
	Decides the locati	on of the CLKIN0.		
	Value	Mode		Description
	0	LOC0		Location 0
	1	LOC1		Location 1
	2	LOC2		Location 2
	3	LOC3		Location 3
	4	LOC4		Location 4
	5	LOC5		Location 5
	6	LOC6		Location 6
	7	LOC7		Location 7

10.5.52 CMU_LOCK - Configuration Lock Register

Offset															Bi	t Po	siti	on														
0x180	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset							1								'	1				•				0	nnnxn		•	•				
Access																									I A Y							
Name																								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LOCKNEY							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	LOCKKEY	0x0000	RWH	Configuration Lock Key

Write any other value than the unlock code to lock CMU_CTRL, CMU_ROUTEPEN, CMU_ROUTELOC0, CMU_ROUTELOC1, CMU_HFRCOCTRL, CMU_AUXHFRCOCTRL, CMU_LFRCOCTRL, CMU_ULFRCOCTRL, CMU_HFXOCTRL, CMU_HFXOCTRL, CMU_HFXOCTRL, CMU_HFXOSTARTUPCTRL, CMU_HFXOSTEADYSTATECTRL, CMU_HFXOTIMEOUTCTRL, CMU_LFXOCTRL, CMU_OSCENCMD, CMU_CMD, CMU_DBGCLKSEL, CMU_HFCLKSEL, CMU_LFACLKSEL, CMU_LFBCLKSEL, CMU_LFECLKSEL, CMU_HFBUSCLKEN0, CMU_HFPERCLKEN0, CMU_HFPERCLKEN1, CMU_HFPERCLKEN1, CMU_HFPERCLKEN1, CMU_HFPERCLKEN1, CMU_HFPERCLKEN0, CMU_HFPERCLKEN0, CMU_HFPERCLKEN0, CMU_HFPERCLKEN0, CMU_LFACLKEN0, CMU_LFBCLKEN0, CMU_LFBCLKEN0, CMU_LFACLKEN0, CMU_LFBCLKEN0, CM

Mode	Value	Description
Read Operation		
UNLOCKED	0	CMU registers are unlocked
LOCKED	1	CMU registers are locked
Write Operation		
LOCK	0	Lock CMU registers
UNLOCK	0x580E	Unlock CMU registers

10.5.53 CMU_HFRCOSS - HFRCO Spread Spectrum Register

Offset															Bi	t Po	siti	on														
0x184	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset											•	•										00×0									0x0	
Access																						₩ N									X ≪	
Name																						SSINV									SSAMP	

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
12:8	SSINV	0x00	RW	Spread Spectrum Update Interval
	This value sets the	ne update rate of t	he DCO peri	od for spectrum spreading.
7:3	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	SSAMP	0x0	RW	Spread Spectrum Amplitude
	Randomize DCO	output period with	h a peak-to-p	eak amplitude. Clear SSAMP would disable spectrum spreading.

11. SMU - Security Management Unit

Quick Facts

What?

The Security Management Unit (SMU) forms the control and status/reporting component of bus-level security in the EFM32 Tiny Gecko 11.

Why?

Enables a robust and low-energy security solution at the system level

How?

Hardware context switching and access control provided via BLS components.

11.1 Introduction

The Security Management Unit (SMU) peripheral adds hardware access control over all of the MCU peripherals that are managed by low level firmware integrated into a Real Timer Operating System (RTOS). The SMU is used in conjuntion with the Cortex-M operating modes (privileged and non-privileged) and the Memory Protection Unit (MPU). The EFM32 Tiny Gecko 11 MCUs include the ARM v7-M MPU that defines configurable access parameters to regions within the entire CPU memory map. The MPU is not covered in detail in this reference manual. For a complete description of the MPU registers etc, consult the ARM v7-M Architecture Reference Manual. The MPU can define up to 8 regions of varying sizes within the memory map, with each region also being able to be split into 8 equal sub-regions. Using these regions, firmware can define rules that enforce privileged and non-privileged accesses to different memory locations. For example, sections of flash can be marked as priviliged access, whereas other areas within the flash can be marked as having non-privileged mode acess. Only privileged mode regions can access other privileged mode regions. Accesses attempted by a non-privileged region to a privileged region will cause a fault. The access permissions can be extended across the entire memory map including the peripheral region.

The Cortex-M starts up in privileged mode and the MPU is disabled after reset which means all regions in the memory map are accessble to the running application code. For many applications this is sufficient and the MPU remains disabled. However, when using a RTOS the kernel requires protection from user code and will switch to privileged mode and create tasks in non-privileged or thread mode. In addition, security is also a concern, so MCU peripherals should be protected to avoid security holes. Adding peripheral security to systems requires an increased number of MPU regions to protect areas such as the peripheral registers, including bit set/clear and bit banding regions. The defined regions are also dynamic based on the task requirements and in many cases the number of regions required exceeds the number of regions that can be enabled by the MPU.

The SMU is used to extend the access controls of each peripheral beyond the number of regions available using the MPU. The SMU peripheral registers provide the configuration and status bits for the Peripheral Protection Unit (PPU) to the CPU. The PPU is the underlying hardware component that operates on the low level bus interfaces within the SoC to derive the status for each peripheral.

11.2 Features

The main features of the SMU are as follows:

- · Contains control and status registers for hardware bus level component instances (e.g., the PPU)
- Simplifies RTOS context switching
 - · Hardware to complement any software context switching enabled by an MPU
 - Hardware-enforced access control extends capability of the v7-M MPU regions
 - · One bit control per peripheral reduces software overhead while dynamically modifying access permissions
- A configurable interrupt line that can be triggered from peripheral access fault events

11.3 Functional Description

An overview of the SMU module within the system is shown in Figure 11.1 Bus-Level Security System View on page 391.

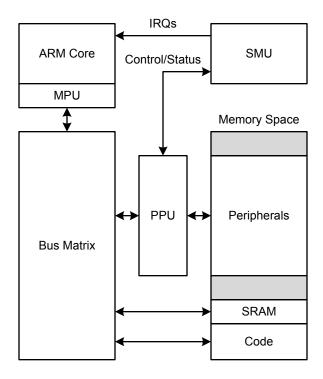


Figure 11.1. Bus-Level Security System View

11.3.1 PPU - Peripheral Protection Unit

The number of peripheral memory regions on the device exceeds the number of configurable regions available using the MPU. While it is possible to manage finer granularity of memory security through software, the PPU provides a hardware solution for fine-grained peripheral-level protection to eliminate the performance degradation associated with a partially software-managed solution.

The PPU provides a hardware access barrier to any peripheral that is configured to be protected. When an attempt is made to access a peripheral without the required privilege level, the PPU detects the fault and intercepts the access. No write or read of the peripheral register space occurs, and an all-zero value is returned if the access is a read. See 11.3.2.2 PPU Control for more details on how access faults are reported to the CPU.

Note: The CPU is the only system bus master in the EFM32 Tiny Gecko 11 that can trigger access faults. All other masters are given full access privileges and have no configurable context switching enabled.

11.3.2 Programming Model

The SMU does not provide any access control out of reset and needs to be configured by software. SMU access controls should be configured along with the MPU configuration. This is typically performed in a bootloader or other low level RTOS kernel/supervisor code prior to user code or other non-privileged code execution. At least one MPU region will be allocated to the entire peripheral region as a full access region (0x4000_0000 - 0x4006_FFFF). An RTOS kernel/supervisor can dynamically allocate peripheral accessibility by maintaining the hardware and software contexts available to each task. In the chart below there are mutiple tasks and the system switches between Task A and Task B via the RTOS handler. There are 16 peripherals shown in the example split between two regions. Task A has rights to access peripherals 0, 1, 4, 5 and 7, whereas task B has rights to access the complement of A (2, 3, and 6). After a Task B IRQ, the privileged OS handler is entered which signals the supervisor to reprogram the regions using the SMU based on an access control list. Control is then handed to Task B in non-privileged mode.

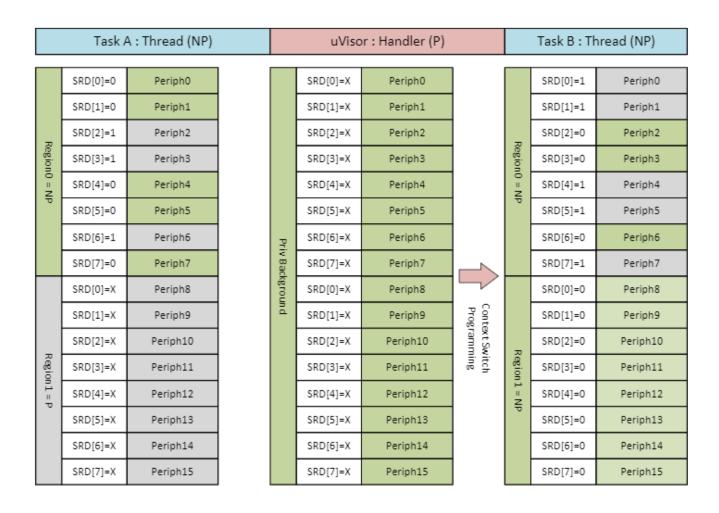


Figure 11.2. Peripheral Access Control Example

All hardware protections happen immediately in response to SMU configuration register writes without any latency cycles. However, since software instructions may be optimized or pipelined, it is important to make sure that software memory barrier instructions are used as needed after any SMU re-configuration before moving on or changing contexts. This ensures that the hardware context switch has taken full effect.

For the remainder of this section, the programming model is split into general SMU controls and component-specific controls (e.g., PPU).

11.3.2.1 Interrupt Control/Status

The SMU follows the standard EFM32 Tiny Gecko 11 interrupt programming model with SMU IF/IFS/IFC/IEN registers.

There is one interrupt bit PPUPRIV that will trigger on privilege faults detected by the PPU. Such fault mechanisms are configured as specified in 11.3.2.2 PPU Control.

11.3.2.2 PPU Control

The PPU_CTRL register provides an ENABLE bit that allows bypassing all PPU checking when set to 0. In this case, the rest of the PPU registers have no effect, and no access faults will occur. This is the reset state of the SMU.

When the ENABLE bit of PPU_CTRL register is asserted, access protection is configured on a peripheral-by-peripheral basis using the SMU_PPUPATDx register(s). Setting a bit in the SMU_PPUPATDx register to one configures the corresponding peripheral controlled by that bit to privileged access only. The single bit mode control for each peripheral provides fast hardware context switching for peripheral sharing, while still supporting fast software context switches for task-based CPU context switching.

Note: The SMU itself is a peripheral which has protection afforded by the PPU. A proper security/privilege context configuration requires setting of the SMU's access control bits properly at startup so that only a top-level task (e.g., a uVisor from ARM) can perform security/privilege context switches.

When a peripheral has access protection configured and the peripheral is accessed with invalid privilege credentials, then an access fault occurs. The corresponding interrupt flag in SMU_IF is asserted and the ID of the peripheral for which an unpriviliged access was attempted is captured in the PERIPHID bit-field of the PPU Fault Status register (SMU_PPUFS). This peripheral ID is held stable until all PPU interrupt flags are cleared to ensure that the first unprivileged access that caused the fault is not overwritten due to subsequent faults before being acknowledged by software.

Note: In the case of simultaneously occurring faults (which may be possible in some systems), only one of the faults' peripheral IDs will be captured. There is no inherent peripheral priority defined that would result in one peripheral being recognized before another.

11.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x00C	SMU_IF	R	Interrupt Flag Register
0x010	SMU_IFS	W1	Interrupt Flag Set Register
0x014	SMU_IFC	(R)W1	Interrupt Flag Clear Register
0x018	SMU_IEN	RW	Interrupt Enable Register
0x040	SMU_PPUCTRL	RW	PPU Control Register
0x050	SMU_PPUPATD0	RW	PPU Privilege Access Type Descriptor 0
0x054	SMU_PPUPATD1	RW	PPU Privilege Access Type Descriptor 1
0x090	SMU_PPUFS	R	PPU Fault Status

11.5 Register Description

11.5.1 SMU_IF - Interrupt Flag Register

Offset	Bit Position	
0x00C	1 1 <th>0</th>	0
Reset		0
Access		~
Name		PPUPRIV

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	PPUPRIV	0	R	PPU Privilege Interrupt Flag
	Triggered when a priv	vilege fault occu	rs in the Pe	eripheral Protection Unit

11.5.2 SMU_IFS - Interrupt Flag Set Register

Offset	Bit Position	
0x010	33 4 5 6 6 7 8 8 8 9 9 10	0
Reset		0
Access		M
Name		PPUPRIV

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	PPUPRIV	0	W1	Set PPUPRIV Interrupt Flag
	Write 1 to set the P	PUPRIV interru	ıpt flag	

11.5.3 SMU_IFC - Interrupt Flag Clear Register

Offset	Bit Position																															
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																																0
Access																																(R)W1
Name																																PPUPRIV

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure tions	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
0	PPUPRIV	0	(R)W1	Clear PPUPRIV Interrupt Flag
	Write 1 to clear th	ne PPUPRIV inter	rrunt flag. Rea	ading returns the value of the IF and clears the corresponding interrupt flags

Write 1 to clear the PPUPRIV interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).

11.5.4 SMU_IEN - Interrupt Enable Register

Offset	Bit Position															t Po																
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	2	4	က	2	_	0
Reset		'	'	•	'			<u>'</u>			•		•				•									•		•	•			0
Access																																RW
Name																																PPUPRIV

Bit	Name	Reset	Access	Description									
31:1	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-									
0	PPUPRIV	0	RW	PPUPRIV Interrupt Enable									
	Enable/disable the PPUPRIV interrupt												

11.5.5 SMU_PPUCTRL - PPU Control Register

Offset		Bit Position																														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•														·			•	•		•	•		•		•	•	<u>'</u>			0
Access																																RW
Name																																ENABLE
Bit	Na	me					Re	set			Ac	cess	s I	Des	crip	tion																
31:1	Re	serv	/ed				To tion		ure	com	pati	bility	v wit	h fu	ture	dev	ices	s, alv	way	s wr	ite k	oits	to 0.	Мо	re i	nforr	natio	on i	in 1.2	2 Co	nvei	n-
0	EN	IABL	E.				0				RW	1																				
	Se	t to e	enat	ole d	chec	king	of p	perip	her	al a	cces	ss																				
	Va	lue											[Desc	cript	ion																_
	0												F	Privi	lege	/Se	curit	y-le	vel	che	cking	g cc	mpl	etely	/ by	/pas	sed	in t	he P	PU		_
	1												Е	3eha	avio	cor	ntrol	led	by F	PPU	_PA	TD										

11.5.6 SMU_PPUPATD0 - PPU Privilege Access Type Descriptor 0

Set peripheral bits to 1 to mark as privileged access only

Offset															Bi	t Pc	siti	on														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	2	_	0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	₩ M	₽	₽	₽	₽	₽	₩ M	₽	₽	₽	₽	₽	₽W	₽	R W	₽	RW	₽	₽	₹	₽	RW	₩	₩	₽	₽	R W	₩	₩	₽	₩	RW
Name	USART2	USART1	USART0	UART0	TRNG0	TIMER1	TIMERO	SMU	RTCC	RMU	PCNT0	LEUART0	LETIMERO	LESENSE	LDMA	ГСБ	MSC	I2C1	I2C0	GPIO	GPCRC	ЕМО	PRS	VDAC0	CSEN	CRYPT00	CRYOTIMER	CMU	CANO	ADC0	ACMP1	ACMP0

	<u> </u>	F 00 12 12	- - -	
Bit	Name	Reset	Access	Description
31	USART2	0	RW	Universal Synchronous/Asynchronous Receiver/Transmitter 2 access control bit
	Access control only fo	or USART2		
30	USART1	0	RW	Universal Synchronous/Asynchronous Receiver/Transmitter 1 access control bit
	Access control only for	or USART1		
29	USART0	0	RW	Universal Synchronous/Asynchronous Receiver/Transmitter 0 access control bit
	Access control only fo	or USART0		
28	UART0	0	RW	Universal Asynchronous Receiver/Transmitter 0 access control bit
	Access control only fo	or UART0		
27	TRNG0	0	RW	True Random Number Generator 0 access control bit
	Access control only fo	or TRNG0		
26	TIMER1	0	RW	Timer 1 access control bit
	Access control only for	or TIMER1		
25	TIMER0	0	RW	Timer 0 access control bit
	Access control only for	or TIMER0		
24	SMU	0	RW	Security Management Unit access control bit
	Access control only fo	or SMU		
23	RTCC	0	RW	Real-Time Counter and Calendar access control bit
	Access control only fo	or RTCC		
22	RMU	0	RW	Reset Management Unit access control bit
	Access control only fo	or RMU		
21	PCNT0	0	RW	Pulse Counter 0 access control bit
	Access control only fo	or PCNT0		
20	LEUART0	0	RW	Low Energy UART 0 access control bit
	Access control only for	or LEUART0		
-				

Bit	Name Res	set Access	Description
19	LETIMERO 0	RW	Low Energy Timer 0 access control bit
	Access control only for LET	TIMER0	
18	LESENSE 0	RW	Low Energy Sensor Interface access control bit
	Access control only for LES	SENSE	
17	LDMA 0	RW	Linked Direct Memory Access Controller access control bit
	Access control only for LDN	MA	
16	LCD 0	RW	Liquid Crystal Display Controller access control bit
	Access control only for LCI)	
15	MSC 0	RW	Memory System Controller access control bit
	Access control only for MS	С	
14	I2C1 0	RW	I2C 1 access control bit
	Access control only for I2C	1	
13	I2C0 0	RW	I2C 0 access control bit
	Access control only for I2C	0	
12	GPIO 0	RW	General purpose Input/Output access control bit
	Access control only for GPI	10	
11	GPCRC 0	RW	General Purpose CRC access control bit
	Access control only for GP	CRC	
10	EMU 0	RW	Energy Management Unit access control bit
	Access control only for EM	U	
9	PRS 0	RW	Peripheral Reflex System access control bit
	Access control only for PRS	8	
8	VDAC0 0	RW	Digital to Analog Converter 0 access control bit
	Access control only for VDA	AC0	
7	CSEN 0	RW	Capacitive touch sense module access control bit
	Access control only for CSI	ΞN	
6	CRYPTO0 0	RW	Advanced Encryption Standard Accelerator access control bit
	Access control only for CR	YPTO0	
5	CRYOTIMER 0	RW	CRYOTIMER access control bit
	Access control only for CR	YOTIMER	
4	CMU 0	RW	Clock Management Unit access control bit
	Access control only for CM	U	
3	CAN0 0	RW	CAN 0 access control bit
	Access control only for CAI	NO	
2	ADC0 0	RW	Analog to Digital Converter 0 access control bit
	Access control only for ADO	C0	

Bit	Name	Reset	Access	Description	
1	ACMP1	0	RW	Analog Comparator 1 access control bit	
	Access control o	nly for ACMP1			
0	ACMP0	0	RW	Analog Comparator 0 access control bit	
	Access control o	nly for ACMP0			

11.5.7 SMU_PPUPATD1 - PPU Privilege Access Type Descriptor 1

Set peripheral bits to 1 to mark as privileged access only

Offset															Bi	t Po	siti	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset				'													•										•		0	0	0	0
Access																													₽	RW	Υ	X N
Name																													WTIMER1	WTIMERO	WDOG0	USART3

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
3	WTIMER1	0	RW	Wide Timer 1 access control bit
	Access control or	nly for WTIMER1		
2	WTIMER0	0	RW	Wide Timer 0 access control bit
	Access control or	nly for WTIMER0		
1	WDOG0	0	RW	Watchdog access control bit
	Access control or	nly for WDOG0		
0	USART3	0	RW	Universal Synchronous/Asynchronous Receiver/Transmitter 3 access control bit
	Access control of	nly for USART3		

11.5.8 SMU_PPUFS - PPU Fault Status

Offset															Bi	t Po	siti	on														
0x090	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	ω	7	9	2	4	က	2	-	0
Reset			•					•	•			•								•	•	•			•				00×0			
Access																													œ			
Name																													PERIPHID			

Bit	Name	Reset	Access Descript	ion
31:7	Reserved	To ensure co	npatibility with future	devices, always write bits to 0. More information in 1.2 Conven-
6:0	PERIPHID	0x00	R	

Holds the peripheral ID of the first peripheral that was accessed resulting in an access fault. This ID is not valid unless one of the PPU interrupt flags is set. Any other access faults that occur are not captured until all the PPU interrupt flags are cleared

Value	Mode	Description
0	ACMP0	Analog Comparator 0
1	ACMP1	Analog Comparator 1
2	ADC0	Analog to Digital Converter 0
3	CAN0	CAN 0
4	CMU	Clock Management Unit
5	CRYOTIMER	CRYOTIMER
6	CRYPTO0	Advanced Encryption Standard Accelerator
7	CSEN	Capacitive touch sense module
8	VDAC0	Digital to Analog Converter 0
9	PRS	Peripheral Reflex System
10	EMU	Energy Management Unit
11	GPCRC	General Purpose CRC
12	GPIO	General purpose Input/Output
13	I2C0	I2C 0
14	I2C1	I2C 1
15	MSC	Memory System Controller
16	LCD	Liquid Crystal Display Controller
17	LDMA	Linked Direct Memory Access Controller
18	LESENSE	Low Energy Sensor Interface
19	LETIMER0	Low Energy Timer 0
20	LEUART0	Low Energy UART 0
21	PCNT0	Pulse Counter 0

Bit	Name	Reset A	ccess	Description
	22	RMU		Reset Management Unit
	23	RTCC		Real-Time Counter and Calendar
	24	SMU		Security Management Unit
	25	TIMER0		Timer 0
	26	TIMER1		Timer 1
	27	TRNG0		True Random Number Generator 0
	28	UART0		Universal Asynchronous Receiver/Transmitter 0
	29	USART0		Universal Synchronous/Asynchronous Receiver/Transmitter 0
	30	USART1		Universal Synchronous/Asynchronous Receiver/Transmitter 1
	31	USART2		Universal Synchronous/Asynchronous Receiver/Transmitter 2
	32	USART3		Universal Synchronous/Asynchronous Receiver/Transmitter 3
	33	WDOG0		Watchdog
	34	WTIMER0		Wide Timer 0
	35	WTIMER1		Wide Timer 1

12. RTCC - Real Time Counter and Calendar

Quick Facts

What?

The Real Time Counter and Calendar (RTCC) is a 32-bit counter ensuring timekeeping in low energy modes. The RTCC also includes a calendar mode for easy time and date keeping. In addition, the RTCC includes 128 bytes of general purpose retention data, allowing persistent data storage in all energy modes except EM4 Shutoff.

Why?

Timekeeping over long time periods while using as little power as possible is required in many low power applications.

How?

A low frequency oscillator is used as clock signal and the RTCC has three different Capture/Compare channels which can trigger wake-up, generate PRS signalling, or capture system events. 32-bit resolution and selectable prescaling allow the system to stay in low energy modes for long periods of time and still maintain reliable timekeeping.

12.1 Introduction

The Real Time Counter and Calendar (RTCC) contains a 32-bit counter/calendar in combination with a 15-bit pre-counter to allow flexible prescaling of the main counter. The RTCC is available in all energy modes except EM4 Shutoff.

Three individually configurable Capture/Compare channels are available in the RTCC. These can be used to trigger interrupts, generate PRS signals, capture system events, and to wake the device up from a low energy mode. The RTCC also includes 128 bytes of general purpose storage and a Binary Coded Decimal (BCD) calendar mode, enabling easy time and date keeping.

12.2 Features

- · 32-bit Real Time Counter.
- 15-bit pre-counter, for flexible frequency scaling or for use as an independent counter.
- · EM4 Hibernate operation and wakeup.
- · 128 byte general purpose retention data.
- · Oscillator failure detection.
- Backup mode Timestamp.
- Can continue through system reset; only reset by power loss, pin, or software reset.
- · Calendar mode.
 - · BCD encoding.
 - · Three programmable alarms.
 - · Leap year correction.
- · Three Capture/Compare registers.
 - · Capture of PRS events from other parts of the system.
 - · Compare match or input capture can trigger interrupts.
 - Compare register 1, RTCC_CC1_CCV can be used as a top value for the main counter.
 - Compare register 0, RTCC_CC0_CCV can be used as a top value for the pre-counter.
 - Compare match events are available to other peripherals through the Peripheral Reflex System (PRS).

12.3 Functional Description

The RTCC is a 32-bit up-counter with three Capture/Compare channels. In addition, the RTCC includes a 15-bit pre-counter which can be used as an independent counter or to prescale the main counter. An overview of the RTCC module is shown in Figure 12.1 RTCC Overview on page 403.

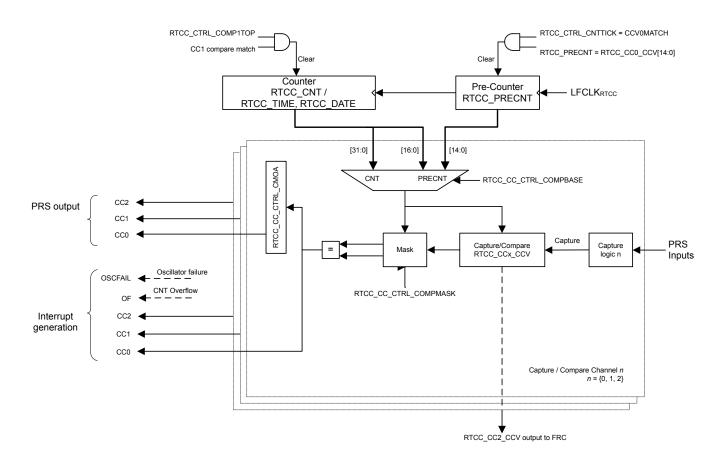


Figure 12.1. RTCC Overview

12.3.1 Counter

The RTCC consists of two counters; the 32-bit main counter, RTCC_CNT (RTCC_TIME and RTCC_DATE in calendar mode), and a 15-bit pre-counter, RTCC_PRECNT. The pre-counter can be used as an independent counter or to generate a specific frequency for the main counter. In both configurations, the pre-counter can be used to generate compare match events or be captured in the Capture/Compare channels as a result of an external PRS event. Refer to 12.3.2 Capture/Compare Channels for details on how to configure the Capture/Compare channels for use with the pre-counter.

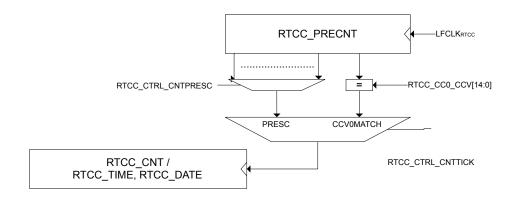


Figure 12.2. RTCC counters

The RTCC is enabled by setting the ENABLE bit in RTCC_CTRL. When the RTCC is enabled, the pre-counter (RTCC_PRECNT) increments upon each positive clock edge of LFCLK_{RTCC}. If CNTTICK in RTCC_CTRL is set to PRESC, the pre-counter will continue to count up, wrapping around to zero when it overflows. If CNTTICK in RTCC_CTRL is set to CCV0MATCH, the pre-counter will wrap around when it hits the value configured in RTCC_CCV.

The main counter of the RTCC_RTCC_CNT, has two modes; normal mode and calendar mode. In normal mode, the main counter is available in RTCC_CNT and increments upon each tick given from the pre-counter. Refer to 12.3.1.1 Normal Mode for a description on how to configure the frequency of these ticks. In calendar mode, the counter value is available in RTCC_TIME and RTCC_DATE, keeping track of seconds, minutes, hours, day of month, day of week, months, and years, all encoded in BCD format. Refer to 12.3.1.2 Calendar Mode for details on this mode. The mode of the main counter is configured in CNTMODE in RTCC_CTRL. The differences between the two modes are summarized below.

· Normal mode

- · Incremental counter, RTCC_CNT.
- RTCC_CCx_CCV used for Capture/Compare value.

· Calendar mode

- BCD counters, RTCC_DATE, RTCC_TIME.
- RTCC CCx TIME and RTCC CCx DATE used for Capture/Compare value.

Note: The mode of the RTCC must be configured for CALENDAR mode in RTCC_CTRL_CNTMODE before writing to the mode dependent registers, RTCC_TIME, RTCC_DATE, RTCC_CCx_TIME, and RTCC_CCx_DATE. Writes to these registers when in NORMAL mode will be ignored.

12.3.1.1 Normal Mode

The main counter can receive a tick based on different tappings from the pre-counter, allowing the ticks to be power of 2 divisions of the $LFCLK_{RTCC}$. For more accurate configuration of the tick frequency, $RTCC_CCO_CCV[14:0]$ can be used as a top value for $RTCC_PRECNT$. When reaching the top value, the main counter receives a tick and the pre-counter wraps around. Table 12.1 RTCC Resolution Vs Overflow, F_{LFCLK} = 32768 Hz on page 405 summarizes the resolutions available when using a 32768 Hz oscillator as source for $LFCLK_{RTCC}$.

Table 12.1. RTCC Resolution Vs Overflow, F_{LFCLK} = 32768 Hz

RTCC_CTRL_CNTTICK	RTCC_CTRL_CNTPRESC	Main counter period, T _{CNT}	Overflow			
CCV0MATCH	Don't care	(RTCC_CC0_CCV + 1)/F _{LFCLK} s	2 ³² *T _{CNT} seconds			
	DIV1	30.5 µs	36.4 hours			
	DIV2	61 µs	72.8 hours			
	DIV4	122 µs	145.6 hours			
	DIV8	244 μs	12 days			
	DIV16	488 μs	24 days			
	DIV32	977 μs	48 days			
	DIV64	1.95 ms	97 days			
PRESC	DIV128	3.91 ms	194 days			
PRESC	DIV256	7.81 ms	388 days			
	DIV512	15.6 ms	776 days			
	DIV1024	31.25 ms	4.2 years			
	DIV2048	62.5 ms	8.5 years			
	DIV4096	0.125 s	17 years			
	DIV8192	0.25 s	34 years			
	DIV16384	0.5 s	68 years			
	DIV32768	1 s	136 years			

By default, the counter will keep counting until it reaches the top value, 0xFFFFFFF, before it wraps around and continues counting from zero. By setting CCV1TOP in RTCC_CTRL, a Capture/Compare channel 1 compare match will result in the main counter wrapping to 0. The timer will then wrap around on a channel 1 compare match (RTCC_CNT = RTCC_CC1_CCV). Before using the CCV1TOP setting, make sure to set this bit prior to or at the same time the RTCC is enabled. Setting CCV1TOP after enabling the RTCC (RTCC_CTRL_MODE != DISABLED) may cause unintended operation (e.g. if RTCC_CNT > RTCC_CC1_CCV, RTCC_CNT will wrap when reaching 0xFFFFFFFF rather than RTCC_CC1_CCV).

Note: If the RTCC is being reconfigured, and capture compare channel 1 has previously been used, a CCV1TOP wrap event might be pending. This would lead to the first tick of the main counter being a wrap to 0. To clear any pending wrap events, use the following procedure before reconfiguring the RTCC:

- 1. RTCC->CC[1].CTRL = RTCC_CC_CTRL_MODE_OFF;
- 2. RTCC->CTRL = RTCC_CTRL_CNTTICK_PRESC | RTCC_CTRL_CNTMODE_NORMAL | RTCC_CTRL_ENABLE;
- 3. rtcc cnt pre = RTCC->CNT;
- 4. while(RTCC->CNT == rtcc cnt pre);
- 5. Reconfigure the RTCC

12.3.1.2 Calendar Mode

The RTCC includes a calendar mode which implements time and date decoding in hardware. Calendar mode is enabled by configuring CNTMODE in RTCC_CTRL to CALENDAR. When in calendar mode, the counter value is available in RTCC_TIME and RTCC_DATE. RTCC_TIME shows seconds, minutes, and hours while RTCC_DATE shows day of month, month, year, and day of week. RTCC_TIME and RTCC_DATE are encoded in BCD format. In calendar mode, the pre-counter should be configured to give ticks with a period of one second, i.e. RTCC_CTRL_CNTTICK should be set to PRESC, and the CNTPRESC bitfield of the RTCC_CTRL register should be set to DIV32768 if a 32768 Hz clock source is used.

In calendar mode, the time and date registers of the capture compare channels, RTCC_CCx_TIME and RTCC_CCx_DATE, are used to set compare values. Compare values can be set on seconds, minutes, hours, days, and months. Whether day of week or day of month is used for a Capture/Compare channel, it is configured in RTCC_CCx_CTRL_DAYCC of the respective Capture/Compare channel.

The RTCC will automatically compensate for 28-, 29- (leap year), 30-, and 31-day months. The day of week counter, RTCC_DATE_DAYOW, is a three bit counter incrementing when RTCC_TIME_HOURT overflows, wrapping around every seventh day. Automatic leap year correction, extending the month of February from 28 to 29 days every fourth year is by default enabled, but can be disabled by setting the LYEARCORRDIS bit in RTCC_CTRL. The pseudo-code for leap year correction is as follows:

```
if RTCC_DATE_YEART modulo 2 = 0:
    if RTCC_DATE_YEARU modulo 4 = 0:
        leap_year = true
    else:
        leap_year = false
else:
    if (RTCC_DATE_YEARU + 2) modulo 4 = 0:
        leap_year = true
    else:
        leap_year = true
else:
        leap_year = false
```

The seconds, minute, hour segments are represented in 24-hour BCD format. The month segments are enumerated as shown in Table 12.2 RTCC calendar enumeration on page 406.

Month RTCC_DATE_MONTHT RTCC_DATE_MONTHU 0b0001 January 0b0 0b0 0b0010 February March 0b0 0b0011 April 0b0 0b0100 May 0b0 0b0101 June 0b0 0b0110 0b0 0b0111 July August 0b0 0b1000 September 0b0 0b1001 0b1 0b0000 October November 0b1 0b0001 December 0b1 0b0010

Table 12.2. RTCC calendar enumeration

12.3.1.3 RTCC Initialization

The counters of the RTCC, RTCC_CNT (RTCC_TIME and RTCC_DATE in calendar mode) and RTCC_PRECNT, can at any time be written by software, as long as the registers are not locked using RTCC_LOCKKEY. All RTCC registers use the immediate synchronization scheme, described in 4.3.1 Writing.

Note: Writing to the RTCC_PRECNT register may alter the frequency of the ticks for the RTCC_CNT register.

12.3.2 Capture/Compare Channels

Three capture/compare channels are available in the RTCC. Each channel can be configured as input capture or output compare, by setting the corresponding MODE in the RTCC_CCx_CTRL register.

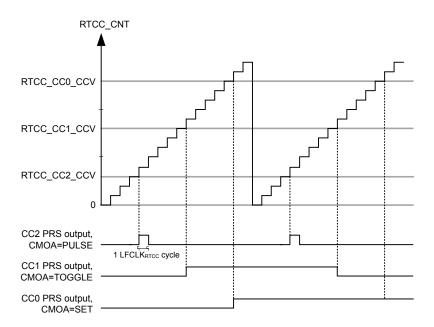
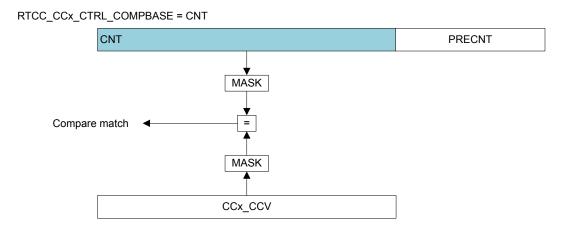



Figure 12.3. RTCC Compare match and PRS output illustration

In input capture mode the RTCC_CNT (RTCC_TIME and RTCC_DATE in calendar mode) register is captured into the RTCC_CCx_CCV (RTCC_CCx_TIME and RTCC_CCx_DATE in calendar mode) register when an edge is detected on the selected PRS input channel. The active capture edge is configured in the ICEDGE control bits.

In output compare mode the compare values are set by writing to the RTCC compare channel registers RTCC_CCx_CCV (RTCC_CCx_TIME and RTCC_CCx_DATE in calendar mode). These values will be compared to the main counter, RTCC_CNT (RTCC_TIME and RTCC_DATE in calendar mode), or a mixture of the main counter and the pre-counter, as illustrated in Figure 12.4 RTCC Compare base illustration on page 409. Compare base for the capture compare channels is set by configuring COMP-BASE in RTCC CCx CTRL.

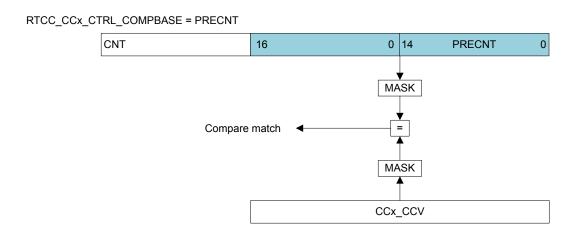


Figure 12.4. RTCC Compare base illustration

Table 12.3 RTCC Capture/Compare Subjects on page 409 summarizes which registers being subject to comparison for different configurations of RTCC_CTRL_CNTMODE and RTCC_CCx_CTRL_COMPBASE.

Table 12.3. RTCC Capture/Compare Subjects

RTCC_CTRL_CNTMODE	NORMAL	CALENDAR
RTCC_CCx_CTRL_COMPBASE = CNT	RTCC_CNT vs. RTCC_CCx_CCV	RTCC_TIME vs. RTCC_CCx_TIME and RTCC_DATE vs. RTCC_CCx_DATE
RTCC_CCx_CTRL_COMPBASE = PRECNT	{RTCC_CNT[16:0],RTCC_PRECNT[14:0]} vs. RTCC_CCx_CCV	RTCC_PRECNT vs. RTCC_CCx_CCV[14:0]

Figure 12.5 RTCC Compare in calendar mode, COMPBASE = CNT on page 410 illustrates how the compare events are evaluated when in calendar mode with RTCC_CCx_CTRL_COMPBASE = CNT. The SECU, SECT, MINU, MINT, HOURU, HOURT, MONTHU, and MONTHT bitfields in RTCC_CCx_TIME and RTCC_CCx_DATE are compared to the corresponding bitfields in RTCC_DATE and RTCC_TIME. The DAYU and DAYT bitfields in RTCC_CCx_DATE will be compared to {RTCC_DATE_DAYOM}, if DAYCC in RTCC_CCx_CTRL is set to MONTH. If DAYCC in RTCC_CCx_CTRL is set to WEEK, the DAYU and DAYT bitfields in RTCC_CCx_DATE will be compared to {0b000, RTCC_DATE_DAYOW}.

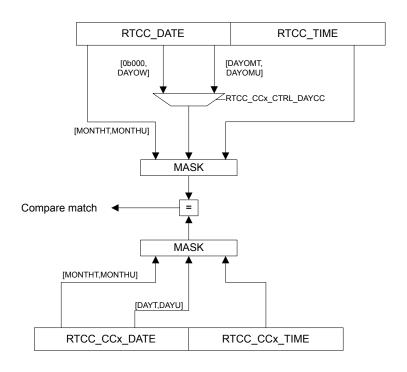


Figure 12.5. RTCC Compare in calendar mode, COMPBASE = CNT

To generate periodically recurring events, it is possible to mask out parts of the compare match values. By configuring COMPMASK in RTCC_CCx_CTRL, parts of the compare values will be masked out, limiting which part of the compare register being subject to comparison with the counter. Figure 12.6 RTCC Compare mask illustration, COMPMASK=11 on page 410 illustrates the effect of COMPMASK when in normal mode and calendar mode.

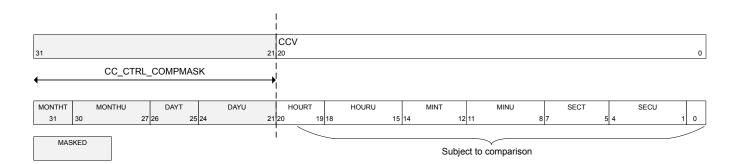


Figure 12.6. RTCC Compare mask illustration, COMPMASK=11

Upon a compare match, the respective Capture/Compare interrupt flag CCx is set. Additionally, the event selected by the CMOA setting is generated on the corresponding PRS output. This is illustrated in Figure 12.3 RTCC Compare match and PRS output illustration on page 408.

12.3.3 Interrupts and PRS Output

The RTCC has one interrupt for each of its 3 Capture/Compare channels, CC0, CC1, and CC2. Each Capture/Compare channel has a PRS output with configurable actions upon compare match.

The interrupt flag CNTTICK is set each time the main counter receives a tick (each second in calendar mode). In calendar mode, there are also interrupt flags being set each minute, hour, day, week, and month.

Upon oscillator failure detection, the OSCFAIL flag will be set.

12.3.3.1 Main Counter Tick PRS Output

To output the ticks for the main counter on PRS, it is possible to use a Capture/Compare channel and mask all the bits, i.e. RTCC_CCx_CTRL_COMPBASE=CNT and RTCC_CCx_CTRL_COMPMASK=31. PRS output of main counter ticks does not work if the main counter is not prescaled.

Note: To be able to mask all bits in the main counter, RTCC_CTRL_CNTMODE has to be set to CALENDAR. In NORMAL mode, the least significant bit can not be masked out.

12.3.4 Energy Mode Availability

The RTCC is available in all energy modes except EM4 Shutoff. To enable RTCC operation in EM4 Hibernate, the EMU_EM4CTRL register in the EMU has to be configured. Any enabled RTCC interrupt will wake the system up from EM4 Hibernate; if EM4WU in RTCC EM4WUEN is set. Refer to 9. EMU - Energy Management Unit for details on how to configure the EMU.

12.3.5 Register Lock

To prevent accidental writes to the RTCC registers, the RTCC_LOCKKEY register can be written to any value other than the unlock value. To unlock the register, write the unlock value to RTCC_LOCKKEY. Registers affected by this lock are:

- RTCC_CTRL
- RTCC PRECNT
- · RTCC CNT
- RTCC TIME
- RTCC_DATE
- RTCC IEN
- RTCC POWERDOWN
- RTCC CCx CTRL
- RTCC CCx CCV
- RTCC_CCx_TIME
- RTCC CCx DATE

12.3.6 Oscillator Failure Detection

To be able to detect OSC failure, the RTCC includes a security mechanism ensuring that at least three OSC cycles are detected within one period of the ULFRCO. If no OSC cycles are detected, the OSCFAIL interrupt flag is set. OSC failure detection is enabled by setting the OSCFDETEN bit in RTCC_CTRL.

12.3.7 Retention Registers

The RTCC includes 32 x 32 bit registers which can be retained in all energy modes except EM4 Shutoff. The registers are accessible through the RETx_REG registers. Retention is by default enabled in EM0 Active through EM4 Hibernate/Shutoff. The registers can be shut off to save power by setting the RAM bit in RTCC_POWERDOWN.

Note: The retention registers are mapped to a RAM instance and have undefined state out of reset.

12.3.8 Timestamp

The RTCC includes functionality for storing a timestamp when the system enters backup mode. The timestamp is stored in the RTCC_CC2_CCV (RTCC_CC2_TIME and RTCC_CC2_DATE in calendar mode) register. Timestamping is enabled by first writing a 1 to CLRSTATUS in RTCC_CMD and then setting BUMODETSEN in RTCC_CTRL. When a timestamp is stored, the BUMODETS bit in RTCC_STATUS is set. To prevent uncontrolled time stamping when entering and exiting backup mode, this status bit has to be cleared before a new timestamp can be stored. Writing a 1 to CLRSTATUS in RTCC_CMD clears BUMODETS.

12.3.9 Debug Session

By default, the RTCC is halted when code execution is halted from the debugger. By setting the DEBUGRUN bit in the RTCC_CTRL register, the RTCC will continue to run even when the debugger has halted the system.

12.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	RTCC_CTRL	RW	Control Register
0x004	RTCC_PRECNT	RWH	Pre-Counter Value Register
0x008	RTCC_CNT	RWH	Counter Value Register
0x00C	RTCC_COMBCNT	R	Combined Pre-Counter and Counter Value Register
0x010	RTCC_TIME	RWH	Time of Day Register
0x014	RTCC_DATE	RWH	Date Register
0x018	RTCC_IF	R	RTCC Interrupt Flags
0x01C	RTCC_IFS	W1	Interrupt Flag Set Register
0x020	RTCC_IFC	(R)W1	Interrupt Flag Clear Register
0x024	RTCC_IEN	RW	Interrupt Enable Register
0x028	RTCC_STATUS	R	Status Register
0x02C	RTCC_CMD	W1	Command Register
0x030	RTCC_SYNCBUSY	R	Synchronization Busy Register
0x034	RTCC_POWERDOWN	RW	Retention RAM Power-down Register
0x038	RTCC_LOCK	RWH	Configuration Lock Register
0x03C	RTCC_EM4WUEN	RW	Wake Up Enable
0x040	RTCC_CC0_CTRL	RW	CC Channel Control Register
0x044	RTCC_CC0_CCV	RWH	Capture/Compare Value Register
0x048	RTCC_CC0_TIME	RWH	Capture/Compare Time Register
0x04C	RTCC_CC0_DATE	RWH	Capture/Compare Date Register
0x050	RTCC_CC1_CTRL	RW	CC Channel Control Register
0x054	RTCC_CC1_CCV	RWH	Capture/Compare Value Register
0x058	RTCC_CC1_TIME	RWH	Capture/Compare Time Register
0x05C	RTCC_CC1_DATE	RWH	Capture/Compare Date Register
0x060	RTCC_CC2_CTRL	RW	CC Channel Control Register
0x064	RTCC_CC2_CCV	RWH	Capture/Compare Value Register
0x068	RTCC_CC2_TIME	RWH	Capture/Compare Time Register
0x06C	RTCC_CC2_DATE	RWH	Capture/Compare Date Register
0x104	RTCC_RET0_REG	RW	Retention Register
	RTCC_RETx_REG	RW	Retention Register
0x180	RTCC_RET31_REG	RW	Retention Register

12.5 Register Description

12.5.1 RTCC_CTRL - Control Register (Async Reg)

Offset					Bit	Pos	sitio	n														
0x000	30 30 28 28	27 28 29 29 23 23 23 23 23 23 23 23 23 24 25 25 23 23 23 23 23 23 23 23 23 23 23 23 23	21 20 20	<u>6</u> 8 i	14	19	15	4	5	12	7	9	6	_∞	7	9	5	4	က	2	_	0
Reset					0	0	0	0		0		OXO	}				0	0		0		0
Access					% 	₩.	% 	Z.		RW		Z S	:				¥ M	₹		Z.		Z Š
Name					LYEARCORRDIS	CNTMODE	OSCFDETEN	BUMODETSEN		CNTTICK		CNTPRESC)				CCV1TOP	PRECCV0TOP		DEBUGRUN		ENABLE
Bit	Name	Reset	Access	Desc	ripti	ion																
31:18	Reserved	To ensure co	mpatibility	with futu	ure d	devi	ces,	, alv	vays	wr	ite b	its to	0.	Моі	re ini	forn	natic	on in	1.2	Coi	nver)-
17	LYEARCORRE		RW	Leap																		
		February has 29 days								way	/s ha	as 28	8 da	ıys.								
16	CNTMODE	0	RW	Main	Cou	unte	r M	ode	•													
	Configure cour	t mode for the main o	ounter.																			_
	Value	Mode		Descr	riptio	on																_
	0	NORMAL		The n	nain	COU	ınte	r is	incre	eme	ente	d wit	:h 1	for	each	ı tic	k.					
	1	CALENDAR		The n	nain	COU	ınte	r is	in ca	alen	ıdar	mod	le.									_
15	OSCFDETEN	0	RW	Oscil	lato	r Fa	ilur	re D	ete	ctio	n Eı	nabl	е									
	When set, the	OSCFAIL interrupt flag	g will be se	et if no tio	cks	are (dete	ecte	d or	ı LF	CLK	RTC	C W	ithir	one	e UL	_FR	СО	cycl	e.		
14	BUMODETSE	N 0	RW	Back	up I	Mod	le Ti	ime	star	mp	Ena	ble										
	When set, the	RTCC will store its co	unter value	in the F	RTC	C_C	CC2	_C(CV re	egis	ter ı	ıpor	ba	cku	p mc	de	entr	у.				
13	Reserved	To ensure co	mpatibility	with futu	ure d	devi	ces,	, alv	vays	wr	ite b	its to	0.	Моі	re int	forn	natic	on in	1.2	Coi	nver	7-
12	CNTTICK	0	RW	Coun	ter	Pres	sca	ler	Mod	le												
		the main counter sho selected in CNTPRE									are I	mato	ch w	ith 1	the p	ore-	cour	nter	or ti	ck o	n a	
	Value	Mode		Descr	riptio	on																_
	0	PRESC		CNT	regis	ster	tick	s ac	ccor	ding	to o	confi	gura	atio	n in (CN	ΓPR	ESC	Э.			_
	1	CCV0MATCI	1	CNT	regis	ster	tick	s w	hen	PR	ECN	IT m	atch	nes	RTC	C_	CCC)_C	CV[14:0]	
11:8	CNTPRESC	0x0	RW	Coun	ter	Pres	sca	ler '	Valu	ie												
	Configure cour	ting frequency of the	CNT regist	ter.																		
	Value	Mode		Descr	riptio	on																_

Bit	Name	Reset	Access	Description						
	0	DIV1		CLK _{CNT} = LFECLK _{RTCC} /1						
	1	DIV2		CLK _{CNT} = LFECLK _{RTCC} /2						
	2	DIV4		CLK _{CNT} = LFECLK _{RTCC} /4						
	3	DIV8		CLK _{CNT} = LFECLK _{RTCC} /8						
	4	DIV16		CLK _{CNT} = LFECLK _{RTCC} /16						
	5	DIV32		CLK _{CNT} = LFECLK _{RTCC} /32						
	6	DIV64		CLK _{CNT} = LFECLK _{RTCC} /64						
	7	DIV128		CLK _{CNT} = LFECLK _{RTCC} /128						
	8	DIV256		CLK _{CNT} = LFECLK _{RTCC} /256						
	9	DIV512		CLK _{CNT} = LFECLK _{RTCC} /512						
	10	DIV1024		CLK _{CNT} = LFECLK _{RTCC} /1024						
	11	DIV2048		CLK _{CNT} = LFECLK _{RTCC} /2048						
	12	DIV4096		CLK _{CNT} = LFECLK _{RTCC} /4096						
	13	DIV8192		CLK _{CNT} = LFECLK _{RTCC} /8192						
	14	DIV16384		CLK _{CNT} = LFECLK _{RTCC} /16384						
	15	DIV32768		CLK _{CNT} = LFECLK _{RTCC} /32768						
7:6	Reserved	To ensure cor	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-						
5	CCV1TOP	0	RW	CCV1 Top Value Enable						
	When set, the count	er wraps around	on a CC1 e	event.						
4	PRECCV0TOP	0	RW	Pre-counter CCV0 Top Value Enable						
	When set, the pre-co	ounter wraps arou	und when F	PRECNT equals RTCC_CC0_CCV[14:0].						
3	Reserved	To ensure cor tions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-						
2	DEBUGRUN	0	RW	Debug Mode Run Enable						
	Set this bit to keep the	he RTCC running	during a c	debug halt.						
	Value			Description						
	0			RTCC is frozen in debug mode						
	1			RTCC is running in debug mode						
1	Reserved	To ensure cor	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-						
0	ENABLE	0	RW	RTCC Enable						
	Enable the RTCC.									

12.5.2 RTCC_PRECNT - Pre-Counter Value Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset	Bit Position																															
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			1		•	1	1	1		·				1		•	ı		1	,	•				0000x0		1	,	1			
Access																									RWH							
Name																									PRECNT							

Bit	Name	Reset	Access	Description								
31:15	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-								
14:0	PRECNT	0x0000	RWH	Pre-Counter Value								
	Gives access to the Pre-counter value of the RTCC.											

12.5.3 RTCC_CNT - Counter Value Register (Async Reg)

Offset	Bit Position										
0x008	33 34 5 6 7 7 8 8 8 7 9 9 9 1 7 1 7 1 7 1 7 1 7 1 8 8 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9										
Reset	00000000000000000000000000000000000000										
Access	RWH H										
Name	CNT										

Bit	Name	Reset	Access	Description						
31:0	CNT	0x00000000	RWH	Counter Value						
	Gives access to the main counter value of the RTCC. Register can not be written and will be read as zero when RTCC_CTRL_CNTMODE = CALENDAR.									

12.5.4 RTCC_COMBCNT - Combined Pre-Counter and Counter Value Register

Offset	Bit Position												
0x00C	31 30 29 28 27 27 29 24 24 25 25 20 20 19 19 11 16 11 16	4 6 7 7 7 0 8 8 7 9 4 8 7 7 0											
Reset	00000x0	00000 000000											
Access	α.	α											
Name	CNTLSB	PRECNT											

Bit	Name	Reset	Access	Description							
31:15	CNTLSB	0x00000	R	Counter Value							
	Gives access to the CALENDAR.	17 LSBs of the n	nain counte	r, CNT. Register will be read as zero when RTCC_CTRL_CNTMODE =							
14:0	PRECNT	0x0000	R	Pre-Counter Value							
	Gives access to the pre-counter, PRECNT. Register will be read as zero when RTCC_CTRL_CNTMODE = CALENDAR.										

12.5.5 RTCC_TIME - Time of Day Register (Async Reg)

Offset	Bit Position												
0x010	31 30 29 28 27 27 26 26 27 27 27 27 27 28 28 28 28 27 27 27 27 27 27 27 27 27 27 27 27 27	20 20 19 17 17 16	4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 5 1 6 8 8 1 8 1 9 1 1 1 2 1 2 1 2 <th>L 0</th>	L 0									
Reset		000	000	000									
Access		RWH H	RWH RWH	RWH RWH									
Name		HOURT	MIN UNIN	SECT									

Bit	Name	Reset	Access	Description
31:22	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
21:20	HOURT	0x0	RWH	Hours, Tens
		oart of the hour cou NTMODE = NORM		ter can not be written and will be read as zero when
19:16	HOURU	0x0	RWH	Hours, Units
		art of the hour cou NTMODE = NORM		er can not be written and will be read as zero when
15	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
14:12	MINT	0x0	RWH	Minutes, Tens
		part of the minute on NTMODE = NORM		gister can not be written and will be read as zero when
11:8	MINU	0x0	RWH	Minutes, Units
		art of the minute c NTMODE = NORM		ister can not be written and will be read as zero when
7	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
6:4	SECT	0x0	RWH	Seconds, Tens
		part of the second NTMODE = NORM		gister can not be written and will be read as zero when
3:0	SECU	0x0	RWH	Seconds, Units
		art of the second on NTMODE = NORM		gister can not be written and will be read as zero when

12.5.6 RTCC_DATE - Date Register (Async Reg)

12.5.6 R	ICC_DATE - Date	Register (Async Reg)									
For more	information about as	synchronous registers s	ee 4.3 A	ccess to Lo	w Energy Pe	eriphera	als (Asynchro	onous R	egisters	3).	
Offset				Bit Po	sition						
0x014	30 30 29 28 27	25 24 25 25 27 23 23 23 23 24 24	19	16 17 18	τ τ τ τ τ	7 7	0 8	7 9	2 4	0 1 2 3	
Reset		000		0x0		0	0x0		0x0	0×0	
Access		RWH RWH		RWH		RWH	RWH		RWH	RWH	
Name		DAYOW		YEARU		MONTHT	MONTHU		DAYOMT	DAYOMU	
Bit	Name	Reset Ac	cess [Description							
31:27	Reserved	To ensure compat tions	ibility witi	h future dev	ices, always	s write i	bits to 0. Mo	re inforn	nation in	1.2 Conven-	
26:24	DAYOW	0x0 RV	VH C	Day of Wee	k						
	Shows the day of NORMAL.	week counter. Register	can not b	oe written a	nd will be rea	ad as z	ero when R	тсс_ст	RL_CN	TMODE =	
23:20	YEART	0x0 RV	VH Y	ear, Tens							
		art of the year counter. F TMODE = NORMAL.	Register o	can not be v	vritten and w	vill be r	ead as zero	when			
19:16	YEARU	0x0 RV	VH Y	ear, Units							
	Shows the unit part of the year counter. Register can not be written and will be read as zero when RTCC_CTRL_CNTMODE = NORMAL.										
15:13	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions										

15:13	Reserved	To ensur tions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
12	MONTHT	0	RWH	Month, Tens
	Shows the tens particles of RTCC_CTRL_CN		-	ister can not be written and will be read as zero when
44.0	MONITHII	00	D\4/1.1	Manuala Illustra

11:8 MONTHU 0x0 RWH **Month, Units**

Shows the unit part of the month counter. Register can not be written and will be read as zero when $RTCC_CTRL_CNTMODE = NORMAL$.

7:6	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
5:4	DAYOMT	0x0	RWH	Day of Month, Tens
	Shows the tens part of RTCC_CTRL_CNTM	,		Register can not be written and will be read as zero when
3:0	DAYOMU	0x0	RWH	Day of Month, Units

Shows the unit part of the day of month counter. Register can not be written and will be read as zero when RTCC_CTRL_CNTMODE = NORMAL.

12.5.7 RTCC_IF - RTCC Interrupt Flags

Offset	Bit Position										
0x018	33 31 32 38 38 39 39 31 31 32 39 39 39 31 31 31 31 31 31 31 31 31 31 31 31 31	9 0	n w	7	9	2	4	က	2	_	0
Reset		0	0	0	0	0	0	0	0	0	0
Access		۵۲ ر	<u>د</u> مح	2	2	22	22	2	2	<u>~</u>	<u>~</u>
Name		<u> </u>	DAYTICK	HOURTICK	MINTICK	CNTTICK	OSCFAIL	CC2	CC1	000	OF

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
10	MONTHTICK	0	R	Month Tick
	Set each time the mo	nth counter incr	ements.	
9	DAYOWOF	0	R	Day of Week Overflow
	Set each time the day	of week counter	er overflows	3.
8	DAYTICK	0	R	Day Tick
	Set each time the day	counter increm	nents.	
7	HOURTICK	0	R	Hour Tick
	Set each time the hou	ur counter increi	ments.	
6	MINTICK	0	R	Minute Tick
	Set each time the mir	nute counter inc	rements.	
5	CNTTICK	0	R	Main Counter Tick
	Set each time the ma	in counter is up	dated.	
4	OSCFAIL	0	R	Oscillator Failure Interrupt Flag
	Set when an oscillato	r failure has bee	en detected	
3	CC2	0	R	Channel 2 Interrupt Flag
	Set when a channel 2	event has occu	urred.	
2	CC1	0	R	Channel 1 Interrupt Flag
	Set when a channel 1	event has occu	urred.	
1	CC0	0	R	Channel 0 Interrupt Flag
	Set when a channel 0	event has occu	urred.	
0	OF	0	R	Overflow Interrupt Flag
	Set when a RTCC ov	erflow has occu	rred.	

12.5.8 RTCC_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			'		'	•									'							0	0	0	0	0	0	0	0	0	0	0
Access																						W W	W1	W M	W1	W W	M	W W	W	W1	W1	W1
Name																						MONTHTICK	DAYOWOF	DAYTICK	HOURTICK	MINTICK	CNTTICK	OSCFAIL	CC2	CC1	CC0	OF

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
10	MONTHTICK	0	W1	Set MONTHTICK Interrupt Flag
	Write 1 to set the MON	NTHTICK interru	upt flag	
9	DAYOWOF	0	W1	Set DAYOWOF Interrupt Flag
	Write 1 to set the DAY	OWOF interrup	t flag	
8	DAYTICK	0	W1	Set DAYTICK Interrupt Flag
	Write 1 to set the DAY	TICK interrupt t	flag	
7	HOURTICK	0	W1	Set HOURTICK Interrupt Flag
	Write 1 to set the HOU	JRTICK interrup	t flag	
6	MINTICK	0	W1	Set MINTICK Interrupt Flag
	Write 1 to set the MIN	TICK interrupt f	lag	
5	CNTTICK	0	W1	Set CNTTICK Interrupt Flag
	Write 1 to set the CNT	TICK interrupt t	flag	
4	OSCFAIL	0	W1	Set OSCFAIL Interrupt Flag
	Write 1 to set the OSC	CFAIL interrupt f	lag	
3	CC2	0	W1	Set CC2 Interrupt Flag
	Write 1 to set the CC2	interrupt flag		
2	CC1	0	W1	Set CC1 Interrupt Flag
	Write 1 to set the CC1	interrupt flag		
1	CC0	0	W1	Set CC0 Interrupt Flag
	Write 1 to set the CC0	interrupt flag		
0	OF	0	W1	Set OF Interrupt Flag
	Write 1 to set the OF i	nterrupt flag		

Offset															Bi	t Po	siti	on														
0x020	31	30	29	78	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	6	ω	7	9	2	4	က	7	_	0
Reset																						0	0	0	0	0	0	0	0	0	0	0
Access																						(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1
Name																						MONTHTICK	DAYOWOF	DAYTICK	HOURTICK	MINTICK	CNTTICK	OSCFAIL	CC2	CC1	CC0	OF
Bit	Na	me					Re	set			Ac	cess	s I	Des	crip	tion																
31:11	Re	serv	red				To tion		ure	com	pati	bility	/ wit	th fu	ture	dev	rices	s, alı	way	s wr	ite k	oits t	o 0.	Мо	re in	nforn	natio	on in	1.2	Co.	nvei	7-
10																																

				M M M M M M M M M M M M M M M M M M M											
Bit	Name	Reset	Access	Description											
31:11	Reserved	To ensure tions	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-											
10	MONTHTICK	0	(R)W1	Clear MONTHTICK Interrupt Flag											
	Write 1 to clear th flags (This feature			Reading returns the value of the IF and clears the corresponding interrupt //SC.).											
9	DAYOWOF	0	(R)W1	Clear DAYOWOF Interrupt Flag											
	Write 1 to clear th flags (This feature			eading returns the value of the IF and clears the corresponding interrupt ASC.).											
8	DAYTICK	0	(R)W1	Clear DAYTICK Interrupt Flag											
	Write 1 to clear the DAYTICK interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flag (This feature must be enabled globally in MSC.). HOURTICK 0 (R)W1 Clear HOURTICK Interrupt Flag Write 1 to clear the HOURTICK interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).														
7	HOURTICK	0	(R)W1	Clear HOURTICK Interrupt Flag											
	Write 1 to clear the HOURTICK interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt														
6	MINTICK	0	(R)W1	Clear MINTICK Interrupt Flag											
	Write 1 to clear th (This feature mus														
5	CNTTICK	0	(R)W1	Clear CNTTICK Interrupt Flag											
	Write 1 to clear th (This feature mus			ading returns the value of the IF and clears the corresponding interrupt flags .											
4	OSCFAIL	0	(R)W1	Clear OSCFAIL Interrupt Flag											
	Write 1 to clear th (This feature mus			ding returns the value of the IF and clears the corresponding interrupt flags .											
3	CC2	0	(R)W1	Clear CC2 Interrupt Flag											
	Write 1 to clear th feature must be e	•		returns the value of the IF and clears the corresponding interrupt flags (This											
2	CC1	0	(R)W1	Clear CC1 Interrupt Flag											
	Write 1 to clear th feature must be e			returns the value of the IF and clears the corresponding interrupt flags (This											
1	CC0	0	(R)W1	Clear CC0 Interrupt Flag											
	Write 1 to clear th feature must be e			returns the value of the IF and clears the corresponding interrupt flags (This											

Bit	Name	Reset	Access	Description
0	OF	0	(R)W1	Clear OF Interrupt Flag
	Write 1 to clear the Ol feature must be enable	. •	•	turns the value of the IF and clears the corresponding interrupt flags (This

12.5.10 RTCC_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	∞	7	9	5	4	က	2	_	0
Reset																						0	0	0	0	0	0	0	0	0	0	0
Access																						₩ M	RW	₩ M	RW	R W	₩ M	RW	RW	RW	RW	RW W
Name																						MONTHTICK	DAYOWOF	DAYTICK	HOURTICK	MINTICK	CNTTICK	OSCFAIL	CC2	CC1	000	OF

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
10	MONTHTICK	0	RW	MONTHTICK Interrupt Enable
	Enable/disable the M	ONTHTICK inter	rupt	
9	DAYOWOF	0	RW	DAYOWOF Interrupt Enable
	Enable/disable the D	AYOWOF interru	upt	
8	DAYTICK	0	RW	DAYTICK Interrupt Enable
	Enable/disable the D	AYTICK interrup	t	
7	HOURTICK	0	RW	HOURTICK Interrupt Enable
	Enable/disable the H	OURTICK interro	upt	
6	MINTICK	0	RW	MINTICK Interrupt Enable
	Enable/disable the M	INTICK interrupt	:	
5	CNTTICK	0	RW	CNTTICK Interrupt Enable
	Enable/disable the C	NTTICK interrup	t	
4	OSCFAIL	0	RW	OSCFAIL Interrupt Enable
	Enable/disable the O	SCFAIL interrup	t	
3	CC2	0	RW	CC2 Interrupt Enable
	Enable/disable the C	C2 interrupt		
2	CC1	0	RW	CC1 Interrupt Enable
	Enable/disable the C	C1 interrupt		
1	CC0	0	RW	CC0 Interrupt Enable
	Enable/disable the C	C0 interrupt		
0	OF	0	RW	OF Interrupt Enable
	Enable/disable the O	F interrupt		

12.5.11 RTCC_STATUS - Status Register

Offset	Bit Position	
0x028	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0
Reset		0
Access		ď
Name		BUMODETS

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	BUMODETS	0	R	Timestamp for Backup Mode Entry Stored
	Set when a timestam	p has been stor	ed in RTCC	C_CC2_CCV.

12.5.12 RTCC_CMD - Command Register (Async Reg)

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																																0
Access																																W
Name																																CLRSTATUS

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	CLRSTATUS	0	W1	Clear RTCC_STATUS Register
	Write a 1 to clear the	RTCC_STATUS	S register.	

12.5.13 RTCC_SYNCBUSY - Synchronization Busy Register

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	3	2	_	0
Reset					•	•	•																				0			•		
Access																											22					
Name																											CMD					

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure cortions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
5	CMD	0	R	CMD Register Busy
	Set when the value w	ritten to CMD is	being synd	chronized.
4:0	Reserved	To ensure cortions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-

12.5.14 RTCC_POWERDOWN - Retention RAM Power-down Register (Async Reg)

Offset															Bi	t Po	siti	on														
0x034	33	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•	•	•	•		•		•		•	•	•	•				•		•						•	•				0
Access																																₩ W
Name																																RAM

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
0	RAM	0	RW	Retention RAM Power-down
	Shut off power to the	Retention RAM	Once it is	powered down, it cannot be powered up again

12.5.15 RTCC_LOCK - Configuration Lock Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	7	9	6	∞	7	9	5	4	က	2	_	0
Reset																								0	nannan							
Access																								-								
Name																								7	LOCAN							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	LOCKKEY	0x0000	RWH	Configuration Lock Key

Write any other value than the unlock code to lock RTCC_CTRL, RTCC_PRECNT, RTCC_CNT, RTCC_TIME, RTCC_DATE, RTCC_IEN, RTCC_POWERDOWN, and RTCC_CCx_XXX registers from editing. Write the unlock code to unlock. When reading the register, bit 0 is set when the lock is enabled.

Mode	Value	Description
Read Operation		
UNLOCKED	0	All registers are unlocked
LOCKED	1	Registers are locked
Write Operation		
LOCK	0	Lock registers
UNLOCK	0xAEE8	Unlock all RTCC registers

12.5.16 RTCC_EM4WUEN - Wake Up Enable

Offset															Bi	t Po	siti	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		•	•	•			•	•		•			•	•	•					•		•										0
Access																																X X
Name																																EM4WU

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	EM4WU	0	RW	EM4 Wake-up Enable
	Write 1 to enable wa	ake-up request,	write 0 to di	sable wake-up request.

12.5.17 RTCC_CCx_CTRL - CC Channel Control Register (Async Reg)

Offset															Bi	t Po	sitio	on													
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	3	7	- 0
Reset															0			0x00			0				0x0		5	OXO	OxO	8	0x0
Access															₩			¥ M			₩				Z ≪		20	2	RW		A W
Name															DAYCC			COMPMASK			COMPBASE				PRSSEL		וטבטכו	ICEDGE	CMOA		MODE
Bit	Na	me					Re	set			Ac	ces	s I	Des	crip	tion															

Name				DAYCC	СОМРМА	COMPBA	PRSSEL	ICEDGE	СМОА	MODE
Bit	Name	Reset	Access	Descript	ion					
31:18	Reserved	To ensure o	ompatibility	with future (devices, always	write bits to	0. More infor	mation ir	1.2 Co	nven-
17	DAYCC	0	RW	Day Cap	ture/Compare S	Selection				
	Select whether da	y of week, or day	of month is	subject for	Capture/Compa	re.				
	Value	Mode		Description	on					
	0	MONTH		Day of m	onth is selected	for Capture	Compare.			
	1	WEEK		Day of we	eek is selected f	or Capture/0	Compare.			
16:12	COMPMASK	0x00	RW	Capture	Compare Chan	nel Compa	rison Mask			
	The COMPMASK	most significant b	oits of the co	mpare valu	e will not be sub	ject to comp	arison.			
11	COMPBASE	0	RW	Capture	Compare Chan	nel Compa	rison Base			
	Configure compar	ison base for com	pare channe	el						
	Value	Mode		Description	on					
	0	CNT		RTCC_C RTCC_C mode.	Cx_CCV is Cx_TIME/DATE	compared compare w		CC_CN ⁻ //E/DATE		ister. ndar
	1	PRECNT		Least sig	nificant bits of R	TCC_CCx_	CCV are com	pared wi	ith PREC	ONT.
10:9	Reserved	To ensure o	compatibility	with future	devices, always	write bits to	0. More infor	mation ir	1 1.2 Co	nven-
8:6	PRSSEL	0x0	RW	Compare	e/Capture Chan	nel PRS Inp	out Channel	Selectio	n	
	Select PRS input	channel for Comp	are/Capture	channel.						
	Value	Mode		Description	on					
	0	PRSCH0		PRS Cha	nnel 0 selected	as input				
	1	PRSCH1		PRS Cha	nnel 1 selected	as input				
	2	PRSCH2		PRS Cha	nnel 2 selected	as input				
	3	PRSCH3		PRS Cha	nnel 3 selected	as input				
	4	PRSCH4			nnel 4 selected	•				
	5	PRSCH5		PRS Cha	nnel 5 selected	as input				

Bit	Name	Reset Acc	cess Description
	6	PRSCH6	PRS Channel 6 selected as input
	7	PRSCH7	PRS Channel 7 selected as input
5:4	ICEDGE	0x0 RW	Input Capture Edge Select
	These bits control	which edges the PRS ed	dge detector triggers on.
	Value	Mode	Description
	0	RISING	Rising edges detected
	1	FALLING	Falling edges detected
	2	вотн	Both edges detected
	3	NONE	No edge detection, signal is left as it is
3:2	CMOA	0x0 RW	Compare Match Output Action
	Select output action	on on compare match.	
	Value	Mode	Description
	0	PULSE	A single clock cycle pulse is generated on output
	1	TOGGLE	Toggle output on compare match
	2	CLEAR	Clear output on compare match
	3	SET	Set output on compare match
1:0	MODE	0x0 RW	CC Channel Mode
	These bits select t	the mode for Compare/C	apture channel.
	Value	Mode	Description
	0	OFF	Compare/Capture channel turned off
	1	INPUTCAPTURE	Input capture
	2	OUTPUTCOMPAR	E Output compare

12.5.18 RTCC_CCx_CCV - Capture/Compare Value Register (Async Reg)

Offset															Ві	it Po	siti	on														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset																	0000000000															
Access																	[} }															
Name																2	<u>}</u>															

Bit	Name	Reset	Access	Description
31:0	CCV	0x00000000	RWH	Capture/Compare Value
	Shows the Capture/C	•		nel. Register can not be written and will be read as zero when

12.5.19 RTCC_CCx_TIME - Capture/Compare Time Register (Async Reg)

Offset															Bi	t Po	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	7	10	တ	∞	7	9	5	4	က	2	_	0
Reset											5	OX O		Š	e X	•			000			2	2				0x0			2	2	
Access											1/4/0				[}				RWH			1///0	-				RWH			ם, אלם		
Name											FOI	5			חאחטש				MINT								SECT				200	

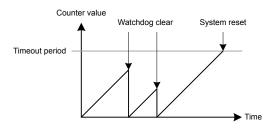
						_		0,	0,
Bit	Name	Reset	Access	Description					
31:22	Reserved	To ensure o	ompatibility	with future devic	es, always w	rite bits to 0. Mo	ore in	formation ii	1.2 Conven-
21:20	HOURT	0x0	RWH	Hours, Tens					
		part of the Capture NTMODE = NORM		alue for hours. R	egister can n	ot be written and	d will	be read as	zero when
19:16	HOURU	0x0	RWH	Hours, Units					
		art of the Capture/ NTMODE = NORM		lue for hours. Re	gister can no	t be written and	l will	be read as	zero when
15	Reserved	To ensure o	compatibility	with future devic	es, always w	rite bits to 0. Mo	ore in	formation ii	1.2 Conven-
14:12	MINT	0x0	RWH	Minutes, Ten	3				
		part of the Capture NTMODE = NORM		alue for minutes.	Register can	not be written a	and w	vill be read	as zero when
11:8	MINU	0x0	RWH	Minutes, Unit	S				
		art of the Capture/ NTMODE = NORM		lue for minutes.	Register can	not be written a	nd w	ill be read a	as zero when
7	Reserved	To ensure o	compatibility	with future devic	es, always w	rite bits to 0. Mo	ore in	formation ii	1.2 Conven-
6:4	SECT	0x0	RWH	Seconds, Ter	S				
		part of the Capture NTMODE = NORM		alue for seconds.	Register car	not be written	and v	will be read	as zero when
3:0	SECU	0x0	RWH	Seconds, Uni	ts				
		art of the Capture/ NTMODE = NORM		lue for seconds.	Register can	not be written a	and w	vill be read	as zero when

12.5.20 RTCC_CCx_DATE - Capture/Compare Date Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Ві	it Po	siti	on														
0x04C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	2	_	0
Reset			'	•	'	'	•		•	•				•	'	'		'	•	0		2	OX O				2	2		OXO	2	
Access																				RWH							ם, אלו			RWE	-	
Name																				MONTHT		FINCE					F	-		DAYII	2	

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
12	MONTHT	0	RWH	Month, Tens
	Shows the tens pa			alue for months. Register can not be written and will be read as zero when
11:8	MONTHU	0x0	RWH	Month, Units
	Shows the unit par RTCC_CTRL_CN			lue for months. Register can not be written and will be read as zero when
7:6	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
5:4	DAYT	0x0	RWH	Day of Month/week, Tens
	Shows the tens pa	•	•	lue for days. Register can not be written and will be read as zero when
3:0	DAYU	0x0	RWH	Day of Month/week, Units
	Shows the unit par RTCC_CTRL_CN	•	•	lue for days. Register can not be written and will be read as zero when


12.5.21 RTCC_RETx_REG - Retention Register

Offset															Bi	t Po	siti	on														
0x104	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX																														
Access																\ 0	2															
Name																	D L L															

Bit	Name	Reset	Access	Description
31:0	REG	0xXXXXXXX X	RW	General Purpose Retention Register

13. WDOG - Watchdog Timer

Quick Facts

What?

The Watchdog Timer (WDOG) resets the system in case of a fault condition, and can be enabled in all energy modes as long as the low frequency clock source is available.

Why?

If a software failure or external event renders the MCU unresponsive, a Watchdog timeout will reset the system to a known, safe state.

How?

An enabled Watchdog Timer implements a configurable timeout period. If the CPU fails to re-start the Watchdog Timer before it times out, a full system reset will be triggered. The Watchdog consumes insignificant power, and allows the device to remain safely in low energy modes for up to 256 seconds at a time.

13.1 Introduction

The purpose of the watchdog timer is to generate a reset in case of a system failure to increase application reliability. The failure can be caused by a variety of events, such as an ESD pulse or a software failure.

13.2 Features

- · Clock input from selectable oscillators
 - Internal 32 kHz LFRCO oscillator
 - Internal 1 kHz ULFRCO oscillator
 - External 32.768 kHz LFXO XTAL oscillator
 - HFCORECLK
- Configurable timeout period from 9 to 256k watchdog clock cycles
- Individual selection to keep running or freeze when entering EM2 DeepSleep or EM3 Stop
- Selection to keep running or freeze when entering debug mode
- Selection to block the CPU from entering Energy Mode 4
- · Selection to block the CMU from disabling the selected watchdog clock
- · Configurable warning interrupt at 25%,50%, or 75% of the timeout period
- Configurable window interrupt at 12.5%,25%,37.5%,50%,62.5%,75%,87.5% of the timeout period
- · Timeout interrupt
- · PRS as a watchdog clear
- Interrupt for the event where a PRS rising edge is absent before a software reset

13.3 Functional Description

The watchdog is enabled by setting the EN bit in WDOGn_CTRL. When enabled, the watchdog counts up to the period value configured through the PERSEL field in WDOGn_CTRL. If the watchdog timer is not cleared to 0 (by writing a 1 to the CLEAR bit in WDOGn_CMD) before the period is reached, the chip is reset. If a timely clear command is issued, the timer starts counting up from 0 again. The watchdog can optionally be locked by writing the LOCK bit in WDOGn_CTRL. Once locked, it cannot be disabled or reconfigured by software.

When the EN bit in WDOGn_CTRL is cleared to 0, the watchdog counter is reset.

13.3.1 Clock Source

Three clock sources are available for use with the watchdog, through the CLKSEL field in WDOGn_CTRL. The corresponding clocks must be enabled in the CMU. The SWOSCBLOCK bit in WDOGn_CTRL can be written to prevent accidental disabling of the selected clocks. Also, setting this bit will automatically start the selected oscillator source when the watchdog is enabled. The PERSEL field in WDOGn_CTRL is used to divide the selected watchdog clock, and the timeout for the watchdog timer can be calculated with the formula:

$$T_{TIMEOUT} = (2^{3+PERSEL} + 1) / f$$

where f is the frequency of the selected clock.

When the watchdog is enabled, it is recommended to clear the watchdog before changing PERSEL.

To use this module, the LE interface clock must be enabled in CMU HFBUSCLKEN0.

13.3.2 Debug Functionality

The watchdog timer can either keep running or be frozen when the device is halted by a debugger. This configuration is done through the DEBUGRUN bit in WDOGn CTRL. When code execution is resumed, the watchdog will continue counting where it left off.

13.3.3 Energy Mode Handling

The watchdog timer can be configured to either keep on running or freeze when entering EM2 DeepSleep or EM3 Stop. The configuration is done individually for each energy mode in the EM2RUN and EM3RUN bits in WDOGn_CTRL. When the watchdog has been frozen and is re-entering an energy mode where it is running, the watchdog timer will continue counting where it left off. For the watchdog there is no difference between EM0 Active and EM1 Sleep. The watchdog does not run in EM4 Hibernate/Shutoff. If EM4BLOCK in WDOGn_CTRL is set, the CPU will be prevented from entering EM4 Hibernate/Shutoff by software request.

Note:

If the WDOG is clocked by the LFXO or LFRCO, writing the SWOSCBLOCK bit will prevent the CPU from entering EM3 Stop. When running from the ULFRCO, writing the SWOSCBLOCK bit will prevent the CPU from entering EM4 Hibernate/Shutoff.

13.3.4 Register Access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers. Refer to 4.3 Access to Low Energy Peripherals (Asynchronous Registers) for a description on how to perform register accesses to Low Energy Peripherals. Note that clearing the EN bit in WDOGn_CTRL will reset the WDOG module, which will halt any ongoing register synchronization.

Note:

Never write to the WDOG registers when it is disabled, except to enable the watchdog by setting the EN bitfield in WDOGn_CTRL.

13.3.5 Warning Interrupt

The watchdog implements a warning interrupt which can be configured to occur at approximately 25%, 50%, or 75% of the timeout period through the WARNSEL field of the WDOGn_CTRL register. This interrupt can be used to wake up the cpu for clearing the watchdog. The warning point for the watchdog timer can be calculated with the formula:

$$T_{WARNING} = (2^{3+PERSEL}) * (WARNSEL / 4) + 1) / f$$

where f is the frequency of the selected clock.

When the watchdog is enabled, it is recommended to clear the watchdog before changing WARNSEL.

13.3.6 Window Interrupt

This interrupt occurs when the watchdog is cleared below a certain threshold. This threshold is given by the formula:

$$T_{\text{WARNING}} = (2^{3+\text{PERSEL}}) * (\text{WINSEL/8}) + 1)/f,$$

where f is the frequency of the selected clock.

This value will be approximately 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, or 87.5% of the timeout value based on the WINSEL field of the WDOGn_CTRL. Figure 13.2 WDOG Warning, Window, and Timeout on page 433 illustrates the warning, the window, and the timeout interrupts. Also, it shows where the prs rising edge needs to happen. The prs edge detection feature is discussed later.

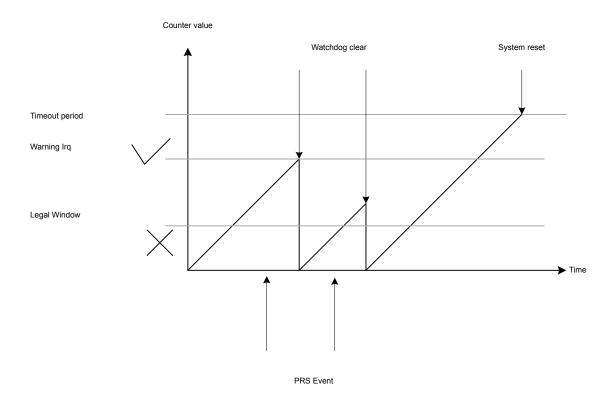


Figure 13.2. WDOG Warning, Window, and Timeout

When the watchdog is enabled, it is recommended to clear the watchdog before changing WINSEL.

13.3.7 PRS as Watchdog Clear

The first PRS channel (selected by register WDOGn_PCH0_PRSCTRL) can be used to clear the watchdog counter. To enable this feature, CLRSRC must be set to 1. Figure 13.2 PRS Clearing WDOG on page 434 shows how the PRS channel takes over the WDOG clear function. Clearing the WDOG with the PRS is mutually exclusive of clearing the WDT by software.

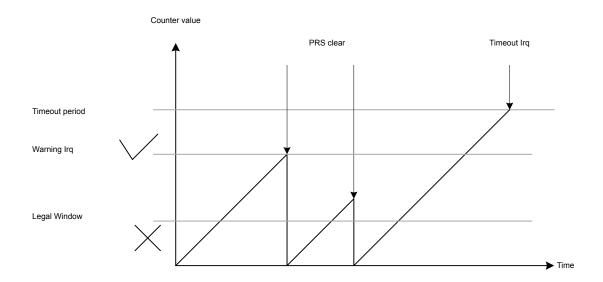


Figure 13.2. PRS Clearing WDOG

13.3.8 PRS Rising Edge Monitoring

PRS channels can be used to monitor multiple processes. If enabled, every time the watch dog timer is cleared the PRS channels are checked and any channel which has not seen an event can trigger an interrupt.

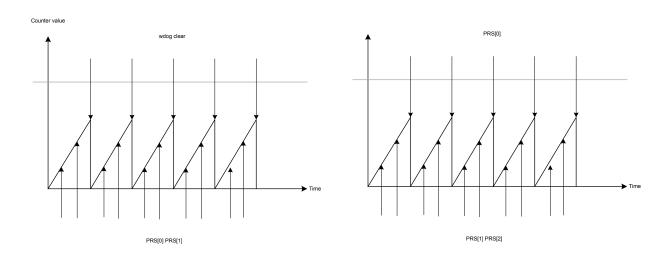


Figure 13.3. PRS Edge Monitoring in WDOG

13.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	WDOG_CTRL	RW	Control Register
0x004	WDOG_CMD	W1	Command Register
0x008	WDOG_SYNCBUSY	R	Synchronization Busy Register
0x00C	WDOGn_PCH0_PRSCTRL	RW	PRS Control Register
0x010	WDOGn_PCH1_PRSCTRL	RW	PRS Control Register
0x01C	WDOG_IF	R	Watchdog Interrupt Flags
0x020	WDOG_IFS	W1	Interrupt Flag Set Register
0x024	WDOG_IFC	(R)W1	Interrupt Flag Clear Register
0x028	WDOG_IEN	RW	Interrupt Enable Register

13.5 Register Description

13.5.1 WDOG_CTRL - Control Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Ві	it Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset	0	0		'	•		0×0				'	•	•	•	2	OX O		•	Š	OX OX		L	Š	•		0	0	0	0	0	0	0
Access	R ≪	Z.					X ≪								2	≥ Y			2	≥ Y		i	≥ Y			₩ W	Z.	R.	₩ M	W M	X ≪	X N
Name	WDOGRSTDIS	CLRSRC					WINSEL									WAKINSEL			2	CLNSEL		I C C L	PEKSEL			SWOSCBLOCK	EM4BLOCK	LOCK	EM3RUN	EM2RUN	DEBUGRUN	EN

	- -			
Bit	Name	Reset /	Access	Description
31	WDOGRSTDIS	0 6	₹W	Watchdog Reset Disable
	Disable watchdog res	set output.		
	Value	Mode		Description
	0	EN		A timeout will cause a watchdog reset
	1	DIS		A timeout will not cause a watchdog reset
30	CLRSRC	0 6	₹W	Watchdog Clear Source
	Select watchdog clea	ar source.		
	Value	Mode		Description
	0	SW		A write to the clear bit will clear the watchdog counter
	1	PCH0		A rising edge on the PRS Channel0 will clear the watchdog counter
29:27	Reserved	To ensure comp tions	atibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
26:24	WINSEL	0x0 F	₹W	Watchdog Illegal Window Select
	Select watchdog illeg	gal limit.		
	Value			Description
	0			Disabled.
	1			Window limit is 12.5% of the Timeout.
	2			Window limit is 25.0% of the Timeout.
	3			Window limit is 37.5% of the Timeout.
	4			Window limit is 50.0% of the Timeout.
	5			Window limit is 62.5% of the Timeout.
	6			Window limit is 75.0% of the Timeout.
	7			Window limit is 87.5% of the Timeout.

Bit	Name	Reset	Access	Description
23:18	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
17:16	WARNSEL	0x0	RW	Watchdog Timeout Period Select
	Select watchdog	warning timeout p	eriod.	
	Value			Description
	0			Disabled.
	1			Warning timeout is 25% of the Timeout.
	2			Warning timeout is 50% of the Timeout.
	3			Warning timeout is 75% of the Timeout.
15:14	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
13:12	CLKSEL	0x0	RW	Watchdog Clock Select
	Selects the WDO	G oscillator, i.e. th	ne clock on w	hich the watchdog will run.
	Value	Mode		Description
	0	ULFRCO		ULFRCO
	1	LFRCO		LFRCO
	2	LFXO		LFXO
	3	HFCORECI	LK	HFCORECLK
11:8	PERSEL	0xF	RW	Watchdog Timeout Period Select
	Select watchdog	timeout period.		
	Value			Description
	0			Timeout period of 9 watchdog clock cycles.
	1			Timeout period of 17 watchdog clock cycles.
	2			Timeout period of 33 watchdog clock cycles.
	3			Timeout period of 65 watchdog clock cycles.
	4			Timeout period of 129 watchdog clock cycles.
	5			Timeout period of 257 watchdog clock cycles.
	6			Timeout period of 513 watchdog clock cycles.
	7			Timeout period of 1k watchdog clock cycles.
	8			Timeout period of 2k watchdog clock cycles.
	9			Timeout period of 4k watchdog clock cycles.
	10			Timeout period of 8k watchdog clock cycles.
	11			Timeout period of 16k watchdog clock cycles.
	12			Timeout period of 32k watchdog clock cycles.
	13			Timeout period of 64k watchdog clock cycles.
	14			Timeout period of 128k watchdog clock cycles.

	15			
	15			Timeout period of 256k watchdog clock cycles.
7	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
6	SWOSCBLOCK	0	RW	Software Oscillator Disable Block
	Set to disallow disability is not already running		ed WDOG	oscillator. Writing this bit to 1 will turn on the selected WDOG oscillator if it
	Value			Description
	0			Software is allowed to disable the selected WDOG oscillator. See CMU for detailed description. Note that also CMU registers are lockable.
	1			Software is not allowed to disable the selected WDOG oscillator.
5	EM4BLOCK	0	RW	Energy Mode 4 Block
	Set to disallow EM4	entry by software	Э.	
	Value			Description
	0			EM4 can be entered by software. See EMU for detailed description.
	1			EM4 cannot be entered by software.
4	LOCK	0	RW	Configuration Lock
	Set to lock the watch	ndog configuratio	n. This bit	can only be cleared by reset.
	Value			Description
	0			Watchdog configuration can be changed.
	1			Watchdog configuration cannot be changed.
3	EM3RUN	0	RW	Energy Mode 3 Run Enable
	Set to keep watchdo	g running in EM3	3.	
	Value			Description
	0			Watchdog timer is frozen in EM3.
	1			Watchdog timer is running in EM3.
2	EM2RUN	0	RW	Energy Mode 2 Run Enable
	Set to keep watchdo	og running in EM2	2.	
	Value			Description
	0			Watchdog timer is frozen in EM2.
	1			Watchdog timer is running in EM2.
1	DEBUGRUN	0	RW	Debug Mode Run Enable
	Set to keep watchdo	g running in deb	ug mode.	
	Value			Description
	0			Watchdog timer is frozen in debug mode.
	1			Watchdog timer is running in debug mode.

Bit	Name	Reset	Access	Description
0	EN	0	RW	Watchdog Timer Enable
	Set to enabled watch	dog timer.		

13.5.2 WDOG_CMD - Command Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Pc	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	1	0
Reset						•																								·		0
Access																																W1
Name																																CLEAR

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	CLEAR	0	W1	Watchdog Timer Clear
	Clear watchdog ti	mer. The bit must	be written 4	watchdog cycles before the timeout.
	Value	Mode		Description
	0	UNCHANGE	ΞD	Watchdog timer is unchanged.
	1	CLEARED		Watchdog timer is cleared to 0.

13.5.3 WDOG_SYNCBUSY - Synchronization Busy Register

Offset															Ві	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset												•	•			'											'	•	0	0	0	0
Access																													22	2	~	<u>~</u>
Name																													PCH1_PRSCTRL	PCH0_PRSCTRL	CMD	CTRL

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
3	PCH1_PRSCTRL	0	R	PCH1_PRSCTRL Register Busy
	Set when the value w	ritten to PCH1_	PRSCTRL	is being synchronized.
2	PCH0_PRSCTRL	0	R	PCH0_PRSCTRL Register Busy
	Set when the value w	ritten to PCH0_	PRSCTRL	is being synchronized.
1	CMD	0	R	CMD Register Busy
	Set when the value w	ritten to CMD is	being synd	chronized.
0	CTRL	0	R	CTRL Register Busy
	Set when the value w	ritten to CTRL is	s being syn	nchronized.

13.5.4 WDOGn_PCHx_PRSCTRL - PRS Control Register (Async Reg)

PRSCH5

PRSCH6

PRSCH7

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															В	it	Pos	itio	1														
0x00C	33	29	28	27	26	25	24	23	22	3 6	7 6	2	19	18	17	,	9	Ω ;	4	13	12	7	9	6	8	7	9	7.	4	٠٠.	2	_	- 0
Reset							•		•	•				•	•	•	•							•	0		•	•	•	•		OXO	8
Access																									₩ M							X N	
Name																									PRSMISSRSTEN							PRSSEL	
Bit	Name					R	eset			A	CCE	988	3	De	scri	oti	on																
31:9	Reser	ved					o ens	sure	cc	mp	atibi	lity	/ W	ith f	utur	e a	devi	es,	alv	vay	s W	rite l	bits 1	to 0.	Мо	re i	nfor	mai	ion i	in 1.	2 C	onve	en-
8	PRSM	IISSI	RST	EN		0				F	RW			PR	S M	iss	sing	Eve	ent	Wi	II T	rigg	er a	Wa	tch	dog	g Re	eset					
	When	set,	a Pl	RS r	niss	ing	eve	nt w	/ill	trigg	jer a	a w	/at	chd	og re	ese	et.																
7:3	Reser	ved					o ens	sure	cc	mp	atibi	lity	/ W	ith f	utur	e a	devi	es,	alv	vay	s W	rite l	bits	to 0.	Мо	re i	nfor	mai	ion i	in 1.	2 C	onve	en-
2:0	PRSS	EL				0>	k 0			F	RW			PR	S CI	na	nne	I PR	S	Sele	ect												
	These	bits	sele	ect th	ne P	PRS	S inp	ut fo	or t	he F	PRS	ch	nar	nnel																			
	Value					М	ode							De	scrip	tio	n																
	0					PI	RSC	H0						PR	S CI	าลเ	nne	0 s	ele	cted	d as	inp	ut										
	1					PI	RSC	H1						PR	S CI	าลเ	nne	1 s	ele	cted	d as	inp	ut										
	2					PI	RSC	H2						PR	S CI	าลเ	nne	2 s	ele	cted	d as	inp	ut										
	3					PI	RSC	НЗ						PR	S CI	naı	nne	3 s	ele	cted	d as	inp	ut										

PRS Channel 5 selected as input

PRS Channel 6 selected as input

PRS Channel 7 selected as input

5

6

7

13.5.5 WDOG_IF - Watchdog Interrupt Flags

Offset	Bit Position					
0x01C	30 30 30 30 30 30 30 30 30 30 30 30 30 3	4	က	2	_	0
Reset		0	0	0	0	0
Access		2	22	2	~	~
Name		PEM1	PEMO	NIW	WARN	TOUT

Bit	Name	Reset	Access	Description									
31:5	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-									
4	PEM1	0	R	PRS Channel One Event Missing Interrupt Flag									
	Set when a WDC	hen a WDOG clear happens before a prs event has been detected on PRS channel one.											
3	PEM0	0	R	PRS Channel Zero Event Missing Interrupt Flag									
	Set when a WDC	OG clear happens b	pefore a prs	event has been detected on PRS channel zero.									
2	WIN	0	R	WDOG Window Interrupt Flag									
	Set when a WDC	OG clear happens b	pelow the wir	ndow limit value.									
1	WARN	0	R	WDOG Warning Timeout Interrupt Flag									
	Set when a WDC	G warning timeou	t has occurre	ed.									
0	TOUT	0	R	WDOG Timeout Interrupt Flag									
	Set when a WDC	Set when a WDOG timeout has occurred.											

13.5.6 WDOG_IFS - Interrupt Flag Set Register

Offset		Bit Position																														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset			'		'							•				'	•										'	0	0	0	0	0
Access																												W1	×	W1	W	W1
Name																												PEM1	PEM0	NN	WARN	TOUT

Bit	Name	Reset	Access	Description									
31:5	Reserved	To ensure co	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-									
4	PEM1	0	W1	Set PEM1 Interrupt Flag									
	Write 1 to set the F	e 1 to set the PEM1 interrupt flag											
3	PEM0	0	W1	Set PEM0 Interrupt Flag									
	Write 1 to set the F	PEM0 interrupt fla	g										
2	WIN	0	W1	Set WIN Interrupt Flag									
	Write 1 to set the V	VIN interrupt flag											
1	WARN	0	W1	Set WARN Interrupt Flag									
	Write 1 to set the V	VARN interrupt fla	ag										
0	TOUT	0	W1	Set TOUT Interrupt Flag									
	Write 1 to set the T	OUT interrupt fla	g										

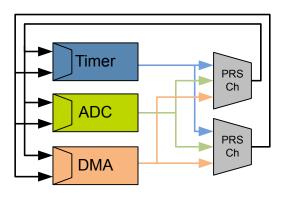
13.5.7 WDOG_IFC - Interrupt Flag Clear Register

13.5.7 V	VDOG_IFC - Interrup	ot Flag Clear Regi	ster	
Offset				Bit Position
0x024	30 29 28 27	26 24 23 23 22	20	0 1 2 3 4 6 9 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reset				00000
Access				(R)W1 (R)W1 (R)W1 (R)W1 (R)W1 (R)W1
Name				PEM1 PEM1 WIN WARN TOUT
Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4	PEM1	0	(R)W1	Clear PEM1 Interrupt Flag
	Write 1 to clear the (This feature must			g returns the value of the IF and clears the corresponding interrupt flags .
3	PEM0	0	(R)W1	Clear PEM0 Interrupt Flag

		แบบร		
4	PEM1	0	(R)W1	Clear PEM1 Interrupt Flag
		r the PEM1 interruր nust be enabled glo		g returns the value of the IF and clears the corresponding interrupt flags .
3	PEM0	0	(R)W1	Clear PEM0 Interrupt Flag
		r the PEM0 interruր nust be enabled glo		g returns the value of the IF and clears the corresponding interrupt flags .
2	WIN	0	(R)W1	Clear WIN Interrupt Flag
		r the WIN interrupt e enabled globally	0	returns the value of the IF and clears the corresponding interrupt flags (This
1	WARN	0	(R)W1	Clear WARN Interrupt Flag
		r the WARN interrunust be enabled glo		ng returns the value of the IF and clears the corresponding interrupt flags .
0	TOUT	0	(R)W1	Clear TOUT Interrupt Flag

Write 1 to clear the TOUT interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags

(This feature must be enabled globally in MSC.).


13.5.8 WDOG_IEN - Interrupt Enable Register

Offset		Bit Position																														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	ဝ	8	7	9	2	4	က	2	_	0
Reset			'		'	•					•					'	•									•	'	0	0	0	0	0
Access																												₽	₽	₽	₽	RW W
Name																												PEM1	PEM0	NIN	WARN	TOUT

Bit	Name	Reset	Access	Description								
31:5	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-								
4	PEM1	0	RW	PEM1 Interrupt Enable								
	Enable/disable the	the PEM1 interrupt										
3	PEM0	0	RW	PEM0 Interrupt Enable								
	Enable/disable the	PEM0 interrupt										
2	WIN	0	RW	WIN Interrupt Enable								
	Enable/disable the	WIN interrupt										
1	WARN	0	RW	WARN Interrupt Enable								
	Enable/disable the	WARN interrupt										
0	TOUT	0	RW	TOUT Interrupt Enable								
	Enable/disable the	TOUT interrupt										

14. PRS - Peripheral Reflex System

Quick Facts

What?

The Peripheral Reflex System (PRS) allows configurable, fast, and autonomous communication between peripherals.

Why?

Events and signals from one peripheral can be used as input signals or triggered by other peripherals. Besides, PRS reduces latency and ensures predictable timing by reducing software overhead and thus current consumption.

How?

Without CPU intervention the peripherals can send Reflex signals (both pulses and level) to each other in single or chained steps. The peripherals can be set up to perform actions based on the incoming Reflex signals. This results in improved system performance and reduced energy consumption.

14.1 Introduction

The Peripheral Reflex System (PRS) is a network allowing direct communication between different peripheral modules without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these Reflex signals through Reflex channels to consumer peripherals which perform actions depending on the Reflex signals received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

14.2 Features

- · 8 Configurable Reflex Channels
 - Each channel can be connected to any producing peripheral, including the PRS channels
 - · Consumers can choose which channel to listen to
 - Selectable edge detector (Rising, falling and both edges)
 - · Configurable AND and OR between channels
 - · Optional channel invert
 - · PRS can generate event to CPU
 - · Two independent DMA requests based on PRS channels
- · Software controlled channel output
 - · Configurable level
 - Triggered pulses

14.3 Functional Description

An overview of the PRS module is shown in Figure 14.1 PRS Overview on page 447. The PRS contains 8 Reflex channels. All channels can select any Reflex signal offered by the producers. The consumers can choose which PRS channel to listen to and perform actions based on the Reflex signals routed through that channel. The Reflex signals can be both edge signals and level signals.

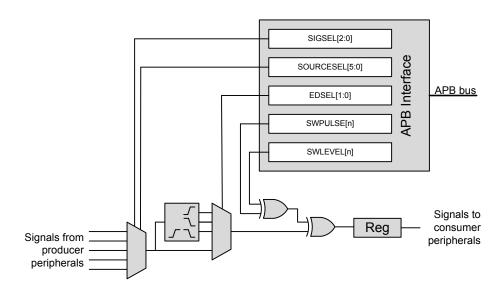


Figure 14.1. PRS Overview

14.3.1 Channel Functions

Different functions can be applied to a Reflex signal within the PRS. Each channel includes an edge detector to enable generation of pulse signals from level signals. The PRS channels can also be manually triggered by writing to PRS_SWPULSE or PRS_SWLEVEL. SWLEVEL[n] is a programmable level for each channel and holds the value it is programmed to. Setting SWPULSE[n] will cause the PRS channel to output a high pulse that is one HFCLK cycle wide. The SWLEVEL[n] and SWPULSE[n] signals are then XOR'ed with the selected input from the producers to form the output signal sent to the consumers listening to the channel. For example, when SWLEVEL[n] is set, if a producer produces a signal of 1, this will cause a channel output of 0.

14.3.1.1 Operational Mode

Reflex channels can operate in two modes, synchronous or asynchronous. In synchronous mode Reflex signals are clocked on the HFCLK, and can be used by any Reflex consumer. However, this will not work in EM2/EM3, since the HFCLK will be turned off.

Asynchronous Reflex channels are not clocked on HFCLK, and can be used even in EM2/EM3. However, the asynchronous mode can only be used by a subset of the Reflex consumers.

The asynchronous Reflex signals generated by the producers are indicated in the SIGSEL field of PRS_CHx_CTRL register. The consumers capable of utilizing asynchronous Reflex signals include the LEUART and the PCNT. The USART can also utilize some particular asynchronous signals. Refer to the respective modules for details on how to configure them to use the PRS.

Note: If a Reflex channel with ASYNC field of PRS_CHx_CTRL register set to '1' is used in a consumer not supporting asynchronous reflexes, the behaviour is undefined

14.3.1.2 Edge Detection and Clock Domains

Using EDSEL in PRS_CHx_CTRL, edge detection can be applied to a PRS signal. When edge detection is enabled, changes in the PRS input will result in a pulse on the PRS channel. This requires that the ASYNC bit in PRS_CHx_CTRL is cleared. Signals on the PRS input must be at least one HFCLK period wide in order to be detected properly. This applies to all cases when ASYNC is not used in the PRS.

For communication between peripherals on different prescaled clocks (e.g. between peripherals on HFCLK and HFPERCLK), there are two options. One option is to use level signals. No additional action is needed for level signals, but software must make sure that the level signals are held long enough for the destination domain to detect them. The other option is to use pulse signals. For pulse signals, edge detection should be enabled (by configuring EDSEL in PRS_CHx_CTRL to positive edge, negative edge, or both) and STRETCH in PRS_CHx_CTRL should be set. When edge detection and stretch are enabled on a PRS source, the output on the PRS channel is held long enough for the destination domain to detect the pulse. This also works if there are multiple destination domains running at different frequencies.

14.3.1.3 Configurable PRS Logic

Each PRS channel has three logic functions that can be used by themselves or in combination. The selected PRS source can be AND'ed with the next PRS channel output, OR'ed with the previous PRS channel output and inverted. This is shown in Figure 14.1 PRS Overview on page 447. The order of the functions is important. If OR and AND are enabled at the same time, AND is applied first, and then OR. Note that the previous and next channel options wrap around. Using the ORPREV option on the first PRS channel OR's with the output of the last PRS channel. Likewise, using the ANDNEXT option on the last PRS channel AND's with the output of the first PRS channel.

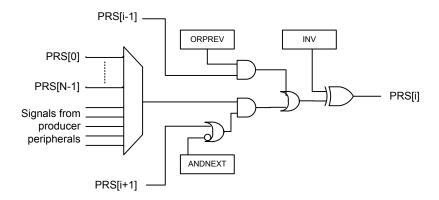


Figure 14.2. Configurable PRS Logic

In addition to the logic functions that can combine a PRS channel with one of its neighbors, a PRS channel can also select any other PRS channel as input. This can allow relatively complex logic functions to be created.

14.3.2 Producers

Through SOURCESEL in PRS_CHx_CTRL, each PRS channel selects signal producers. Each producer outputs one or more signals which can be selected by setting the SIGSEL field in PRS_CHx_CTRL. Setting the SOURCESEL bits to 0 (Off) leads to a constant 0 output from the input mux. An overview of the available producers can be found in the SOURCESEL and SIGSEL fields in PRS_CHx_CTRL. Note that GPIO producers are selected in the GPIO module using the edge interrupt configuration settings described in 32.3.5.1 Edge Interrupt Generation. GPIOPIN0 uses the selection for the EXTI0 interrupt, GPIOPIN1 uses the selection for the EXTI1 interrupt, and so on.

14.3.3 Consumers

Consumer peripherals (Listed in Table 14.1 Reflex Consumers on page 449) can be set to listen to a PRS channel and perform an action based on the signal received on that channel. While most consumers can handle either only pulse input or only level input, some can handle both pulse and level inputs.

Table 14.1. Reflex Consumers

Module	Reflex Input	Input Format				
TIMER	Compare/Capture Channel	Pulse / Level				
	Alternate Input for DTI (Available only in specific TIMERs See data sheet for details)	Level				
	Alternate Input for DTI Fault 0 (Available only in specific TIMERs See data sheet for details)	Level				
	Alternate Input for DTI Fault 1 (Available only in specific TIMERs See data sheet for details)	Level				
WTIMER	Compare/Capture Channel	Pulse / Level				
	Alternate Input for DTI (Available only in specific WTIMERs See data sheet for details)	Level				
	Alternate Input for DTI Fault 0 (Available only in specific WTIMERs See data sheet for details)	Level				
	Alternate Input for DTI Fault 1 (Available only in specific WTIMERs See data sheet for details)	Level				
USART	RX/TX Trigger	Pulse				
	Alternate Input for IrDA	Level				
	Alternate Input for RX	Level				
	Alternate Input for CLK	Level				
VDAC	Channel 0 Trigger	Pulse				
	Channel 1 Trigger	Pulse				
ADC	Single Sample Trigger	Pulse				
	Scan Sequence Trigger	Pulse				
СМИ	Alternate Input for Calibration Up-Counter	Level				
	Alternate Input for Calibration Down-Counter	Level				
LEUART	Alternate Input for RX	Level				
PCNT	Compare/Clear Trigger	Pulse/Level				
	Alternate Input for S0IN	Level				
	Alternate Input for S1IN	Level				

Module	Reflex Input	Input Format					
LESENSE	Scan Start	Pulse					
	LESENSE Decoder Bit 0	Level					
	LESENSE Decoder Bit 1	Level					
	LESENSE Decoder Bit 2	Level					
	LESENSE Decoder Bit 3	Level					
WDOG	Peripheral Watchdog	Pulse					
LETIMER	Start LETIMER	Pulse					
	Stop LETIMER	Pulse					
	Clear LETIMER	Pulse					
RTCC	Compare/Capture Channel	Pulse/Level					
PRS	Set Event	Pulse					
	DMA Request 0	Pulse					
	DMA Request 1	Pulse					
CAPSENSE	Start Conversion	Pulse					

14.3.4 Event on PRS

The PRS can be used to send events to the MCU. This is very useful in combination with the Wait For Event (WFE) instruction. A single PRS channel can be selected for this using SEVONPRSSEL in PRS_CTRL, and the feature is enabled by setting SEVONPRS in the same register.

Using SEVONPRS, one can e.g. set up a timer to trigger an event to the MCU periodically, every time letting the MCU pass through a WFE instruction in its program. This can help in performance-critical sections where timing is known, and the goal is to wait for an event, then execute some code, then wait for an event, then execute some code and so on.

14.3.5 DMA Request on PRS

Up to two independent DMA requests can be generated by the PRS. The PRS signals triggering the DMA requests are selected using the LDMA_CHx_REQSEL register, by setting SOURCESEL to PRS and SIGSEL to either PRSREQ0 or PRSREQ1. The DMA requests are cleared when the DMA services the requests. The requests are set whenever the selected PRS signals are high.

The selected PRS signals must have ASYNC cleared when they are used as inputs to the DMA. Edge detection in the PRS can be enabled to only trigger transfers on edges.

14.3.6 Example

The example below (illustrated in Figure 14.3 TIMER0 Overflow Starting ADC0 Single Conversions Through PRS Channel 5. on page 451) shows how to set up ADC0 to start single conversions every time TIMER0 overflows (one HFPERCLK cycle high pulse), using PRS channel 5:

- · Set SOURCESEL in PRS CH5 CTRL to TIMER0 as input to PRS channel 5.
- Set SIGSEL in PRS CH5 CTRL to select the overflow signal (TIMER00F from TIMER0).
- · Configure ADC0 with the desired conversion set-up.
- Set SINGLEPRSEN in ADC0_SINGLECTRL to 1 to enable single conversions to be started by a high PRS input signal.
- · Set SINGLEPRSSEL in ADC0_SINGLECTRL to 0x5 to select PRS channel 5 as input to start the single conversion.
- Start TIMER0 with the desired TOP value, an overflow PRS signal is output automatically on overflow. Note that the ADC results needs to be fetched either by the CPU or DMA.

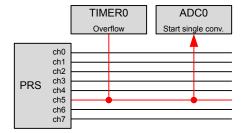


Figure 14.3. TIMER0 Overflow Starting ADC0 Single Conversions Through PRS Channel 5.

14.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	PRS_SWPULSE	W1	Software Pulse Register
0x004	PRS_SWLEVEL	RW	Software Level Register
0x008	PRS_ROUTEPEN	RW	I/O Routing Pin Enable Register
0x010	PRS_ROUTELOC0	RW	I/O Routing Location Register
0x014	PRS_ROUTELOC1	RW	I/O Routing Location Register
0x030	PRS_CTRL	RW	Control Register
0x034	PRS_DMAREQ0	RW	DMA Request 0 Register
0x038	PRS_DMAREQ1	RW	DMA Request 1 Register
0x040	PRS_PEEK	R	PRS Channel Values
0x050	PRS_CH0_CTRL	RW	Channel Control Register
	PRS_CHx_CTRL	RW	Channel Control Register
0x06C	PRS_CH7_CTRL	RW	Channel Control Register
0x100	PRS_TRACECTRL	RW	MTB Trace Control Register

14.5 Register Description

14.5.1 PRS_SWPULSE - Software Pulse Register

Offset	Bit Position									
0x000	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	, 9	2	4	8	7 -	0			
Reset		0	0	0	0	0 0	0			
Access		× ×	×	W1	W .	<u> </u>	×			
Name		CH/PULSE CH6PULSE	CH5PULSE	H4PUL	H3PUL	CH2PULSE CH1PULSE	CHOPULSE			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure tions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7	CH7PULSE	0	W1	Channel 7 Pulse Generation
	See bit 0.			
6	CH6PULSE	0	W1	Channel 6 Pulse Generation
	See bit 0.			
5	CH5PULSE	0	W1	Channel 5 Pulse Generation
	See bit 0.			
4	CH4PULSE	0	W1	Channel 4 Pulse Generation
	See bit 0.			
3	CH3PULSE	0	W1	Channel 3 Pulse Generation
	See bit 0.			
2	CH2PULSE	0	W1	Channel 2 Pulse Generation
	See bit 0.			
1	CH1PULSE	0	W1	Channel 1 Pulse Generation
	See bit 0.			
0	CH0PULSE	0	W1	Channel 0 Pulse Generation
				lse. This pulse is XOR'ed with the corresponding bit in the SWLEVEL regise the channel output.

14.5.2 PRS_SWLEVEL - Software Level Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	9	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset													ı												0	0	0	0	0	0	0	0
Access																									₩	₩	Σ	₩	Σ	R	₩	S. S.
Name																									CH7LEVEL	CH6LEVEL	CH5LEVEL	CH4LEVEL	CH3LEVEL	CH2LEVEL	CH1LEVEL	CHOLEVEL

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7	CH7LEVEL	0	RW	Channel 7 Software Level
	See bit 0.			
6	CH6LEVEL	0	RW	Channel 6 Software Level
	See bit 0.			
5	CH5LEVEL	0	RW	Channel 5 Software Level
	See bit 0.			
4	CH4LEVEL	0	RW	Channel 4 Software Level
	See bit 0.			
3	CH3LEVEL	0	RW	Channel 3 Software Level
	See bit 0.			
2	CH2LEVEL	0	RW	Channel 2 Software Level
	See bit 0.			
1	CH1LEVEL	0	RW	Channel 1 Software Level
	See bit 0.			
0	CH0LEVEL	0	RW	Channel 0 Software Level
	The value in this to generate the c	•	with the corr	responding bit in the SWPULSE register and the selected PRS input signal

14.5.3 PRS_ROUTEPEN - I/O Routing Pin Enable Register

Offset															Ві	t Po	sitio	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset			'			'								•	'									•	0	0	0	0	0	0	0	0
Access																									₽	M	₽	₽	₽	RW	W.	RW
Name																									CH7PEN	CH6PEN	CH5PEN	CH4PEN	CH3PEN	CH2PEN	CH1PEN	CHOPEN

		Access	Description
Reserved	To ensure contions	npatibility w	vith future devices, always write bits to 0. More information in 1.2 Conven-
CH7PEN	0	RW	CH7 Pin Enable
When set, GPIO outpu	t from PRS cha	nnel 7 is e	nabled
CH6PEN	0	RW	CH6 Pin Enable
When set, GPIO outpu	t from PRS cha	nnel 6 is e	nabled
CH5PEN	0	RW	CH5 Pin Enable
When set, GPIO outpu	t from PRS cha	nnel 5 is e	nabled
CH4PEN	0	RW	CH4 Pin Enable
When set, GPIO outpu	t from PRS cha	nnel 4 is e	nabled
CH3PEN	0	RW	CH3 Pin Enable
When set, GPIO outpu	t from PRS cha	nnel 3 is e	nabled
CH2PEN	0	RW	CH2 Pin Enable
When set, GPIO outpu	t from PRS cha	nnel 2 is e	nabled
CH1PEN	0	RW	CH1 Pin Enable
When set, GPIO outpu	t from PRS cha	nnel 1 is e	nabled
CH0PEN	0	RW	CH0 Pin Enable
When set, GPIO outpu	t from PRS cha	nnel 0 is e	nabled
	CH7PEN When set, GPIO output CH6PEN When set, GPIO output CH5PEN When set, GPIO output CH4PEN When set, GPIO output CH3PEN When set, GPIO output CH3PEN When set, GPIO output CH2PEN When set, GPIO output CH1PEN	CH7PEN 0 When set, GPIO output from PRS characters of the	tions CH7PEN 0 RW When set, GPIO output from PRS channel 7 is e CH6PEN 0 RW When set, GPIO output from PRS channel 6 is e CH5PEN 0 RW When set, GPIO output from PRS channel 5 is e CH4PEN 0 RW When set, GPIO output from PRS channel 4 is e CH3PEN 0 RW When set, GPIO output from PRS channel 3 is e CH2PEN 0 RW When set, GPIO output from PRS channel 3 is e CH2PEN 0 RW When set, GPIO output from PRS channel 2 is e CH1PEN 0 RW When set, GPIO output from PRS channel 1 is e

14.5.4 PRS_ROUTELOC0 - I/O Routing Location Register

Offset						Bit Po	sition			
0x010	30	29 28 27	26 25 24	23	20	16 17 18	5 4	13 17 10 10	9 8 7	rv 4 w v - o
Reset			0000			00×0		00×00		00×0
Access		i	 } Y			RW		RW		§ 8
Name		<u> </u>				CH2LOC		CH1LOC		СНОГОС
Bit	Name		Reset		Access	Description				
31:30	Reserv	/ed	To ens	ure com	patibility v	vith future dev	rices, al	ways write bits to	0. More infor	mation in 1.2 Conven-
29:24	CH3LC	С	0x00		RW	I/O Location	1			
	Decide	s the location	on of the cha	annel I/O	pin					
	Value		Mode			Description				
	0		LOC0			Location 0				
	1		LOC1			Location 1				
	2		LOC2			Location 2				
	3		LOC3			Location 3				
23:22	Reserv	/ed	To ens	ure com	patibility v	vith future dev	ices, al	ways write bits to	0. More infor	mation in 1.2 Conven-
21:16	CH2LC	DC .	0x00		RW	I/O Location	1			
	Decide	s the location	on of the cha	annel I/O	pin					
	Value		Mode			Description				
	0		LOC0							
			2000			Location 0				
	1		LOC1			Location 0 Location 1				
	2		LOC1			Location 1 Location 2				
			LOC1			Location 1				
15:14	2	ved	LOC1 LOC2 LOC3	ure com	patibility v	Location 1 Location 2 Location 3	ices, al	ways write bits to	0. More infor	mation in 1.2 Conven-
15:14 13:8	3		LOC1 LOC2 LOC3	ure com	patibility v	Location 1 Location 2 Location 3		ways write bits to	0. More infor	mation in 1.2 Conven-
	2 3 Reserv	DC .	LOC1 LOC2 LOC3 To ens		RW	Location 1 Location 2 Location 3 with future dev		ways write bits to	0 0. More infor	mation in 1.2 Conven-
	2 3 Reserv	DC .	LOC1 LOC2 LOC3 To enstions 0x00		RW	Location 1 Location 2 Location 3 with future dev		ways write bits to	0 0. More infor	mation in 1.2 Conven-
	2 3 Reserve	DC .	LOC1 LOC2 LOC3 To enstions 0x00 on of the cha		RW	Location 1 Location 2 Location 3 with future dev		ways write bits to	0 0. More infor	mation in 1.2 Conven-
	2 3 Reserve CH1LC Decide Value	DC .	LOC1 LOC2 LOC3 To enstions 0x00 on of the cha		RW	Location 1 Location 2 Location 3 with future dev I/O Location Description		ways write bits to	0 0. More infor	mation in 1.2 Conven-
	2 3 Reserve CH1LC Decides Value 0	DC .	LOC1 LOC2 LOC3 To ensitions 0x00 on of the cha		RW	Location 1 Location 2 Location 3 with future dev I/O Location Description Location 0		ways write bits to	0. More infon	mation in 1.2 Conven-

Bit	Name	Reset	Access	Description
7:6	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
5:0	CH0LOC	0x00	RW	I/O Location
	Decides the loca	ation of the channe	I I/O pin	
	Value	Mode		Description
	0	LOC0		Location 0
	1	LOC1		Location 1
	2	LOC2		Location 2
	3	LOC3		Location 3

14.5.5 PRS_ROUTELOC1 - I/O Routing Location Register

Offset										В	it Po	sition											
0x014	31	29	27	26	25	23	22	21	19	18	16	15	13	12	19	6	ω	7	5	4		2	1 0
Reset				0000					00×0						00×0							0x0	
Access			<u> </u>	 } Y					Z ≷						Z N							§ §	
Name			2	CHYLOC					CH6LOC						CH5LOC							CH4LOC	
Bit	Name				Reset			Acces	s D	escrip	otion												
31:30	Reserv	/ed			To ens	sure	com	patibilit	y with	future	e dev	rices, a	alway	s write	e bits	to 0. N	Логе	e infor	mati	ion i	in 1.	2 Cc	nven-
29:24	CH7LC	C			0x00			RW	1/0	O Loc	atior	1											
	Decide	s the	locatio	on of	the cha	anne	l I/O	pin															
	Value				Mode				D	escrip	tion												
	0				LOC0				Lo	ocatio	n 0												
	1				LOC1				Lo	ocatio	n 1												
	2				LOC2				Lo	ocatio	n 2												
23:22	Reserv	/ed			To ens	sure	com	patibilit	y with	future	e dev	rices, a	alway	s write	e bits	to 0. N	Nore	e infor	mati	ion i	in 1.	2 Cc	nven-
21:16	CH6LC	OC			0x00			RW	1/0	O Loc	atior	1											
	Decide	s the	locatio	on of	the cha	anne	l I/O	pin															
	Value				Mode				D	escrip	tion												
	0				LOC0				Lo	ocatio	n 0												
	1				LOC1				Lo	ocatio	n 1												
	2				LOC2				Lo	ocatio	n 2												
15:14	Reserv	/ed			To ens	sure	com	patibilit	y with	future	e dev	rices, a	alway	s write	e bits	to 0. N	Логе	e infor	mati	ion i	in 1.	2 Cc	nven-
13:8	CH5LC	OC			0x00			RW	1/0	O Loc	atior	1											
	Decide	es the	locatio	on of	the cha	anne	l I/O	pin															
	Value				Mode				D	escrip	tion												
	0				LOC0				Lo	ocatio	n 0												
	1				LOC1				Lo	ocatio	n 1												
	2				LOC2				Lo	ocatio	n 2												
7:6	Reserv	/ed			To ens	sure	com	patibilit	y with	future	e dev	rices, a	alway	s write	e bits	to 0. N	Nore	e infor	mati	ion i	in 1.	2 Cc	nven-
5:0	CH4LC	OC			0x00			RW	1/0	O Loc	atior	1											
	Decide	s the	locatio	on of	the ch	anne	l I/O	pin															

Bit	Name	Reset	Access	Description
	Value	Mode		Description
	0	LOC0		Location 0
	1	LOC1		Location 1
	2	LOC2		Location 2

14.5.6 PRS_CTRL - Control Register

Offset															Ві	it Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	_	0
Reset		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•		•	•	•	•				0x0	•	0
Access																														X W		RW
Name																														SEVONPRSSEL		SEVONPRS

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
3:1	SEVONPRSSEL	0x0	RW	SEVONPRS PRS Channel Select
	Selects PRS channe	el for SEVONPRS	3	
	Value	Mode		Description
	0	PRSCH0		PRS Channel 0 selected
	1	PRSCH1		PRS Channel 1 selected
	2	PRSCH2		PRS Channel 2 selected
	3	PRSCH3		PRS Channel 3 selected
	4	PRSCH4		PRS Channel 4 selected
	5	PRSCH5		PRS Channel 5 selected
	6	PRSCH6		PRS Channel 6 selected
	7	PRSCH7		PRS Channel 7 selected
0	SEVONPRS	0	RW	Set Event on PRS
	When set, an event	is generated to th	e CPU wh	en the PRS channel selected by SEVONPRSSEL is high

14.5.7 PRS_DMAREQ0 - DMA Request 0 Register

Offset															Bi	t Pc	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset		•			•		•	•													•				0x0			•				
Access																									ΑŠ							
Name																									PRSSEL							

				P.R. S
Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure co	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
8:6	PRSSEL	0x0	RW	DMA Request 0 PRS Channel Select
	Selects PRS cha	annel for DMA reque	st 0 from the	e PRS (PRSREQ0).
	Value	Mode		Description
	0	PRSCH0		PRS Channel 0 selected
	1	PRSCH1		PRS Channel 1 selected
	2	PRSCH2		PRS Channel 2 selected
	3	PRSCH3		PRS Channel 3 selected
	4	PRSCH4		PRS Channel 4 selected
	5	PRSCH5		PRS Channel 5 selected
	6	PRSCH6		PRS Channel 6 selected
	7	PRSCH7		PRS Channel 7 selected
5:0	Reserved	To ensure co	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

14.5.8 PRS_DMAREQ1 - DMA Request 1 Register

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	2	4	က	2	_	0
Reset							•						•	•				•							0×0			•	•			
Access																									Z ≷							
Name																									PRSSEL							

Name				PRSs
Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure co	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
8:6	PRSSEL	0x0	RW	DMA Request 1 PRS Channel Select
	Selects PRS cha	annel for DMA reque	est 1 from th	e PRS (PRSREQ1).
	Value	Mode		Description
	0	PRSCH0		PRS Channel 0 selected
	1	PRSCH1		PRS Channel 1 selected
	2	PRSCH2		PRS Channel 2 selected
	3	PRSCH3		PRS Channel 3 selected
	4	PRSCH4		PRS Channel 4 selected
	5	PRSCH5		PRS Channel 5 selected
	6	PRSCH6		PRS Channel 6 selected
	7	PRSCH7		PRS Channel 7 selected
5:0	Reserved	To ensure co	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

14.5.9 PRS_PEEK - PRS Channel Values

Offset															Ві	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	2	4	က	2	_	0
Reset			'		'						'					'	•								0	0	0	0	0	0	0	0
Access																									22	22	22	R	22	22	~	c
Name																									H7VAL	H6VAL	H5VAL	H4VAL	13VAL	12VAL	11VAL	IOVAL
																									고 -	2	고 -	CH	2	S	공	당

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure tions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7	CH7VAL	0	R	Channel 7 Current Value
	See bit 0.			
6	CH6VAL	0	R	Channel 6 Current Value
	See bit 0.			
5	CH5VAL	0	R	Channel 5 Current Value
	See bit 0.			
4	CH4VAL	0	R	Channel 4 Current Value
	See bit 0.			
3	CH3VAL	0	R	Channel 3 Current Value
	See bit 0.			
2	CH2VAL	0	R	Channel 2 Current Value
	See bit 0.			
1	CH1VAL	0	R	Channel 1 Current Value
	See bit 0.			
0	CH0VAL	0	R	Channel 0 Current Value
				lue of channel 0. Any enabled edge detection will not be visible. This value $c=1$, no value is returned

14.5.10 PRS_CHx_CTRL - Channel Control Register

Offset															Bi	t Po	sitio	on														
0x050	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	တ	8	7	9	5	4	က	2	1	0
Reset		0		0	0	0	0				Ş	S S									00x0										0x0	
Access		M		₩ M	₩ M	Z.	₹				2	<u>}</u>									₽										Z N	
Name		ASYNC		ANDNEXT	ORPREV	N	STRETCH					EDSEL									SOURCESEL										SIGSEL	
Bit	Na	me					Re	set			Ac	ces	s l	Des	crip	tion	١															

incoming signal NEGEDGE A one HFCLK close the incoming signal the			
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output 27 ORPREV 0 RW Or Previous If set, channel output is OR'ed with the previous channel output 26 INV 0 RW Invert Channel If set, channel output is inverted 25 STRETCH 0 RW Stretch Channel If set, stretches channel output to ensure that the target clock doma 24:22 Reserved To ensure compatibility with future devices, a tions 21:20 EDSEL 0x0 RW Edge Detect Sele Select edge detection. Value Mode Description 0 OFF Signal is left as it i 1 POSEDGE A one HFCLK cyclincoming signal 2 NEGEDGE A one HFCLK clock	k cycle pulse is generate	ed for every edge of	the in-
ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output 27 ORPREV 0 RW Or Previous If set, channel output is OR'ed with the previous channel output 26 INV 0 RW Invert Channel If set, channel output is inverted 25 STRETCH 0 RW Stretch Channel If set, stretches channel output to ensure that the target clock doma 24:22 Reserved To ensure compatibility with future devices, a tions 21:20 EDSEL 0x0 RW Edge Detect Seles Select edge detection. Value Mode Description 0 OFF Signal is left as it is 1 POSEDGE A one HFCLK cycles.	k cycle pulse is generat ll	ted for every negative	edge of
ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output 27 ORPREV 0 RW Or Previous If set, channel output is OR'ed with the previous channel output 26 INV 0 RW Invert Channel If set, channel output is inverted 25 STRETCH 0 RW Stretch Channel If set, stretches channel output to ensure that the target clock doma 24:22 Reserved To ensure compatibility with future devices, a tions 21:20 EDSEL 0x0 RW Edge Detect Seles Select edge detection. Value Mode Description	e pulse is generated for	every positive edge	of the
Set to enable asynchronous mode of this reflex signal 29	3		
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output 27 ORPREV 0 RW Or Previous If set, channel output is OR'ed with the previous channel output 26 INV 0 RW Invert Channel If set, channel output is inverted 25 STRETCH 0 RW Stretch Channel If set, stretches channel output to ensure that the target clock doma 24:22 Reserved To ensure compatibility with future devices, a tions 21:20 EDSEL 0x0 RW Edge Detect Selections			
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output 27 ORPREV 0 RW Or Previous If set, channel output is OR'ed with the previous channel output 26 INV 0 RW Invert Channel If set, channel output is inverted 25 STRETCH 0 RW Stretch Channel If set, stretches channel output to ensure that the target clock doma 24:22 Reserved To ensure compatibility with future devices, a tions			
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output 27 ORPREV 0 RW Or Previous If set, channel output is OR'ed with the previous channel output 26 INV 0 RW Invert Channel If set, channel output is inverted 25 STRETCH 0 RW Stretch Channel If set, stretches channel output to ensure that the target clock doma 24:22 Reserved To ensure compatibility with future devices, a	ct		
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output 27 ORPREV 0 RW Or Previous If set, channel output is OR'ed with the previous channel output 26 INV 0 RW Invert Channel If set, channel output is inverted	always write bits to 0. Mo	ore information in 1.2	Conven-
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output 27 ORPREV 0 RW Or Previous If set, channel output is OR'ed with the previous channel output 26 INV 0 RW Invert Channel If set, channel output is inverted	n sees it.		
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output 27 ORPREV 0 RW Or Previous If set, channel output is OR'ed with the previous channel output 26 INV 0 RW Invert Channel	 Output		
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output 27 ORPREV 0 RW Or Previous If set, channel output is OR'ed with the previous channel output			
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output 27 ORPREV 0 RW Or Previous			
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next If set, channel output is AND'ed with the next channel output			
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions 28 ANDNEXT 0 RW And Next			
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a tions			
30 ASYNC 0 RW Asynchronous R Set to enable asynchronous mode of this reflex signal 29 Reserved To ensure compatibility with future devices, a			
30 ASYNC 0 RW Asynchronous R	always write bits to 0. Mo	ore information in 1.2	Conven-
tions	eflex		
31 Reserved To ensure compatibility with future devices, a	always write bits to 0. Mo	ore information in 1.2	Conven-
Bit Name Reset Access Description			

Bit	Name	Reset	Access	Description
14:8	SOURCESEL	0x00	RW	Source Select
	Select input source to	PRS channel.		
	Value	Mode		Description
	0b0000000	NONE		No source selected
	0b0000001	PRSL		Peripheral Reflex System
	0b0000010	ACMP0		Analog Comparator 0
	0b0000011	ACMP1		Analog Comparator 1
	0b0000100	ADC0		Analog to Digital Converter 0
	0b0000101	RTCC		Real-Time Counter and Calendar
	0b0000110	GPIOL		General purpose Input/Output
	0b0000111	GPIOH		General purpose Input/Output
	0b0001000	LETIMER0		Low Energy Timer 0
	0b0001001	PCNT0		Pulse Counter 0
	0b0001010	CRYOTIMER		CRYOTIMER
	0b0001011	CMU		Clock Management Unit
	0b0010001	VDAC0		Digital to Analog Converter 0
	0b0010010	LESENSEL		Low Energy Sensor Interface
	0b0010011	LESENSEH		Low Energy Sensor Interface
	0b0010100	LESENSED		Low Energy Sensor Interface
	0b0010101	LESENSE		Low Energy Sensor Interface
	0b0100000	USART0		Universal Synchronous/Asynchronous Receiver/Transmitter 0
	0b0100001	USART1		Universal Synchronous/Asynchronous Receiver/Transmitter 1
	0b0100010	USART2		Universal Synchronous/Asynchronous Receiver/Transmitter 2
	0b0100011	USART3		Universal Synchronous/Asynchronous Receiver/Transmitter 3
	0b0100100	UART0		Universal Asynchronous Receiver/Transmitter 0
	0b0100101	TIMER0		Timer 0
	0b0100110	TIMER1		Timer 1
	0b0100111	WTIMER0		Wide Timer 0
	0b0101000	WTIMER1		Wide Timer 1
	0b0101001	CM0P		
7:3	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	SIGSEL	0x0	RW	Signal Select
	Select signal input to	PRS channel. Se	elected sig	nal depends on SOURCESEL as indicated.
	Value	Mode		Description
	SOURCESEL =	0b000000		(NONE)

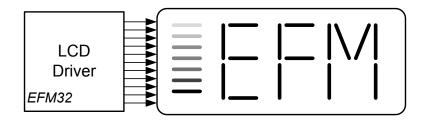
Name	Reset Ac	cess	Description
0bxxx	OFF		Channel input selection is turned off
SOURCESEL =	0b0000001		(PRSL)
0b000	PRSCH0		PRS channel 0 PRSCH0 (Asynchronous)
0b001	PRSCH1		PRS channel 1 PRSCH1 (Asynchronous)
0b010	PRSCH2		PRS channel 2 PRSCH2 (Asynchronous)
0b011	PRSCH3		PRS channel 3 PRSCH3 (Asynchronous)
0b100	PRSCH4		PRS channel 4 PRSCH4 (Asynchronous)
0b101	PRSCH5		PRS channel 5 PRSCH5 (Asynchronous)
0b110	PRSCH6		PRS channel 6 PRSCH6 (Asynchronous)
0b111	PRSCH7		PRS channel 7 PRSCH7 (Asynchronous)
SOURCESEL =	0b0000010		(ACMP0)
0b000	ACMP0OUT		Analog comparator output ACMP0OUT (Asynchronous)
SOURCESEL =	0b0000011		(ACMP1)
0b000	ACMP1OUT		Analog comparator output ACMP1OUT (Asynchronous)
SOURCESEL =	0b0000100		(ADC0)
0b000	ADC0SINGLE		ADC single conversion done ADC0SINGLE (Asynchronous)
0b001	ADC0SCAN		ADC scan conversion done ADC0SCAN (Asynchronous)
SOURCESEL =	0b0000101		(RTCC)
0b001	RTCCCCV0		RTCC Compare 0 RTCCCCV0 (Asynchronous)
0b010	RTCCCCV1		RTCC Compare 1 RTCCCCV1 (Asynchronous)
0b011	RTCCCCV2		RTCC Compare 2 RTCCCCV2 (Asynchronous)
SOURCESEL =	0b0000110		(GPIOL)
0b000	GPIOPIN0		GPIO pin 0 GPIOPIN0 (Asynchronous)
0b001	GPIOPIN1		GPIO pin 1 GPIOPIN1 (Asynchronous)
0b010	GPIOPIN2		GPIO pin 2 GPIOPIN2 (Asynchronous)
0b011	GPIOPIN3		GPIO pin 3 GPIOPIN3 (Asynchronous)
0b100	GPIOPIN4		GPIO pin 4 GPIOPIN4 (Asynchronous)
0b101	GPIOPIN5		GPIO pin 5 GPIOPIN5 (Asynchronous)
0b110	GPIOPIN6		GPIO pin 6 GPIOPIN6 (Asynchronous)
0b111	GPIOPIN7		GPIO pin 7 GPIOPIN7 (Asynchronous)
SOURCESEL =	0b0000111		(GPIOH)
0b000	GPIOPIN8		GPIO pin 8 GPIOPIN8 (Asynchronous)
0b001	GPIOPIN9		GPIO pin 9 GPIOPIN9 (Asynchronous)
0b010	GPIOPIN10		GPIO pin 10 GPIOPIN10 (Asynchronous)
0b011	GPIOPIN11		GPIO pin 11 GPIOPIN11 (Asynchronous)
0b100	GPIOPIN12		GPIO pin 12 GPIOPIN12 (Asynchronous)
0b101	GPIOPIN13		GPIO pin 13 GPIOPIN13 (Asynchronous)

Name	Reset Access	Description
0b110	GPIOPIN14	GPIO pin 14 GPIOPIN14 (Asynchronous)
0b111	GPIOPIN15	GPIO pin 15 GPIOPIN15 (Asynchronous)
SOURCESEL =	0b0001000	(LETIMER0)
0b000	LETIMER0CH0	LETIMER CH0 Out LETIMER0CH0 (Asynchronous)
0b001	LETIMER0CH1	LETIMER CH1 Out LETIMER0CH1 (Asynchronous)
SOURCESEL =	0b0001001	(PCNT0)
0b000	PCNT0TCC	Triggered compare match PCNT0TCC (Asynchronous)
0b001	PCNT0UFOF	Counter overflow or underflow PCNT0UFOF (Asynchronous)
0b010	PCNT0DIR	Counter direction PCNT0DIR (Asynchronous)
SOURCESEL =	0b0001010	(CRYOTIMER)
0b000	CRYOTIMERPERIOD	CRYOTIMER Output CRYOTIMERPERIOD (Asynchronous)
SOURCESEL =	0b0001011	(CMU)
0b000	CMUCLKOUT0	Clock Output 0 CMUCLKOUT0 (Asynchronous)
0b001	CMUCLKOUT1	Clock Output 1 CMUCLKOUT1 (Asynchronous)
0b111	CMUCLKOUT2	Clock Output 2 CMUCLKOUT2 (Asynchronous)
SOURCESEL =	0b0010001	(VDAC0)
0b000	VDAC0CH0	DAC ch0 conversion done VDAC0CH0
0b001	VDAC0CH1	DAC ch1 conversion done VDAC0CH1
0b010	VDAC0OPA0	OPA0 warmed up. output is valid. VDAC0OPA0 (Asynchronous)
0b011	VDAC0OPA1	OPA1 warmed up. output is valid. VDAC0OPA1 (Asynchronous)
0b100	VDAC0OPA2	OPA2 warmed up. output is valid. VDAC0OPA2 (Asynchronous)
0b101	VDAC0OPA3	OPA3 warmed up. output is valid. VDAC0OPA3 (Asynchronous)
SOURCESEL =	0b0010010	(LESENSEL)
0b000	LESENSESCANRES0	LESENSE SCANRES register, bit 0 LESENSESCANRES0 (Asynnous)
0b001	LESENSESCANRES1	LESENSE SCANRES register, bit 1 LESENSESCANRES1 (Asyn nous)
0b010	LESENSESCANRES2	LESENSE SCANRES register, bit 2 LESENSESCANRES2 (Asynnous)
0b011	LESENSESCANRES3	LESENSE SCANRES register, bit 3 LESENSESCANRES3 (Asynous)
0b100	LESENSESCANRES4	LESENSE SCANRES register, bit 4 LESENSESCANRES4 (Asyn nous)
0b101	LESENSESCANRES5	LESENSE SCANRES register, bit 5 LESENSESCANRES5 (Asynnous)
0b110	LESENSESCANRES6	LESENSE SCANRES register, bit 6 LESENSESCANRES6 (Asynnous)
0b111	LESENSESCANRES7	LESENSE SCANRES register, bit 7 LESENSESCANRES7 (Asynnous)
SOURCESEL =	0b0010011	(LESENSEH)

Bit	Name	Reset Access	Description
	0b000	LESENSESCANRES8	LESENSE SCANRES register, bit 8 LESENSESCANRES8 (Asynchronous)
	0b001	LESENSESCANRES9	LESENSE SCANRES register, bit 9 LESENSESCANRES9 (Asynchronous)
	0b010	LESENSESCANRES10	LESENSE SCANRES register, bit 10 LESENSESCANRES10 (Asynchronous)
	0b011	LESENSESCANRES11	LESENSE SCANRES register, bit 11 LESENSESCANRES11 (Asynchronous)
	0b100	LESENSESCANRES12	LESENSE SCANRES register, bit 12 LESENSESCANRES12 (Asynchronous)
	0b101	LESENSESCANRES13	LESENSE SCANRES register, bit 13 LESENSESCANRES13 (Asynchronous)
	0b110	LESENSESCANRES14	LESENSE SCANRES register, bit 14 LESENSESCANRES14 (Asynchronous)
	0b111	LESENSESCANRES15	LESENSE SCANRES register, bit 15 LESENSESCANRES15 (Asynchronous)
	SOURCESEL =	0b0010100	(LESENSED)
	0b000	LESENSEDEC0	LESENSE Decoder PRS out 0 LESENSEDEC0 (Asynchronous)
	0b001	LESENSEDEC1	LESENSE Decoder PRS out 1 LESENSEDEC1 (Asynchronous)
	0b010	LESENSEDEC2	LESENSE Decoder PRS out 2 LESENSEDEC2 (Asynchronous)
	0b011	LESENSEDECCMP	LESENSE Decoder PRS compare value match channel LESENSE-DECCMP (Asynchronous)
	SOURCESEL =	0b0010101	(LESENSE)
	0b000	LESENSEMEASACT	LESENSE Measurement active LESENSEMEASACT (Asynchronous)
	SOURCESEL =	0b0100000	(USARTO)
	0b000	USART0IRTX	USART0IRTX
	0b001	USART0TXC	USART0TXC
	0b010	USART0RXDATAV	USART0RXDATAV
	0b011	USART0RTS	USART0RTS
	0b101	USART0TX	USART0TX
	0b110	USART0CS	USART0CS
	SOURCESEL =	0b0100001	(USART1)
	0b001	USART1TXC	USART1TXC
	0b010	USART1RXDATAV	USART1RXDATAV
	0b011	USART1RTS	USART1RTS
	0b101	USART1TX	USART1TX
	0b110	USART1CS	USART1CS
	SOURCESEL =	0b0100010	(USART2)
	0b000	USART2IRTX	USART 2 IRDA out USART2IRTX (Asynchronous)
	0b001	USART2TXC	USART2TXC
	0b010	USART2RXDATAV	USART2RXDATAV

Name	Reset	Access	Description
0b011	USART2RTS		USART2RTS
0b101	USART2TX		USART2TX
0b110	USART2CS		USART2CS
SOURCESEL =	0b0100011		(USART3)
0b001	USART3TXC		USART3TXC
0b010	USART3RXDA	ATAV	USART3RXDATAV
0b011	USART3RTS		USART3RTS
0b101	USART3TX		USART3TX
0b110	USART3CS		USART3CS
SOURCESEL =	0b0100100		(UART0)
0b001	UART0TXC		UART0TXC
0b010	UART0RXDAT	ΓΑV	UART0RXDATAV
0b011	UARTORTS		UART0RTS
0b101	UART0TX		UART0TX
0b110	UART0CS		UART0CS
SOURCESEL =	0b0100101		(TIMER0)
0b000	TIMER0UF		TIMER0UF
0b001	TIMER0OF		TIMER0OF
0b010	TIMER0CC0		TIMER0CC0
0b011	TIMER0CC1		TIMER0CC1
0b100	TIMER0CC2		TIMER0CC2
SOURCESEL =	0b0100110		(TIMER1)
0b000	TIMER1UF		TIMER1UF
0b001	TIMER10F		TIMER10F
0b010	TIMER1CC0		TIMER1CC0
0b011	TIMER1CC1		TIMER1CC1
0b100	TIMER1CC2		TIMER1CC2
0b101	TIMER1CC3		TIMER1CC3
SOURCESEL =	0b0100111		(WTIMER0)
0b000	WTIMER0UF		WTIMEROUF
0b001	WTIMER0OF		WTIMER0OF
0b010	WTIMER0CC0)	WTIMER0CC0
0b011	WTIMER0CC1		WTIMER0CC1
0b100	WTIMER0CC2	2	WTIMER0CC2
SOURCESEL =	0b0101000		(WTIMER1)
0b000	WTIMER1UF		WTIMER1UF
0b001	WTIMER10F		WTIMER10F

Bit	Name	Reset A	ccess	Description
	0b010	WTIMER1CC0		WTIMER1CC0
	0b011	WTIMER1CC1		WTIMER1CC1
	0b100	WTIMER1CC2		WTIMER1CC2
	0b101	WTIMER1CC3		WTIMER1CC3
	SOURCESEL =	0b0101001		(CMOP)
	0b000	CM0PTXEV		CM0PTXEV
	0b001	CM0PICACHEPC SOF	CHIT-	CM0PICACHEPCHITSOF
	0b010	CM0PICACHEPC SESOF	CMIS-	CM0PICACHEPCMISSESOF


14.5.11 PRS_TRACECTRL - MTB Trace Control Register

Offset	Bit Position								
0x100	30 39 29 28 27	26 25 24 23 23	7 7 7 5	0 2 3 4 5 9 6 7 1 1 2 1 3 4 5 9 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
Reset				000000000000000000000000000000000000000					
Access				M M M M M M					
				7					
Name				TSTOPEN TSTART TSTARTEN					
Bit	Name	Reset	Access	Description					
31:12	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-					
11:9	TSTOP	0x0	RW	MTB TSTOP PRS Select					
	Select PRS chann	el controlling the 1	STOP sign	nal to the MTB.					
	Value	Mode		Description					
	0	PRSCH0		PRS ch 0 is controlling TSTOP.					
	1	PRSCH1		PRS ch 1 is controlling TSTOP.					
	2	PRSCH2		PRS ch 2 is controlling TSTOP.					
	3	PRSCH3		PRS ch 3 is controlling TSTOP.					
	4	PRSCH4		PRS ch 4 is controlling TSTOP.					
	5	PRSCH5		PRS ch 5 is controlling TSTOP.					
	6	PRSCH6		PRS ch 6 is controlling TSTOP.					
	7	PRSCH7		PRS ch 7 is controlling TSTOP.					
8	TSTOPEN	0	RW	PRS TSTOP Enable					
	Set PRS control of	f the TSTOP-signa	al going to the	he MTB.					
	Value			Description					
	0			TSTOP is not controlled by PRS.					
	1			TSTOP is controlled by PRS.					
7:4	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-					
3:1	TSTART	0x0	RW	MTB TSTART PRS Select					
	Select PRS chann	el controlling the 1	START sig	nal to the MTB.					
	Value	Mode		Description					
	0	PRSCH0		PRS ch 0 is controlling TSTART.					
	1	PRSCH1		PRS ch 1 is controlling TSTART.					
	2	PRSCH2		PRS ch 2 is controlling TSTART.					
	3	PRSCH3		PRS ch 3 is controlling TSTART.					

Bit	Name	Reset	Access	Description
	4	PRSCH4		PRS ch 4 is controlling TSTART.
	5	PRSCH5		PRS ch 5 is controlling TSTART.
	6	PRSCH6		PRS ch 6 is controlling TSTART.
	7	PRSCH7		PRS ch 7 is controlling TSTART.
0	TSTARTEN	0	RW	PRS TSTART Enable
0		0 f the TSTART-sign		
0		-		
0	Set PRS control of	-		the MTB.
0	Set PRS control of Value	-		Description

15. LCD - Liquid Crystal Display Driver

Quick Facts

What?

The LCD driver can drive LCD displays of up to 8x32 segments. The animation feature makes it possible to have active animations without CPU intervention.

Why?

Segmented LCD displays are a common way to display information. The extreme low-power LCD driver enables a lot of applications to utilize an LCD display even in energy critical systems.

How?

The low frequency clock signal, low-power waveform, animation and blink capabilities enable the LCD driver to run autonomously in EM2 DeepSleep for long periods. Adding the flexible frame rate setting, contrast control, and different multiplexing modes make the EFM32 Tiny Gecko 11 the optimal choice for battery-driven systems with LCD panels.

15.1 Introduction

The LCD driver is capable of driving a segmented LCD display combination of: 1x36, 2x36, 3x36, 4x36, 6x34 or 8x32 segments. A charge pump enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

15.2 Features

- Up to 4x36 or 8x32 segments.
- Configurable multiplexing (1, 2, 3, 4, 6, 8)
- · LCD supports the following COM/SEG combinations
 - 1x36, 2x36, 3x36, 4x36, 6x34 or 8x32
- · Configurable bias/voltage levels settings
- · Configurable clock source prescaler
- · Configurable Frame rate
- · Segment lines can be enabled or disabled individually
- · Blink capabilities
- · Integrated animation functionality
 - · Available on SEG0-SEG7 or SEG8-SEG15
- Charge redistribution feature reduces LCD module current consumption by up to 40%
- · Charge pump
- · Programmable contrast
- · Frame Counter
- · LCD frame interrupt
- · Direct segment control

15.3 Functional Description

An overview of the LCD module is shown in Figure 15.1 LCD Block Diagram on page 472. The module provides the necessary waveforms for turning each segment of an LCD display on or off.

The waveforms are multiplexed between eight (1-8) different common lines and segment lines to support up to 256 different LCD segments. The common lines and segment lines can be enabled or disabled individually to prevent the LCD driver from occupying more I/O resources than required.

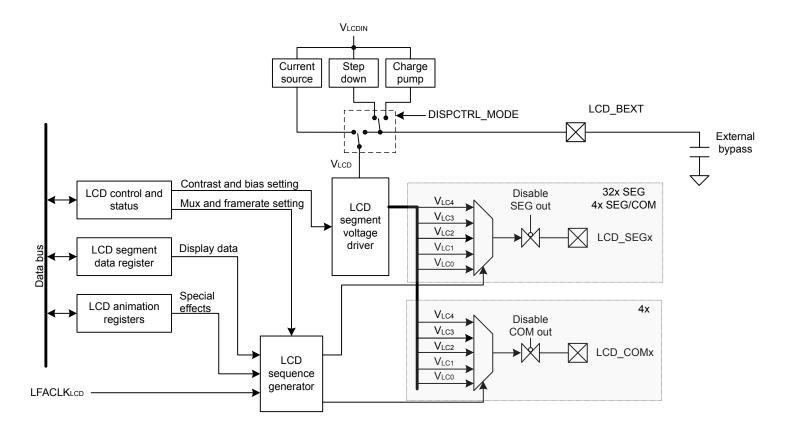


Figure 15.1. LCD Block Diagram

15.3.1 Power Supply

The LCD block power (V_{LCDIN}) is derived from the VDDX_ANA supply rail. VDDX_ANA can be selected from the AVDD or DVDD supply pins using the EMU_PWRCTRL_ANASW bit field. The LCD block generates its own stable supply (V_{LCD}), which is used to derive all output voltages.

15.3.2 LCD Driver Enable

Setting the EN bit in LCD_CTRL enables the LCD driver. The MUX bit-field in LCD_DISPCTRL determines which COM lines are driven by the LCD driver. By default, LCD_COM0 is driven whenever the LCD driver is enabled. The LCD_SEGEN and SEGEN2 registers determine which segment lines are enabled. Individual segment lines can be enabled or disabled.

Each pin being used by the LCD block should be set to the DISABLED state in the GPIO block. Any other GPIO setting will prevent the LCD controller from accessing the pin. See the device data sheet for a mapping of LCD signals to GPIO pins.

15.3.3 LCD Frame Rate and Power Reduction

LCD Frame rates are usually set between 30 to 100 frames per second (FPS). The LFCLK_{LCD} can be prescaled in the CMU. FRDIV in LCD_FRAMERATE is used to further divide the LCD clock rate and provides the final frame rate. The power consumption of the LCD panel itself can be lowered through the use of charge redistribution. When charge redistribution is in use, all segments are briefly shorted together, allowing low segments to be partially charged by the energy in high segments instead of using additional energy from the power supply. A Static MUX selection will have two phase periods per frame, while an Octaplex MUX selection will have 16 phase periods per frame.

CHGRDST in LCD_DISPCTRL is used to select the number of prescaled LFCLK_{LCD} cycles used for charge redistribution. Refer to Figure 15.2 Charge Redistribution Cycle Percentage on page 473 to calculate the charge redistribution cycle percentage (CHGRDST PERCENT).

CHGRDST PERCENT = CHGRDST / FR Divider

Figure 15.2. Charge Redistribution Cycle Percentage

The charge redistribution cycle percentage should be 5% or less to prevent reduction in LCD pad RMS voltage. If charge redistribution is not used, a larger CMU prescaling value is recommended to minimize power consumed by the LCD block itself. Note that disabling charge redistribution will always result in higher system power consumption. Charge redistribution is on by default, but it can be disabled by setting CHGRDST to disable in LCD_DISPCTRL. Refer to table Table 15.1 LCD Frame Rate on page 473 for examples of the percentage of time that charge redistribution is on in various scenarios using a 32 kHz clock.

Table 15.1. LCD Frame Rate

MUX	CHGRDST	CMU Prescaler	FR Divider	FPS	CHGRDST PER- CENT
Static	4	DIV1	512	32.0	0.8%
Static	4	DIV1	163	100.5	2.5%
Static	1	DIV16	32	32.0	3.1%
Static	1	DIV8	20	102.4	5.0%
Static	0	DIV128	4	32.0	0.0%
Static	0	DIV32	5	102.4	0.0
Quadruplex	4	DIV1	136	30.1	2.9%
Quadruplex	2	DIV1	40	102.4	5.0%
Quadruplex	1	DIV4	34	30.1	2.9%
Quadruplex	1	DIV2	20	102.4	5.0%
Quadruplex	0	DIV16	8	32.0	0.0%
Quadruplex	0	DIV4	10	102.4	0.0%
Octaplex	2	DIV1	68	30.1	2.9%
Octaplex	1	DIV1	20	102.4	5.0%
Octaplex	1	DIV2	34	30.1	2.9%
Octaplex	0	DIV64	1	32.0	0.0%

15.3.4 Multiplexing, Bias, and Wave Settings

The LCD driver supports different multiplexing and bias settings, and these can be set individually in the MUX and BIAS bits in LCD_DISPCTRL respectively, see Table 15.2 LCD Mux Settings on page 474 and Table 15.3 LCD BIAS Settings on page 474.

Note: If the MUX and BIAS settings in LCD_DISPCTRL are changed while the LCD driver is enabled, the output waveform is unpredictable and may lead to a DC-component for one LCD frame.

The MUX setting determines the number of LCD COM lines that are enabled. When using octaplex or sextaplex multiplexing, the additional COM lines used (COM4-COM7) are actually located on the (SEG20-SEG23) lines. When static multiplexing is selected, LCD output is enabled on LCD_COM0, when duplex multiplexing is used, LCD_COM0-LCD_COM1 are used, when triplex multiplexing is selected, LCD_COM0-LCD_COM2 are used, when quadruplex multiplexing is selected, LCD_COM0-LCD_COM3 are used, when sextaplex multiplexing is selected, LCD_COM0-LCD_COM3 and SEG20-SEG21 act as common pins, reducing the number of available segment pins to 34 . Finally when octaplex multiplexing is selected, LCD_COM0-LCD_COM3 and SEG20-SEG23 act as common pins, reducing the number of available segment pins to 32 .

See 15.3.15 Waveform Examples for waveforms for the different bias and multiplexing settings.

The waveforms generated by the LCD controller can be generated in two different versions, regular and low-power. The low power mode waveforms have a lower switching frequency than the regular waveforms, and thus consume less power. The WAVE bit in LCD_DISPCTRL decides which waveforms to generate. An example of a low-power waveform is shown in Figure 15.3 LCD Low-power Waveform for LCD_COM0 in Quadruples Multiplex Mode, 1/3 Bias on page 475, and an example of a regular waveform is shown in Figure 15.4 LCD Normal Waveform for LCD_COM0 in Quadruples Multiplex Mode, 1/3 Bias on page 475. For COM waveforms, a green dotted lines indicates where the SEG waveform would be for an 'on' level while the red dotted lines indicate where the SEG waveform would be for an 'off' level.

Table 15.2. LCD Mux Settings

MUX	Mode	Multiplexing
000	Static	Static (segments can be multiplexed with LCD_COM[0])
001	Duplex	Duplex (segments can be multiplexed with LCD_COM[1:0])
010	Triplex	Triplex (segments can be multiplexed with LCD_COM[2:0])
011	Quadruplex	Quadruplex (segments can be multiplexed with LCD_COM[3:0])
101	Sextaplex	Sextaplex (segments can be multiplexed with LCD_COM[3:0] and SEG[21:20])
111	Octaplex	Octaplex (segments can be multiplexed with LCD_COM[3:0]) and SEG[23:20]

Table 15.3. LCD BIAS Settings

BIAS	Mode	Bias setting
00	Static	Static (2 levels)
01	Half Bias	1/2 Bias (3 levels)
10	Third Bias	1/3 Bias (4 levels)
11	Fourth Bias	1/4 Bias (5 levels)

Table 15.4. LCD Wave Settings

WAVE Mode		Wave mode
0 LowPower		Low power optimized waveform output
1	Normal	Regular waveform output

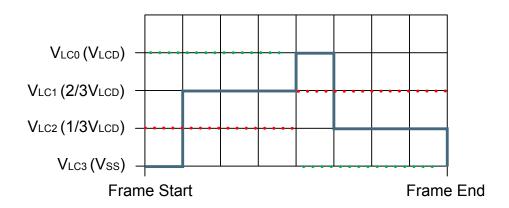


Figure 15.3. LCD Low-power Waveform for LCD_COM0 in Quadruples Multiplex Mode, 1/3 Bias

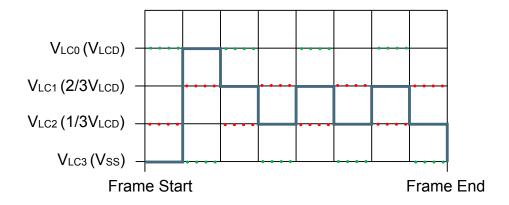


Figure 15.4. LCD Normal Waveform for LCD_COM0 in Quadruples Multiplex Mode, 1/3 Bias

15.3.5 LCD Contrast

To compensate for variations in LCD panels, the LCD driver has a programmable contrast that adjusts V_{LCD} . The contrast is set by CONTRAST in LCD_DISPCTRL.

Table 15.5. LCD Contrast

Mode	Equation for V _{LCD}
current source	(CONTRAST[4:0] + 25) * 68.6mV
step down and charge pump	(CONTRAST[5:0] + 24) * 43.3mV

15.3.6 Voltage Levels and Mode Selection

By default, V_{LCD} is powered from the AVDD pin. If the ANASW bitfield in EMU->PWRCTRL is set, V_{LCD} will be powered from the DVDD pin instead. However, if using the DC-DC Converter the DVDD pin will typically be at 1.8 V, and thus not suitable for driving an LCD display directly.

The number of LCD bias levels is controlled by BIAS field in LCD_DISPCTRL. When BIAS is set to ONEFOURTH, voltages of V_{LCD} , $\frac{3}{4}$ V_{LCD} , $\frac{1}{4}$ V_{LCD} , and VSS are generated. For a BIAS setting of ONETHIRD, the generated voltages are V_{LCD} , $\frac{1}{4}$ V_{LCD} , and VSS. For a BIAS setting of ONEHALF, the generated voltages are V_{LCD} , $\frac{1}{2}$ V_{LCD} , and VSS. For a BIAS setting of STATIC, the voltage are only V_{LCD} and VSS.

Three modes are available for setting the V_{LCD} level: current source mode, step down mode, or charge pump mode. For the current source mode no external capacitor is used. An internal current source is adjusted using CONTRAST[4:0] in LCD_DISPCTRL to set the V_{LCD} voltage level.

For the step down mode an external capacitor is regulated using an LCD comparator to maintain a V_{LCD} voltage that is not greater than the supply voltage.

For the charge pump mode, a voltage of up to twice the supply voltage is generated internally and maintained on an external capacitor, which maintains the V_{LCD} voltage.

In both the step down and charge pump modes, the LCD_BEXT signal is used. The LCD_BEXT pin should be connected through a capacitor to VSS. For most applications, a 1 μ F capacitor is sufficient to prevent any visible artifacts from supply ripple. However, larger capacitors may be used to reduce the supply ripple if needed. The recommended value is approximately 1000 times the total LCD segment capacitance.

Note: All LCD pins should have the OVT protection enabled using GPIO_Px_OVTDIS registers before the LCD is enabled. The segment/com enables should not be changed while the LCD is enabled.

15.3.7 Frame Rate

It is important to choose the correct frame rate for the LCD display. Normally, the frame rate should be between 30 and 100 Hz. A frame rate below 30 Hz may lead to flickering, while a frame rate above 100 Hz may lead to ghostring and unnecessarily high power consumption.

15.3.7.1 Clock Selection and Prescaler

The LFACLK is prescaled to LFACLK_{LCDpre}in the CMU. In addition to selecting the correct prescaling, the clock source can be selected in the CMU. To use this module, the LE interface clock must be enabled in CMU_HFBUSCLKENO, in addition to the module clock.

15.3.7.2 Frame Rate Division Register

The frame rate is set with FRDIV in LCD_FRAMERATE. FRDIV sets the frame rate phase frequency and the number of phases per frame is determined by the multiplex setting. Each COM line requires two phases. This setting should not be changed while the LCD driver is running. The equation for calculating the resulting frame rate is given from Figure 15.5 LCD Frame rate Calculation on page 477

 $LFACLK_{LCD} = LFACLK_{LCDpre}/(1 + FRDIV)$

Figure 15.5. LCD Frame rate Calculation

15.3.8 Data Update

The LCD driver logic that controls the output waveforms is clocked on LFACLK $_{LCDpre}$. The LCD data and Control Registers are clocked on the HFCORECLK. Segment data should not be changed in the middle of a frame. The LCD driver has functionality to synchronize data transfer to the LCD frames. The synchronization logic is applied to all data that need to be updated at the beginning of the LCD frames:

- · LCD_SEGDn
- LCD_AREGA
- LCD_AREGB
- LCD_BACTRL

The different methods to update data are controlled by the UDCTRL bits in LCD_CTRL.

Table 15.6. LCD Update Data Control (UDCTRL) Bits

UDCTRL	Mode	Description
00	REGULAR	The data transfer is controlled by SW and data synchronization is initiated by writing data to the buffers. Data is transferred as soon as possible, possibly creating a frame with a DC component on the LCD.
01	FCEVENT	The data transfer is done at the next event triggered by the Frame Counter (FC). See 15.3.10 Frame Counter (FC) for details on how to configure the Frame Counter. Optionally, the Frame Counter can also generate an interrupt at every event.
10	FRAMESTART	The data transfer is done at frame-start.

15.3.9 Direct Segment Control (DSC)

It is possible to gain direct control over the bias levels for each SEG/COM line by setting DSC in LCD_CTRL, overwriting the BIAS settings in LCD_DISPCTRL. The SEG lines bias levels can be set in SEGD0-SEGD3, while the COM line bias levels can be set in SEGD4. To represent the different bias levels, 4-bits per SEG lines are needed. For example, SEG0's bias levels can be set using SEGD0[3:0], and SEG1 can be controlled through SEGD1[3:0] etc. Bias level encoding is shown in Table 15.7 DSC BIAS Encoding on page 478, and segment/common locations are shown in Table 15.8 DSC Segment and Common Mapping on page 478.

Table 15.7. DSC BIAS Encoding

SEGD	Bias setting
0000	tristate
0001	VSS
0010	1/3 or 1/4 V _{LCD}
0011	1/2 V _{LCD}
0100	2/3 or 3/4 V _{LCD}
0101	V _{LCD}

Table 15.8. DSC Segment and Common Mapping

Register	H[3:0]	L[31:28]	L[27:24]	L[23:20]	L[19:16]	L[15:12]	L[11:8]	L[7:4]	L[3:0]
SEGD0	seg32	seg28	seg24	seg20	seg16	seg12	seg8	seg4	seg0
SEGD1	seg33	seg29	seg25	seg21	seg17	seg13	seg9	seg5	seg1
SEGD2	seg34	seg30	seg26	seg22	seg18	seg14	seg10	seg6	seg2
SEGD3	seg35	seg31	seg27	seg23	seg19	seg15	seg11	seg7	seg3
SEGD4						com3	com2	com1	com0

15.3.10 Frame Counter (FC)

The Frame Counter is synchronized to the LCD frame start and will generate an event after a programmable number of frames. An FC event can trigger:

- LCD ready interrupt
- · Blink (controlling the blink frequency)
- · Next state in the Animation State Machine
- Data update if UDCTRL = 01

The Frame Counter is a down counter. It is enabled by writing FCEN in LCD_BACTRL. Optionally, the Frame Counter can be prescaled so that the Frame Counter is decremented at:

- · Every frame
- · Every second frame
- · Every fourth frame
- · Every eight frame

This is controlled by the FCPRESC in LCD_BACTRL, see Table 15.9 FCPRESC on page 479

Table 15.9. FCPRESC

FCPRESC	Mode	Description	General equation	
00	Div1	CLK _{FRAME} /1		
01	Div2	CLK _{FRAME} /2	CLK _{FC} = CLK _{FRAME} /2 ^{FCPRESC}	
10	Div4	CLK _{FRAME} /4	GLRFC - GLRFRAME/2	
11	Div8	CLK _{FRAME} /8		

The top value for the Frame Counter is set by FCTOP in LCD_BACTRL. Every time the frame counter reaches zero, it is reloaded with the top value, and an event is triggered.

$$CLK_{EVENT} = CLK_{FC}/(1 + FCTOP[5:0]) Hz$$

Figure 15.6. LCD Event Frequency Equation

The above equation shows how to set up the LCD event frequency. As an example, if the frame rate is 64Hz, in order to have a LCD event frequency of 0.5Hz, the following parameters should be set accordingly:

- Write FCPRESC to 3 => CLK_{FC} = 8Hz (0.125 seconds)
- Write FCTOP to 15 => CLK_{EVENT} = 0.5Hz (2 seconds)

If higher resolution is required, configure a lower prescaler value and increase the FCTOP value accordingly (e.g. FCPRESC = 2, FCTOP = 31).

15.3.11 LCD Interrupt

The LCD interrupt can be used to synchronize data update. The FC interrupt flag is set at every LCD Frame Counter Event. The interrupt is enabled by setting FC bit in LCD_IEN.

15.3.12 Blink, Blank, and Animation Features

15.3.12.1 Blink

The LCD driver can be configured to blink, alternating all enabled segments between on and off. The blink frequency is given by the CLK_{EVENT} frequency, see 15.3.10 Frame Counter (FC). See 15.3.8 Data Update for details regarding synchronization of the blink feature. The FC must be on for blink to work.

15.3.12.2 Blank

Setting BLANK in LCD_BACTRL will output the "OFF" waveform on all enabled segments, effectively blanking the entire display. Writing the BLANK bit to zero disables the blanking and segment data will be output as normal. See 15.3.8 Data Update for details regarding synchronization of blank.

15.3.12.3 Animation State Machine

The Animation State Machine makes it possible to enable different animations without updating the data registers, allowing specialized patterns running on the LCD panel while the microcontroller remains in Low Energy Mode saving power. The animation feature is available on 8 segments multiplexed with LCD_COM0. The 8 segments can be either segments 0 to 7 or 8 to 15, depending on ALOC in LCD_BACTRL. The animation is implemented as two programmable 8 bit registers that are shifted left or right every other Animation state for a total of 16 states.

The shift operations applied to the shift registers are controlled by AREGASC and AREGBSC in LCD_BACTRL. Note also that the FC must be on for animation to work, as it is the FC event that drives the animation state machine.

The two registers are either OR'ed or AND'ed to achieve the displayed animation pattern. This is controlled by ALOGSEL in LCD_BACTRL. In addition, the regular segment data SEGD0[7:0] / SEGD0[15:8] is OR'ed with the animation pattern to generate the resulting output.

Each state is displayed for one CLK_{EVENT} period, see 15.3.10 Frame Counter (FC). By reading ASTATE in LCD_STATUS, software can identify which state that is currently active in the state sequence. Note that the shifting operation is performed on internal registers that are not accessible in SW (when reading LCD_AREGA and LCD_AREGB, the data that was original written will also be read back). The SW must utilize the knowledge about the current state (ASTATE) to calculate what is currently output. ASTATE is cleared when LCD_AREGA or LCD_AREGB are updated with new values. See Table 15.10 LCD Animation Example on page 481 for an example.

Table 15.10. LCD Animation Example

ASTATE	LCD_AREGA	LCD_AREGB	Resulting Data
0	11000000	11000000	11000000
1	01100000	11000000	11100000
2	01100000	01100000	01100000
3	00110000	01100000	01110000
4	00110000	00110000	00110000
5	00011000	00110000	00111000
6	00011000	00011000	00011000
7	00001100	00011000	00011100
8	00001100	00001100	00001100
9	00000110	00001100	00001110
10	00000110	00000110	00000110
11	00000011	00000110	00000111
12	00000011	00000011	00000011
13	10000001	00000011	10000011
14	10000001	10000001	10000001
15	11000000	10000001	11000001

In the table, AREGASC = SHIFTRIGHT, AREGBSC = SHIFTRIGHT, ALOGSEL = OR and the resulting data is to be displayed on segment lines 7-0 or 15-8 multiplexed with LCD_COM0.

The block diagram of the animation circuit for the LCD is shown in the following figure.

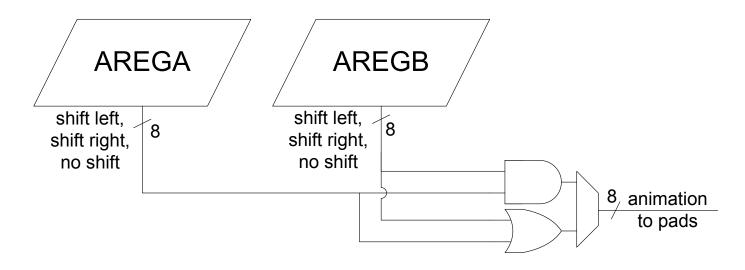


Figure 15.7. LCD Block Diagram of the Animation Circuit

To set up an animation sequence for the LCD, the following sequence is recommended.

- 1. Write data into the animation registers LCD AREGA, LCD AREGB
- 2. Enable the correct shift direction (if any)
- 3. Decide which logical function to perform on the registers:
 - ALOGSEL = 0: Data_out = LCD_AREGA & LCD_AREGB
 - ALOGSEL = 1: Data out = LCD AREGA | LCD AREGB
- 4. Configure the right animation period (CLK_{EVENT})
- 5. Enable the animation pattern and frame counter (AEN = 1, FCEN = 1)

For updating data in the LCD while it is running an animation, and the new animation data depends on the pattern visible on the LCD, see the following example.

- 1. Enable the LCD interrupt (the interrupt will be triggered simultaneously as the Animation State machine changes state)
- 2. In the interrupt handler, read back the current state (ASTATE)
- 3. Knowing the current state of the Animation State Machine makes it possible to calculate what data that is currently output
- 4. Modify data as required (Data will be updated at the next Frame Counter Event). It is important that new data is written before the next Frame Counter Event.

15.3.13 LCD in Low Energy Modes

As long as the LFACLK is running (EM0 Active-EM2 DeepSleep), the LCD controller continues to output LCD waveforms according to the data that is currently synchronized to the LCD Driver logic. In addition, the following features are still active if enabled:

- · Animation State Machine
- Blink
- LCD Event Interrupt

15.3.14 Register Access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers. Refer to 4.3 Access to Low Energy Peripherals (Asynchronous Registers) for a description on how to perform register accesses to Low Energy Peripherals.

15.3.15 Waveform Examples

The numbers on the illustration's y-axes in the following sections only indicate different voltage levels. All examples are shown with low-power waveforms.

15.3.15.1 Waveforms With Static Bias and Multiplexing

- With static bias and multiplexing, each segment line can be connected to LCD_COM0. When the segment line has the same waveform as LCD_COM0, the LCD panel pixel is turned off, while when the segment line has the opposite waveform, the LCD panel pixel is turned on.
- DC voltage = 0 (over one frame)
- V_{RMS} (on) = V_{LCD}
- V_{RMS} (off) = 0 (V_{SS})

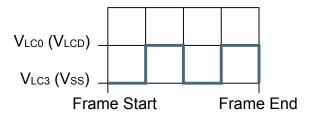


Figure 15.8. LCD Static Bias and Multiplexing - LCD_COM0

15.3.15.2 Waveforms With 1/2 Bias and Duplex Multiplexing

In this mode, each frame is divided into 4 periods. LCD_COM[1:0] lines can be multiplexed with all segment lines. Figures below show 1/2 bias and duplex multiplexing (waveforms show two frames).

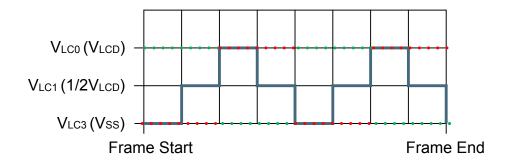


Figure 15.9. LCD 1/2 Bias and Duplex Multiplexing - LCD_COM0

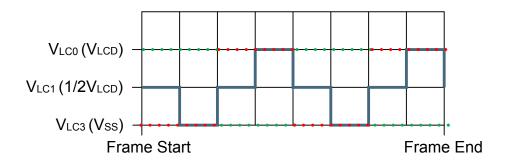


Figure 15.10. LCD 1/2 Bias and Duplex Multiplexing - LCD_COM1

The LCD_SEG0 waveform below is illustrates how different segment waveforms can be multiplexed with the LCD_COM lines in order to turn on and off LCD pixels. As illustrated in the figures below, this waveform will turn ON pixels connected to LCD_COM0, while pixels connected to LCD_COM1 will be turned OFF.

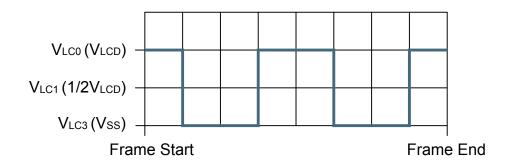


Figure 15.11. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0

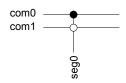


Figure 15.12. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0 Connection

The LCD segment between LCD_SEG0 and LCD_COM0 will see the waveform shown in Figure 15.13 LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM0 on page 485. In this case, V_{RMS} is 0.79 × V_{LCD}, and the segment is ON.

The LCD segment between LCD_SEG0 and LCD_COM1 will see the waveform shown in Figure 15.14 LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM1 on page 486. In this case, V_{RMS} is 0.35 × V_{LCD} , and the segment is OFF.

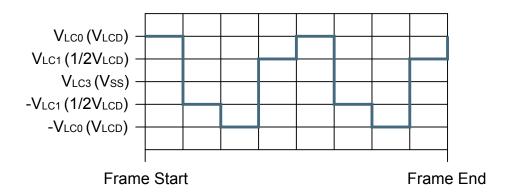


Figure 15.13. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM0

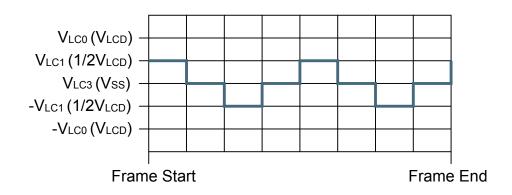


Figure 15.14. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM1

15.3.15.3 Waveforms With 1/3 Bias and Duplex Multiplexing

In this mode, each frame is divided into 4 periods. LCD_COM[1:0] lines can be multiplexed with all segment lines. Figures below show 1/3 bias and duplex multiplexing (waveforms show two frames).

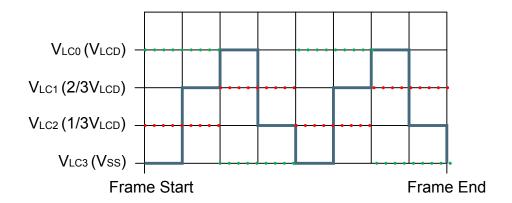


Figure 15.15. LCD 1/3 Bias and Duplex Multiplexing - LCD_COM0

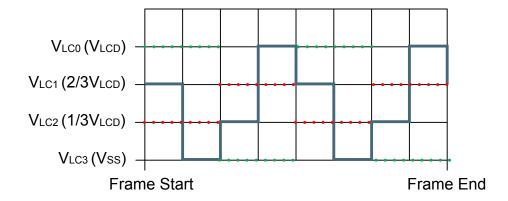


Figure 15.16. LCD 1/3 Bias and Duplex Multiplexing - LCD_COM1

The LCD_SEG0 waveform below illustrates how different segment waveforms can be multiplexed with the COM lines in order to turn on and off LCD pixels. As illustrated in the figures below, this waveform will turn ON pixels connected to LCD_COM0, while pixels connected to LCD_COM1 will be turned OFF.

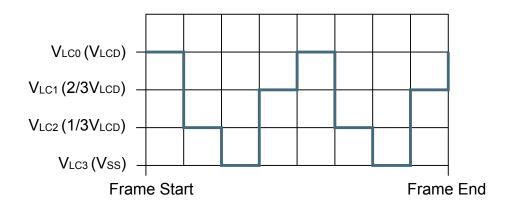


Figure 15.17. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0

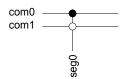


Figure 15.18. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0 Connection

The LCD segment between LCD_SEG0 and LCD_COM0 will see the waveform shown in Figure 15.19 LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM0 on page 488. In this case, V_{RMS} is 0.75 × V_{LCD} , and the segment is ON.

The LCD segment between LCD_SEG0 and LCD_COM1 will see the waveform shown in Figure 15.20 LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM1 on page 489. In this case, V_{RMS} is 0.33 × V_{LCD} , and the segment is OFF.

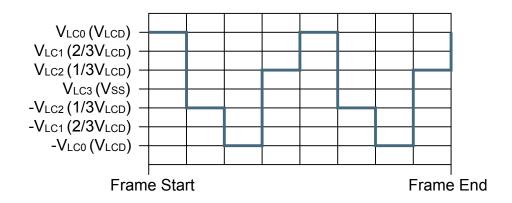


Figure 15.19. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM0

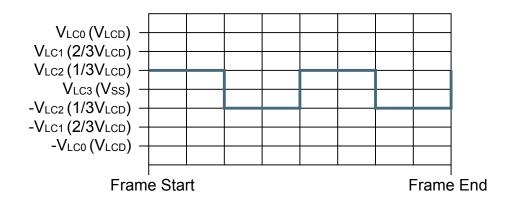


Figure 15.20. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM1

15.3.15.4 Waveforms With 1/2 Bias and Triplex Multiplexing

In this mode, each frame is divided into 6 periods. LCD_COM[2:0] lines can be multiplexed with all segment lines. Figures below show 1/2 bias and triplex multiplexing (waveforms show two frames).

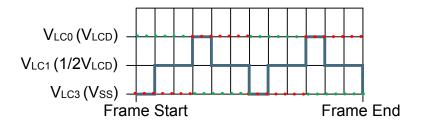


Figure 15.21. LCD 1/2 Bias and Triplex Multiplexing - LCD_COM0



Figure 15.22. LCD 1/2 Bias and Triplex Multiplexing - LCD_COM1

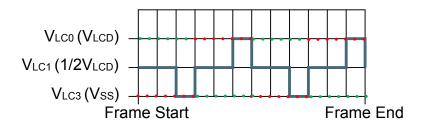


Figure 15.23. LCD 1/2 Bias and Triplex Multiplexing - LCD_COM2

The LCD_SEG0 waveform below illustrates how different segment waveforms can be multiplexed with the COM lines in order to turn on and off LCD pixels. As illustrated in the figures below, this waveform will turn ON pixels connected to LCD_COM1, while pixels connected to LCD_COM0 and LCD_COM2 will be turned OFF.

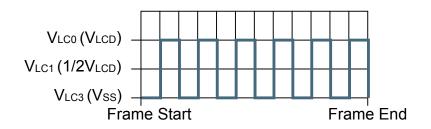


Figure 15.24. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0

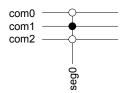


Figure 15.25. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0 Connection

The LCD segment between LCD_SEG0 and LCD_COM0 will see the waveform shown in Figure 15.26 LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM0 on page 491. In this case, V_{RMS} is 0.4 × V_{LCD} , and the segment is OFF.

The LCD segment between LCD_SEG0 and LCD_COM1 will see the waveform shown in Figure 15.27 LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM1 on page 492. In this case, V_{RMS} is 0.7 × V_{LCD} , and the segment is ON.

The LCD segment between LCD_SEG0 and LCD_COM2 will see the waveform shown in Figure 15.28 LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM2 on page 492. In this case, V_{RMS} is 0.4 × V_{LCD} , and the segment is OFF.

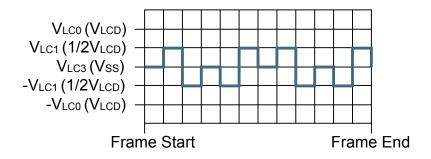


Figure 15.26. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM0

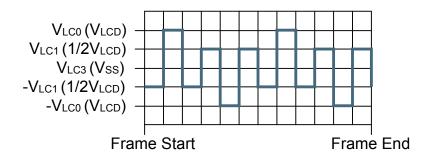


Figure 15.27. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM1

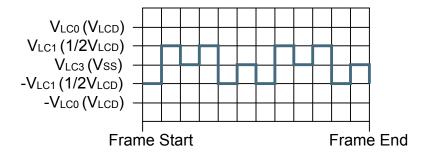


Figure 15.28. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM2

15.3.15.5 Waveforms With 1/3 Bias and Triplex Multiplexing

In this mode, each frame is divided into 6 periods. LCD_COM[2:0] lines can be multiplexed with all segment lines. Figures below show 1/3 bias and triplex multiplexing (waveforms show two frames).

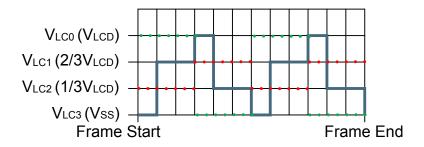


Figure 15.29. LCD 1/3 Bias and Triplex Multiplexing - LCD_COM0

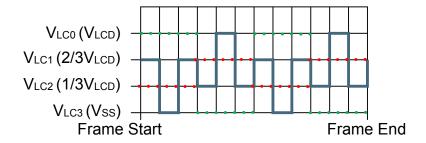


Figure 15.30. LCD 1/3 Bias and Triplex Multiplexing - LCD_COM1

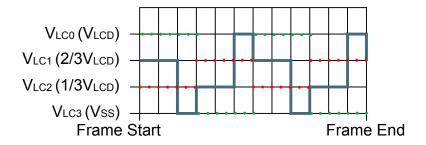


Figure 15.31. LCD 1/3 Bias and Triplex Multiplexing - LCD_COM2

The LCD_SEG0 waveform illustrates how different segment waveforms can be multiplexed with the COM lines in order to turn on and off LCD pixels. As illustrated in the figures below, this waveform will turn ON pixels connected to LCD_COM1, while pixels connected to LCD_COM0 and LCD_COM2 will be turned OFF.

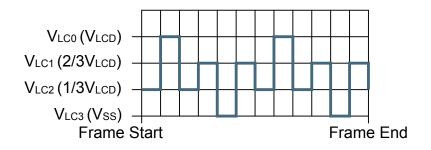


Figure 15.32. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0

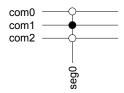


Figure 15.33. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0 Connection

The LCD segment between LCD_SEG0 and LCD_COM0 will see the waveform shown in Figure 15.34 LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM0 on page 494. In this case, V_{RMS} is 0.33 × V_{LCD}, and the segment is OFF.

The LCD segment between LCD_SEG0 and LCD_COM1 will see the waveform shown in Figure 15.35 LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM1 on page 495. In this case, V_{RMS} is 0.64 × V_{LCD}, and the segment is ON.

The LCD segment between LCD_SEG0 and LCD_COM2 will see the waveform shown in Figure 15.36 LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM2 on page 495. In this case, V_{RMS} is 0.33 × V_{LCD} , and the segment is OFF.

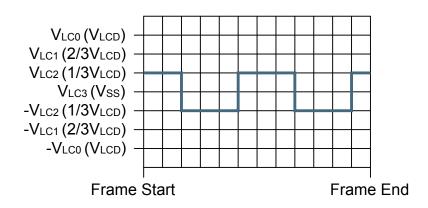


Figure 15.34. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM0

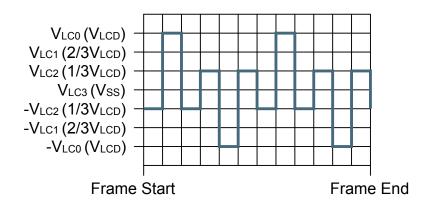


Figure 15.35. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM1

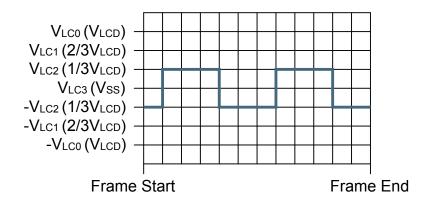


Figure 15.36. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM2

15.3.15.6 Waveforms With 1/3 Bias and Quadruplex Multiplexing

In this mode, each frame is divided into 8 periods. All COM lines can be multiplexed with all segment lines. Figures below show 1/3 bias and quadruplex multiplexing (waveforms show two frames).

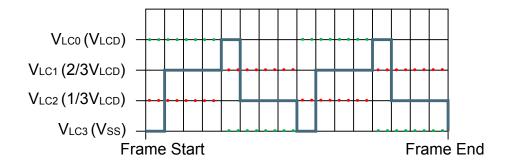


Figure 15.37. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM0

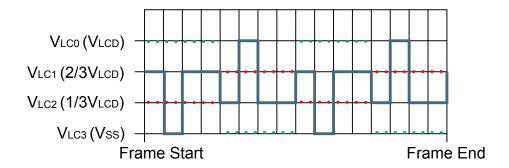


Figure 15.38. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM1

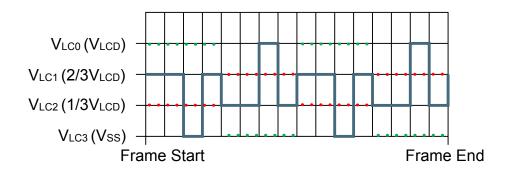


Figure 15.39. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM2

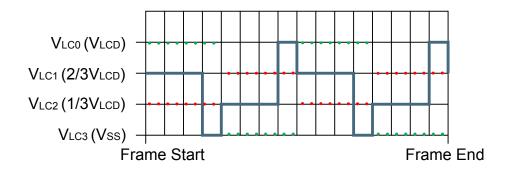


Figure 15.40. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM3

The LCD_SEG0 waveform below illustrates how different segment waveforms can be multiplexed with the COM lines in order to turn on and off LCD pixels. As illustrated in the figures below, this waveform will turn ON pixels connected to LCD_COM0 and LCD_COM2, while pixels connected to LCD_COM1 and LCD_COM3 will be turned OFF.

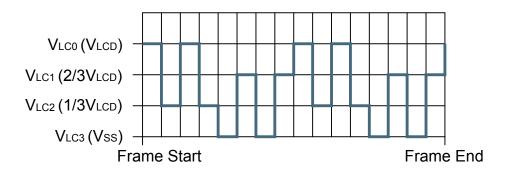


Figure 15.41. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0

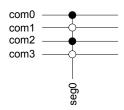


Figure 15.42. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0 Connection

The LCD segment between LCD_SEG0 and LCD_COM0 will see the waveform shown in Figure 15.43 LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM0 on page 498. In this case, V_{RMS} is $0.58 \times V_{LCD}$, and the segment is ON.

The LCD segment between LCD_SEG0 and LCD_COM1 will see the waveform shown in Figure 15.44 LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM1 on page 498. In this case, V_{RMS} is $0.33 \times V_{LCD}$, and the segment is OF.

The LCD segment between LCD_SEG0 and LCD_COM2 will see the waveform shown in Figure 15.45 LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM2 on page 499. In this case, V_{RMS} is $0.58 \times V_{LCD}$, and the segment is ON.

The LCD segment between LCD_SEG0 and LCD_COM3 will see the waveform shown in Figure 15.46 LCD 1/3 Bias and Quadruplex Multiplexing- LCD_SEG0-LCD_COM3 on page 499. In this case, V_{RMS} is 0.33 × V_{LCD} , and the segment is OFF.

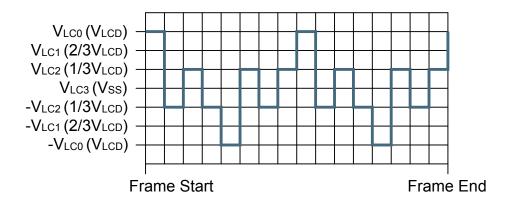


Figure 15.43. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM0

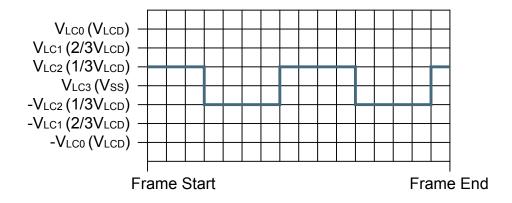


Figure 15.44. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM1

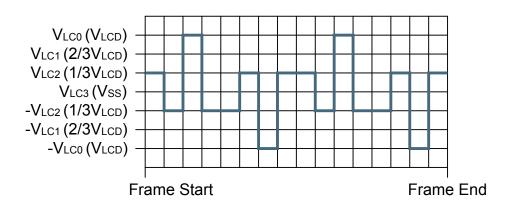


Figure 15.45. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM2

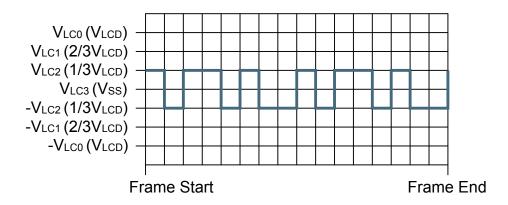


Figure 15.46. LCD 1/3 Bias and Quadruplex Multiplexing- LCD_SEG0-LCD_COM3

15.3.15.7 Waveforms With Charge Redistribution

This example assumes a 32.768 kHz clock prescaled in the CMU by 2, triplex multiplexing, and an FRDIV of 90 which gives 30 frames per second. The charge redistribution is 1% of each phase. The normal power waveform is shown with segment 0 data of {1,1,0}.

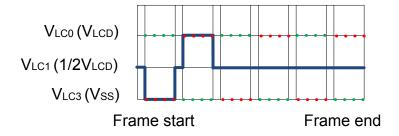


Figure 15.47. LCD Charge Redist - 1/2 Bias and Triplex Multiplexing - LCD_COM0

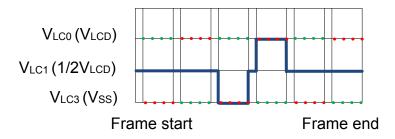


Figure 15.48. LCD Charge Redist - 1/2 Bias and Triplex Multiplexing - LCD_COM1

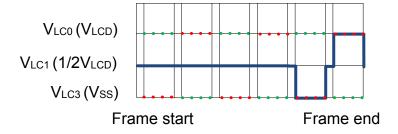


Figure 15.49. LCD Charge Redist - 1/2 Bias and Triplex Multiplexing - LCD_COM2

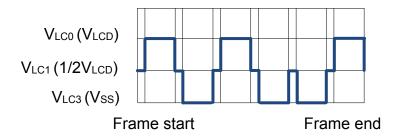


Figure 15.50. LCD Charge Redist - 1/2 Bias and Triplex Multiplexing - LCD_SEG0

The LCD segment between LCD_SEG0 and LCD_COM0 will see the waveform shown in Figure 15.51 LCD Charge Redist - 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM0 on page 501. In this case, V_{RMS} is $0.7 \times V_{LCD}$, and the segment is ON.

The LCD segment between LCD_SEG0 and LCD_COM1 will see the waveform shown in Figure 15.52 LCD Charge Redist - 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM1 on page 501. In this case, V_{RMS} is $0.7 \times V_{LCD}$, and the segment is ON.

The LCD segment between LCD_SEG0 and LCD_COM2 will see the waveform shown in Figure 15.53 LCD Charge Redist - 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM2 on page 502. In this case, V_{RMS} is $0.4 \times V_{LCD}$, and the segment is OFF.

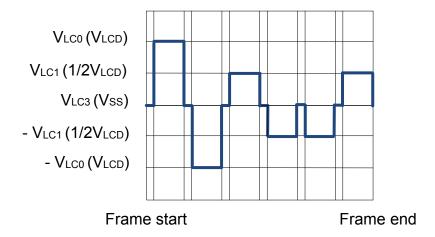


Figure 15.51. LCD Charge Redist - 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM0

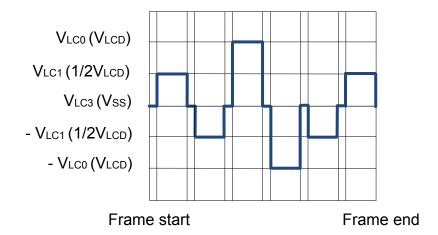


Figure 15.52. LCD Charge Redist - 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM1

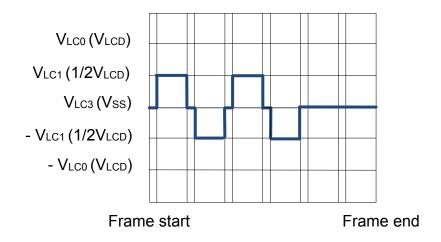


Figure 15.53. LCD Charge Redist - 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM2

15.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LCD_CTRL	RW	Control Register
0x004	LCD_DISPCTRL	RW	Display Control Register
0x008	LCD_SEGEN	RW	Segment Enable Register
0x00C	LCD_BACTRL	RW	Blink and Animation Control Register
0x010	LCD_STATUS	R	Status Register
0x014	LCD_AREGA	RW	Animation Register a
0x018	LCD_AREGB	RW	Animation Register B
0x01C	LCD_IF	R	Interrupt Flag Register
0x020	LCD_IFS	W1	Interrupt Flag Set Register
0x024	LCD_IFC	(R)W1	Interrupt Flag Clear Register
0x028	LCD_IEN	RW	Interrupt Enable Register
0x030	LCD_BIASCTRL	RW	Analog BIAS Control
0x040	LCD_SEGD0L	RW	Segment Data Low Register 0
0x044	LCD_SEGD1L	RW	Segment Data Low Register 1
0x048	LCD_SEGD2L	RW	Segment Data Low Register 2
0x04C	LCD_SEGD3L	RW	Segment Data Low Register 3
0x050	LCD_SEGD0H	RW	Segment Data High Register 0
0x054	LCD_SEGD1H	RW	Segment Data High Register 1
0x058	LCD_SEGD2H	RW	Segment Data High Register 2
0x05C	LCD_SEGD3H	RW	Segment Data High Register 3
0x060	LCD_SEGD4L	RW	Segment Data Low Register 4
0x064	LCD_SEGD5L	RW	Segment Data Low Register 5
0x068	LCD_SEGD6L	RW	Segment Data Low Register 6
0x06C	LCD_SEGD7L	RW	Segment Data Low Register 7
0x070	LCD_SEGD4H	RW	Segment Data High Register 4
0x074	LCD_SEGD5H	RW	Segment Data High Register 5
0x078	LCD_SEGD6H	RW	Segment Data High Register 6
0x07C	LCD_SEGD7H	RW	Segment Data High Register 7
0x0C0	LCD_FREEZE	RW	Freeze Register
0x0C4	LCD_SYNCBUSY	R	Synchronization Busy Register
0x0F0	LCD_FRAMERATE	RW	Frame Rate
0x0F4	LCD_SEGEN2	RW	Segment Enable (32 to 39)

15.5 Register Description

15.5.1 LCD_CTRL - Control Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset	Bit Position																							
0x000	3 4 2 2 9 8 6 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1												က	2	1	0								
Reset									0													OXO	٥٨٥	0
Access									₹													Š	^ ^	₩ M
Name									DSC													INCTRI	-	N N

-				ш с									
Bit	Name	Reset	Access	Description									
31:24	Reserved	To ensure co	mpatibility	ibility with future devices, always write bits to 0. More information in 1.2 Conven-									
23	DSC	0	RW	Direct Segment Control									
	This bit enables direct control over bias levels for each SEG/COM line.												
	Value			Description									
	0			DSC disable									
	1			DSC enable									
22:3	Reserved	To ensure co	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions										
2:1	UDCTRL	0x0	RW	Update Data Control									
	These bits control how data from the SEGDn registers are transferred to the LCD driver.												
	Value	Mode		Description									
	0	REGULAR		The data transfer is controlled by SW. Transfer is performed as soon as possible									
	1	FCEVENT		The data transfer is done at the next event triggered by the Frame Counter									
	2	FRAMESTA	RT	The data transfer is done continuously at every LCD frame start									
0	EN	0	RW	LCD Enable									
	When this bit is se	et, the LCD driver is	s enabled a	nd the driver will start outputting waveforms on the com/segment lines.									

15.5.2 LCD_DISPCTRL - Display Control Register

Offset			-							2if D	ositio	on												
0x004	- 0		~ (0	10 4	m	0 -	-			1	T		m	0 F	. _		T		-					
UXUU4	30	28 29	27	25 24	23	7 2		19	1 18	19	15	4	13	7 7		2 0	ρ ∞	7	9	2	4	က	7 -	0
Reset		0×0		0×0		2	5								0x3F						0		0×0	
Access		R W		R W		\ \ \									Σ Š						R		R ≷	
Name		MODE		BIAS		Tangana									CONTRAST						WAVE		XOX	
Bit	Name			Reset		A	cces	s C	Descri	ptio	n													
31:30	Reserv	/ed		To ens	ure	compa	atibilit	y witi	h futui	re de	vices	s, alı	ways	write	bits	to	0. M	ore ii	nfori	matio	on in	1.2	Conve	en-
29:28	MODE			0x0		F	W	N	Mode	Setti	ng													
	This fie	eld deter	mines t	he LCD	mod	le of o	perat	ion.																
	Value			Mode					Descri	ption														
	0			NOEX	TCA	P			No Ext									sour	ce t	o ge	nera	ate V	LCD.	
	1			Use CONTRAST[4:0] to control VLCD. STEPDOWN Use step down control with VLCD less than VDD. Use CONTRAST[5:0] to control VLCD level, and use SPEED to adjust VLCD drive strength. CPINTOSC Charge pump used with internal oscillator. Use CONTRAST[5:0] to																				
	2			CPINT	osc				Charge															
27:26	Reserv	/ed		To ens	ure	сотра	atibilit	y witi	h futui	re de	vices	s, alı	ways	write	bits	to	0. M	ore ii	nfori	matio	on in	1.2	Conve	en-
25:24	BIAS			0x0		F	W	E	Bias C	onfi	gura	tion	1											
	These	bits set	the bias	mode f	or th	e LCE) Driv	er.																
	Value			Mode					Descri	otion														
	0			STATI	С			5	Static															
	1			ONEH	ALF			1	I/2 Bia	IS														
	2			ONETHIRD 1/3 Bias																				
	3			ONEF	OUR	RTH		1	I/4 Bia	IS														
23	Reserv	/ed		To ens	ure	сотра	atibilit	y witi	h futui	re de	vices	s, alı	ways	write	bits	to	0. M	ore ii	nfori	matio	on in	1.2	Conve	en-
22:20	CHGR	DST		0x1		R	W	C	Charg	e Re	distr	ibut	tion (Cycle	s									
	Selects	s numbe	er of pre	scaled lo	ow fr	equer	icy cl	ock c	cycles	for c	harg	e re	distri	butior	١.									
	Value			Mode					Descri	otion														
	0			DISAB	LE				Disable	e cha	arge r	edis	stribu	tion.										
	1			ONE				ι	Jse 1	pres	caled	low	v freq	uency	y clc	ck (cycle	for	char	ge r	edis	tribu	tion.	
	2													ck (cycle	s for								

erved	Reset THREE FOUR To ensure comptions	Access patibility w	Use 3 prescaled low frequency clock cycles for charge redistribution. Use 4 prescaled low frequency clock cycles for charge redistribution.
erved	FOUR To ensure com	patibility w	
erved	To ensure com	patibility w	
		patibility и	
NTRAST			vith future devices, always write bits to 0. More information in 1.2 Conven-
-	0x3F	RW	Contrast Control
controls the VLCD	supply voltage		
erved	To ensure com tions	patibility w	vith future devices, always write bits to 0. More information in 1.2 Conven-
/E	0	RW	Waveform Selection
bit configures the	output waveforn	n.	
ie	Mode		Description
	LOWPOWER		Low power waveform
	NORMAL		Normal waveform
erved	To ensure com	patibility w	vith future devices, always write bits to 0. More information in 1.2 Conven-
<	0x0	RW	Mux Configuration
se bits set the multi	iplexing mode fo	or the LCD	Driver.
ie	Mode		Description
	STATIC		Static
	DUPLEX		Duplex
	TRIPLEX		Triplex
	QUADRUPLEX	(Quadruplex
	SEXTAPLEX		Sextaplex
	OCTAPLEX		Octaplex
e	erved /E bit configures the e erved / ee bits set the mult e	To ensure commitions To ensure commitions To ensure commitions Mode LOWPOWER NORMAL To ensure commitions X 0x0 The bits set the multiplexing mode for the commitions To ensure committens To	tions /E 0 RW bit configures the output waveform. e Mode LOWPOWER NORMAL To ensure compatibility witions 0 x0 RW be bits set the multiplexing mode for the LCD e Mode STATIC DUPLEX TRIPLEX QUADRUPLEX SEXTAPLEX

15.5.3 LCD_SEGEN - Segment Enable Register

Offset															Bi	t Pc	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	7	_	0
Reset																000000000000000000000000000000000000000	0000000000															
Access																2	<u>}</u>															
Name																	000															

Bit	Name	Reset	Access	Description
31:0	SEGEN	0x00000000	RW	Segment Enable
	Dotorminos which so	amont lines are	onabled fro	om (0 to 31). The CDIO pip also peods to be configured as DISARI ED in

Determines which segment lines are enabled from (0 to 31). The GPIO pin also needs to be configured as DISABLED in the GPIO pin configuration.

15.5.4 LCD_BACTRL - Blink and Animation Control Register (Async Reg)

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset				0							0	000		•	5	S S		•	•		,	•		0	0	Š	OXO	ç) N	0	0	0
Access				₩ M							<u> </u>	Ž			2	<u> </u>								₩ M	S.	2	<u>}</u>	2	<u>}</u>	₩ M	S N	RW
Name				ALOC							GCTOB	2				700								FCEN	ALOGSEL	0	אר הקדר הקדר	(AKEGASC	AEN	BLANK	BLINKEN

	ALO		FCT	FCP		FCE	ARE	ARE	AEN BLAI
Bit	Name	Reset	Access	Description					
31:29	Reserved	To ensure o	compatibility	with future devices,	always write bits to	0. More in	formati	on in 1.	2 Conven-
28	ALOC	0	RW	Animation Loca	tion				
	Set the LCD segr	ments which anima	ation applies	to					
	Value	Mode		Description					
	0	SEG0TO7		Animation appear	rs on segments 0 to	7			
	1	SEG8TO15		Animation appear	rs on segments 8 to	15			
27:24	Reserved	To ensure o	compatibility	with future devices,	always write bits to	0. More in	formati	on in 1.	2 Conven-
23:18	FCTOP	0x00	RW	Frame Counter	Гор Value				
	These bits contai	in the Top Value fo	or the Frame	Counter: CLK _{EVEN}	$_{T} = CLK_{FC} / (1 + FC^{-})$	TOP[5:0]).			
17:16	FCPRESC	0x0	RW	Frame Counter I	Prescaler				
	These bits contro	ols the prescaling v	alue for the	Frame Counter inpu	ut clock.				
	Value	Mode		Description					
	0	DIV1		CLK _{FC} = CLK _{FRA}	ME / 1				
	1	DIV2		CLK _{FC} = CLK _{FRA}	_{ME} / 2				
	2	DIV4		CLK _{FC} = CLK _{FRA}	ME / 4				
	3	DIV8		CLK _{FC} = CLK _{FRA}	_{ME} / 8				
15:9	Reserved	To ensure o	compatibility	with future devices,	always write bits to	0. More in	formati	on in 1.	2 Conven-
8	FCEN	0	RW	Frame Counter I	Enable				
	When this bit is s	et, the frame coun	ter is enable	d.					
7	ALOGSEL	0	RW	Animate Logic F	unction Select				
	When this bit is s OR'ed together.	et, the animation r	egisters are	AND'ed together. V	Vhen this bit is cleare	ed, the ani	mation	registe	rs are
	Value	Mode		Description					

Bit	Name	Reset	Access	Description
	1	OR		AREGA and AREGB OR'ed
6:5	AREGBSC	0x0	RW	Animate Register B Shift Control
	These bits contro	ols the shift operation	n that is per	formed on Animation register B.
	Value	Mode		Description
	0	NOSHIFT		No Shift operation on Animation Register B
	1	SHIFTLEFT		Animation Register B is shifted left
	2	SHIFTRIGHT		Animation Register B is shifted right
4:3	AREGASC	0x0	RW	Animate Register a Shift Control
	These bits contro	ols the shift operation	n that is per	formed on Animation register A.
	Value	Mode		Description
	0	NOSHIFT		No Shift operation on Animation Register A
	1	SHIFTLEFT		Animation Register A is shifted left
	2	SHIFTRIGHT		Animation Register A is shifted right
2	AEN	0	RW	Animation Enable
	When this bit is s	et, the animate fund	tion is enat	pled.
1	BLANK	0	RW	Blank Display
		et, all segment outp when writing this bit.	ut waveforr	ms are configured to blank the LCD display. The Segment Data Registers
	Value			Description
	0			Display is not "blanked"
	1			Display is "blanked"
0	BLINKEN	0	RW	Blink Enable
	When this bit is s Counter Event.	et, the Blink function	is enabled	d. Every "ON" segment will alternate between on and off at every Frame

15.5.5 LCD_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	9	18	17	16	15	4	13	12	7	10	6	∞	7	6	2	4	က	2	_	0
Reset																								0						0	8	
Access																								œ						Ω	<u> </u>	
Name																								¥						TATE]	
Hamo																								BLI						Δ	2	

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
8	BLINK	0	R	Blink State
	This bits indicates th set to 1 are on.	e blink status.	If this bit is 1	, all segments are off. If this bit is 0, the segments(LCD_SEGDxn) which are
7:4	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
3:0	ASTATE	0x0	R	Current Animation State
	Contains the current	animation stat	e (0-15).	

15.5.6 LCD_AREGA - Animation Register a (Async Reg)

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	ω	7	9	2	4	က	2	_	0
Reset		•	•	•		•	•	•			•	1			•	•		•		•		•	1	•				0	200	'		
Access																												2	2			
Name																												V C II Q V	לאט בעל לאט בעל			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	AREGA	0x00	RW	Animation Register a Data
	This register contains	the A data for g	generating	animation pattern.

15.5.7 LCD_AREGB - Animation Register B (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset	Bit Position	
0x018	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r 9 8 8 8 0 0
Reset		00×0
Access		RW
Name		AREGB

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	AREGB	0x00	RW	Animation Register B Data
	This register contains	the B data for g	enerating	animation pattern.

15.5.8 LCD_IF - Interrupt Flag Register

Offset	Bit Position	
0x01C	1 1 <th>0 7 7 3</th>	0 7 7 3
Reset		0
Access		<u>~</u>
Name		5

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
0	FC	0	R	Frame Counter Interrupt Flag
	Set when Frame Cou	nter is zero.		

15.5.9 LCD_IFS - Interrupt Flag Set Register

Offset															Ві	it Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	9	9	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	_	0
Reset			•					•						•				•										•				0
Access																																M
Name																																<u>Б</u>

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
0	FC	0	W1	Frame Counter Interrupt Flag Set
	Write to 1 to set FC ir	nterrupt flag.		

15.5.10 LCD_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	11	10	တ	8	7	9	5	4	3	2	_	0
Reset						•										•			•								•	•				0
Access)W1
																																(R)
Name																																FC

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	FC	0	(R)W1	Frame Counter Interrupt Flag Clear
	Write to 1 to clear FC	interrupt flag.		

15.5.11 LCD_IEN - Interrupt Enable Register

Offset	Bit Position	
0x028	1 1 <td>0</td>	0
Reset		0
Access		RW
Name		5

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Contions		
0	FC	0	RW	Frame Counter Interrupt Enable
	Set to enable inter	rupt on frame co	ounter interru	ot flag.

15.5.12 LCD_BIASCTRL - Analog BIAS Control

Offset															Bi	t Pc	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	5	4	က	2	_	0
Reset														•							0x0					2	2				0X0	
Access																					RW					2	2				₩ M	
Name																					BUFBIAS					700310	2				SPEED	

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure cor tions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
12:10	BUFBIAS	0x0	RW	Buffer Bias Setting
	This field sets the ope	erating bias curre	ent for the	buffers.
9:8	Reserved	To ensure cortions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:4	BUFDRV	0x0	RW	Buffer Drive Strength
	This field is used to se	et the buffer driv	er strength	n.
3	Reserved	To ensure cortions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	SPEED	0x0	RW	SPEED Adjustment
	This field is used in m	•	the drive s	trength to the resistor string. For mode 3 this field is used to adjust the

15.5.13 LCD_SEGD0L - Segment Data Low Register 0 (Async Reg)

Offset															Ві	it Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																	0000000000															
Access																2	<u>}</u>															
Name																C	SEGDOL															

Bit	Name	Reset	Access	Description
31:0	SEGD0L	0x00000000	RW	COM0 Segment Data Low
	This register contains	segment data f	or segmen	t lines 0-31 for COM0.

15.5.14 LCD_SEGD1L - Segment Data Low Register 1 (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bit	t Pos	itic	n														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset																00000000x0																
Access																ΑŠ																
Name																SEGD1L																
Bit	Na	me					Re	set			Ac	cess	s I	Des	crip	tion																
31:0	SE	GD1	IL				0x0	0000	0000	0	RW	/	(CON	/11 S	egm	ent	Da	ta L	ow												
	Thi	s re	giste	er co	onta	ins	segr	nen	t dat	a fo	r se	gme	ent li	nes	0-3	1 for (co	M1.														

15.5.15 LCD_SEGD2L - Segment Data Low Register 2 (Async Reg)

Offset															Bi	t Po	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	ဝ	ω	7	9	5	4	က	2	_	0
Reset																000000000000000000000000000000000000000	000000000000000000000000000000000000000															
Access																2	2															
Name																כרטוט	SEGUZE															
Rit	Na	mo					D ₀	sat			Λο.	CASS		Doo	orin	tion																

Bit	Name	Reset	Access	Description
31:0	SEGD2L	0x00000000	RW	COM2 Segment Data Low
	This register contains	segment data for	or segmen	t lines 0-31 for COM2.

15.5.16 LCD_SEGD3L - Segment Data Low Register 3 (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Pos	sitic	on													
0x04C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	- 0
Reset																00000000x0															
Access																ΑŠ															
Name																SEGD3L															
Bit	Na	me					Re	set			Ac	cess	s I	Des	crip	tion															
31:0	SE	GD3	3L				0x0	0000	0000	0	RW	/	(CON	/13 S	egm	ent	Da	ta L	.ow											
	Thi	s re	giste	er co	onta	ins	segr	nen	t dat	a fo	r se	gme	ent li	ines	0-3	1 for	СО	М3.													

15.5.17 LCD_SEGD0H - Segment Data High Register 0 (Async Reg)

Offset															Bi	t Po	siti	on														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset																													00X0			
Access																													N N			
Name																													SEGDOH			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	SEGD0H	0x00	RW	COM0 Segment Data High
	This register contains	segment data f	or segmen	t lines 32-39 for COM0.

15.5.18 LCD_SEGD1H - Segment Data High Register 1 (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Po	siti	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	7	_	0
Reset											•																	00×0				
Access																												Z N				
Name																												SEGD1H				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	SEGD1H	0x00	RW	COM1 Segment Data High
	This register contains	segment data f	or segmen	t lines 32-39 for COM1.

15.5.19 LCD_SEGD2H - Segment Data High Register 2 (Async Reg)

Offset															Bi	t Pc	siti	on														
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		•	•			•		•	•			•		•	•	•	•	•	•	•	•					•		2	noxo			
Access																												<u> </u>	≥ Y			
Name																												חכטשט	SEGUZH			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure cor tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	SEGD2H	0x00	RW	COM2 Segment Data High
	This register contains	segment data f	or segmen	t lines 32-39 for COM2.

15.5.20 LCD_SEGD3H - Segment Data High Register 3 (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Po	siti	on														
0x05C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•			•	•		•	•	•			•	•		•			•	•	•			•		•		0x0				
Access																												S S				
Name																												SEGD3H				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	SEGD3H	0x00	RW	COM3 Segment Data High
	This register contains	segment data f	or segmen	t lines 32-39 for COM3.

15.5.21 LCD_SEGD4L - Segment Data Low Register 4 (Async Reg)

Offset	Bit Position
0x060	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	00000000000000000000000000000000000000
Access	R ≪
Name	SEGD4L

E	Bit	Name	Reset	Access	Description
3	1:0	SEGD4L	0x00000000	RW	COM4 Segment Data
		This register contains	segment data fo	or segment	lines 0-31 for COM4.

15.5.22 LCD_SEGD5L - Segment Data Low Register 5 (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset														·		OCCOOCOOC															·	
Access		MA O																														
Name																SEGDS	010															
Bit	Na	me					Re	set			Ac	ces	s	Des	crip	tion																
31:0	SE	GD	5L				0x0	0000	0000	00	RW	/		COI	M5 S	egn	nen	t Da	ta													
	Thi	s re	giste	er co	onta	ins s	segr	nen	t dat	ta fo	r se	gme	ent	lines	0-3	1 for	CC)M5														

15.5.23 LCD_SEGD6L - Segment Data Low Register 6 (Async Reg)

Offset															Bi	t Po	siti	on														
0x068	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	ဝ	ω	7	9	5	4	က	2	_	0
Reset																000000000000000000000000000000000000000	000000000000000000000000000000000000000															
Access																2	2															
Name																9000	SEGDOL															
Rit	Na	mo					Po	sat			۸۵	2056		Doc	crin	tion																

I	3it	Name	Reset	Access	Description
;	31:0	SEGD6L	0x00000000	RW	COM6 Segment Data
		This register contains	segment data fo	r segment	lines 0-31 for COM6.

15.5.24 LCD_SEGD7L - Segment Data Low Register 7 (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset				Bit Position
0x06C	30 30 29 28 27 27	25 24 23 23 22	20	2 8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reset				00000000000000000000000000000000000000
Access				Z X
Name				SEGD7L
Bit	Name	Reset	Access	Description
31:0	SEGD7L	0x00000000	RW	COM7 Segment Data
	This register contain	s segment data f	or segmen	t lines 0-31 for COM7.

15.5.25 LCD_SEGD4H - Segment Data High Register 4 (Async Reg)

Offset															Bi	t Po	siti	on														
0x070	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset																													00X0			
Access																													N N			
Name																													SEGD4H			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	SEGD4H	0x00	RW	COM0 Segment Data High
	This register contains	segment data f	or segmen	t lines 32-39 for COM4.

15.5.26 LCD_SEGD5H - Segment Data High Register 5 (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset	Bit Position	
0x074	33 34 35 36 36 37 38 39 30 30 30 30 30 30 30 30 30 40 <th>- 0 to 4 to 0 to 0</th>	- 0 to 4 to 0 to 0
Reset		00×0
Access		RW
Name		SEGD5H

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	SEGD5H	0x00	RW	COM1 Segment Data High
	This register contains	segment data fo	or segment	t lines 32-39 for COM5.

15.5.27 LCD_SEGD6H - Segment Data High Register 6 (Async Reg)

Offset															Bi	t Pc	siti	on														
0x078	31	39	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset		•	•			•		•	•			•		•	•	•			•		•			•		•	•	2	200			
Access																												<u> </u>	2			
Name																												חשרטםט	25,000			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co tions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	SEGD6H	0x00	RW	COM2 Segment Data High
	This register contains	s segment data	for segmen	t lines 32-39 for COM6.

15.5.28 LCD_SEGD7H - Segment Data High Register 7 (Async Reg)

Offset															Bi	t Po	siti	on														
0x07C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	2	4	က	7	- c	>
Reset																				•								00×0			·	
Access																												Z S				
Name																												SEGD7H				_

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	SEGD7H	0x00	RW	COM3 Segment Data High
	This register contains	segment data f	or segmen	t lines 32-39 for COM7.

15.5.29 LCD_FREEZE - Freeze Register

Offset	Bit Position	
0x0C0	33 34 35 36 37 38 38 39 30 30 30 31 32 33 34 45 46 47 47 48 40 <th>- 0</th>	- 0
Reset		0
Access		RW RW
Name		LCDGATE REGFREEZE

Bit	Name	Reset	Access	Description
31:2	Reserved			with future devices, always write bits to 0. More information in 1.2 Conven-
1	LCDGATE	0	RW	LCD Gate
	Tristate the LCD pi	ins. The gating or	un-gating o	ccurs on Frame boundaries.
	Value	Mode		Description
	0	UNGATE		LCD BIAS voltages driven onto pins.
	1	GATE		LCD BIAS MUX tristated at the pins.
0	REGFREEZE	0	RW	Register Update Freeze
	When set, the update	ate of the LCD is	oostponed u	intil this bit is cleared. Use this bit to update several registers simultaneous-
	Value	Mode		Description
	0	UPDATE		Each write access to an LCD register is updated into the Low Frequency domain as soon as possible.
	1	FREEZE		The LCD is not updated with the new written value.

15.5.30 LCD_SYNCBUSY - Synchronization Busy Register

Offset															Bi	t Po	siti	on														
0x0C4	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset													0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access													22	22	22	22	22	22	22	22	22	2	22	22	2	22	2	2	2	2	22	~
Name													SEGD7H	SEGD6H	SEGD5H	SEGD4H	SEGD7L	SEGD6L	SEGD5L	SEGD4L	SEGD3H	SEGD2H	SEGD1H	SEGD0H	SEGD3L	SEGD2L	SEGD1L	SEGDOL	AREGB	AREGA	BACTRL	CTRL

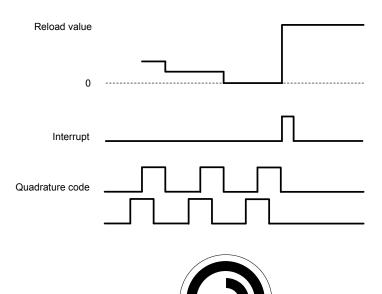
Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
19	SEGD7H	0	R	SEGD7H Register Busy
-	Set when the value v	written to SEGD7	H is being	synchronized.
18	SEGD6H	0	R	SEGD6H Register Busy
	Set when the value v	written to SEGD6	H is being	synchronized.
17	SEGD5H	0	R	SEGD5H Register Busy
	Set when the value v	vritten to SEGD5	H is being	synchronized.
16	SEGD4H	0	R	SEGD4H Register Busy
	Set when the value v	written to SEGD4	H is being	synchronized.
15	SEGD7L	0	R	SEGD7L Register Busy
	Set when the value v	written to SEGD7	L is being	synchronized.
14	SEGD6L	0	R	SEGD6L Register Busy
	Set when the value v	written to SEGD6	L is being	synchronized.
13	SEGD5L	0	R	SEGD5L Register Busy
	Set when the value v	written to SEGD5	L is being	synchronized.
12	SEGD4L	0	R	SEGD4L Register Busy
	Set when the value v	written to SEGD4	L is being	synchronized.
11	SEGD3H	0	R	SEGD3H Register Busy
	Set when the value v	written to SEGD3	H is being	synchronized.
10	SEGD2H	0	R	SEGD2H Register Busy
	Set when the value v	written to SEGD2	H is being	synchronized.
9	SEGD1H	0	R	SEGD1H Register Busy
	Set when the value v	vritten to SEGD1	H is being	synchronized.
8	SEGD0H	0	R	SEGD0H Register Busy
	Set when the value v	written to SEGD0	H is being	synchronized.
7	SEGD3L	0	R	SEGD3L Register Busy
	Set when the value v	written to SEGD3	L is being	synchronized.
6	SEGD2L	0	R	SEGD2L Register Busy
	Set when the value v	written to SEGD2	L is being	synchronized.

Bit	Name	Reset	Access	Description
5	SEGD1L	0	R	SEGD1L Register Busy
	Set when the value w	ritten to SEGD1	L is being	synchronized.
4	SEGD0L	0	R	SEGD0L Register Busy
	Set when the value w	ritten to SEGD0	L is being	synchronized.
3	AREGB	0	R	AREGB Register Busy
	Set when the value w	ritten to AREGE	is being s	ynchronized.
2	AREGA	0	R	AREGA Register Busy
	Set when the value w	ritten to AREGA	is being s	ynchronized.
1	BACTRL	0	R	BACTRL Register Busy
	Set when the value w	ritten to BACTR	L is being	synchronized.
0	CTRL	0	R	CTRL Register Busy
	Set when the value w	ritten to CTRL is	s being syn	nchronized.
	Set when the value w	ritten to CTRL is	s being syn	chronized.

15.5.31 LCD_FRAMERATE - Frame Rate

Offset															Bi	t Pc	siti	on														
0x0F0	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	ဝ	8	7	9	2	4	က	2	_	0
Reset		•	•							•		•		•		•				•	•	•	•		•		•	000x0				
Access																												₩				
Name																												FRDIV				

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	FRDIV	0x000	RW	Frame Rate Divider
	Determines number	of prescaled clo	ocks per pha	ise. Static has 2 phases, and octaplex has sixteen phases per frame.


15.5.32 LCD_SEGEN2 - Segment Enable (32 to 39)

Offset															Bi	t Po	siti	on														
0x0F4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	7	_	0
Reset		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		2	3	
Access																														<u> </u>	2	
Name																														CECENIS	0 0 0 0 0	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
3:0	SEGEN2	0x0	RW	Segment Enable (second Group)
	Determines which seg the GPIO pin configur		enabled fro	om (32 to 39). The GPIO pin also needs to be configured as DISABLED in

16. PCNT - Pulse Counter

Quick Facts

What?

The Pulse Counter (PCNT) decodes incoming pulses. The module has a quadrature mode which may be used to decode the speed and direction of a mechanical shaft. PCNT can operate in EM0 Active down to EM3 Stop.

Why?

The PCNT generates an interrupt after a specific number of pulses (or rotations), eliminating the need for timing or I/O interrupts and CPU processing to measure pulse widths, etc.

How?

PCNT uses the LFACLK or may be externally clocked from a pin. The module incorporates a 16-bit up/down-counter to keep track of incoming pulses or rotations.

16.1 Introduction

The Pulse Counter (PCNT) can be used for counting incoming pulses on a single input or to decode quadrature encoded inputs in EM0 Active down to EM3 Stop. It can run from the internal LFACLK while counting pulses on the PCNTn_S0IN pin. Or, alternately, the PCNTn_S0IN pin may be used as an external clock source that runs both the PCNT counter and register access.

16.2 Features

- · 16-bit counter with reload register
- · Auxiliary counter for counting a single direction
- · Single input oversampling up/down counter mode
- Externally clocked single input pulse up/down counter mode
- · Quadrature decoder modes
 - Externally clocked quadrature decoder 1X mode
 - · Oversampling quadrature decoder 1X, 2X and 4X modes
- · Interrupt on counter underflow and overflow
- · Interrupt when a direction change is detected (quadrature decoder mode only)
- · Optional pulse width filter
- · Optional input inversion/edge detect select
- · Optional inputs from PRS
- · Asynchronously triggered compare and clear

16.3 Functional Description

An overview of the PCNT module is shown in Figure 16.1 PCNT Overview on page 527.

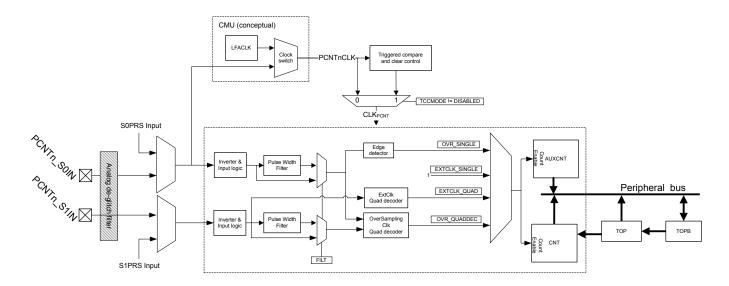


Figure 16.1. PCNT Overview

16.3.1 Pulse Counter Modes

The pulse counter can operate in single input oversampling mode (OVSSINGLE), externally clocked single input counter mode (EXTCLKSINGLE), externally clocked quadrature decoder mode (EXTCLKQUAD) and oversampling quadrature decoder modes(OVSQUAD1X, OVSQUAD2X and OVSQUAD4X). The following sections describe operation of each of these modes and how they are enabled. Input timing constraints are described in 16.3.6 Clock Sources and 16.3.7 Input Filter.

16.3.1.1 Single Input Oversampling Mode

This mode is enabled by writing OVSSINGLE to the MODE field in the PCNTn_CTRL register and disabled by writing DISABLE to the same field. The LFACLK clock source to the pulse counter is configured by clearing PCNT0CLKSEL in the CMU_PCNTCTRL in the Clock Management Unit (CMU).

The optional pulse width filter is enabled by setting the FILT bit in the PCNTn_CTRL register. Additionally, the PCNTn_S0IN input may be inverted, so that falling edges are counted, by setting the EDGE bit in the PCNTn_CTRL register.

If S1CDIR in the PCNTn_CTRL register is cleared, PCNTn_S0IN is the only observed input in this mode. The PCNTn_S0IN input is sampled by the LFACLK and the number of detected positive or negative edges on PCNTn_S0IN appears in PCNTn_CNT. The counter may be configured to count down by setting the CNTDIR bit in PCNTn_CTRL. Default is to count up.

The counting direction can also be controlled externally in this mode by setting S1CDIR. This will make the input value on PCNTn_S1IN decide the direction counted on a PCNTn_S0IN edge. If PCNTn_S1IN is high, the count is done according to CNTDIR in PCNTn_CTRL. If low, the count direction is opposite.

16.3.1.2 Externally Clocked Single Input Counter Mode

This mode is enabled by writing EXTCLKSINGLE to the MODE field in the PCNTn_CTRL register and disabled by writing DISABLE to the same field. The external pin clock source is configured by setting PCNT0CLKSEL in the CMU_PCNTCTRL register (10. CMU - Clock Management Unit).

Positive edges on PCNTn_S0IN are used to clock the counter. Similar to the oversampled mode, PCNTn_S1IN is used to determine the count direction if S1CDIR is set. If not, CNTDIR in PCNTn CTRL solely defines count direction.

The digital pulse width filter is not available in this mode. The analog de-glitch filter in the GPIO pads is capable of removing some unwanted noise. However, this mode may be susceptible to spikes and unintended pulses from devices such as mechanical switches, and is therefore most suited to take input from electronic sensors etc. that generate single wire pulses.

16.3.1.3 Quadrature Decoder Modes

Two different types of quadrature decoding is supported in the pulse counter: the externally clocked (Asynchronous) quadrature decoding and the oversampling (Synchronous) quadrature decoding. The externally clocked mode supports 1X quadrature decoding whereas the oversampling mode supports 1X, 2X and 4X quadrature decoding. These modes are described in detail in 16.3.1.4 Externally Clocked Quadrature Decoder Mode and 16.3.1.5 Oversampling Quadrature Decoder Mode.

16.3.1.4 Externally Clocked Quadrature Decoder Mode

This mode is enabled by writing EXTCLKQUAD to the MODE field in PCNTn_CTRL and disabled by writing DISABLE to the same field. The external pin clock source is configured by setting PCNT0CLKSEL in the CMU_PCNTCTRL register (10. CMU - Clock Management Unit).

In this mode, both edges on PCNTn_S0IN pin are used to sample PCNTn_S1IN pin, in order to decode the quadrature code. A quadrature coded signal contains information about the relative speed and direction of a rotating shaft as illustrated by Figure 16.2 PCNT Quadrature Coding on page 529, hence the direction of the counter register PCNTn_CNT is controlled automatically.

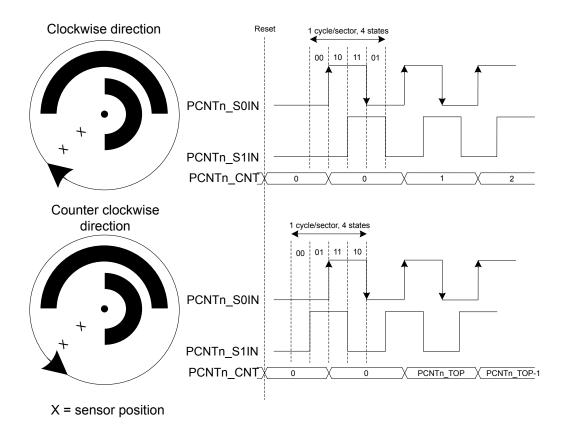


Figure 16.2. PCNT Quadrature Coding

If PCNTn_S0IN leads PCNTn_S1IN in phase, the direction is clockwise, and if it lags in phase the direction is counter-clockwise. Default behavior is illustrated by Figure 16.2 PCNT Quadrature Coding on page 529.

The counter direction may be read from the DIR bit in the PCNTn_STATUS register. Additionally, the DIRCNG interrupt in the PCNTn_IF register is generated when a direction change is detected. When a change is detected, the DIR bit in the PCNTn_STATUS register must be read to determine the current new direction.

Note: The sector disc illustrated in the figure may be finer grained in some systems. Typically, they may generate 2-4 PCNTn_S0IN wave periods per 360° rotation.

The direction of the quadrature code and control of the counter is generated by the simple binary function outlined by Table 16.1 PCNT QUAD Mode Counter Control Function on page 529. Note that this function also filters some invalid inputs that may occur when the shaft changes direction or temporarily toggles direction.

Table 16.1. PCNT QUAD Mode Counter Control Function

Inputs		Control/Status		
S1IN posedge	S1IN negedge	Count Enable	CNTDIR status bit	
0	0	0	0	

Inputs		Control/Status	Control/Status		
S1IN posedge	S1IN negedge	Count Enable	CNTDIR status bit		
0	1	1	0		
1	0	1	1		
1	1	0	0		

Note: PCNTn_S1IN is sampled on both edges of PCNTn_S0IN.

16.3.1.5 Oversampling Quadrature Decoder Mode

There are three Oversampling Quadrature Decoder Modes supported: 1X , 2X and 4X. These modes are enabled by writing OVS-QUAD1X, OVSQUAD2X and OVSQUAD4X, respectively, to the MODE field in PCNTn_CTRL and disabled by writing DISABLE to the same field. The LFACLK clock source to the pulse counter must be configured by clearing PCNT0CLKSEL in the CMU_PCNTCTRL in the Clock Management Unit (CMU), 10. CMU - Clock Management Unit .

The optional pulse width filter is enabled by setting the FILT bit in the PCNTn_CTRL register. The filter applies to both inputs PCNTn_S0IN and PCNTn_S1IN. The filter length is configured by FILTLEN in PCNTn_OVSCFG register.

Based on the modes selected, the decoder updates the counter on different events. In the OVSQUAD1X mode, the counter is updated on the rising edge of the PCNTn_S0IN input when counting up, and on the negedge of the PCNTn_S0IN input when counting down. In the OVSQUAD2X mode, the counter is updated on both edges of PCNTn_S0IN input. In the OVSQUAD4X mode the counter is updated on both edges of both inputs PCNTn_S0IN and PCNTn_S1IN. Table 16.2 PCNT OVSQUAD 1X, 2X and 4X Mode Counter Control Function on page 531 outlines the increment or decrement of the counter based on the Quadrature Mode selected.

Note: The decoding behavior of OVSQUAD1X mode is slightly different compared to EXTCLKQUAD mode(also 1X mode). In the EXTCLKQUAD mode, the counter is updated only on the posedge of S0IN input. However, in the OVSQUAD1X mode, the counter is updated on the posedge of S0IN when counting up and on the negedge of S0IN when counting down.

Table 16.2. PCNT OVSQUAD 1X, 2X and 4X Mode Counter Control Function

Direction Previous State		Next State		OVSQUAD MODE			
	S1IN	SOIN	S1IN	SOIN	1X	2X	4X
Clockwise	0	0	0	1	+1	+1	+1
	0	1	1	1			+1
	1	1	1	0		+1	+1
	1	0	0	0			+1
Counter Clock- wise	1	0	1	1		-1	-1
	1	1	0	1			-1
	0	1	0	0	-1	-1	-1
	0	0	1	0			-1

Figure 16.3 PCNT State Transitions for Different Oversampling Quadrature Decoder Modes on page 532 illustrates the different states of the quadrature input and the state transitions that updates the counter for the different modes. Each cycle of the input states results in 1 update, 2 updates and 4 updates of the counter for OVSQUAD1X, OVSQUAD2X and OVSQUAD4X modes respectively.

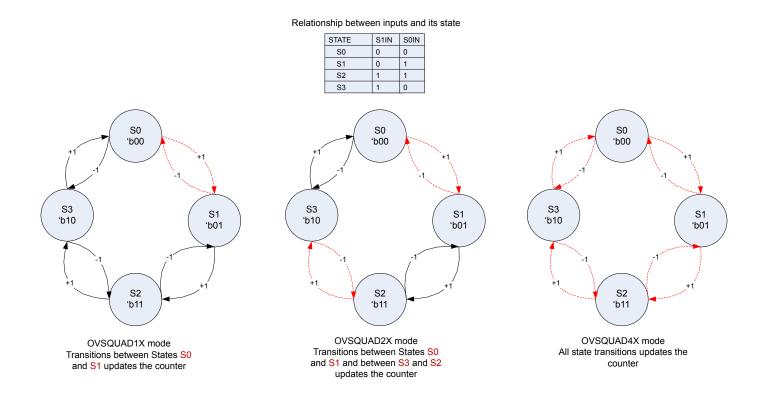


Figure 16.3. PCNT State Transitions for Different Oversampling Quadrature Decoder Modes

The counter direction can be read from the DIR bit in PCNTn_STATUS register. Additionally, the DIRCNG interrupt in the PCNTn_IF is generated when the direction change is detected. When a change is detected, the DIR bit in the PCNTn_STATUS register must be read to determine the new direction.

In the oversampling quadrature decoder modes, the maximum input toggle frequency supported is 8KHz. For frequencies of 8KHz and higher, incorrect decoding occurs. The different decoding modes and the counter updates are further illustrated by Figure 16.4 PCNT Oversampling Quadrature Decoder 1X Mode on page 532, Figure 16.5 PCNT Oversampling Quadrature Decoder 2X Mode on page 533 and Figure 16.6 PCNT Oversampling Quadrature Decoder 4X Mode on page 533.

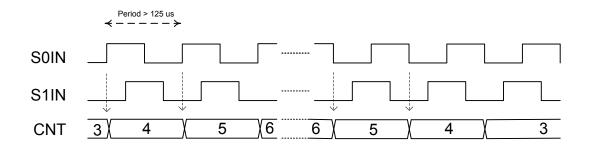


Figure 16.4. PCNT Oversampling Quadrature Decoder 1X Mode

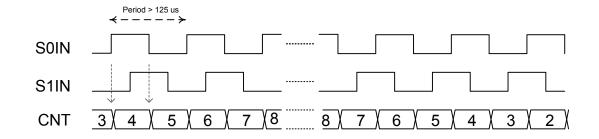


Figure 16.5. PCNT Oversampling Quadrature Decoder 2X Mode

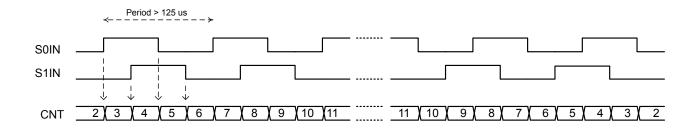


Figure 16.6. PCNT Oversampling Quadrature Decoder 4X Mode

The above modes, by default are prone to flutter effects in the inputs PCNTn_S0IN and PCNTn_S1IN. When this occurs, the counter changes directions rapidly causing DIRCNG interrupts and unnecessarily waking the core. To prevent this, set FLUTTERRM in PCNTn_OVSCFG register. When enabled, flutter is removed, thus preventing unnecessary wakeup of the core. The flutter removal logic works by preventing update of the counter value if the wheel keeps changing direction as a result of flutter. The counter is only updated if the current and previous state transition of the rotation are in the same direction. These state transitions are quadrature decoder mode specific. The highlighted state transitions in Figure 16.3 PCNT State Transitions for Different Oversampling Quadrature Decoder Modes on page 532 are the ones considered for the different quadrature decoder modes. Figure 16.7 PCNT Oversampling Quadrature Decoder with Flutter Removal on page 533 shows how the counter is updated for the different quadrature decoder modes with flutter removal FLUTTERRM enabled in PCNTn OVSCFG.

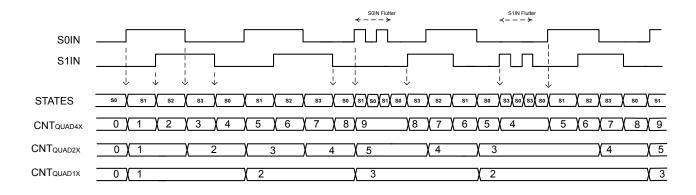


Figure 16.7. PCNT Oversampling Quadrature Decoder with Flutter Removal

16.3.2 Hysteresis

By default the pulse counter wraps to 0 when passing the configured top value, and wraps to the top value when counting down from 0. On these events, a system will likely want to wake up to store and track the overflow count. This is fine if the pulse counter is tracking a monotonic value or a value that does not change directions frequently. In the latter scenario, if the counter changes directions around the overflow/underflow point, the system will have to wake up frequently to keep track of the rotations, resulting in higher current consumption.

To solve this, the pulse counter has a way of introducing hysteresis to the counter. When HYST in PCNTn_CTRL is set, the pulse counter will always wrap to TOP/2 on underflows and overflows. This takes the counter away from the area where it might overflow or underflow, removing the problem. Figure 16.8 PCNT Hysteresis behavior of Counter on page 534 illustrates the hysteresis behavior.

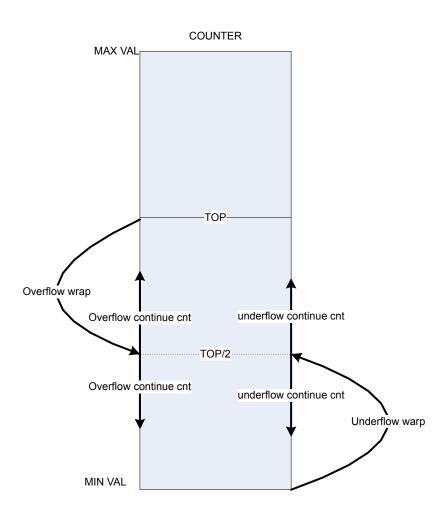


Figure 16.8. PCNT Hysteresis behavior of Counter

Given a starting value of 0 for the counter, the absolute count value when hysteresis is enabled can be calculated with the equations Figure 16.9 Absolute Position With Hysteresis and Even TOP Value on page 534 or Figure 16.10 Absolute Position With Hysteresis and Odd TOP Value on page 534, depending on whether the TOP value is even or odd.

$$CNT_{abs} = CNT - UF_{CNT} x (TOP/2+1) + OF_{CNT} x (TOP/2+1)$$

Figure 16.9. Absolute Position With Hysteresis and Even TOP Value

Figure 16.10. Absolute Position With Hysteresis and Odd TOP Value

16.3.3 Auxiliary Counter

To be able to keep explicit track of counting in one direction in addition to the regular counter which counts both up and down, the auxiliary counter can be used. The pulse counter can, for instance, be configured to keep track of the absolute rotation of the wheel, while at the same time the auxiliary counter can keep track of how much the wheel has reversed.

The auxiliary counter is enabled by configuring AUXCNTEV in PCNTn_CTRL. It will always count up, but it can be configured whether it should count up on up-events, down-events or both, keeping track of rotation either way or general movement. The value of the auxiliary counter can be read from the PCNTn_AUXCNT register.

Overflows on the auxiliary counter happen when the auxiliary counter passes the top value of the pulse counter, configured in PCNTn_TOP. In that event, the AUXOF interrupt flag is set, and the auxiliary counter wraps to 0.

As the auxiliary counter, the main counter can be configured to count only on certain events. This is done through CNTEV in PCNTn_CTRL, and it is possible like for the auxiliary counter, to make the main counter count on only up and down events. The difference between the counters is that where the auxiliary counter will only count up, the main counter will count up or down depending on the direction of the count event.

16.3.4 Triggered Compare and Clear

The pulse counter features triggered compare and clear. When enabled, a configurable trigger will induce a comparison between the main counter, PCNTn_CNT, and the top value, PCNTn_TOP. After the comparison, the counter is cleared. The trigger for a compare and clear event is configured in the TCCMODE bit-field in PCNTn_CTRL. There are two options, LFA and PRS. If LFA is selected, the pulse counter will be compared with the top value, and cleared every 2^N LFA clock cycle (where N is the value of TCCPRESC in PCNTn_CTRL). If a PRS trigger is selected, the active PRS channel is configured in TCCPRSSEL in PCNTn_CTRL. The PRS input can be inverted by setting TCCPRSPOL, triggering the compare and clear on the negative edge of the PRS input. The PRS input can also be used as a gate for the pulse counter clock. This is enabled by setting PRSGATEEN in PCNTn_CTRL.

Note: When PRSGATEEN is set, the clock to the entire pulse counter will be gated by the PRS input, meaning that register writes will not take effect while the gated clock is inactive.

Comparison with PCNTn_TOP can be performed in three ways: range, greater than or equal, and less than or equal. TCCCOMP in PCNTn_CTRL configures comparison mode. Upon a compare match, the TCC interrupt is set, and the PRS output from the pulse counter is set. The PRS output will remain set until the next compare and clear event. Triggered compare and clear is intended for use when the pulse counter is configured to count up. In this mode, PCNTn_CNT will not wrap to 0 when hitting PCNTn_TOP, it will keep counting. In addition, the counter will not overflow, it will rather stop counting, just setting the overflow interrupt flag.

Figure 16.11 PCNT Triggered Compare and Clear on page 536 shows an overview of the control circuitry for triggered compare and clear. The control circuitry includes two positive edge detectors (PED) and glitch filters, used to generate clocks for the pulse counter. The two clock outputs are mutually exclusive: If both edge detectors receive a pulse at the same time, the output pulse from one of them will be postponed until the other edge detectors output pulse has completed.

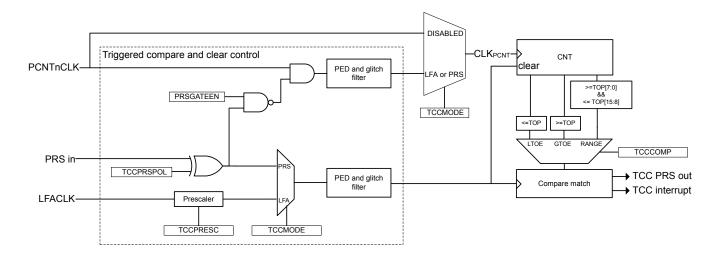


Figure 16.11. PCNT Triggered Compare and Clear

Note: TCCMODE, TCCPRESC, PRSGATEEN, TCCPRSPOL, and TCCPRSSEL in PCNTn_CTRL should only be altered when RSTEN in PCNTn_CTRL is set.

16.3.5 Register Access

The counter-clock domain may be clocked externally. To update the counter-clock domain registers from software in this mode, 2-3 clock pulses on the external clock are needed to synchronize accesses to the externally clocked domain. Clock source switching is controlled from the registers in the CMU (10. CMU - Clock Management Unit).

When the RSTEN bit in the PCNTn_CTRL register is set, the PCNT clock domain is asynchronously held in reset. The reset is synchronously released two PCNT clock edges after the RSTEN bit in the PCNTn_CTRL register is cleared by software. This asynchronous reset restores the reset values in PCNTn_TOP, PCNTn_CNT and other control registers in the PCNT clock domain.

CNTRSTEN works in a similar manner as RSTEN, but only resetting the counter, CNT. Note that the counter is also reset by RSTEN.

AUXCNTRSTEN works in a similar manner as RSTEN, but only resetting the auxiliary counter, PCNTn_AUXCNT. Note that the auxiliary counter is also reset by RSTEN.

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers. Refer to 4.3 Access to Low Energy Peripherals (Asynchronous Registers) for a description on how to perform register accesses to Low Energy Peripherals.

Note: PCNTn_TOP and PCNTn_CNT are read-only registers. When writing to PCNTn_TOPB, make sure that the counter value, PCNTn CNT, can not exceed the value written to PCNTn TOPB within two clock cycles.

16.3.6 Clock Sources

The pulse counter may be clocked from two possible clock sources: LFACLK or an external clock. The clock selection is configured by the PCNT0CLKSEL bit in the CMU_PCNTCTRL in the Clock Management Unit (CMU), 10. CMU - Clock Management Unit . The default clock source is the LFACLK.

This PCNT module may also use PCNTn_S0IN as an external clock to clock the counter (EXTCLKSINGLE mode) and to sample PCNTn_S1IN (EXTCLKQUAD mode). Setup, hold and max frequency constraints for PCNTn_S0IN and PCNTn_S1IN for these modes are specified in the device data sheet.

To use this module, the LE interface clock must be enabled in CMU_HFBUSCLKEN0, in addition to the module clock in CMU_PCNTCTRL.

Note: PCNT Clock Domain Reset, RSTEN, should be set when changing clock source for PCNT. If changing to an external clock source, the clock pin has to be enabled as input prior to de-asserting RSTEN. Changing clock source without asserting RSTEN results in undefined behaviour.

16.3.7 Input Filter

An optional pulse width filter is available in OVSSINGLE and OVSQUAD modes, when LFACLK is selected as a clock source for the Pulse Counter in CMU 10. CMU - Clock Management Unit . The filter is enabled by writing 1 to the FILT bit in the PCNTn_CTRL register. When enabled, the high and low periods of PCNTn_S0IN and PCNTn_S1IN must be stable for a programmable number of consecutive clock cycles before the edge is passed to the edge detector. The filter length should be programmed in FILTLEN field of the PCNTn OVSCFG register.

The filter length is given by Figure 16.12 PCNT Input Filter Length Equation on page 537:

Filter length = (FILTLEN + 5) LFACLK cycles

Figure 16.12. PCNT Input Filter Length Equation

The maximum filter length configured is 260 LFACLK cycles.

In EXTCLKSINGLE and EXTCLKQUAD mode, there is no digital pulse width filter available.

16.3.8 Edge Polarity

The edge polarity can be set by configuring the EDGE bit in the PCNTn_CTRL register. When this bit is cleared, the pulse counter counts positive edges of PCNTn_S0IN input. When this bit is set, the pulse counter counts negative edges in OVSSINGLE mode. Also, when the EDGE bit is set in the OVSSINGLE and EXTCLKSINGLE modes, the PCNTn_S1IN input is inverted. In OVSQUAD 1X-4X modes the EDGE bit inverts both inputs.

Note: The EDGE bit in PCNTn_CTRL has no effect in EXTCLKQUAD mode.

16.3.9 PRS and PCNTn_S0IN,PCNTn_S1IN Inputs

It is possible to receive input from PRS on both PCNTn_S0IN (or PCNTn_S1IN) by setting S0PRSEN (or S1PRSEN) in PCNTn_IN-PUT. The PRS channel used can be selected using S0PRSSEL (or S1PRSSEL) in PCNTn_INPUT.

In the Oversampling quadrature decoder modes, the input frequency should be less than 8KHz to ensure correct functionality.

PCNT module generates three PRS outputs the TCC PRS output, the CNT OF/UF PRS output and the CNT DIR PRS output. The TCC PRS is generated on compare match of TCC event. The CNT OF/UF combined PRS is generated when the counter overflow or underflows. The CNT DIR PRS is a level PRS and indicates the current direction of count of counter CNT

Note: S0PRSEN,S1PRSEN,S0PRSSEL,S1PRSSEL should only be altered when RSTEN in PCNTn CTRL is set.

16.3.10 Interrupts

The interrupt generated by PCNT uses the PCNTn_INT interrupt vector. Software must read the PCNTn_IF register to determine which module interrupt that generated the vector invocation.

16.3.10.1 Underflow and Overflow Interrupts

The underflow interrupt flag (UF) is set when the counter counts down from 0. I.e. when the value of the counter is 0 and a new pulse is received. The PCNTn_CNT register is loaded with the PCNTn_TOP value after this event.

The overflow interrupt flag (OF) is set when the counter counts up from the PCNTn_TOP (reload) value. I.e. if PCNTn_CNT = PCNTn_TOP and a new pulse is received. The PCNTn_CNT register is loaded with the value 0 after this event.

16.3.10.2 Direction Change Interrupt

The PCNTn_PCNT module sets the DIRCNG interrupt flag (PCNTn_IF register) for EXTCLKQUAD and OVSQUAD1X-4X modes when the direction of the quadrature code changes. The behavior of this interrupt in the EXTCLKQUAD mode is illustrated by Figure 16.13 PCNT Direction Change Interrupt (DIRCNG) Generation on page 539.

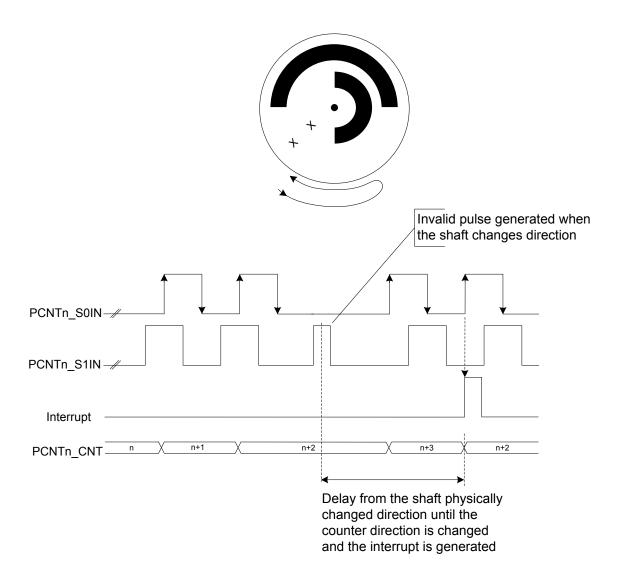


Figure 16.13. PCNT Direction Change Interrupt (DIRCNG) Generation

16.3.11 Cascading Pulse Counters

When two or more Pulse Counters are available, it is possible to cascade them. For example two 16-bit Pulse Counters can be cascaded to form a 32-bit pulse counter. This can be done with the help of the CNT UF/OF PRS and CNT DIR PRS ouputs. The figure Figure 16.14 PCNT Cascading to two 16-bit PCNT to form a 32-bit PCNT on page 540 illustrates this structure.

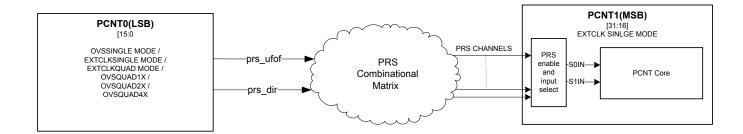


Figure 16.14. PCNT Cascading to two 16-bit PCNT to form a 32-bit PCNT

For cascading of Pulse Counters to work, the PCNT1 according to the figure Figure 16.14 PCNT Cascading to two 16-bit PCNT to form a 32-bit PCNT on page 540 should be programmed in EXTCLKSINGLE mode and its S0IN and S1IN inputs should be configured to prs_ufof and prs_dir of PCNT0 respectively. In addition to this, a strict programming sequence needs to be followed to ensure both PCNTs are in sync with each other.

- Configure PCNT0 registers. eg. PCNT0_INPUT,PCNT0_CTRL,PCNT0_OVSCFG etc.
- · Wait for PCNT0 SYCNBUSY to be cleared to ensure the registers are synchronized to the asynchronous clock domain.
- Hold PCNT0 in sw reset by setting PCNT0_CTRL_RSTEN.
- Configure PCNT1_CTRL to EXTCLKSINLE mode with S1CDIR and CNTDIR bit set. Configure INPUT to accept "prs_ufof" and
 "prs_dir" of PCNT0 on S0IN and S1IN respectively.
- Wait for PCNTn_SYCNBUSY to be cleared to ensure the registers are synchronized to the asynchronous clock domain. Use three PRS_SWPULSE on the S0IN prs channel to ensure this synchronization.
- Hold PCNT1 in sw reset by setting PCNT1 CTRL RSTEN.
- Clear PCNT1 CTRL RSTEN and synchronize it by asserting two PRS SWPULSE on the S0IN input.
- Finally clear PCNT0_CTRL_RSTEN and start counting.

Note: When RSTEN in PCNTn_CTRL is set, the TOP value in the Pulse Counter gets cleared. Therefore, in order to update the TOP value while RSTEN is set, assert TOPBHFEN bit in PCNTn_CTRL. This will update the TOP value with the TOPB value even without having to synchronize the TOPB value. This only works if TOPBHFEN and TOPB are configured while RSTEN in PCNTn_CTRL is set.

16.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	PCNTn_CTRL	RW	Control Register
0x004	PCNTn_CMD	W1	Command Register
0x008	PCNTn_STATUS	R	Status Register
0x00C	PCNTn_CNT	R	Counter Value Register
0x010	PCNTn_TOP	R	Top Value Register
0x014	PCNTn_TOPB	RW	Top Value Buffer Register
0x018	PCNTn_IF	R	Interrupt Flag Register
0x01C	PCNTn_IFS	W1	Interrupt Flag Set Register
0x020	PCNTn_IFC	(R)W1	Interrupt Flag Clear Register
0x024	PCNTn_IEN	RW	Interrupt Enable Register
0x02C	PCNTn_ROUTELOC0	RW	I/O Routing Location Register
0x040	PCNTn_FREEZE	RW	Freeze Register
0x044	PCNTn_SYNCBUSY	R	Synchronization Busy Register
0x064	PCNTn_AUXCNT	R	Auxiliary Counter Value Register
0x068	PCNTn_INPUT	RW	PCNT Input Register
0x06C	PCNTn_OVSCFG	RW	Oversampling Config Register

16.5 Register Description

16.5.1 PCNTn_CTRL - Control Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Ві	it Po	ositi	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	ဝ	∞	7	9	2	4	က	2	_	0
Reset	0		•		0x0	•	0	0	3	OXO		2	OX O		2	0 0 0 0	0	0	,	S S	2	2	0	0	0	0	0	0	0		0x0	
Access	₽				≷		₩ M	Z M	2	<u>}</u>		20	<u>}</u>		à	≥ Y	₩	₹	2	≥ Y	20	<u> </u>	ΑW	₩ M	Z.	M	₹	₽	₹		₽	
Name	TOPBHFSEL				TCCPRSSEL		TCCPRSPOL	PRSGATEEN				COBBEOC	7 1 1			ICCMODE	EDGE	CNTDIR		AUXCNIEV	VAFIAO	2	S1CDIR	HYST	DEBUGHALT	AUXCNTRSTEN	CNTRSTEN	RSTEN	FILT		MODE	

Bit	Name	Reset	Access	Description
31	TOPBHFSEL	0	RW	TOPB High Frequency Value Select
	Apply High frequer	ncy value of TOPI	B to TOP re	gister. Should be used only when RSTEN in PCNTn_CTRL is set
30:29	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
28:26	TCCPRSSEL	0x0	RW	TCC PRS Channel Select
	Select PRS channe	el used as compa	ire and clear	trigger.
	Value	Mode		Description
	0	PRSCH0		PRS Channel 0 selected.
	1	PRSCH1		PRS Channel 1 selected.
	2	PRSCH2		PRS Channel 2 selected.
	3	PRSCH3		PRS Channel 3 selected.
	4	PRSCH4		PRS Channel 4 selected.
	5	PRSCH5		PRS Channel 5 selected.
	6	PRSCH6		PRS Channel 6 selected.
	7	PRSCH7		PRS Channel 7 selected.
25	TCCPRSPOL	0	RW	TCC PRS Polarity Select
	Configure which ed	dge on the PRS ir	nput is used	to trigger a compare and clear event
	Value	Mode		Description
	0	RISING		Rising edge on PRS trigger compare and clear event.
	1	FALLING		Falling edge on PRS trigger compare and clear event.
24	PRSGATEEN	0	RW	PRS Gate Enable

Bit	Name	Reset	Access	Description
3:22	TCCCOMP	0x0	RW	Triggered Compare and Clear Compare Mode
	Selects the mode	for comparison u	pon a compa	re and clear event.
	Value	Mode		Description
	0	LTOE		Compare match if PCNT_CNT is less than, or equal to PCNT_TOP.
	1	GTOE		Compare match if PCNT_CNT is greater than or equal to PCNT_TOP.
	2	RANGE		Compare match if PCNT_CNT is less than, or equal to PCNT_TOP[15:8]], and greater than, or equal to PCNT_TOP[7:0].
21	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conver
20:19	TCCPRESC	0x0	RW	Set the LFA Prescaler for Triggered Compare and Clear
	Selects the presc	aler value for LFA	compare an	d clear events
	Value	Mode		Description
	0	DIV1		Compare and clear event each LFA cycle.
	1	DIV2		Compare and clear performed on every other LFA cycle.
	2	DIV4		Compare and clear performed on every 4th LFA cycle.
	3	DIV8		Compare and clear performed on every 8th LFA cycle.
18	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conver
17:16	TCCMODE	0x0	RW	Sets the Mode for Triggered Compare and Clear
	Selects whether of	compare and clea	r should be tr	iggered on each LFA clock, or from PRS
	Value	Mode		Description
	0	DISABLED		Triggered compare and clear not enabled.
	1	LFA		Compare and clear performed on each (optionally prescaled) LFA clock cycle.
	2	PRS		Compare and clear performed on positive PRS edges.
15	EDGE	0	RW	Edge Select
				This bit should be written when PCNT is in DISABLE mode, otherwise the DVSSINGLE, EXTCLKSINGLE and OVSQUAD1X-4X modes.
	Value	Mode		Description
	0	POS		Positive edges on the PCNTn_S0IN inputs are counted in OVSSINGLE mode. Does not invert PCNTn_S1IN input in OVSSINGLE and EXTCLKSINGLE modes
	1	NEG		Negative edges on the PCNTn_S0IN inputs are counted in OVSSIN-GLE mode. Inverts the PCNTn_S1IN input in OVSSINGLE and EXTCLKSINGLE modes
14	CNTDIR	0	RW	Non-Quadrature Mode Counter Direction Control
	The direction of the TCLKQUAD mode			DVSSINGLE and EXTCLKSINGLE modes. This bit is ignored in EXally detected.

Bit	Name	Reset	Access	Description
	Value	Mode		Description
	0	UP		Up counter mode.
	1	DOWN		Down counter mode.
13:12	AUXCNTEV	0x0	RW	Controls When the Auxiliary Counter Counts
	Selects whether the	auxiliary counter	responds t	to up-count events, down-count events or both
	Value	Mode		Description
	0	NONE		Never counts.
	1	UP		Counts up on up-count events.
	2	DOWN		Counts up on down-count events.
	3	вотн		Counts up on both up-count and down-count events.
11:10	CNTEV	0x0	RW	Controls When the Counter Counts
	Selects whether the	regular counter re	esponds to	up-count events, down-count events or both
	Value	Mode		Description
	0	вотн		Counts up on up-count and down on down-count events.
	1	UP		Only counts up on up-count events.
	2	DOWN		Only counts down on down-count events.
	3	NONE		Never counts.
9	S1CDIR	0	RW	Count Direction Determined By S1
				VSSINGLE or EXTCLKSINGLE modes. When S1 is high, the count direce count direction is the opposite
8	HYST	0	RW	Enable Hysteresis
	When hysteresis is e	enabled, the PCN	T will alwa	ys overflow and underflow to TOP/2.
7	DEBUGHALT	0	RW	Debug Mode Halt Enable
	Set to halt the PCNT TCLKQUAD modes,			SSINGLE and OVSQUAD modes. When in EXTCLKSINGLE or EXthe Pulse Counter.
	Value			Description
	0			PCNT is running in debug mode.
	1			PCNT is frozen in debug mode.
6	AUXCNTRSTEN	0	RW	Enable AUXCNT Reset
		es after this bit is	cleared. I	sly held in reset when this bit is set. The reset is synchronously released f an external clock is used, the reset should be performed by setting and bit.
5	CNTRSTEN	0	RW	Enable CNT Reset
	edges after this bit i	s cleared. If an e	external clo	set when this bit is set. The reset is synchronously released two PCNT clock ock is used, the reset should be performed by setting and clearing the bit clears the counter to its reset value

Name	Reset	Access	Description
RSTEN	0	RW	Enable PCNT Clock Domain Reset
clock edges after this	s bit is cleared.	lf an exterr	in reset when this bit is set. The reset is synchronously released two PCNT all clock is used, the reset should be performed by setting and clearing the
FILT	0	RW	Enable Digital Pulse Width Filter
-	•		e at least (FILTLEN+5) clock cycles wide. This filter is only available in
MODE	0x0	RW	Mode Select
Selects the mode of o	operation. The c	orrespondi	ng clock source must be selected from the CMU.
Value	Mode		Description
0	DISABLE		The module is disabled.
1	OVSSINGLE		Single input LFACLK oversampling mode (available in EM0-EM3).
2	EXTCLKSING	GLE	Externally clocked single input counter mode (available in EM0-EM3).
3	EXTCLKQUA	۷D	Externally clocked quadrature decoder mode (available in EM0-EM3).
4	OVSQUAD1X	<	LFACLK oversampling quadrature decoder 1X mode (available in EM0-EM3).
5	OVSQUAD2X	(LFACLK oversampling quadrature decoder 2X mode (available in EM0-EM3).
6	OVSQUAD4X	(LFACLK oversampling quadrature decoder 4X mode (available in EM0-EM3).
	RSTEN The PCNT clock dom clock edges after this bit without pending for FILT The filter passes all h OVSSINGLE, OVSQUE MODE Selects the mode of over the control of the con	RSTEN 0 The PCNT clock domain is asynchroclock edges after this bit is cleared. bit without pending for SYNCBUSY by FILT 0 The filter passes all high and low per OVSSINGLE, OVSQUAD1X-4X model MODE 0x0 Selects the mode of operation. The overlappen of the period of t	RSTEN 0 RW The PCNT clock domain is asynchronously held clock edges after this bit is cleared. If an extern bit without pending for SYNCBUSY bit. FILT 0 RW The filter passes all high and low periods that an OVSSINGLE,OVSQUAD1X-4X modes. MODE 0x0 RW Selects the mode of operation. The corresponding value Mode 0 DISABLE 1 OVSSINGLE 2 EXTCLKSINGLE 3 EXTCLKQUAD 4 OVSQUAD1X

16.5.2 PCNTn_CMD - Command Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Pc	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																															0	0
Access																															¥	W1
Name																															LTOPBIM	LCNTIM

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
1	LTOPBIM	0	W1	Load TOPB Immediately
	This bit has no effect	since TOPB is r	ot buffered	d and it is loaded directly into TOP.
0	LCNTIM	0	W1	Load CNT Immediately
	Load PCNTn_TOP in	to PCNTn_CNT	on the nex	kt counter clock cycle.

16.5.3 PCNTn_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset				•	'									•	'	'		'	•			•					'					0
Access																																ď
Name																																DIR

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	DIR	0	R	Current Counter Direction
	Current direction	status of the cour	nter. This bit is	s valid in EXTCLKQUAD mode only.
	Value	Mode		Description
	0	UP		Up counter mode (clockwise in EXTCLKQUAD mode with the EDGE bit in PCNTn_CTRL set to 0).
	1	DOWN		Down counter mode.

16.5.4 PCNTn_CNT - Counter Value Register

Offset															Bi	t Po	sitio	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	_	0
Reset																								00000	00000							
Access																								۵	۷							
Name																								FIAC	5							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	CNT	0x0000	R	Counter Value
	Gives read access to	the counter.		

16.5.5 PCNTn_TOP - Top Value Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	3	2	_	0
Reset										•														DVOOPE	-				•			
Access																								Ω	<u> </u>							
Name																								TOP.	5							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	TOP	0x00FF	R	Counter Top Value
	When counting dow PCNTn_CNT registe			PCNTn_CNT when counting past 0. When counting up, 0 is written to the alue.

16.5.6 PCNTn_TOPB - Top Value Buffer Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset	Bit Posi	ition
0x014	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reset		0x00FF
Access		Z W
Name		TOPB

Bit	Name	Reset	Access	Description									
31:16	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-									
15:0	ТОРВ	0x00FF	RW	Counter Top Buffer									
	Loaded automatically	TOPB 0x00FF RW Counter Top Buffer Loaded automatically to TOP when written.											

16.5.7 PCNTn_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset											•			•	'		•									•	0	0	0	0	0	0
Access																											œ	œ	22	2	22	~
Name																											TERR		F	.NG		
Nume																											OOS	TCC	AUXO	DIRC	OF	H.

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
5	OQSTERR	0	R	Oversampling Quadrature State Error Interrupt
	Set in the Oversampli	ng Quadrature l	Mode wher	n incorrect state transition occurs
4	TCC	0	R	Triggered Compare Interrupt Read Flag
	Set upon triggered co	mpare match		
3	AUXOF	0	R	Auxiliary Overflow Interrupt Read Flag
	Set when an Auxiliary	CNT overflow	occurs	
2	DIRCNG	0	R	Direction Change Detect Interrupt Flag
	Set when the count di	rection changes	s. Set in EX	CTCLKQUAD mode only.
1	OF	0	R	Overflow Interrupt Read Flag
	Set when a CNT over	flow occurs		
0	UF	0	R	Underflow Interrupt Read Flag
	Set when a CNT unde	erflow occurs		

16.5.8 PCNTn_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																											0	0	0	0	0	0
Access																											W	W	N M	M	W	W1
																											ERR		ш	ڻ ن		
Name																											OQSTE	22	AUXOF	IRCN	P.	些
																											0	Ĕ	4		0	\supset

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
5	OQSTERR	0	W1	Set OQSTERR Interrupt Flag
	Write 1 to set the OQS	STERR interrup	t flag	
4	TCC	0	W1	Set TCC Interrupt Flag
	Write 1 to set the TCC	C interrupt flag		
3	AUXOF	0	W1	Set AUXOF Interrupt Flag
	Write 1 to set the AUX	KOF interrupt fla	g	
2	DIRCNG	0	W1	Set DIRCNG Interrupt Flag
	Write 1 to set the DIR	CNG interrupt fl	ag	
1	OF	0	W1	Set OF Interrupt Flag
	Write 1 to set the OF	interrupt flag		
0	UF	0	W1	Set UF Interrupt Flag
	Write 1 to set the UF i	interrupt flag		

16.5.9 PCNTn_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset					'			1						•	'										'		0	0	0	0	0	0
Access																											(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1
Name																											OQSTERR	TCC	AUXOF	DIRCNG	OF	UF

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
5	OQSTERR	0	(R)W1	Clear OQSTERR Interrupt Flag
	Write 1 to clear the flags (This feature n			eading returns the value of the IF and clears the corresponding interrupt MSC.).
4	TCC	0	(R)W1	Clear TCC Interrupt Flag
	Write 1 to clear the feature must be ena			returns the value of the IF and clears the corresponding interrupt flags (This
3	AUXOF	0	(R)W1	Clear AUXOF Interrupt Flag
	Write 1 to clear the (This feature must b	•	•	ing returns the value of the IF and clears the corresponding interrupt flags
2	DIRCNG	0	(R)W1	Clear DIRCNG Interrupt Flag
	Write 1 to clear the (This feature must b			ding returns the value of the IF and clears the corresponding interrupt flags
1	OF	0	(R)W1	Clear OF Interrupt Flag
	Write 1 to clear the feature must be ena			eturns the value of the IF and clears the corresponding interrupt flags (This
0	UF	0	(R)W1	Clear UF Interrupt Flag
	Write 1 to clear the feature must be ena		•	eturns the value of the IF and clears the corresponding interrupt flags (This

16.5.10 PCNTn_IEN - Interrupt Enable Register

Offset	Bit Position
0x024	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	00000
Access	
Name	OOSTERR TCC AUXOF DIRCNG OF

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
5	OQSTERR	0	RW	OQSTERR Interrupt Enable
	Enable/disable the O	QSTERR interru	pt	
4	TCC	0	RW	TCC Interrupt Enable
	Enable/disable the TO	CC interrupt		
3	AUXOF	0	RW	AUXOF Interrupt Enable
	Enable/disable the AU	JXOF interrupt		
2	DIRCNG	0	RW	DIRCNG Interrupt Enable
	Enable/disable the DI	RCNG interrupt		
1	OF	0	RW	OF Interrupt Enable
	Enable/disable the OF	interrupt		
0	UF	0	RW	UF Interrupt Enable
	Enable/disable the UF	interrupt		

16.5.11 PCNTn_ROUTELOC0 - I/O Routing Location Register

Offset			Bit Position
0x02C	330 239 27 27	22 23 24 25 20 20 20 20 20 20 20 20 20 20 20 20 20	0 1 2 2 4 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	6 6 4 4 4		
Reset			00 00 00 00 00
Access			RW W
			00
Name			SOINLOC
Bit	Name	Reset Access	
31:14	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
13:8	S1INLOC	0x00 RW	I/O Location
	Defines the location	n of the PCNT S1IN input pin	n.
	Value	Mode	Description
	0	LOC0	Location 0
	1	LOC1	Location 1
	2	LOC2	Location 2
	3	LOC3	Location 3
	4	LOC4	Location 4
	5	LOC5	Location 5
	6	LOC6	Location 6
	7	LOC7	Location 7
7:6	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
5:0	SOINLOC	0x00 RW	I/O Location
	Defines the location	n of the PCNT S0IN input pin	1.
	Value	Mode	Description
	0	LOC0	Location 0
	1	LOC1	Location 1
	2	LOC2	Location 2
	3	LOC3	Location 3
	4	LOC4	Location 4
	5	LOC5	Location 5
	6	LOC6	Location 6
	7	LOC7	Location 7

16.5.12 PCNTn_FREEZE - Freeze Register

Offset															Bi	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•												'	'	•			'				'	'		'			•		0
Access																																RW
Name																																REGFREEZE

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	REGFREEZE	0	RW	Register Update Freeze
	When set, the updaters simultaneously		clock domair	n is postponed until this bit is cleared. Use this bit to update several regis-
	Value	Mode		Description
	0	UPDATE		Each write access to a PCNT register is updated into the Low Frequency domain as soon as possible.
	1	FREEZE		The PCNT clock domain is not updated with the new written value.

16.5.13 PCNTn_SYNCBUSY - Synchronization Busy Register

Offset															Bi	t Po	siti	on														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•		•					•		•													•			•	0	0	0	0
Access																													22	2	ď	~
Name																													OVSCFG	TOPB	CMD	CTRL

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
3	OVSCFG	0	R	OVSCFG Register Busy
	Set when the value w	ritten to OVSCF	G is being	synchronized.
2	TOPB	0	R	TOPB Register Busy
	Set when the value w	ritten to TOPB i	s being syr	nchronized.
1	CMD	0	R	CMD Register Busy
	Set when the value w	ritten to CMD is	being synd	chronized.
0	CTRL	0	R	CTRL Register Busy
	Set when the value w	ritten to CTRL is	s being syn	chronized.

16.5.14 PCNTn_AUXCNT - Auxiliary Counter Value Register

Offset															Bi	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	ဖ	2	4	က	2	_	0
Reset			•	•	•		•	•	•	•		•	•	,	•	•			•	•	•				000000	•	•		•	•	•	
Access																								۵	۲							
Name																								FIAC	2000							

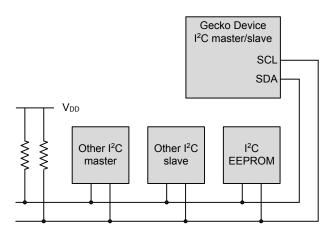
Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	AUXCNT	0x0000	R	Auxiliary Counter Value
	Gives read access to	the auxiliary c	ounter.	

16.5.15 PCNTn_INPUT - PCNT Input Register

	- CIVIII_IIVF																										
Offset										В	it P	ositi	on														
0x068	30 29 29	28	- i	25 24	23	22	200	3	9 8	17	16	15	4	13	12	7	10	ဝ	∞	7	9	2	4	က	2	_	0
Reset																0				0×0		0				0×0	
Access																Z.				₩		₹				₩	
																z											
Name																S1PRSEN				S1PRSSEL		SOPRSEN				SOPRSSEL	
																S				S		SO				SO	
Bit	Name			Reset		-	cce	ss	Des	crip	otio	n															
31:12	Reserved			To ens	sure	сотр	atibil	ity	with fu	ıture	e de	vices	s, al	ways	s wr	ite b	its t	o 0.	Мо	re in	forn	natic	n in	1.2	Coi	nver	1-
11	S1PRSEN			0		F	RW		S1I	N PF	RS I	Enab	ole														
	When set,	the PF	RS ch	annel is	sele	ected	as in	put	to S1	IN.																	
10:9	Reserved			To ens	sure	comp	atibil	ity	with fu	ıture	e de	vices	s, al	ways	s wr	ite b	its t	o 0.	Мо	re in	forn	natic	n in	1.2	Coi	nver	1-
8:6	S1PRSSE	L		0x0		F	RW		S1II	N PF	RS (Char	nnel	Sele	ect												
	Select PR	S chan	nel a	s input t	o S1	IN.																					
	Value			Mode					Des	crip	tion																_
	0			PRSC	H0				PRS	S Ch	anr	nel 0	sele	ected	I.												
	1			PRSC	H1				PRS	S Ch	anr	nel 1	sele	ected	l.												
	2			PRSC	H2				PRS	S Ch	anr	nel 2	sele	ected	۱.												
	3			PRSC	НЗ				PRS	S Ch	anr	nel 3	sele	ected	l.												
	4			PRSC	H4				PRS	S Ch	anr	nel 4	sele	ected	١.												
	5			PRSC	H5				PRS	S Ch	anr	nel 5	sele	ected	١.												
	6			PRSC	H6				PRS	S Ch	anr	nel 6	sele	ected	I.												
	7			PRSC	H7				PRS	S Ch	anr	nel 7	sele	ected	l.												_
5	S0PRSEN			0		F	RW		SOI	N PF	RS I	Enab	le														
	When set,	the PF	RS ch	annel is	sele	ected	as in	put	to SC	IN.																	
4:3	Reserved			To ens	sure	comp	atibil	ity	with fu	ıture	e de	vices	s, al	ways	s wr	ite b	its t	o 0.	Мо	re in	forn	natic	n in	1.2	Coi	nver	1-
2:0	S0PRSSE	L		0x0		F	RW		SOI	N PF	RS (Char	nnel	Sele	ect												
	Select PR	S chan	nel a	s input t	o S0	IN.																					
	Value			Mode					Des	crip	tion																_
	0			PRSC	H0				PRS	S Ch	anr	nel 0	sele	ected	l												
	1			PRSC	H1				PRS	S Ch	anr	nel 1	sele	ected	۱.												
	2			PRSC	H2				PRS	S Ch	anr	nel 2	sele	ected	I.												
	3	3 PRSCH3 PRS Channel 3 selected.																									

Bit	Name	Reset	Access	Description
	4	PRSCH4		PRS Channel 4 selected.
	5	PRSCH5		PRS Channel 5 selected.
	6	PRSCH6		PRS Channel 6 selected.
	7	PRSCH7		PRS Channel 7 selected.

16.5.16 PCNTn_OVSCFG - Oversampling Config Register (Async Reg)


For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Ві	t Po	siti	on														
0x06C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																				0									00X0			
Access																				X ≪									Z N			
Name																				FLUTTERRM									FILTLEN			

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
12	FLUTTERRM	0	RW	Flutter Remove
	When set, removes f	lutter from Quad	ldecoder in	puts S0IN and S1IN. Available only in OVSQUAD1X-4X modes
11:8	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	FILTLEN	0x00	RW	Configure Filter Length for Inputs S0IN and S1IN
	Used only in OVSING (FILTLEN + 5) LFAC		1X-4X mod	es. To use this first enable FILT in PCNTn_CTRL register. Filter length =

17. I2C - Inter-Integrated Circuit Interface

Quick Facts

What?

The I²C interface allows communication on I²C-buses with the lowest energy consumption possible.

Why?

I²C is a popular serial bus that enables communication with a number of external devices using only two I/O pins.

How?

With the help of DMA, the I^2C interface allows I^2C communication with minimal CPU intervention. Address recognition is available in all energy modes (except EM4), allowing the MCU to wait for data on the I^2C -bus with sub- μ A current consumption.

17.1 Introduction

The I^2C module provides an interface between the MCU and a serial I^2C -bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I^2C module allows precise control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in all energy modes (except EM4).

17.2 Features

- · True multi-master capability
- · Support for different bus speeds
 - Standard-mode (Sm) bit rate up to 100 kbit/s
 - · Fast-mode (Fm) bit rate up to 400 kbit/s
 - · Fast-mode Plus (Fm+) bit rate up to 1 Mbit/s
- · Arbitration for both master and slave (allows SMBus ARP)
- · Clock synchronization and clock stretching
- · Hardware address recognition
 - · 7-bit masked address
 - · General call address
 - Active in all energy modes (except EM4)
- · 10-bit address support
- · Error handling
 - · Clock low timeout
 - · Clock high timeout
 - · Arbitration lost
 - · Bus error detection
- · Separate receive/ transmit 2-level buffers, with additional separate shift registers
- Full DMA support

17.3 Functional Description

An overview of the I2C module is shown in Figure 17.1 I2C Overview on page 558.

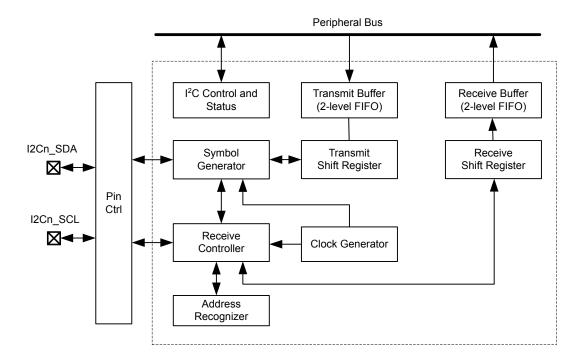


Figure 17.1. I2C Overview

17.3.1 I2C-Bus Overview

The I²C-bus uses two wires for communication; a serial data line (SDA) and a serial clock line (SCL) as shown in Figure 17.2 I2C-Bus Example on page 559. As a true multi-master bus it includes collision detection and arbitration to resolve situations where multiple masters transmit data at the same time without data loss.

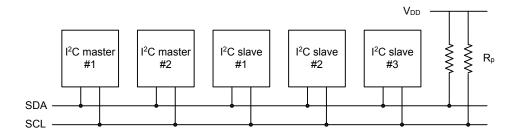


Figure 17.2. I2C-Bus Example

Each device on the bus is addressable by a unique address, and an I²C master can address all the devices on the bus, including other masters.

Both the bus lines are open-drain. The maximum value of the pull-up resistor can be calculated as a function of the maximal rise-time **tr** for the given bus speed, and the estimated bus capacitance **Cb** as shown in Figure 17.3 I2C Pull-up Resistor Equation on page 559.

$$Rp(max) = t_r / (0.8473 \times Cb)$$

Figure 17.3. I2C Pull-up Resistor Equation

The maximal rise times for 100 kHz, 400 kHz and 1 MHz I²C are 1 µs, 300 ns and 120 ns respectively.

Note:

- · The GPIO drive strength can be used to control slew rate.
- If V_{dd} drops below the voltage on SCL and SDA lines, the MCU could become back powered and pull the SCL and SDA lines low.

17.3.1.1 START and STOP Conditions

START and STOP conditions are used to initiate and stop transactions on the I²C-bus. All transactions on the bus begin with a START condition (S) and end with a STOP condition (P). As shown in Figure 17.4 I2C START and STOP Conditions on page 560, a START condition is generated by pulling the SDA line low while SCL is high, and a STOP condition is generated by pulling the SDA line high while SCL is high.

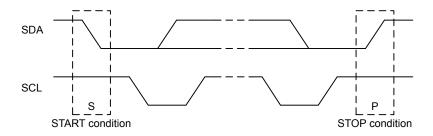


Figure 17.4. I2C START and STOP Conditions

The START and STOP conditions are easily identifiable bus events as they are the only conditions on the bus where a transition is allowed on SDA while SCL is high. During the actual data transmission, SDA is only allowed to change while SCL is low, and must be stable while SCL is high. One bit is transferred per clock pulse on the I²C-bus as shown in Figure 17.5 I2C Bit Transfer on I²C-Bus on page 560.

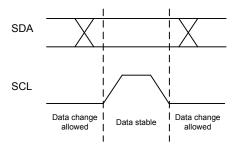


Figure 17.5. I2C Bit Transfer on I²C-Bus

17.3.1.2 Bus Transfer

When a master wants to initiate a transfer on the bus, it waits until the bus is idle and transmits a START condition on the bus. The master then transmits the address of the slave it wishes to interact with and a single R/W bit telling whether it wishes to read from the slave (R/W bit set to 1) or write to the slave (R/W bit set to 0).

After the 7-bit address and the R/W bit, the master releases the bus, allowing the slave to acknowledge the request. During the next bit-period, the slave pulls SDA low (ACK) if it acknowledges the request, or keeps it high if it does not acknowledge it (NACK).

Following the address acknowledge, either the slave or master transmits data, depending on the value of the R/W bit. After every 8 bits (one byte) transmitted on the SDA line, the transmitter releases the line to allow the receiver to transmit an ACK or a NACK. Both the data and the address are transmitted with the most significant bit first.

The number of bytes in a bus transfer is unrestricted. The master ends the transmission after a (N)ACK by sending a STOP condition on the bus. After a STOP condition, any master wishing to initiate a transfer on the bus can try to gain control of it. If the current master wishes to make another transfer immediately after the current, it can start a new transfer directly by transmitting a repeated START condition (Sr) instead of a STOP followed by a START.

Examples of I²C transfers are shown in Figure 17.6 I2C Single Byte Write to Slave on page 561, Figure 17.7 I2C Double Byte Read from Slave on page 561, and Figure 17.8 I2C Single Byte Write, then Repeated Start and Single Byte Read on page 561. The identifiers used are:

- · ADDR Address
- · DATA Data
- · S Start bit
- · Sr Repeated start bit
- · P Stop bit
- W/R Read(1)/Write(0)
- A ACK
- N NACK

Figure 17.6. I2C Single Byte Write to Slave

Figure 17.7. I2C Double Byte Read from Slave

Figure 17.8. I2C Single Byte Write, then Repeated Start and Single Byte Read

17.3.1.3 Addresses

 I^2C supports both 7-bit and 10-bit addresses. When using 7-bit addresses, the first byte transmitted after the START-condition contains the address of the slave that the master wants to contact. In the 7-bit address space, several addresses are reserved. These addresses are summarized in Table 17.1 I2C Reserved I^2C Addresses on page 562, and include a General Call address which can be used to broadcast a message to all slaves on the I^2C -bus.

Table 17.1. I2C Reserved I²C Addresses

I ² C Address	R/W	Description
0000-000	0	General Call address
0000-000	1	START byte
0000-001	x	Reserved for the C-Bus format
0000-010	x	Reserved for a different bus format
0000-011	x	Reserved for future purposes
0000-1XX	x	Reserved for future purposes
1111-1XX	x	Reserved for future purposes
1111-0XX	X	10 Bit slave addressing mode

17.3.1.4 10-bit Addressing

To address a slave using a 10-bit address, two bytes are required to specify the address instead of one. The seven first bits of the first byte must then be 1111 0XX, where XX are the two most significant bits of the 10-bit address. As with 7-bit addresses, the eighth bit of the first byte determines whether the master wishes to read from or write to the slave. The second byte contains the eight least significant bits of the slave address.

When a slave receives a 10-bit address, it must acknowledge both the address bytes if they match the address of the slave.

When performing a master transmitter operation, the master transmits the two address bytes and then the remaining data, as shown in Figure 17.9 I2C Master Transmitter/Slave Receiver with 10-bit Address on page 562.

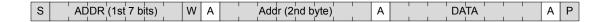


Figure 17.9. I2C Master Transmitter/Slave Receiver with 10-bit Address

When performing a master receiver operation however, the master first transmits the two address bytes in a master transmitter operation, then sends a repeated START followed by the first address byte and then receives data from the addressed slave. The slave addressed by the 10-bit address in the first two address bytes must remember that it was addressed, and respond with data if the address transmitted after the repeated start matches its own address. An example of this (with one byte transmitted) is shown in Figure 17.10 I2C Master Receiver/Slave Transmitter with 10-bit Address on page 562.

Figure 17.10. I2C Master Receiver/Slave Transmitter with 10-bit Address

17.3.1.5 Arbitration, Clock Synchronization, Clock Stretching

Arbitration and clock synchronization are features aimed at allowing multi-master buses. Arbitration occurs when two devices try to drive the bus at the same time. If one device drives it low, while the other drives it high, the one attempting to drive it high will not be able to do so due to the open-drain bus configuration. Both devices sample the bus, and the one that was unable to drive the bus in the desired direction detects the collision and backs off, letting the other device continue communication on the bus undisturbed.

Clock synchronization is a means of synchronizing the clock outputs from several masters driving the bus at once, and is a requirement for effective arbitration.

Slaves on the bus are allowed to force the clock output on the bus low in order to pause the communication on the bus and give themselves time to process data or perform any real-time tasks they might have. This is called clock stretching.

Arbitration is supported by the I²C module for both masters and slaves. Clock synchronization and clock stretching is also supported.

17.3.2 Enable and Reset

The I^2C is enabled by setting the EN bit in the I^2C is reset, terminating any ongoing transfers.

Note: When enabling the I²C, the ABORT command or the Bus Idle Timeout feature must be applied prior to use even if the BUSY flag is not set.

17.3.3 Safely Disabling and Changing Slave Configuration

The I²C slave is partially asynchronous, and some precautions are necessary to always ensure a safe slave disable or slave configuration change. These measures should be taken, if (while the slave is enabled) the user cannot guarantee that an address match will not occur at the exact time of slave disable or slave configuration change.

Worst case consequences for an address match while disabling slave or changing configuration is that the slave may end up in an undefined state. To reset the slave back to a known state, the EN bit in I2Cn_CTRL must be reset. This should be done regardless of whether the slave is going to be re-enabled or not.

17.3.4 Clock Generation

The SCL signal generated by the I²C master determines the maximum transmission rate on the bus. The clock is generated as a division of the peripheral clock, and is given by the following equation:

$$f_{SCL} = f_{HFPERCCLK}/(((N_{low} + N_{high}) \times (DIV + 1)) + 8),$$

Figure 17.11. I2C Maximum Transmission Rate

 N_{low} and N_{high} in combination with the synchronization cycles (discussed below) specify the number of prescaled clock cycles in the low and high periods of the clock signal respectively. The worst case low and high periods of the signal are:

$$T_{high} \ge ((N_{high}) \times (DIV + 1) + 4)/f_{HFPERCCLK},$$

$$T_{low} \ge (N_{low} \times (DIV + 1) + 4)/f_{HFPERCCLK}.$$

Figure 17.12. I2C High and Low Cycles Equations

In worst case, T_{high} and T_{low} can be 1 $f_{HFPERCCLK}$ cycle longer than the number found by above equations due to synchronization uncertainty (i.e., if the synchronization takes 3 $f_{HFPERCCLK}$ cycles instead of 2). Similarly, in the worst case the number 8 in the denominator in f_{SCL} equation can be 9 (if the synchronization cycles were 3 instead of 2 in T_{high} or T_{low}) or 10 (if synchronization cycles were 3 in both T_{high} and T_{low}). The values of N_{low} and N_{high} and thus the ratio between the high and low parts of the clock signal is controlled by CLHR in the I2Cn_CTRL register.

Note: DIV must be set to 1 during slave mode operation.

17.3.5 Arbitration

Arbitration is enabled by default, but can be disabled by setting the ARBDIS bit in I2Cn_CTRL. When arbitration is enabled, the value on SDA is sensed every time the I^2C module attempts to change its value. If the sensed value is different than the value the I^2C module tried to output, it is interpreted as a simultaneous transmission by another device, and that the I^2C module has lost arbitration.

Whenever arbitration is lost, the ARBLOST interrupt flag in $I2Cn_IF$ is set, any lines held are released, and the I^2C device goes idle. If an I^2C master loses arbitration during the transmission of an address, another master may be trying to address it. The master therefore receives the rest of the address, and if the address matches the slave address of the master, the master goes into either slave transmitter or slave receiver mode.

Note: Arbitration can be lost both when operating as a master and when operating as a slave.

17.3.6 Buffers

The I2C peripheral includes separate receive and transmit buffers and shift registers.

17.3.6.1 Transmit Buffer and Shift Register

The I²C transmitter has a 2-level FIFO transmit buffer and a transmit shift register as shown in Figure 17.1 I2C Overview on page 558. A byte is loaded into the transmit buffer by writing to I2Cn_TXDATA or 2 bytes can be loaded simultaneously in the transmit buffer by writing to I2Cn_TXDOUBLE. Figure 17.13 I2C Transmit Buffer Operation on page 564 shows the basics of the transmit buffer. When the transmit shift register is empty and ready for new data, the byte from the transmit buffer is then loaded into the shift register. The byte is then kept in the shift register until it is transmitted. When a byte has been transmitted, a new byte is loaded into the shift register (if available in the transmit buffer). If the transmit buffer is empty, then the shift register also remains empty. The TXC flag in I2Cn_STA-TUS and the TXC interrupt flags in I2Cn_IF are then set, signaling that the transmit shift register is out of data. TXC is cleared when new data becomes available, but the TXC interrupt flag must be cleared by software.

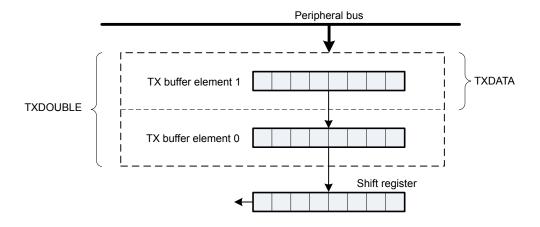


Figure 17.13. I2C Transmit Buffer Operation

The TXBL flags in the I2Cn_STATUS and I2Cn_IF are used to indicate the level of the transmit buffer. TXBIL in I2Cn_CTRL controls the level at which these flag bits are set. If TXBIL is cleared, the flags are set whenever the transmit buffer becomes empty (used when transmitting using I2Cn_TXDOUBLE). If TXBIL is set, the flags are set whenever the transmit buffer goes from full to half-empty or empty (used when transmitting with I2Cn_TXDATA). Both the TXBL status flag and the TXBL interrupt flag are cleared automatically when the condition becomes false.

If an attempt is made to write more bytes to the transmit buffer than the space available, the TXOF interrupt flag in I2Cn_IF is set, indicating the overflow. The data already in the buffer remains preserved, and no new data is written.

The transmit buffer and the transmit shift register can be cleared by setting command bit CLEARTX in I2Cn_CMD. This will prevent the I²C module from transmitting the data in the buffer and the shift register, and will make them available for new data. Any byte currently being transmitted will not be aborted. Transmission of this byte will be completed.

17.3.6.2 Receive Buffer and Shift Register

The I²C receiver uses a 2-level FIFO receive buffer and a receive shift register as shown in Figure 17.14 I2C Receive Buffer Operation on page 565. When a byte has been fully received by the receive shift register, it is loaded into the receive buffer if there is room for it, making the shift register empty to receive another byte. Otherwise, the byte waits in the shift register until space becomes available in the buffer.

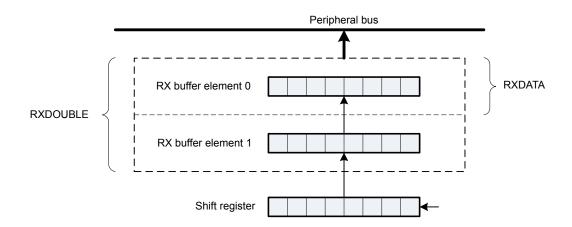


Figure 17.14. I2C Receive Buffer Operation

When a byte becomes available in the receive buffer, the RXDATAV in I2Cn_STATUS and RXDATAV interrupt flag in I2Cn_IF are set. When the buffer becomes full, RXFULL in the I2Cn_STATUS and I2Cn_IF are set. The status flags RXDATAV and RXFULL are automatically cleared by hardware when their condition is no longer true. This also goes for the RXDATAV interrupt flag, but the RXFULL interrupt flag must be cleared by software. When the RXFULL flag is set, notifying that the buffer is full, space is still available in the receive shift register for one more byte.

The data can be fetched from the buffer in two ways. I2Cn_RXDATA gives access to the received byte (if two bytes are received then the one received first is fetched first). I2Cn_RXDOUBLE makes it possible to read the two received bytes simultaneously. If an attempt is made to read more bytes from the buffer than available, the RXUF interrupt flag in I2Cn_IF is set to signal the underflow, and the data read from the buffer is undefined.

When using I2Cn_RXDOUBLE to pick data, AUTOACK in I2Cn_CTRL should be set to 1. This ensures that an ACK is automatically sent out after the first byte is received so that the reception of the next byte can begin. In order to stop receiving data bytes, a NACK must be sent out through the I2Cn_CMD register.

I2Cn_RXDATAP and I2Cn_RXDOUBLEP can be used to read data from the receive buffer without removing it from the buffer. The RXUF interrupt flag in I2Cn_IF will never be set as a result of reading from I2Cn_RXDATAP and I2Cn_RXDOUBLEP, but the data read through I2Cn_RXDATAP when the receive buffer is empty is still undefined.

Once a transaction is complete (STOP sent or received), the receive buffer needs to be flushed (all received data must be read) before starting a new transaction.

17.3.7 Master Operation

A bus transaction is initiated by transmitting a START condition (S) on the bus. This is done by setting the START bit in I2Cn_CMD. The command schedules a START condition, and makes the I²C module generate a start condition whenever the bus becomes free.

The I²C-bus is considered busy whenever another device on the bus transmits a START condition. Until a STOP condition is detected, the bus is owned by the master issuing the START condition. The bus is considered free when a STOP condition is transmitted on the bus. After a STOP is detected, all masters that have data to transmit send a START condition and begin transmitting data. Arbitration ensures that collisions are avoided.

When the START condition has been transmitted, the master must transmit a slave address (ADDR) with an R/W bit on the bus. If this address is available in the transmit buffer, the master transmits it immediately, but if the buffer is empty, the master holds the I²C-bus while waiting for software to write the address to the transmit buffer.

After the address has been transmitted, a sequence of bytes can be read from or written to the slave, depending on the value of the R/W bit (bit 0 in the address byte). If the bit was cleared, the master has entered a master transmitter role, where it now transmits data to the slave. If the bit was set, it has entered a master receiver role, where it now should receive data from the slave. In either case, an unlimited number of bytes can be transferred in one direction during the transmission.

At the end of the transmission, the master either transmits a repeated START condition (Sr) if it wishes to continue with another transfer, or transmits a STOP condition (P) if it wishes to release the bus. When operating in the master mode, HFPERCCLK frequency must be higher than 2 MHz for Standard-mode, 9 MHz for Fast-mode, and 20 MHz for Fast-mode Plus.

17.3.7.1 Master State Machine

The master state machine is shown in Figure 17.15 I2C Master State Machine on page 567. A master operation starts in the far left of the state machine, and follows the solid lines through the state machine, ending the operation or continuing with a new operation when arriving at the right side of the state machine.

Branches in the path through the state machine are the results of bus events and choices made by software, either directly or indirectly. The dotted lines show where I²C-specific interrupt flags are set along the path and the full-drawn circles show places where interaction may be required by software to let the transmission proceed.

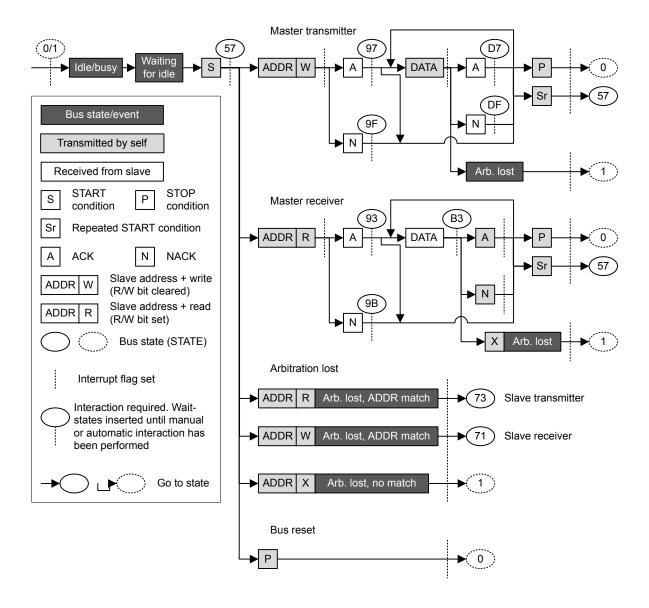


Figure 17.15. I2C Master State Machine

17.3.7.2 Interactions

Whenever the I^2C module is waiting for interaction from software, it holds the bus clock SCL low, freezing all bus activities, and the BUSHOLD interrupt flag in I^2Cn_IF is set. The action(s) required by software depends on the current state the of the I^2C module. This state can be read from the I^2Cn_IF state can be read from the I^2Cn_IF register.

As an example, Table 17.3 I2C Master Transmitter on page 570 shows the different states the I²C goes through when operating as a Master Transmitter, i.e., a master that transmits data to a slave. As seen in the table, when a start condition has been transmitted, a requirement is that there is an address and an R/W bit in the transmit buffer. If the transmit buffer is empty, then the BUSHOLD interrupt flag is set, and the bus is held until data becomes available in the buffer. While waiting for the address, I2Cn_STATE has a value 0x57, which can be used to identify exactly what the I²C module is waiting for.

Note: The bus would never stop at state 0x57 if the address was available in the transmit buffer.

The different interactions used by the I^2C module are listed in Table 17.2 I2C Interactions in Prioritized Order on page 568 in a prioritized order. If the I^2C module is in such a state that multiple courses of action are possible, then the action chosen is the one that has the highest priority. For example, after sending out a START, if an address is present in the buffer and a STOP is also pending, then the I^2C will send out the STOP since it has the higher priority.

Table 17.2. I2C Interactions in Prioritized Order

Interaction	Priority	Software action	Automatically continues if
STOP*	1	Set the STOP command bit in I2Cn_CMD	PSTOP is set (STOP pending) in I2Cn_STATUS
ABORT	2	Set the ABORT command bit in I2Cn_CMD	Never, the transmission is aborted
CONT*	3	Set the CONT command bit in I2Cn_CMD	PCONT is set in I2Cn_STATUS (CONT pending)
NACK*	4	Set the NACK command bit in I2Cn_CMD	PNACK is set in I2Cn_STATUS (NACK pending)
ACK*	5	Set the ACK command bit in I2Cn_CMD	AUTOACK is set in I2Cn_CTRL or PACK is set in I2Cn_STA-TUS (ACK pending)
ADDR+W -> TXDATA	6	Write an address to the transmit buffer with the R/W bit set	Address is available in transmit buffer with R/W bit set
ADDR+R -> TXDATA	7	Write an address to the transmit buffer with the R/W bit cleared	Address is available in transmit buffer with R/W bit cleared
START*	8	Set the START command bit in I2Cn_CMD	PSTART is set in I2Cn_STA- TUS (START pending)
TXDATA/ TXDOUBLE	9	Write data to the transmit buffer	Data is available in transmit buffer
RXDATA/ RXDOUBLE	10	Read data from receive buffer	Space is available in receive buffer
None	11	No interaction is required	

The commands marked with a * in Table 17.2 I2C Interactions in Prioritized Order on page 568 can be issued before an interaction is required. When such a command is issued before it can be used/consumed by the I²C module, the command is set in a pending state, which can be read from the STATUS register. A pending START command can for instance be identified by PSTART having a high value.

Whenever the I²C module requires an interaction, it checks the pending commands. If one or a combination of these can fulfill an interaction, they are consumed by the module and the transmission continues without setting the BUSHOLD interrupt flag in I2Cn_IF to get an interaction from software. The pending status of a command goes low when it is consumed.

When several interactions are possible from a set of pending commands, the interaction with the highest priority, i.e., the interaction closest to the top of Table 17.2 I2C Interactions in Prioritized Order on page 568 is applied to the bus.

Pending commands can be cleared by setting the CLEARPC command bit in I2Cn_CMD.

17.3.7.3 Automatic ACK Interaction

When receiving addresses and data, an ACK command in I2Cn_CMD is normally required after each received byte. When AUTOACK is set in I2Cn_CTRL, an ACK is always pending, and the ACK-pending bit PACK in I2Cn_STATUS is thus always set, even after an ACK has been consumed. This is used when data is picked using I2Cn_RXDOUBLE and can also be used with I2Cn_RXDATA in order to reduce the amount of software interaction required during a transfer.

17.3.7.4 Reset State

After a reset, the state of the I^2C -bus is unknown. To avoid interrupting transfers on the I^2C -bus after a reset of the I^2C module or the entire MCU, the I^2C -bus is assumed to be busy when coming out of a reset, and the BUSY flag in I^2C -bus is thus set. To be able to carry through master operations on the I^2C -bus, the bus must be idle.

The bus goes idle when a STOP condition is detected on the bus, but on buses with little activity, the time before the I^2C module detects that the bus is idle can be significant. There are two ways of assuring that the I^2C module gets out of the busy state.

- Use the ABORT command in I2Cn_CMD. When the ABORT command is issued, the I²C module is instructed that the bus is idle. The I²C module can then initiate master operations.
- Use the Bus Idle Timeout. When SCL has been high for a long period of time, it is very likely that the bus is idle. Set BITO in I2Cn_CTRL to an appropriate timeout period and set GIBITO in I2Cn_CTRL. If activity has not been detected on the bus within the timeout period, the bus is then automatically assumed idle, and master operations can be initiated.

Note: If operating in slave mode, the above approach is not necessary.

17.3.7.5 Master Transmitter

To transmit data to a slave, the master must operate as a master transmitter. Table 17.3 I2C Master Transmitter on page 570 shows the states the I²C module goes through while acting as a master transmitter. Every state where an interaction is required has the possible interactions listed, along with the result of the interactions. The table also shows which interrupt flags are set in the different states. The interrupt flags enclosed in parenthesis may be set. If the BUSHOLD interrupt in I2Cn_IF is set, the module is waiting for an interaction, and the bus is frozen. The value of I2Cn_STATE will be equal to the values given in the table when the BUSHOLD interrupt flag is set, and can be used to determine which interaction is required to make the transmission continue.

The interrupt flag START in I2Cn IF is set when the I2C module transmits the START.

A master operation is started by issuing a START command by setting START in I2Cn_CMD. ADDR+W, i.e., the address of the slave + the R/W bit is then required by the I^2C module. If this is not available in the transmit buffer, then the bus is held and the BUSHOLD interrupt flag is set. The value of I2Cn_STATE will then be 0x57. As seen in the table, the I^2C module also stops in this state if the address is not available after a repeated start condition.

To continue, write a byte to I2Cn_TXDATA with the address of the slave in the 7 most significant bits and the least significant bit cleared (ADDR+W). This address will then be transmitted, and the slave will reply with an ACK or a NACK. If no slave replies to the address, the response will also be NACK. If the address was acknowledged, the master now has four choices. It can send data by placing it in I2Cn_TXDATA/ I2Cn_TXDOUBLE (the master should check the TXBL interrupt flag before writing to the transmit buffer), this data is then transmitted. The master can also stop the transmission by sending a STOP, it can send a repeated start by sending START, or it can send a STOP and then a START as soon as possible. If the master wishes to make another transfer immediately after the current, the preferred way is to start a new transfer directly by transmitting a repeated START instead of a STOP followed by a START. This is so because if a STOP is sent out, then any master wishing to initiate a transfer on the bus can try to gain control of it.

If a NACK was received, the master has to issue a CONT command in addition to providing data in order to continue transmission. This is not standard I²C, but is provided for flexibility. The rest of the options are similar to when an ACK was received.

If a new byte was transmitted, an ACK or NACK is received after the transmission of the byte, and the master has the same options as for when the address was sent.

The master may lose arbitration at any time during transmission. In this case, the ARBLOST interrupt flag in I2Cn_IF is set. If the arbitration was lost during the transfer of an address, and SLAVE in I2Cn_CTRL is set, the master then checks which address was transmitted. If it was the address of the master, then the master goes to slave mode.

After a master has transmitted a START and won any arbitration, it owns the bus until it transmits a STOP. After a STOP, the bus is released, and arbitration decides which bus master gains the bus next. The MSTOP interrupt flag in I2Cn_IF is set when a STOP condition is transmitted by the master.

Table 17.3. I2C Master Transmitter

I2Cn_STATE	Description	I2Cn_IF	Required in- teraction	Response
0x57	Start transmitted	START interrupt flag (BUSHOLD interrupt flag)	ADDR+W -> TXDATA	ADDR+W will be sent
			STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
	Repeated start trans- mitted	START interrupt flag (BUSHOLD interrupt flag)	ADDR+W -> TXDATA	ADDR+W will be sent
			STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
-	ADDR+W transmitted	TXBL interrupt flag (TXC interrupt flag)	None	

I2Cn_STATE	Description	I2Cn_IF	Required in- teraction	Response
0x97	ADDR+W transmitted,	ACK interrupt flag (BUSHOLD interrupt flag)	TXDATA	DATA will be sent
	ACK received		STOP	STOP will be sent. Bus will be released
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
0x9F	ADDR+W transmit- ted,NACK received	NACK (BUSHOLD interrupt flag)	CONT + TXDATA	DATA will be sent
			STOP	STOP will be sent. Bus will be released
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
-	Data transmitted	TXBL interrupt flag (TXC interrupt flag)	None	
0xD7	Data transmitted,ACK received	ACK interrupt flag (BUSHOLD interrupt flag)	TXDATA	DATA will be sent
			STOP	STOP will be sent. Bus will be released
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
0xDF	Data transmitted,NACK received NACK(BUSHOLD interrupt flag)	CONT + TXDATA	DATA will be sent	
			STOP	STOP will be sent. Bus will be released
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
-	Stop transmitted	MSTOP interrupt flag	None	
			START	START will be sent when bus becomes idle
-	Arbitration lost	ARBLOST interrupt flag	None	
			START	START will be sent when bus becomes idle

17.3.7.6 Master Receiver

To receive data from a slave, the master must operate as a master receiver, see Table 17.4 I2C Master Receiver on page 572. This is done by transmitting ADDR+R as the address byte instead of ADDR+W, which is transmitted to become a master transmitter. The address byte loaded into the data register thus has to contain the 7-bit slave address in the 7 most significant bits of the byte, and have the least significant bit set.

When the address has been transmitted, the master receives an ACK or a NACK. If an ACK is received, the ACK interrupt flag in I2Cn_IF is set, and if space is available in the receive shift register, reception of a byte from the slave begins. If the receive buffer and shift register is full however, the bus is held until data is read from the receive buffer or another interaction is made. Note that the STOP and START interactions have a higher priority than the data-available interaction, so if a STOP or START command is pending, the highest priority interaction will be performed, and data will not be received from the slave.

If a NACK was received, the CONT command in I2Cn_CMD has to be issued in order to continue receiving data, even if there is space available in the receive buffer and/or shift register.

After a data byte has been received the master must ACK or NACK the received byte. If an ACK is pending or AUTOACK in I2Cn_CTRL is set, an ACK is sent automatically and reception continues if space is available in the receive buffer.

If a NACK is sent, the CONT command must be used in order to continue transmission. If an ACK or NACK is issued along with a START or STOP or both, then the ACK/NACK is transmitted and the reception is ended. If START in I2Cn_CMD is set alone, a repeated start condition is transmitted after the ACK/NACK. If STOP in I2Cn_CMD is set, a stop condition is sent regardless of whether START is set. If START is set in this case, it is set as pending.

As when operating as a master transmitter, arbitration can be lost as a master receiver. When this happens the ARBLOST interrupt flag in I2Cn_IF is set, and the master has a possibility of being selected as a slave given the correct conditions.

Table 17.4. I2C Master Receiver

I2Cn_STATE	Description	I2Cn_IF	Required in- teraction	Response
0x57	START transmitted	START interrupt flag (BUSHOLD interrupt flag)	ADDR+R -> TXDATA	ADDR+R will be sent
			STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
0x57	Repeated START transmitted	START interrupt flag(BUSHOLD inter- rupt flag)	ADDR+R -> TXDATA	ADDR+R will be sent
			STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
-	ADDR+R transmitted	TXBL interrupt flag (TXC interrupt flag)	None	
0x93	ADDR+R transmitted, ACK received	ACK interrupt flag(BUS-HOLD)	RXDATA	Start receiving
			STOP	STOP will be sent and the bus released
			START	Repeated START will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
0x9B	ADDR+R transmit- ted,NACK received	NACK(BUSHOLD)	CONT + RXDATA	Continue, start receiving
			STOP	STOP will be sent and the bus released
			START	Repeated START will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle

I2Cn_STATE	Description	I2Cn_IF	Required in- teraction	Response
0xB3	fl	flag(BUSHOLD interrupt flag)	ACK + RXDA- TA	ACK will be transmitted, reception continues
			NACK + CONT + RXDATA	NACK will be transmitted, reception continues
			ACK/NACK + STOP	ACK/NACK will be sent and the bus will be released.
			ACK/NACK + START	ACK/NACK will be sent, and then a repeated start condition.
			ACK/NACK + STOP + START	ACK/NACK will be sent and the bus will be released. Then a START will be sent when the bus becomes idle
-	Stop received	MSTOP interrupt flag	None	
			START	START will be sent when bus becomes idle
-	Arbitration lost ARBLOST interrupt flag	ARBLOST interrupt flag	None	
		START	START will be sent when bus becomes idle	

17.3.8 Bus States

The I2Cn_STATE register can be used to determine which state the I^2C module and the I^2C bus are in at a given time. The register consists of the STATE bit-field, which shows which state the I^2C module is at in any ongoing transmission, and a set of single-bits, which reveal the transmission mode, whether the bus is busy or idle, and whether the bus is held by this I^2C module waiting for a software response.

The possible values of the STATE field are summarized in Table 17.5 I2C STATE Values on page 574. When this field is cleared, the I²C module is not a part of any ongoing transmission. The remaining status bits in the I2Cn_STATE register are listed in Table 17.6 I2C Transmission Status on page 574.

Table 17.5. I2C STATE Values

Mode	Value	Description	
IDLE	0	No transmission is being performed by this module.	
WAIT	1	Waiting for idle. Will send a start condition as soon as the bus is idle.	
START	2	Start being transmitted	
ADDR	3	Address being transmitted or has been received	
ADDRACK	4	Address ACK/NACK being transmitted or received	
DATA	5	Data being transmitted or received	
DATAACK	6	Data ACK/NACK being transmitted or received	

Table 17.6. I2C Transmission Status

Bit	Description
BUSY	Set whenever there is activity on the bus. Whether or not this module is responsible for the activity cannot be determined by this byte.
MASTER	Set when operating as a master. Cleared at all other times.
TRANSMITTER	Set when operating as a transmitter; either a master transmitter or a slave transmitter. Cleared at all other times
BUSHOLD	Set when the bus is held by this I ² C module because an action is required by software.
NACK	Only valid when bus is held and STATE is ADDRACK or DATAACK. In that case it is set if a NACK was received. In all other cases, the bit is cleared.

Note: I2Cn_STATE reflects the internal state of the I^2 C module, and therefore only held constant as long as the bus is held, i.e., as long as BUSHOLD in I2Cn_STATUS is set.

17.3.9 Slave Operation

The I^2C module operates in master mode by default. To enable slave operation, i.e., to allow the device to be addressed as an I^2C slave, the SLAVE bit in I^2Cn_CTRL must be set. In this case the I^2C module operates in a mixed mode, both capable of starting transmissions as a master, and being addressed as a slave. When operating in the slave mode, HFPERCCLK frequency must be higher than 2 MHz for Standard-mode, 5 MHz for Fast-mode, and 14 MHz for Fast-mode Plus.

17.3.9.1 Slave State Machine

The slave state machine is shown in Figure 17.16 I2C Slave State Machine on page 575. The dotted lines show where I²C-specific interrupt flags are set. The full-drawn circles show places where interaction may be required by software to let the transmission proceed.

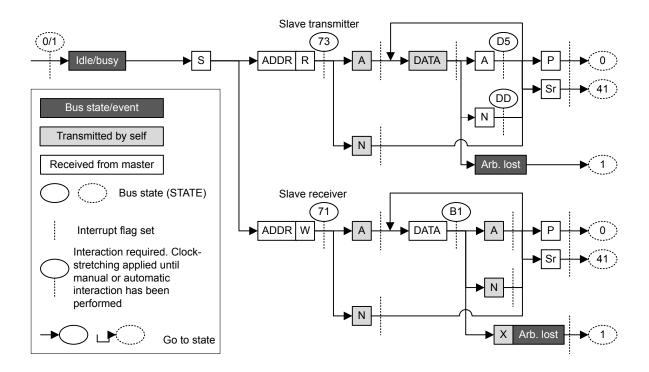


Figure 17.16. I2C Slave State Machine

17.3.9.2 Address Recognition

The I²C module provides automatic address recognition for 7-bit addresses. 10-bit address recognition is not fully automatic, but can be assisted by the 7-bit address comparator as shown in 17.3.11 Using 10-bit Addresses. Address recognition is supported in all energy modes (except EM4).

The slave address, i.e., the address which the I²C module should be addressed with, is defined in the I2Cn_SADDR register. In addition to the address, a mask must be specified, telling the address comparator which bits of an incoming address to compare with the address defined in I2Cn_SADDR. The mask is defined in I2Cn_SADDRMASK, and for every zero in the mask, the corresponding bit in the slave address is treated as a don't-care, i.e., the 0-masked bits are ignored.

An incoming address that fails address recognition is automatically replied to with a NACK. Since only the bits defined by the mask are checked, a mask with a value 0x00 will result in all addresses being accepted. A mask with a value 0x7F will only match the exact address defined in I2Cn_SADDR, while a mask 0x70 will match all addresses where the three most significant bits in I2Cn_SADDR and the incoming address are equal.

If GCAMEN in I2Cn_CTRL is not set, the start-byte, i.e., the general call address with the R/W bit set is ignored unless it is included in the defined slave address and and the address mask.

When an address is accepted by the address comparator, the decision of whether to ACK or NACK the address is passed to software.

17.3.9.3 Slave Transmitter

When SLAVE in I2Cn_CTRL is set, the RSTART interrupt flag in I2Cn_IF will be set when repeated START conditions are detected. After a START or repeated START condition, the bus master will transmit an address along with an R/W bit. If there is no room in the receive shift register for the address, the bus will be held by the slave until room is available in the shift register. Transmission then continues and the address is loaded into the shift register. If this address does not pass address recognition, it is automatically NACK'ed by the slave, and the slave goes to an idle state. The address byte is in this case discarded, making the shift register ready for a new address. It is not loaded into the receive buffer.

If the address was accepted and the R/W bit was set (R), indicating that the master wishes to read from the slave, the slave now goes into the slave transmitter mode. Software interaction is now required to decide whether the slave wants to acknowledge the request or not. The accepted address byte is loaded into the receive buffer like a regular data byte. If no valid interaction is pending, the bus is held until the slave responds with a command. The slave can reject the request with a single NACK command.

The slave will in that case go to an idle state, and wait for the next start condition. To continue the transmission, the slave must make sure data is loaded into the transmit buffer and send an ACK. The loaded data will then be transmitted to the master, and an ACK or NACK will be received from the master.

Data transmission can also continue after a NACK if a CONT command is issued along with the NACK. This is not standard I²C however.

If the master responds with an ACK, it may expect another byte of data, and data should be made available in the transmit buffer. If data is not available, the bus is held until data is available.

If the response is a NACK however, this is an indication of that the master has received enough bytes and wishes to end the transmission. The slave now automatically goes idle, unless CONT in I2Cn_CMD is set and data is available for transmission. The latter is not standard I²C.

The master ends the transmission by sending a STOP or a repeated START. The SSTOP interrupt flag in I2Cn_IF is set when the master transmits a STOP condition. If the transmission is ended with a repeated START, then the SSTOP interrupt flag is not set.

Note: The SSTOP interrupt flag in I2Cn_IF will be set regardless of whether the slave is participating in the transmission or not, as long as SLAVE in I2Cn_CTRL is set and a STOP condition is detected.

If arbitration is lost at any time during transmission, the ARBLOST interrupt flag in I2Cn_IF is set, the bus is released and the slave goes idle.

See Table 17.7 I2C Slave Transmitter on page 576 for more information.

Table 17.7. I2C Slave Transmitter

I2Cn_STATE	Description	I2Cn_IF	Required in- teraction	Response
0x41	Repeated START received	RSTART interrupt flag (BUSHOLD interrupt flag)	RXDATA	Receive and compare address
0x75	ADDR + R received	ADDR interrupt flag	ACK + TXDA- TA	ACK will be sent, then DATA
		RXDATA interrupt flag	NACK	NACK will be sent, slave goes idle
		(BUSHOLD interrupt flag)	NACK + CONT + TXDATA	NACK will be sent, then DATA.
-	Data transmitted	TXBL interrupt flag (TXC interrupt flag)	None	
0xD5	Data transmitted, ACK received	ACK interrupt flag (BUSHOLD interrupt flag)	TXDATA	DATA will be transmitted
0xDD	Data transmitted, NACK	NACK interrupt flag	None	The slave goes idle
received		(BUSHOLD interrupt flag)	CONT + TXDATA	DATA will be transmitted

I2Cn_STATE	Description	I2Cn_IF	Required in- teraction	Response
-	Stop received	SSTOP interrupt flag	None	The slave goes idle
			START	START will be sent when bus becomes idle
-	Arbitration lost	ARBLOST interrupt flag	None	The slave goes idle
			START	START will be sent when the bus becomes idle

17.3.9.4 Slave Receiver

A slave receiver operation is started in the same way as a slave transmitter operation, with the exception that the address transmitted by the master has the R/W bit cleared (W), indicating that the master wishes to write to the slave. The slave then goes into slave receiver mode.

To receive data from the master, the slave should respond to the address with an ACK and make sure space is available in the receive buffer. Transmission will then continue, and the slave will receive a byte from the master.

If a NACK is sent without a CONT, the transmission is ended for the slave, and it goes idle. If the slave issues both the NACK and CONT commands and has space available in the receive buffer, it will be open for continuing reception from the master.

When a byte has been received from the master, the slave must ACK or NACK the byte. The responses here are the same as for the reception of the address byte.

The master ends the transmission by sending a STOP or a repeated START. The SSTOP interrupt flag is set when the master transmits a STOP condition. If the transmission is ended with a repeated START, then the SSTOP interrupt flag in I2Cn IF is not set.

Note: The SSTOP interrupt flag in I2Cn_IF will be set regardless of whether the slave is participating in the transmission or not, as long as SLAVE in I2Cn_CTRL is set and a STOP condition is detected

If arbitration is lost at any time during transmission, the ARBLOST interrupt flag in I2Cn_IF is set, the bus is released and the slave goes idle.

See Table 17.8 I2C - Slave Receiver on page 578 for more information.

Table 17.8. I2C - Slave Receiver

I2Cn_STATE	Description	I2Cn_IF	Required in- teraction	Response						
-	Repeated START received	RSTART interrupt flag (BUSHOLD interrupt flag)	RXDATA	Receive and compare address						
0x71	ADDR + W received	ADDR interrupt flag RXDATA interrupt flag	ACK + RXDATA	ACK will be sent and data will be received						
		(BUSHOLD interrupt flag)	NACK	NACK will be sent, slave goes idle						
			NACK + CONT + RXDATA	NACK will be sent and DATA will be received.						
0xB1	Data received	RXDATA interrupt flag (BUSHOLD interrupt	ACK + RXDATA	ACK will be sent and data will be received						
		flag)	NACK	NACK will be sent and slave will go idle						
			NACK + CONT + RXDATA	NACK will be sent and data will be received						
-	Stop received	SSTOP interrupt flag	None	The slave goes idle						
			START	START will be sent when bus becomes idle						
-	Arbitration lost	ARBLOST interrupt flag	None	The slave goes idle						
			START	START will be sent when the bus becomes idle						

17.3.10 Transfer Automation

The I²C can be set up to complete transfers with a minimal amount of interaction.

17.3.10.1 DMA

DMA can be used to automatically load data into the transmit buffer and load data out from the receive buffer. When using DMA, software is thus relieved of moving data to and from memory after each transferred byte.

17.3.10.2 Automatic ACK

When AUTOACK in I2Cn_CTRL is set, an ACK is sent automatically whenever an ACK interaction is possible and no higher priority interactions are pending.

17.3.10.3 Automatic STOP

A STOP can be generated automatically on two conditions. These apply only to the master transmitter.

If AUTOSN in I2Cn_CTRL is set, the I²C module ends a transmission by transmitting a STOP condition when operating as a master transmitter and a NACK is received.

If AUTOSE in I2Cn_CTRL is set, the I²C module always ends a transmission when there is no more data in the transmit buffer. If data has been transmitted on the bus, the transmission is ended after the (N)ACK has been received by the slave. If a START is sent when no data is available in the transmit buffer and AUTOSE is set, then the STOP condition is sent immediately following the START. Software must thus make sure data is available in the transmit buffer before the START condition has been fully transmitted if data is to be transferred.

17.3.11 Using 10-bit Addresses

When using 10-bit addresses in slave mode, set the I2Cn_SADDR register to 1111 0XX where XX are the two most significant bits of the 10-bit address, and set I2Cn_SADDRMASK to 0xFF. Address matches will now be given on all 10-bit addresses where the two most significant bits are correct.

When receiving an address match, the slave must acknowledge the address and receive the first data byte. This byte contains the second part of the 10-bit address. If it matches the address of the slave, the slave should ACK the byte to continue the transmission, and if it does not match, the slave should NACK it.

When the master is operating as a master transmitter, the data bytes will follow after the second address byte. When the master is operating as a master receiver however, a repeated START condition is sent after the second address byte. The address sent after this repeated START is equal to the first of the address bytes transmitted previously, but now with the R/W byte set, and only the slave that found a match on the entire 10-bit address in the previous message should ACK this address. The repeated start should take the master into a master receiver mode, and after the single address byte sent this time around, the slave begins transmission to the master.

17.3.12 Error Handling

Note: The setting of GCAMEN and SLAVE fields in the I2Cn_CTRL register and the registers I2Cn_SADDR and I2Cn_ROUTELOC0 are considered static. This means that these need to be set before an I²C transaction starts and need to stay stable during the entire transaction.

17.3.12.1 ABORT Command

Some bus errors may require software intervention to be resolved. The I²C module provides an ABORT command, which can be set in I2Cn CMD, to help resolve bus errors.

When the bus for some reason is locked up and the I^2C module is in the middle of a transmission it cannot get out of, or for some other reason the I^2C wants to abort a transmission, the ABORT command can be used.

Setting the ABORT command will make the I²C module discard any data currently being transmitted or received, release the SDA and SCL lines and go to an idle mode. ABORT effectively makes the I²C module forget about any ongoing transfers.

17.3.12.2 Bus Reset

A bus reset can be performed by setting the START and STOP commands in I2Cn_CMD while the transmit buffer is empty. A START condition will then be transmitted, immediately followed by a STOP condition. A bus reset can also be performed by transmitting a START command with the transmit buffer empty and AUTOSE set.

17.3.12.3 I2C-Bus Errors

An I²C-bus error occurs when a START or STOP condition is misplaced, which happens when the value on SDA changes while SCL is high during bit-transmission on the I²C-bus. If the I²C module is part of the current transmission when a bus error occurs, any data currently being transmitted or received is discarded, SDA and SCL are released, the BUSERR interrupt flag in I2Cn_IF is set to indicate the error, and the module automatically takes a course of action as defined in Table 17.9 I2C Bus Error Response on page 580.

Table 17.9. I2C Bus Error Response

	Misplaced START	Misplaced STOP
In a master/slave operation	Treated as START. Receive address.	Go idle. Perform any pending actions.

17.3.12.4 Bus Lockup

A lockup occurs when a master or slave on the I²C-bus has locked the SDA or SCL at a low value, preventing other devices from putting high values on the bus, and thus making communication on the bus impossible.

Many slave-only devices operating on an I²C-bus are not capable of driving SCL low, but in the rare case that SCL is stuck LOW, the advice is to apply a hardware reset signal to the slaves on the bus. If this does not work, cycle the power to the devices in order to make them release SCL.

When SDA is stuck low and SCL is free, a master should send 9 clock pulses on SCL while tristating the SDA. This procedure is performed in the GPIO module after clearing the I2C_ROUTE register and disabling the I2C module. The device that held the bus low should release it sometime within those 9 clocks. If not, use the same approach as for when SCL is stuck, resetting and possibly cycling power to the slaves.

Lockup of SDA can be detected by keeping count of the number of continuous arbitration losses during address transmission. If arbitration is also lost during the transmission of a general call address, i.e., during the transmission of the STOP condition, which should never happen during normal operation, this is a good indication of SDA lockup.

Detection of SCL lockups can be done using the timeout functionality defined in 17.3.12.6 Clock Low Timeout

17.3.12.5 Bus Idle Timeout

When SCL has been high for a significant amount of time, this is a good indication of that the bus is idle. On an SMBus system, the bus is only allowed to be in this state for a maximum of 50 µs before the bus is considered idle.

The bus idle timeout BITO in I2Cn_CTRL can be used to detect situations where the bus goes idle in the middle of a transmission. The timeout can be configured in BITO, and when the bus has been idle for the given amount of time, the BITO interrupt flag in I2Cn_IF is set. The bus can also be set idle automatically on a bus idle timeout. This is enabled by setting GIBITO in I2Cn_CTRL.

When the bus idle timer times out, it wraps around and continues counting as long as its condition is true. If the bus is not set idle using GIBITO or the ABORT command in I2Cn CMD, this will result in periodic timeouts.

Note: This timeout will be generated even if SDA is held low.

The bus idle timeout is active as long as the bus is busy, i.e., BUSY in I2Cn_STATUS is set. The timeout can be used to get the I²C module out of the busy-state it enters when reset, see 17.3.7.4 Reset State.

17.3.12.6 Clock Low Timeout

The clock timeout, which can be configured in CLTO in I2Cn_CTRL, starts counting whenever SCL goes low, and times out if SCL does not go high within the configured timeout. A clock low timeout results in CLTOIF in I2Cn_IF being set, allowing software to take action.

When the timer times out, it wraps around and continues counting as long as SCL is low. An SCL lockup will thus result in periodic clock low timeouts as long as SCL is low.

17.3.12.7 Clock Low Error

The I²C module can continue transmission in parallel with another device for the entire transaction, as long as the two communications are identical. A case may arise when (before an arbitration has been decided upon) the I²C module decides to send out a repeated START or a STOP condition while the other device is still sending data. In the I²C protocol specifications, such a combination results in an undefined condition. The I²C deals with this by generating a clock low error. This means that if the I²C is transmitting a repeated START or a STOP condition and another device (another master or a misbehaving slave) pulls SCL low before the I²C sends out the START/STOP condition on SDA, a clock low error is generated. The CLERR interrupt flag is then set in the I²C device goes to idle.

17.3.13 DMA Support

The I²C module has full DMA support. A request for the DMA controller to write to the I²C transmit buffer can come from TXBL (transmit buffer has room for more data). The DMA controller can write to the transmit buffer using the I2Cn_TXDATA or the I2Cn_TXDOUBLE register. In order to write to the I2Cn_TXDOUBLE register (i.e., transferring 2 bytes simultaneously to the transmit buffer using the DMA), DMA_USEBURSTS needs to be set to 1 for the selected DMA channel. This ensures that the transfer is made to the transmit buffer only when both buffer elements are empty. For performing a DMA write to the I2Cn_TXDATA register, DMA_USEBURSTC needs to be set to 1 for the selected DMA channel. This ensures that a DMA transfer is made even when the transmit buffer is half-empty.

A request for the DMA controller to read from the I²C receive buffer can come from RXDATAV (data available in the receive buffer). To receive from I2Cn_RXDOUBLE (i.e., receive only when both buffer elements are full), DMA_USEBURSTS needs to be set to 1 for the selected DMA channel. In order to receive from I2Cn_RXDATA through the DMA, DMA_USEBURSTC needs to be set to 1. This ensures that the data gets picked up even when the receive buffer is half-full.

17.3.14 Interrupts

The interrupts generated by the I^2C module are combined into one interrupt vector, $I2C_INT$. If I^2C interrupts are enabled, an interrupt will be made if one or more of the interrupt flags in $I2C_I$ IF and their corresponding bits in $I2C_I$ IEN are set.

17.3.15 Wake-up

The I²C receive section can be active all the way down to energy mode EM3 Stop, and can wake up the CPU on address interrupt. All address match modes are supported.

17.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	I2Cn_CTRL	RW	Control Register
0x004	I2Cn_CMD	W1	Command Register
800x0	I2Cn_STATE	R	State Register
0x00C	I2Cn_STATUS	R	Status Register
0x010	I2Cn_CLKDIV	RW	Clock Division Register
0x014	I2Cn_SADDR	RW	Slave Address Register
0x018	I2Cn_SADDRMASK	RW	Slave Address Mask Register
0x01C	I2Cn_RXDATA	R(a)	Receive Buffer Data Register
0x020	I2Cn_RXDOUBLE	R(a)	Receive Buffer Double Data Register
0x024	I2Cn_RXDATAP	R	Receive Buffer Data Peek Register
0x028	I2Cn_RXDOUBLEP	R	Receive Buffer Double Data Peek Register
0x02C	I2Cn_TXDATA	W	Transmit Buffer Data Register
0x030	I2Cn_TXDOUBLE	W	Transmit Buffer Double Data Register
0x034	I2Cn_IF	R	Interrupt Flag Register
0x038	I2Cn_IFS	W1	Interrupt Flag Set Register
0x03C	I2Cn_IFC	(R)W1	Interrupt Flag Clear Register
0x040	I2Cn_IEN	RW	Interrupt Enable Register
0x044	I2Cn_ROUTEPEN	RW	I/O Routing Pin Enable Register
0x048	I2Cn_ROUTELOC0	RW	I/O Routing Location Register

17.5 Register Description

17.5.1 I2Cn_CTRL - Control Register

Offset	Bit Position																															
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			•	•	'	•	•	•	•		•				0×0	'	0		3	e N			2	OXO	0	0	0	0	0	0	0	0
Access													R ≪		₽		2	<u>}</u>			2	<u>}</u>	R M	₩ M	₩ M	RW	₩ M	RW	\ N	RW		
Name															CLTO		GIBITO		CH) 			-	Y E 3	TXBIL	GCAMEN	ARBDIS	AUTOSN	AUTOSE	AUTOACK	SLAVE	N N

Bit	Name	Reset	Access	Description
31:19	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
18:16	CLTO	0x0	RW	Clock Low Timeout

Use to generate a timeout when CLK has been low for the given amount of time. Wraps around and continues counting when the timeout is reached. The timeout value can be calculated by

timeout =
$$PCC/(f_{SCL} x (N_{low} + N_{high}))$$

	Value	Mode	Description
	0	OFF	Timeout disabled
	1	40PCC	Timeout after 40 prescaled clock cycles. In standard mode at 100 kHz, this results in a 50us timeout.
	2	80PCC	Timeout after 80 prescaled clock cycles. In standard mode at 100 kHz, this results in a 100us timeout.
	3	160PCC	Timeout after 160 prescaled clock cycles. In standard mode at 100 kHz, this results in a 200us timeout.
	4	320PCC	Timeout after 320 prescaled clock cycles. In standard mode at 100 kHz, this results in a 400us timeout.
	5	1024PCC	Timeout after 1024 prescaled clock cycles. In standard mode at 100 kHz, this results in a 1280us timeout.
15	GIBITO	0 RW	Go Idle on Bus Idle Timeout
	When set, the bus	automatically goes idle or	a bus idle timeout, allowing new transfers to be initiated.
	Value		Description
	0		A bus idle timeout has no effect on the bus state.
	1		A bus idle timeout tells the I^2C module that the bus is idle, allowing new transfers to be initiated.
14	Reserved	To ensure compatibil tions	lity with future devices, always write bits to 0. More information in 1.2 Conven-

Bit	Name	Reset	Access	Description
13:12	BITO	0x0	RW	Bus Idle Timeout

Use to generate a timeout when SCL has been high for a given amount time between a START and STOP condition. When in a bus transaction, i.e. the BUSY flag is set, a timer is started whenever SCL goes high. When the timer reaches the value defined by BITO, it sets the BITO interrupt flag. The BITO interrupt flag will then be set periodically as long as SCL remains high. The bus idle timeout is active as long as BUSY is set. It is thus stopped automatically on a timeout if GIBITO is set. It is also stopped a STOP condition is detected and when the ABORT command is issued. The timeout is activated whenever the bus goes BUSY, i.e. a START condition is detected. The timeout value can be calculated by

timeout =
$$PCC/(f_{SCL} x (N_{low} + N_{high}))$$

	Value	Mode	Description
	0	OFF	Timeout disabled
	1	40PCC	Timeout after 40 prescaled clock cycles. In standard mode at 100 kHz, this results in a 50us timeout.
	2	80PCC	Timeout after 80 prescaled clock cycles. In standard mode at 100 kHz, this results in a 100us timeout.
	3	160PCC	Timeout after 160 prescaled clock cycles. In standard mode at 100 kHz, this results in a 200us timeout.
11:10	Reserved	To ensure compatil	bility with future devices, always write bits to 0. More information in 1.2 Conven-
9:8	CLHR	0x0 RW	Clock Low High Ratio
	Determines the r	ratio between the low and	nigh parts of the clock signal generated on SCL as master.
	Value	Mode	Description
	0	STANDARD	The ratio between low period and high period counters (N_{low} : N_{high}) is 4:4
	1	ASYMMETRIC	The ratio between low period and high period counters (N_{low} : N_{high}) is 6:3
	2	FAST	The ratio between low period and high period counters (N_{low} : N_{high}) is 11:6
7	TXBIL	0 RW	TX Buffer Interrupt Level
	Determines the i	nterrupt and status level o	f the transmit buffer.
	Value	Mode	Description
	0	EMPTY	TXBL status and the TXBL interrupt flag are set when the transmit buf- fer becomes empty. TXBL is cleared when the buffer becomes non- empty.
	1	HALFFULL	TXBL status and the TXBL interrupt flag are set when the transmit buffer goes from full to half-full or empty. TXBL is cleared when the buffer becomes full.
6	GCAMEN	0 RW	General Call Address Match Enable
	Set to enable ad	dress match on general ca	all in addition to the programmed slave address.
	Value		Description
	0		General call address will be NACK'ed if it is not included by the slave address and address mask.

Bit	Name	Reset	Access	Description
	1			When a general call address is received, a software response is required.
5	ARBDIS	0	RW	Arbitration Disable
	A master or slav	ve will not release t	he bus upon l	osing arbitration.
	Value			Description
	0			When a device loses arbitration, the ARB interrupt flag is set and the bus is released.
	1			When a device loses arbitration, the ARB interrupt flag is set, but communication proceeds.
1	AUTOSN	0	RW	Automatic STOP on NACK
	Write to 1 to ma	ke a master transr	nitter send a S	STOP when a NACK is received from a slave.
	Value			Description
	0			Stop is not automatically sent if a NACK is received from a slave.
	1			The master automatically sends a STOP if a NACK is received from a slave.
3	AUTOSE	0	RW	Automatic STOP When Empty
	Write to 1 to ma	ke a master transr	nitter send a S	STOP when no more data is available for transmission.
	Value			Description
	0			A stop must be sent manually when no more data is to be transmitted.
	1			The master automatically sends a STOP when no more data is available for transmission.
2	AUTOACK	0	RW	Automatic Acknowledge
	Set to enable au	utomatic acknowled	dges.	
	Value			Description
	0			Software must give one ACK command for each ACK transmitted on the I^2C bus.
	1			Addresses that are not automatically NACK'ed, and all data is automatically acknowledged.
	SLAVE	0	RW	Addressable as Slave
	Set this bit to all	ow the device to b	e selected as	an I ² C slave.
	Value			Description
	0			All addresses will be responded to with a NACK
	1			Addresses matching the programmed slave address or the general call address (if enabled) require a response from software. Other addresses are automatically responded to with a NACK.
)	EN	0	RW	I ² C Enable
		nable or disable the	.20	

Bit	Name	Reset	Access	Description
	Value			Description
	0			The I ² C module is disabled. And its internal state is cleared
	1			The I ² C module is enabled.

17.5.2 I2Cn_CMD - Command Register

Offset		Bit Position																														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	2	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset					•														•						0	0	0	0	0	0	0	0
Access													W	×	W	×	×	W	×	W1												
Name																									CLEARPC	CLEARTX	ABORT	CONT	NACK	ACK	STOP	START

-				
Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7	CLEARPC	0	W1	Clear Pending Commands
	Set to clear pending of	commands.		
6	CLEARTX	0	W1	Clear TX
	Set to clear transmit t	ouffer and shift re	egister. Wil	ll not abort ongoing transfer.
5	ABORT	0	W1	Abort Transmission
				o idle. When used in combination with STOP, a STOP condition is sent as on. The stop condition is subject to clock synchronization.
4	CONT	0	W1	Continue Transmission
	Set to continue transr	mission after a N	IACK has b	peen received.
3	NACK	0	W1	Send NACK
	Set to transmit a NAC	CK the next time	an acknow	vledge is required.
2	ACK	0	W1	Send ACK
	Set to transmit an AC	K the next time	an acknow	ledge is required.
1	STOP	0	W1	Send Stop Condition
	Set to send stop cond	dition as soon as	possible.	
0	START	0	W1	Send Start Condition
	as soon as the bus is	idle. If the curre	nt transmis	If a transmission is ongoing and not owned, the start condition will be sent ssion is owned by this module, a repeated start condition will be sent. Use atically send a STOP, then a START when the bus becomes idle.

17.5.3 I2Cn_STATE - State Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	80	7	ဖ	2	4	က	2	_	0
Reset		'		'	'			•					'	•	'				•	•		'		'		0X0		0	0	0	0	_
Access																										<u>~</u>		œ	œ	œ	œ	<u>~</u>
Name																										STATE		BUSHOLD	NACKED	TRANSMITTER	MASTER	BUSY

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:5	STATE	0x0	R	Transmission State
	The state of any cur	rent transmission	on. Cleared if	the I ² C module is idle.
	Value	Mode		Description
	0	IDLE		No transmission is being performed.
	1	WAIT		Waiting for idle. Will send a start condition as soon as the bus is idle.
	2	START		Start transmitted or received
	3	ADDR		Address transmitted or received
	4	ADDRACK		Address ack/nack transmitted or received
	5	DATA		Data transmitted or received
	6	DATAACK		Data ack/nack transmitted or received
4	BUSHOLD	0	R	Bus Held
	Set if the bus is curr	rently being held	d by this I ² C r	module.
3	NACKED	0	R	Nack Received
	Set if a NACK was i	received and S1	ΓΑΤΕ is ADDI	RACK or DATAACK.
2	TRANSMITTER	0	R	Transmitter
	Set when operating receiver, a slave rec			slave transmitter. When cleared, the system may be operating as a maste not known.
1	MASTER	0	R	Master
	Set when operating	as an I ² C mast	er. When clea	ared, the system may be operating as an I ² C slave.
		1	R	Bus Busy

idle timeout to force the I²C module out of the BUSY state.

17.5.4 I2Cn_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																							0	0	_	0	0	0	0	0	0	0
Access																							Я	22	2	œ	œ	œ	œ	2	2	2
Name																							RXFULL	RXDATAV	TXBL	TXC	PABORT	PCONT	PNACK	PACK	PSTOP	PSTART

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure co tions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
9	RXFULL	0	R	RX FIFO Full
	Set when the receive for one more frame in	buffer is full. Cl the receive shi	eared wher ft register.	n the receive buffer is no longer full. When this bit is set, there is still room
8	RXDATAV	0	R	RX Data Valid
	Set when data is ava	ilable in the rece	eive buffer.	Cleared when the receive buffer is empty.
7	TXBL	1	R	TX Buffer Level
	Indicates the level of	the transmit buf	fer. Set wh	en the transmit buffer is empty, and cleared when it is full.
6	TXC	0	R	TX Complete
	Set when a transmiss sion starts.	sion has comple	ted and no	more data is available in the transmit buffer. Cleared when a new transmis-
5	PABORT	0	R	Pending Abort
	An abort is pending a	and will be trans	mitted as so	oon as possible.
4	PCONT	0	R	Pending Continue
	A continue is pending	and will be tran	nsmitted as	soon as possible.
3	PNACK	0	R	Pending NACK
	A not-acknowledge is	pending and w	ill be transr	mitted as soon as possible.
2	PACK	0	R	Pending ACK
	An acknowledge is p	ending and will l	oe transmit	ted as soon as possible.
1	PSTOP	0	R	Pending STOP
	A stop condition is pe	ending and will b	e transmitt	ed as soon as possible.
0	PSTART	0	R	Pending START
	A start condition is pe	ending and will b	e transmitt	ed as soon as possible.

17.5.5 I2Cn_CLKDIV - Clock Division Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	8	7	9	5	4	က	2	_	0
Reset		•	•	•		•	•			•	•	•	•	•		•		•	•		•						•	000x0	•	•		
Access																												RW				
Name																												DIV				

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	DIV	0x000	RW	Clock Divider
	Specifies the clock of	divider for the I ²	C. Note that	DIV must be 1 or higher when slave is enabled.

17.5.6 I2Cn_SADDR - Slave Address Register

Offset															Bi	t Po	sitio	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	တ	8	7	9	5	4	က	2	_	0
Reset			•		•				•					•		•		•										00×0	•			
Access																												¥				
Name																												ADDR				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure con tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:1	ADDR	0x00	RW	Slave Address
	Specifies the slave ad	dress of the dev	ice.	
0	Reserved	To ensure con tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

17.5.7 I2Cn_SADDRMASK - Slave Address Mask Register

Offset															Ві	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	11	10	တ	8	7	9	5	4	က	2	_	0
Reset		•		•	•			•				•		•		•		•		•							•	00×0				
Access																												₽				
Name																												MASK				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:1	MASK	0x00	RW	Slave Address Mask
	Specifies the significa will only match the ex			s. Setting the mask to 0x00 will match all addresses, while setting it to 0x7F DDR.
0	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

17.5.8 I2Cn_RXDATA - Receive Buffer Data Register (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x01C	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	က	2	_	0
Reset												•										•		•				0	0000			
Access																												C	Y			
Name																												£	KXDAIA			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	RXDATA	0x00	R	RX Data
	Use this register to re	ead from the rec	eive buffer.	Buffer is emptied on read access.

17.5.9 I2Cn_RXDOUBLE - Receive Buffer Double Data Register (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	ω	7	9	2	4	က	2	_	0
Reset		'	1		1							ı				•		•			200			•				2	000			
Access																				٥	۷							۵	۷			
Name																				Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ו לו								מין אין אין			

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure cortions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:8	RXDATA1	0x00	R	RX Data 1
	Second byte read from	m buffer. Buffer	is emptied	on read access.
7:0	RXDATA0	0x00	R	RX Data 0
	First byte read from b	uffer. Buffer is e	mptied on	read access.

17.5.10 I2Cn_RXDATAP - Receive Buffer Data Peek Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	∞	7	9	2	4	က	2	_	0
Reset		•				•						•		•		•	•		•	•	•	•		•		•		000	noxo			
Access																												۵	צ			
Name																												0 V T V C V C	<u> </u>			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	RXDATAP	0x00	R	RX Data Peek
	Use this register to re	ead from the re	ceive buffer	Buffer is not emptied on read access.

17.5.11 I2Cn_RXDOUBLEP - Receive Buffer Double Data Peek Register

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	5	4	. ო	2	_	0
Reset			•	•		•		•												9	0000			•			•		00×0		•	
Access																				מ	צ								<u>~</u>			
Name																				,	KXDATAPT								RXDATAP0			

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure cor tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:8	RXDATAP1	0x00	R	RX Data 1 Peek
	Second byte read from	m buffer. Buffer	is not emp	tied on read access.
7:0	RXDATAP0	0x00	R	RX Data 0 Peek
	First byte read from b	uffer. Buffer is n	ot emptied	on read access.

17.5.12 I2Cn_TXDATA - Transmit Buffer Data Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	1	0
Reset																												OVO				
Access																												>	>			
Name																												ATACIXT				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure cortions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	TXDATA	0x00	W	TX Data
	Use this register to w	rite a byte to the	transmit b	uffer.

17.5.13 I2Cn_TXDOUBLE - Transmit Buffer Double Data Register

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset			•		•			•				•		•							200						•	0	0000			
Access																				}	>							}	>			
Name																				+ 4 C > +								O V T V U V	N N N N N N N N N N N N N N N N N N N			

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:8	TXDATA1	0x00	W	TX Data
	Second byte to write	to buffer.		
7:0	TXDATA0	0x00	W	TX Data
	First byte to write to b	ouffer.		

17.5.14 I2Cn_IF - Interrupt Flag Register

Offset	Bit Position
0x034	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access	
Name	CLERR RXFULL SSTOP CLTO BITO BITO RXUF TXOF BUSERR ARBLOST MSTOP NACK ACK RXDATAV TXBL TXBL TXBL TXC ADDR

Bit Name Reset Access Description					S S C S S S S S S S
Set when the clock is pulled low before a START or a STOP condition could be transmitted. 17 RXFULL 0 R Receive Buffer Full Interrupt Flag Set when the receive buffer becomes full. 18 SSTOP 0 R Slave STOP Condition Interrupt Flag Set when a STOP condition has been received. Will be set regardless of the slave being involved in the transaction or not. 15 CLTO 0 R Clock Low Timeout Interrupt Flag Set on each clock low timeout. The timeout value can be set in CLTO bit field in the I2Cn_CTRL register. 14 BITO 0 R Bus Idle Timeout Interrupt Flag Set on each bus idle timeout. The timeout value can be set in the BITO bit field in the I2Cn_CTRL register. 13 RXUF 0 R Receive Buffer Underflow Interrupt Flag Set when data is read from the receive buffer through the I2Cn_RXDATA register while the receive buffer is empty. It is also set when data is read through the I2Cn_RXDOTA register while the receive buffer is empty. It is also set when data is written to the transmit buffer while the buffer is not full. 12 TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. 11 BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I ² C module. 10 BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 18 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 19 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received.	Bit	Name	Reset	Access	Description
Set when the clock is pulled low before a START or a STOP condition could be transmitted. 17 RXFULL 0 R Receive Buffer Full Interrupt Flag Set when the receive buffer becomes full. 18 SSTOP 0 R Slave STOP Condition Interrupt Flag Set when a STOP condition has been received. Will be set regardless of the slave being involved in the transaction or not. 19 CLTO 0 R Clock Low Timeout Interrupt Flag Set on each clock low timeout. The timeout value can be set in CLTO bit field in the I2Cn_CTRL register. 14 BITO 0 R Bus Idle Timeout Interrupt Flag Set on each bus idle timeout. The timeout value can be set in the BITO bit field in the I2Cn_CTRL register. 13 RXUF 0 R Receive Buffer Underflow Interrupt Flag Set when data is read from the receive buffer through the I2Cn_RXDATA register while the receive buffer is empty. It is also set when data is read through the I2Cn_RXDOUBLE while the buffer is not full. 12 TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. 13 BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I2C module. 14 BUSHOLD 0 R Bus Error Interrupt Flag Set when the bus becomes held by the I2C module. 15 BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 16 ARBLOST 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 17 NACK 0 R Acknowledge Received Interrupt Flag Set when a NACK has been received.	31:19	Reserved		compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
17 RXFULL 0 R Receive Buffer Full Interrupt Flag Set when the receive buffer becomes full. 16 SSTOP 0 R Slave STOP Condition Interrupt Flag Set when a STOP condition has been received. Will be set regardless of the slave being involved in the transaction or not. 15 CLTO 0 R Clock Low Timeout Interrupt Flag Set on each clock low timeout. The timeout value can be set in CLTO bit field in the I2Cn_CTRL register. 14 BITO 0 R Bus Idle Timeout Interrupt Flag Set on each bus idle timeout. The timeout value can be set in CLTO bit field in the I2Cn_CTRL register. 13 RXUF 0 R Receive Buffer Underflow Interrupt Flag Set when data is read from the receive buffer through the I2Cn_RXDATA register while the receive buffer is empty. It is also set when data is read through the I2Cn_RXDOUBLE while the buffer is not full. 12 TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. 11 BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I ² C module. 12 BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 13 ARBLOST 0 R Master STOP Condition Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 14 BUSHOLD 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 15 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received.	18	CLERR	0	R	Clock Low Error Interrupt Flag
Set when the receive buffer becomes full. 16 SSTOP 0 R Slave STOP Condition Interrupt Flag Set when a STOP condition has been received. Will be set regardless of the slave being involved in the transaction or not. 15 CLTO 0 R Clock Low Timeout Interrupt Flag Set on each clock low timeout. The timeout value can be set in CLTO bit field in the I2Cn_CTRL register. 14 BITO 0 R Bus Idle Timeout Interrupt Flag Set on each bus idle timeout. The timeout value can be set in the BITO bit field in the I2Cn_CTRL register. 13 RXUF 0 R Receive Buffer Underflow Interrupt Flag Set when data is read from the receive buffer through the I2Cn_RXDATA register while the receive buffer is empty. It is also set when data is read through the I2Cn_RXDOUBLE while the buffer is not full. 12 TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. 11 BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I²C module. 10 BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 9 ARBLOST 0 R Arbitration Lost Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 8 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 7 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received.		Set when the cloc	k is pulled low be	fore a STAR	T or a STOP condition could be transmitted.
SSTOP 0 R Slave STOP Condition Interrupt Flag Set when a STOP condition has been received. Will be set regardless of the slave being involved in the transaction or not. 15 CLTO 0 R Clock Low Timeout Interrupt Flag Set on each clock low timeout. The timeout value can be set in CLTO bit field in the I2Cn_CTRL register. 14 BITO 0 R Bus Idle Timeout Interrupt Flag Set on each bus idle timeout. The timeout value can be set in the BITO bit field in the I2Cn_CTRL register. 13 RXUF 0 R Receive Buffer Underflow Interrupt Flag Set when data is read from the receive buffer through the I2Cn_RXDATA register while the receive buffer is empty. It is also set when data is read through the I2Cn_RXDOUBLE while the buffer is not full. 12 TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. 11 BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I ² C module. 10 BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 9 ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. 8 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 7 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received.	17	RXFULL	0	R	Receive Buffer Full Interrupt Flag
Set when a STOP condition has been received. Will be set regardless of the slave being involved in the transaction or not. CLTO 0 R Clock Low Timeout Interrupt Flag Set on each clock low timeout. The timeout value can be set in CLTO bit field in the I2Cn_CTRL register. BITO 0 R Bus Idle Timeout Interrupt Flag Set on each bus idle timeout. The timeout value can be set in the BITO bit field in the I2Cn_CTRL register. RXUF 0 R Receive Buffer Underflow Interrupt Flag Set when data is read from the receive buffer through the I2Cn_RXDATA register while the receive buffer is empty. It is also set when data is read through the I2Cn_RXDOUBLE while the buffer is not full. TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I ² C module. BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. BUSERR 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. MISTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MISTOP interrupt flag is not set. NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received.		Set when the rece	ive buffer becom	es full.	
15 CLTO 0 R Clock Low Timeout Interrupt Flag Set on each clock low timeout. The timeout value can be set in CLTO bit field in the I2Cn_CTRL register. 14 BITO 0 R Bus Idle Timeout Interrupt Flag Set on each bus idle timeout. The timeout value can be set in the BITO bit field in the I2Cn_CTRL register. 13 RXUF 0 R Receive Buffer Underflow Interrupt Flag Set when data is read from the receive buffer through the I2Cn_RXDATA register while the receive buffer is empty. It is also set when data is read through the I2Cn_RXDOUBLE while the buffer is not full. 12 TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. 11 BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I ² C module. 10 BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 9 ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. 8 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 7 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received.	16	SSTOP	0	R	Slave STOP Condition Interrupt Flag
Set on each clock low timeout. The timeout value can be set in CLTO bit field in the I2Cn_CTRL register. BITO 0 R Bus Idle Timeout Interrupt Flag Set on each bus idle timeout. The timeout value can be set in the BITO bit field in the I2Cn_CTRL register. RXUF 0 R Receive Buffer Underflow Interrupt Flag Set when data is read from the receive buffer through the I2Cn_RXDATA register while the receive buffer is empty. It is also set when data is read through the I2Cn_RXDOUBLE while the buffer is not full. TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I ² C module. BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. BUSERR 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received.		Set when a STOP	condition has be	en received.	Will be set regardless of the slave being involved in the transaction or not.
BITO 0 R Bus Idle Timeout Interrupt Flag Set on each bus idle timeout. The timeout value can be set in the BITO bit field in the I2Cn_CTRL register. RXUF 0 R Receive Buffer Underflow Interrupt Flag Set when data is read from the receive buffer through the I2Cn_RXDATA register while the receive buffer is empty. It is also set when data is read through the I2Cn_RXDOUBLE while the buffer is not full. TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I ² C module. BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received.	15	CLTO	0	R	Clock Low Timeout Interrupt Flag
Set on each bus idle timeout. The timeout value can be set in the BITO bit field in the I2Cn_CTRL register. RXUF		Set on each clock	low timeout. The	timeout valu	ue can be set in CLTO bit field in the I2Cn_CTRL register.
RXUF 0 R Receive Buffer Underflow Interrupt Flag Set when data is read from the receive buffer through the I2Cn_RXDATA register while the receive buffer is empty. It is also set when data is read through the I2Cn_RXDOUBLE while the buffer is not full. TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I ² C module. BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received.	14	ВІТО	0	R	Bus Idle Timeout Interrupt Flag
Set when data is read from the receive buffer through the I2Cn_RXDATA register while the receive buffer is empty. It is also set when data is read through the I2Cn_RXDOUBLE while the buffer is not full. 12 TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. 11 BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I ² C module. 10 BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 9 ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. 8 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 7 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received. 6 ACK 0 R Acknowledge Received Interrupt Flag		Set on each bus id	dle timeout. The t	imeout value	can be set in the BITO bit field in the I2Cn_CTRL register.
also set when data is read through the I2Cn_RXDOUBLE while the buffer is not full. 12 TXOF 0 R Transmit Buffer Overflow Interrupt Flag Set when data is written to the transmit buffer while the transmit buffer is full. 11 BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I2C module. 10 BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 9 ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. 8 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 7 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received. 6 ACK 0 R Acknowledge Received Interrupt Flag	13	RXUF	0	R	Receive Buffer Underflow Interrupt Flag
Set when data is written to the transmit buffer while the transmit buffer is full. 11 BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I ² C module. 10 BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 9 ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. 8 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 7 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received. 6 ACK 0 R Acknowledge Received Interrupt Flag					
BUSHOLD 0 R Bus Held Interrupt Flag Set when the bus becomes held by the I ² C module. BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received.	12	TXOF	0	R	Transmit Buffer Overflow Interrupt Flag
Set when the bus becomes held by the I ² C module. BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received.		Set when data is v	vritten to the tran	smit buffer w	hile the transmit buffer is full.
BUSERR 0 R Bus Error Interrupt Flag Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 9 ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. 8 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 7 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received. 6 ACK 0 R Acknowledge Received Interrupt Flag	11	BUSHOLD	0	R	Bus Held Interrupt Flag
Set when a bus error is detected. The bus error is resolved automatically, but the current transfer is aborted. 9 ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. 8 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 7 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received. 6 ACK 0 R Acknowledge Received Interrupt Flag		Set when the bus	becomes held by	the I ² C mod	dule.
9 ARBLOST 0 R Arbitration Lost Interrupt Flag Set when arbitration is lost. 8 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 7 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received. 6 ACK 0 R Acknowledge Received Interrupt Flag	10	BUSERR	0	R	Bus Error Interrupt Flag
Set when arbitration is lost. 8 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 7 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received. 6 ACK 0 R Acknowledge Received Interrupt Flag		Set when a bus er	ror is detected. T	he bus error	is resolved automatically, but the current transfer is aborted.
8 MSTOP 0 R Master STOP Condition Interrupt Flag Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. 7 NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received. 6 ACK 0 R Acknowledge Received Interrupt Flag	9	ARBLOST	0	R	Arbitration Lost Interrupt Flag
Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set. NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received. ACK 0 R Acknowledge Received Interrupt Flag		Set when arbitration	on is lost.		
condition, then the MSTOP interrupt flag is not set. NACK 0 R Not Acknowledge Received Interrupt Flag Set when a NACK has been received. ACK 0 R Acknowledge Received Interrupt Flag	8	MSTOP	0	R	Master STOP Condition Interrupt Flag
Set when a NACK has been received. 6 ACK 0 R Acknowledge Received Interrupt Flag					
6 ACK 0 R Acknowledge Received Interrupt Flag	7	NACK	0	R	Not Acknowledge Received Interrupt Flag
		Set when a NACK	has been receiv	ed.	
Set when an ACK has been received.	6	ACK	0	R	Acknowledge Received Interrupt Flag
		Set when an ACK	has been receive	ed.	

Bit	Name	Reset	Access	Description
5	RXDATAV	0	R	Receive Data Valid Interrupt Flag
	Set when data is	available in the re	eceive buffer.	Cleared automatically when the receive buffer is read.
4	TXBL	1	R	Transmit Buffer Level Interrupt Flag
	Set when the trai	nsmit buffer becor	nes empty. C	leared automatically when new data is written to the transmit buffer.
3	TXC	0	R	Transfer Completed Interrupt Flag
	Set when the trai	nsmit shift register	becomes em	npty and there is no more data in the transmit buffer.
2	ADDR	0	R	Address Interrupt Flag
	Set when incomi	ng address is acc	epted, i.e. owi	n address or general call address is received.
1	RSTART	0	R	Repeated START Condition Interrupt Flag
	Set when a repea	ated start conditio	n is detected.	
0	START	0	R	START Condition Interrupt Flag
	Set when a start	condition is succe	essfully transm	nitted

17.5.15 I2Cn_IFS - Interrupt Flag Set Register

Offset															Ві	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	80	7	9	2	4	က	2	_	0
Reset														0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0
Access														W1	W1	W	W1	W	W1	W	M	W 1	W1	W1	W	W1			W	W1	W	W1
Name														CLERR	RXFULL	SSTOP	CLTO	ВІТО	RXUF	TXOF	BUSHOLD	BUSERR	ARBLOST	MSTOP	NACK	ACK			TXC	ADDR	RSTART	START

Bit	Name	Reset	Access	Description
31:19	Reserved	To ensure col	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
18	CLERR	0	W1	Set CLERR Interrupt Flag
	Write 1 to set the CL	ERR interrupt fla	ıg	
17	RXFULL	0	W1	Set RXFULL Interrupt Flag
	Write 1 to set the RX	(FULL interrupt fl	ag	
16	SSTOP	0	W1	Set SSTOP Interrupt Flag
	Write 1 to set the SS	TOP interrupt fla	ıg	
15	CLTO	0	W1	Set CLTO Interrupt Flag
	Write 1 to set the CL	TO interrupt flag		
14	BITO	0	W1	Set BITO Interrupt Flag
	Write 1 to set the BI	ΓO interrupt flag		
13	RXUF	0	W1	Set RXUF Interrupt Flag
	Write 1 to set the RX	(UF interrupt flag		
12	TXOF	0	W1	Set TXOF Interrupt Flag
	Write 1 to set the TX	OF interrupt flag		
11	BUSHOLD	0	W1	Set BUSHOLD Interrupt Flag
	Write 1 to set the BU	SHOLD interrup	t flag	
10	BUSERR	0	W1	Set BUSERR Interrupt Flag
	Write 1 to set the BU	SERR interrupt	flag	
9	ARBLOST	0	W1	Set ARBLOST Interrupt Flag
	Write 1 to set the AR	BLOST interrupt	flag	
8	MSTOP	0	W1	Set MSTOP Interrupt Flag
	Write 1 to set the MS	STOP interrupt fla	ag	
7	NACK	0	W1	Set NACK Interrupt Flag
	Write 1 to set the NA	CK interrupt flag		
6	ACK	0	W1	Set ACK Interrupt Flag
	Write 1 to set the AC	K interrupt flag		
5:4	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-

Bit	Name	Reset	Access	Description
3	TXC	0	W1	Set TXC Interrupt Flag
	Write 1 to set the	e TXC interrupt flag	9	
2	ADDR	0	W1	Set ADDR Interrupt Flag
	Write 1 to set the	e ADDR interrupt fl	ag	
1	RSTART	0	W1	Set RSTART Interrupt Flag
	Write 1 to set the	RSTART interrup	t flag	
0	START	0	W1	Set START Interrupt Flag
	Write 1 to set the	START interrupt	flag	

17.5.16	I2Cn_IF	C - lı	nter	rrup	t Fla	ag	Clea	r Re	gi	ster																					
Offset														Bi	t Po	siti	on														
0x03C	30	53	78	27	56	25	24	23	22	1 2	20	6	18	17	16	15	4	13	12	7	9	တ	∞	7	9	2	4	က	2	_	C
Reset													0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0
Access													(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1			(R)W1	(R)W1	(R)W1	(R)W1
Name													CLERR	RXFULL	SSTOP	CLTO	BITO	RXUF	TXOF	BUSHOLD	BUSERR	ARBLOST	MSTOP	NACK	ACK			TXC	ADDR	RSTART	START
Bit	Name Reset Access Description																														
31:19	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions CLERR 0 (R)W1 Clear CLERR Interrupt Flag														n-																
18	CLERR 0 (R)W1 Clear CLERR Interrupt Flag																														
	Write 1 to clear the CLERR interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).															8															
17	RXFUL	L				0				(R)W1		Clea	ar R	XFU	ILL	Inte	rrup	t FI	ag											
	Write 1 (This fe												ıg re	turn	s th	e va	lue	of th	ie IF	and	d cle	ears	the	cori	resp	ond	ing i	inter	rupt	flag	js
16	SSTOF)				0				(R)W1		Clea	ar S	STC	P Ir	iteri	rupt	Fla	g											
	Write 1 (This fe												g ret	urns	the	valı	ue o	f the	e IF	and	clea	ars t	he c	orre	espo	ndir	ng ir	nterr	upt 1	flags	3
15	CLTO					0				(R)W1		Clea	ar C	LTC	Int	erru	pt F	lag												
	Write 1 (This fe												etur	ns t	he v	alue	of t	the I	IF aı	nd c	lear	s the	e co	rres	pon	ding	inte	errup	ot fla	ıgs	
14	ВІТО					0				(R)W1		Clea	ar B	ITO	Inte	rru	ot F	lag												
	Write 1 (This fe												eturr	ns th	ie va	alue	of th	ne II	= an	d cle	ears	the	cor	resp	onc	ling	inte	rrup	t fla	gs	
13	RXUF					0				(R)W1		Clea	ar R	XUF	Int	erru	pt F	lag												
	Write 1 (This fe												retur	ns t	he v	/alue	e of	the	IF a	nd c	lear	s th	e co	rres	pon	ding	j inte	erru	ot fla	ags	

18	CLERR	0	(R)W1	Clear CLERR Interrupt Flag
		the CLERR interrup est be enabled globa		ng returns the value of the IF and clears the corresponding interrupt flags .
17	RXFULL	0	(R)W1	Clear RXFULL Interrupt Flag
		the RXFULL interru ist be enabled globa		ling returns the value of the IF and clears the corresponding interrupt flags .
16	SSTOP	0	(R)W1	Clear SSTOP Interrupt Flag
		the SSTOP interrup est be enabled glob		ng returns the value of the IF and clears the corresponding interrupt flags .
15	CLTO	0	(R)W1	Clear CLTO Interrupt Flag
	Write 1 to clear (This feature mu	the CLTO interrupt ast be enabled globa	flag. Reading ally in MSC.)	g returns the value of the IF and clears the corresponding interrupt flags .
14	BITO	0	(R)W1	Clear BITO Interrupt Flag
		the BITO interrupt f ust be enabled globa		returns the value of the IF and clears the corresponding interrupt flags .
13	RXUF	0	(R)W1	Clear RXUF Interrupt Flag
		the RXUF interrupt ast be enabled globa		g returns the value of the IF and clears the corresponding interrupt flags .
12	TXOF	0	(R)W1	Clear TXOF Interrupt Flag
		the TXOF interrupt ist be enabled glob		g returns the value of the IF and clears the corresponding interrupt flags
11	BUSHOLD	0	(R)W1	Clear BUSHOLD Interrupt Flag
		the BUSHOLD inter re must be enabled		ading returns the value of the IF and clears the corresponding interrupt ASC.).
10	BUSERR	0	(R)W1	Clear BUSERR Interrupt Flag
		the BUSERR interroust be enabled globa		ding returns the value of the IF and clears the corresponding interrupt flags
9	ARBLOST	0	(R)W1	Clear ARBLOST Interrupt Flag
		the ARBLOST inter ust be enabled globa		ading returns the value of the IF and clears the corresponding interrupt flags .

Bit	Name	Reset	Access	Description
8	MSTOP	0	(R)W1	Clear MSTOP Interrupt Flag
		the MSTOP interru est be enabled glob		ing returns the value of the IF and clears the corresponding interrupt flags
7	NACK	0	(R)W1	Clear NACK Interrupt Flag
		the NACK interruptions the enabled glob		g returns the value of the IF and clears the corresponding interrupt flags
6	ACK	0	(R)W1	Clear ACK Interrupt Flag
		the ACK interrupt f enabled globally ir		returns the value of the IF and clears the corresponding interrupt flags (This
5:4	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
3	TXC	0	(R)W1	Clear TXC Interrupt Flag
		the TXC interrupt f enabled globally ir		returns the value of the IF and clears the corresponding interrupt flags (This
2	ADDR	0	(R)W1	Clear ADDR Interrupt Flag
		the ADDR interrup est be enabled glob		g returns the value of the IF and clears the corresponding interrupt flags
1	RSTART	0	(R)W1	Clear RSTART Interrupt Flag
		the RSTART interr est be enabled glob		ding returns the value of the IF and clears the corresponding interrupt flags
0	START	0	(R)W1	Clear START Interrupt Flag
		the START interrup est be enabled glob		ng returns the value of the IF and clears the corresponding interrupt flags

17.5.17 I2Cn_IEN - Interrupt Enable Register

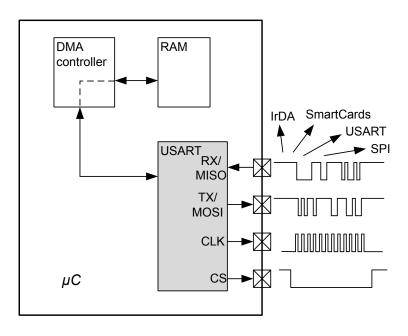
Offset															Bi	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset														0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access														S.	₩ W	Z.	RW W	₩ M	₩ M	₩ W	RW	W.	RW	₩ W	Z M	₩ M	Z.	Z.	₩ W	₩ M	₩.	RW
Name														CLERR	RXFULL	SSTOP	CLTO	BITO	RXUF	TXOF	BUSHOLD	BUSERR	ARBLOST	MSTOP	NACK	ACK	RXDATAV	TXBL	TXC	ADDR	RSTART	START

Bit	Name	Reset	Access	Description
31:19	Reserved	To ensure con tions	npatibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
18	CLERR	0	RW	CLERR Interrupt Enable
	Enable/disable t	he CLERR interrupt		
17	RXFULL	0	RW	RXFULL Interrupt Enable
	Enable/disable t	he RXFULL interrupt		
16	SSTOP	0	RW	SSTOP Interrupt Enable
	Enable/disable t	he SSTOP interrupt		
15	CLTO	0	RW	CLTO Interrupt Enable
	Enable/disable t	he CLTO interrupt		
14	BITO	0	RW	BITO Interrupt Enable
	Enable/disable t	he BITO interrupt		
13	RXUF	0	RW	RXUF Interrupt Enable
	Enable/disable t	he RXUF interrupt		
12	TXOF	0	RW	TXOF Interrupt Enable
	Enable/disable t	he TXOF interrupt		
11	BUSHOLD	0	RW	BUSHOLD Interrupt Enable
	Enable/disable t	he BUSHOLD interruր	ot	
10	BUSERR	0	RW	BUSERR Interrupt Enable
	Enable/disable t	he BUSERR interrupt		
9	ARBLOST	0	RW	ARBLOST Interrupt Enable
	Enable/disable t	he ARBLOST interrup	ot	
8	MSTOP	0	RW	MSTOP Interrupt Enable
	Enable/disable t	he MSTOP interrupt		
7	NACK	0	RW	NACK Interrupt Enable
	Enable/disable t	he NACK interrupt		
6	ACK	0	RW	ACK Interrupt Enable
	Enable/disable t	he ACK interrupt		

Bit	Name	Reset	Access	Description
5	RXDATAV	0	RW	RXDATAV Interrupt Enable
	Enable/disable the R	XDATAV interru	pt	
4	TXBL	0	RW	TXBL Interrupt Enable
	Enable/disable the TX	KBL interrupt		
3	TXC	0	RW	TXC Interrupt Enable
	Enable/disable the TX	C interrupt		
2	ADDR	0	RW	ADDR Interrupt Enable
	Enable/disable the Al	DDR interrupt		
1	RSTART	0	RW	RSTART Interrupt Enable
	Enable/disable the RS	START interrupt		
0	START	0	RW	START Interrupt Enable
	Enable/disable the S	TART interrupt		

17.5.18 I2Cn_ROUTEPEN - I/O Routing Pin Enable Register

Offset															Ві	t Po	siti	on														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	စ	∞	7	9	2	4	က	2	_	0
Reset				•			•	•				•		•	•			•		•			•	•	•			•			0	0
Access																															RW	RW
Name																															SCLPEN	SDAPEN


Bit	Name	Reset	Access	Description	
31:2	Reserved	To ensure cor tions	o ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven- ons		
1	SCLPEN	0	RW	SCL Pin Enable	
	When set, the SCL pi	n of the I ² C is e	nabled.		
0	SDAPEN	0	RW	SDA Pin Enable	
	When set, the SDA pin of the I ² C is enabled.				

17.5.19 I2Cn_ROUTELOC0 - I/O Routing Location Register

Offset				Bit Position		
0x048	27 28 29 26 27 28 28	23 24 22 22 23 23 23 23 23 23 23 23 23 23 23	20 20	6 8 7 9 4	8 8 9 10 17 17	r 9 8 4 8 7 t 0
Reset					00×0	0000
Access					ZW.	XX XX
Name					SCLLOC	SDALOC
Bit	Name	Reset	Access	Description	0)	0)
31:14	Reserved				ways write bits to 0. Mo	re information in 1.2 Conven-
13:8	SCLLOC	0x00	RW	I/O Location		
	Decides the location of	of the I ² C SCL p	in.			
	Value	Mode		Description		
	0	LOC0		Location 0		
	1	LOC1		Location 1		
	2	LOC2		Location 2		
	3	LOC3		Location 3		
	4	LOC4		Location 4		
	5	LOC5		Location 5		
	6	LOC6		Location 6		
	7	LOC7		Location 7		
7:6	Reserved	To ensure contions	npatibility v	vith future devices, al	ways write bits to 0. Mo	re information in 1.2 Conven-
5:0	SDALOC	0x00	RW	I/O Location		
	Decides the location of	of the I ² C SDA p	in.			
	Value	Mode		Description		
	0	LOC0		Location 0		
	1	LOC1		Location 1		
	2	LOC2		Location 2		
	3	LOC3		Location 3		
	4	LOC4		Location 4		
	5	LOC5		Location 5		
	6	LOC6		Location 6		
	7	LOC7		Location 7		

18. USART - Universal Synchronous Asynchronous Receiver/Transmitter

Quick Facts

What?

The USART handles high-speed UART, SPI-bus, SmartCards, and IrDA communication.

Why?

Serial communication is frequently used in embedded systems and the USART allows efficient communication with a wide range of external devices.

How?

The USART has a wide selection of operating modes, frame formats and baud rates. The multi-processor mode allows the USART to remain idle when not addressed. Triple buffering and DMA support makes high data rates possible with minimal CPU intervention and it is possible to transmit and receive large frames while the MCU remains in EM1 Sleep.

18.1 Introduction

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 Smart-Cards, and IrDA devices.

18.2 Features

- · Asynchronous and synchronous (SPI) communication
- · Full duplex and half duplex
- Separate TX/RX enable
- · Separate receive / transmit multiple entry buffers, with additional separate shift registers
- Programmable baud rate, generated as an fractional division from the peripheral clock (HFPERCLK_{USARTn})
- · Max bit-rate
 - SPI master mode, peripheral clock rate/2
 - SPI slave mode, peripheral clock rate/8
 - UART mode, peripheral clock rate/16, 8, 6, or 4
- · Asynchronous mode supports
 - · Majority vote baud-reception
 - · False start-bit detection
 - · Break generation/detection
 - · Multi-processor mode
- · Synchronous mode supports
 - · All 4 SPI clock polarity/phase configurations
 - · Master and slave mode
- · Data can be transmitted LSB first or MSB first
- Configurable number of data bits, 4-16 (plus the parity bit, if enabled)
 - · HW parity bit generation and check
- Configurable number of stop bits in asynchronous mode: 0.5, 1, 1.5, 2
- · HW collision detection
- · Multi-processor mode
- IrDA modulator
- · SmartCard (ISO7816) mode
- · I2S mode
- Separate interrupt vectors for receive and transmit interrupts
- · Loopback mode
 - · Half duplex communication
 - · Communication debugging
- · PRS RX input
- · 8 bit Timer
- · Hardware Flow Control
- · Automatic Baud Rate Detection

18.3 Functional Description

An overview of the USART module is shown in Figure 18.1 USART Overview on page 605.

This section describes all possible USART features. Refer to the device data sheet to see what features a specific USART instance supports.

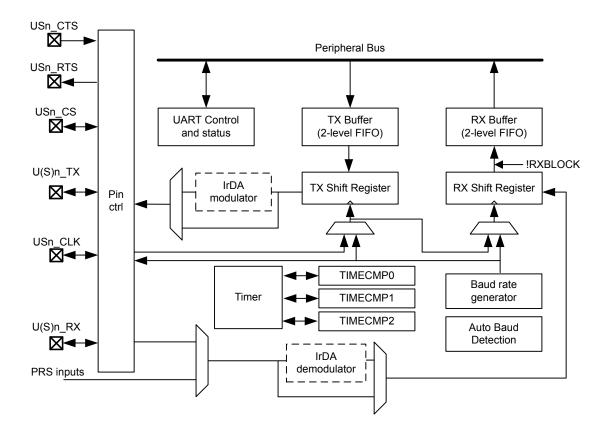


Figure 18.1. USART Overview

18.3.1 Modes of Operation

The USART operates in either asynchronous or synchronous mode.

In synchronous mode, a separate clock signal is transmitted with the data. This clock signal is generated by the bus master, and both the master and slave sample and transmit data according to this clock. Both master and slave modes are supported by the USART. The synchronous communication mode is compatible with the Serial Peripheral Interface Bus (SPI) standard.

In asynchronous mode, no separate clock signal is transmitted with the data on the bus. The USART receiver thus has to determine where to sample the data on the bus from the actual data. To make this possible, additional synchronization bits are added to the data when operating in asynchronous mode, resulting in a slight overhead.

Asynchronous or synchronous mode can be selected by configuring SYNC in USARTn_CTRL. The options are listed with supported protocols in Table 18.1 USART Asynchronous Vs. Synchronous Mode on page 606. Full duplex and half duplex communication is supported in both asynchronous and synchronous mode.

Table 18.1. USART Asynchronous Vs. Synchronous Mode

SYNC	Communication Mode	Supported Protocols
0	Asynchronous	RS-232, RS-485 (w/external driver), IrDA, ISO 7816
1	Synchronous	SPI, MicroWire, 3-wire

Table 18.2 USART Pin Usage on page 606 explains the functionality of the different USART pins when the USART operates in different modes. Pin functionality enclosed in square brackets is optional, and depends on additional configuration parameters. LOOPBK and MASTER are discussed in 18.3.2.14 Local Loopback and 18.3.3.3 Master Mode respectively.

Table 18.2. USART Pin Usage

SYNC	LOOPBK	MASTER	Pin functionality				
			U(S)n_TX (MOSI)	U(S)n_RX (MISO)	USn_CLK	USn_CS	
0	0	х	Data out	Data in	-	[Driver enable]	
0	1	х	Data out/in	-	-	[Driver enable]	
1	0	0	Data in	Data out	Clock in	Slave select	
1	0	1	Data out Data in Clock out [Auto		[Auto slave select]		
1	1	0	Data out/in	-	Clock in	Slave select	
1	1	1	Data out/in	-	Clock out	[Auto slave select]	

18.3.2 Asynchronous Operation

The USART operates in asynchronous mode when SYNC in USARTn_CTRL is cleared to 0.

18.3.2.1 Frame Format

The frame format used in asynchronous mode consists of a set of data bits in addition to bits for synchronization and optionally a parity bit for error checking. A frame starts with one start-bit (S), where the line is driven low for one bit-period. This signals the start of a frame, and is used for synchronization. Following the start bit are 4 to 16 data bits and an optional parity bit. Finally, a number of stop-bits, where the line is driven high, end the frame. An example frame is shown in Figure 18.2 USART Asynchronous Frame Format on page 607.

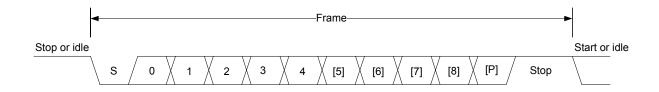


Figure 18.2. USART Asynchronous Frame Format

The number of data bits in a frame is set by DATABITS in USARTn_FRAME, see Table 18.3 USART Data Bits on page 607, and the number of stop-bits is set by STOPBITS in USARTn_FRAME, see Table 18.4 USART Stop Bits on page 607. Whether or not a parity bit should be included, and whether it should be even or odd is defined by PARITY, also in USARTn_FRAME. For communication to be possible, all parties of an asynchronous transfer must agree on the frame format being used.

Table 18.3. USART Data Bits

DATA BITS [3:0]	Number of Data Bits
0001	4
0010	5
0011	6
0100	7
0101	8 (Default)
0110	9
0111	10
1000	11
1001	12
1010	13
1011	14
1100	15
1101	16

Table 18.4. USART Stop Bits

STOP BITS [1:0]	Number of Stop Bits
00	0.5
01	1 (Default)
10	1.5
11	2

The order in which the data bits are transmitted and received is defined by MSBF in USARTn_CTRL. When MSBF is cleared, data in a frame is sent and received with the least significant bit first. When it is set, the most significant bit comes first.

The frame format used by the transmitter can be inverted by setting TXINV in USARTn_CTRL, and the format expected by the receiver can be inverted by setting RXINV in USARTn_CTRL. These bits affect the entire frame, not only the data bits. An inverted frame has a low idle state, a high start-bit, inverted data and parity bits, and low stop-bits.

18.3.2.2 Parity Bit Calculation and Handling

When parity bits are enabled, hardware automatically calculates and inserts any parity bits into outgoing frames, and verifies the received parity bits in incoming frames. This is true for both asynchronous and synchronous modes, even though it is mostly used in asynchronous communication. The possible parity modes are defined in Table 18.5 USART Parity Bits on page 608. When even parity is chosen, a parity bit is inserted to make the number of high bits (data + parity) even. If odd parity is chosen, the parity bit makes the total number of high bits odd.

Table 18.5. USART Parity Bits

PARITY BITS [1:0]	Description
00	No parity bit (Default)
01	Reserved
10	Even parity
11	Odd parity

18.3.2.3 Clock Generation

Note: Not all USART instances are using the same peripheral clock. Normally the USART uses HFPERCLK_{USARTn}, however USART2 supports higher frequencies and therefore uses HFPERBCLK_{USART2}. This chapter describes the general case and therefore uses HFPERCLK_{USARTn} and f _{HFPERBCLK}, which should be interpreted as HFPERBCLK_{USARTn} and f_{HFPERBCLK} for USART2. 10.3.1.4 HFPERCLK, HFPERBCLK, HFPERCCLK - High Frequency Peripheral Clocks shows which peripheral uses what peripheral clock.

The USART clock defines the transmission and reception data rate. When operating in asynchronous mode, the baud rate (bit-rate) is given by Figure 18.3 USART Baud Rate on page 609.

br = f_{HFPERCLK}/(oversample x (1 + USARTn_CLKDIV/256))

Figure 18.3. USART Baud Rate

where f_{HFPERCLK} is the peripheral clock (HFPERCLK_{USARTn}) frequency and oversample is the oversampling rate as defined by OVS in USARTn_CTRL, see Table 18.6 USART Oversampling on page 609.

Table 18.6. USART Oversampling

OVS [1:0]	Oversample
00	16
01	8
10	6
11	4

The USART has a fractional clock divider to allow the USART clock to be controlled more accurately than what is possible with a standard integral divider.

The clock divider used in the USART is a 20-bit value, with a 15-bit integral part and an 5-bit fractional part. The fractional part is configured in the lower 5 bits of DIV in USART_CLKDIV.

Fractional clock division is implemented by distributing the selected fraction over thirty two baud periods. The fractional part of the divider tells how many of these periods should be extended by one peripheral clock cycle.

Given a desired baud rate brdesired, the clock divider USARTn_CLKDIV can be calculated by using Figure 18.4 USART Desired Baud Rate on page 609:

USARTn_CLKDIV = 256 x (f_{HFPERCLK}/(oversample x brdesired) - 1)

Figure 18.4. USART Desired Baud Rate

Table 18.7 USART Baud Rates @ 4MHz Peripheral Clock With 20 Bit CLKDIV on page 609 shows a set of desired baud rates and how accurately the USART is able to generate these baud rates when running at a 4 MHz peripheral clock, using 16x or 8x oversampling.

Table 18.7. USART Baud Rates @ 4MHz Peripheral Clock With 20 Bit CLKDIV

Desired baud	USAR	Tn_OVS =00		USARTn_OVS =01		
rate [baud/s]	USARTn_CLKDIV/256 (to 32nd position)	Actual baud rate [baud/s]	Error %	USARTn_CLKDIV/256 (to 32nd position)	Actual baud rate [baud/s]	Error %
600	415.6563	600.015	0.003	832.3438	599.9925	-0.001
1200	207.3438	1199.94	-0.005	415.6563	1200.03	0.003
2400	103.1563	2400.24	0.010	207.3438	2399.88	-0.005
4800	51.09375	4799.04	-0.020	103.1563	4800.48	0.010

Desired baud rate [baud/s]	USARTn_OVS =00			USARTn_OVS =01		
	USARTn_CLKDIV/256 (to 32nd position)	Actual baud rate [baud/s]	Error %	USARTn_CLKDIV/256 (to 32nd position)	Actual baud rate [baud/s]	Error %
9600	25.03125	9603.842	0.040	51.09375	9598.08	-0.020
14400	16.375	14388.49	-0.080	33.71875	14401.44	0.010
19200	12.03125	19184.65	-0.080	25.03125	19207.68	0.040
28800	7.6875	28776.98	-0.080	16.375	28776.98	-0.080
38400	5.5	38461.54	0.160	12.03125	38369.3	-0.080
57600	3.34375	57553.96	-0.080	7.6875	57553.96	-0.080
76800	2.25	76923.08	0.160	5.5	76923.08	0.160
115200	1.15625	115942	0.644	3.34375	115107.9	-0.080
230400	0.09375	228571.4	-0.794	1.15625	231884.1	0.644

18.3.2.4 Auto Baud Detection

Setting AUTOBAUDEN in USARTn_CLKDIV uses the first frame received to automatically set the baud rate provided that it contains 0x55 (IrDA uses 0x00). AUTOBAUDEN can be used in a simple LIN configuration to auto detect the SYNC byte. The receiver will measure the number of local clock cycles between the beginning of the START bit and the beginning of the 8th data bit. The DIV field in USARTn_CLKDIV will be overwritten with the new value. The OVS in USARTn_CTRL and the +1 count of the Baud Rate equation are already factored into the result that gets written into the DIV field. To restart autobaud detection, clear AUTOBAUDEN and set it high again. Since the auto baud detection is done over 8 baud times, only the upper 3 bits of the fractional part of the clock divider are populated.

18.3.2.5 Data Transmission

Asynchronous data transmission is initiated by writing data to the transmit buffer using one of the methods described in 18.3.2.6 Transmit Buffer Operation. When the transmission shift register is empty and ready for new data, a frame from the transmit buffer is loaded into the shift register, and if the transmitter is enabled, transmission begins. When the frame has been transmitted, a new frame is loaded into the shift register if available, and transmission continues. If the transmit buffer is empty, the transmitter goes to an idle state, waiting for a new frame to become available.

Transmission is enabled through the command register USARTn_CMD by setting TXEN, and disabled by setting TXDIS in the same command register. When the transmitter is disabled using TXDIS, any ongoing transmission is aborted, and any frame currently being transmitted is discarded. When disabled, the TX output goes to an idle state, which by default is a high value. Whether or not the transmitter is enabled at a given time can be read from TXENS in USARTn_STATUS.

When the USART transmitter is enabled and there is no data in the transmit shift register or transmit buffer, the TXC flag in USARTn_STATUS and the TXC interrupt flag in USARTn_IF are set, signaling that the transmission is complete. The TXC status flag is cleared when a new frame becomes available for transmission, but the TXC interrupt flag must be cleared by software.

18.3.2.6 Transmit Buffer Operation

The transmit-buffer is a multiple entry FIFO buffer. A frame can be loaded into the buffer by writing to USARTn_TXDATA, USARTn_TXDATAX, USARTn_TXDOUBLE or USARTn_TXDOUBLEX. Using USARTn_TXDATA allows 8 bits to be written to the buffer, while using USARTn_TXDOUBLE will write 2 frames of 8 bits to the buffer. If 9-bit frames are used, the 9th bit of the frames will in these cases be set to the value of BIT8DV in USARTn_CTRL.

To set the 9th bit directly and/or use transmission control, USARTn_TXDATAX and USARTn_TXDOUBLEX must be used. USARTn_TXDATAX allows 9 data bits to be written, as well as a set of control bits regarding the transmission of the written frame. Every frame in the buffer is stored with 9 data bits and additional transmission control bits. USARTn_TXDOUBLEX allows two frames, complete with control bits to be written at once. When data is written to the transmit buffer using USARTn_TXDATAX and USARTn_TXDOUBLEX, the 9th bit(s) written to these registers override the value in BIT8DV in USARTn_CTRL, and alone define the 9th bits that are transmitted if 9-bit frames are used. Figure 18.5 USART Transmit Buffer Operation on page 611 shows the basics of the transmit buffer when DATABITS in USARTn_FRAME is configured to less than 10 bits.

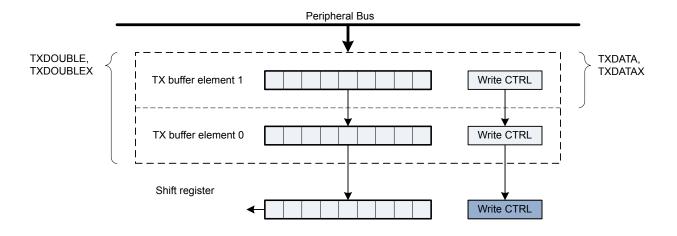


Figure 18.5. USART Transmit Buffer Operation

When writing more frames to the transmit buffer than there is free space for, the TXOF interrupt flag in USARTn_IF will be set, indicating the overflow. The data already in the transmit buffer is preserved in this case, and no data is written.

In addition to the interrupt flag TXC in USARTn_IF and status flag TXC in USARTn_STATUS which are set when the transmission is complete, TXBL in USARTn_STATUS and the TXBL interrupt flag in USARTn_IF are used to indicate the level of the transmit buffer. TXBIL in USARTn_CTRL controls the level at which these bits are set. If TXBIL is cleared, they are set whenever the transmit buffer becomes empty, and if TXBIL is set, they are set whenever the transmit buffer goes from full to half-full or empty. Both the TXBL status flag and the TXBL interrupt flag are cleared automatically when their condition becomes false.

There is a TXIDLE status bit in USARTn_STATUS to provide an indication of when the transmitter is idle. The combined count of TX buffer element 0, TX buffer element 1, and TX shift register is called TXBUFCNT in USARTn_STATUS. For large frames, the count is only of TX buffer entry 0 and the TX shifter register.

The transmit buffer, including the transmit shift register can be cleared by setting CLEARTX in USARTn_CMD. This will prevent the USART from transmitting the data in the buffer and shift register, and will make them available for new data. Any frame currently being transmitted will not be aborted. Transmission of this frame will be completed.

18.3.2.7 Frame Transmission Control

The transmission control bits, which can be written using USARTn_TXDATAX and USARTn_TXDOUBLEX, affect the transmission of the written frame. The following options are available:

- Generate break: By setting TXBREAK, the output will be held low during the stop-bit period to generate a framing error. A receiver that supports break detection detects this state, allowing it to be used e.g. for framing of larger data packets. The line is driven high before the next frame is transmitted so the next start condition can be identified correctly by the recipient. Continuous breaks lasting longer than a USART frame are thus not supported by the USART. GPIO can be used for this.
- Disable transmitter after transmission: If TXDISAT is set, the transmitter is disabled after the frame has been fully transmitted.
- Enable receiver after transmission: If RXENAT is set, the receiver is enabled after the frame has been fully transmitted. It is enabled in time to detect a start-bit directly after the last stop-bit has been transmitted.
- Unblock receiver after transmission: If UBRXAT is set, the receiver is unblocked and RXBLOCK is cleared after the frame has been fully transmitted.
- Tristate transmitter after transmission: If TXTRIAT is set, TXTRI is set after the frame has been fully transmitted, tristating the transmitter output. Tristating of the output can also be performed automatically by setting AUTOTRI. If AUTOTRI is set TXTRI is always read as 0.

Note: When in SmartCard mode with repeat enabled, none of the actions, except generate break, will be performed until the frame is transmitted without failure. Generation of a break in SmartCard mode with repeat enabled will cause the USART to detect a NACK on every frame.

18.3.2.8 Data Reception

Data reception is enabled by setting RXEN in USARTn_CMD. When the receiver is enabled, it actively samples the input looking for a transition from high to low indicating the start baud of a new frame. When a start baud is found, reception of the new frame begins if the receive shift register is empty and ready for new data. When the frame has been received, it is pushed into the receive buffer, making the shift register ready for another frame of data, and the receiver starts looking for another start baud. If the receive buffer is full, the received frame remains in the shift register until more space in the receive buffer is available. If an incoming frame is detected while both the receive buffer and the receive shift register are full, the data in the shift register is overwritten, and the RXOF interrupt flag in USARTn_IF is set to indicate the buffer overflow.

The receiver can be disabled by setting the command bit RXDIS in USARTn_CMD. Any frame currently being received when the receiver is disabled is discarded. Whether or not the receiver is enabled at a given time can be read out from RXENS in USARTn_STATUS.

18.3.2.9 Receive Buffer Operation

When data becomes available in the receive buffer, the RXDATAV flag in USARTn_STATUS, and the RXDATAV interrupt flag in USARTn_IF are set, and when the buffer becomes full, RXFULL in USARTn_STATUS and the RXFULL interrupt flag in USARTn_IF are set. The status flags RXDATAV and RXFULL are automatically cleared by hardware when their condition is no longer true. This also goes for the RXDATAV interrupt flag, but the RXFULL interrupt flag must be cleared by software. When the RXFULL flag is set, notifying that the buffer is full, space is still available in the receive shift register for one more frame.

Data can be read from the receive buffer in a number of ways. USARTn_RXDATA gives access to the 8 least significant bits of the received frame, and USARTn_RXDOUBLE makes it possible to read the 8 least significant bits of two frames at once, pulling two frames from the buffer. To get access to the 9th, most significant bit, USARTn_RXDATAX must be used. This register also contains status information regarding the frame. USARTn_RXDOUBLEX can be used to get two frames complete with the 9th bits and status bits.

When a frame is read from the receive buffer using USARTn_RXDATA or USARTn_RXDATAX, the frame is pulled out of the buffer, making room for a new frame. USARTn_RXDOUBLE and USARTn_RXDOUBLEX pull two frames out of the buffer. If an attempt is done to read more frames from the buffer than what is available, the RXUF interrupt flag in USARTn_IF is set to signal the underflow, and the data read from the buffer is undefined.

Frames can be read from the receive buffer without removing the data by using USARTn_RXDATAXP and USARTn_RXDOUBLEXP. USARTn_RXDATAXP gives access the first frame in the buffer with status bits, while USARTn_RXDOUBLEXP gives access to both frames with status bits. The data read from these registers when the receive buffer is empty is undefined. If the receive buffer contains one valid frame, the first frame in USARTn_RXDOUBLEXP will be valid. No underflow interrupt is generated by a read using these registers, i.e. RXUF in USARTn_IF is never set as a result of reading from USARTn_RXDATAXP or USARTn_RXDOUBLEXP.

The basic operation of the receive buffer when DATABITS in USARTn_FRAME is configured to less than 10 bits is shown in Figure 18.6 USART Receive Buffer Operation on page 613.

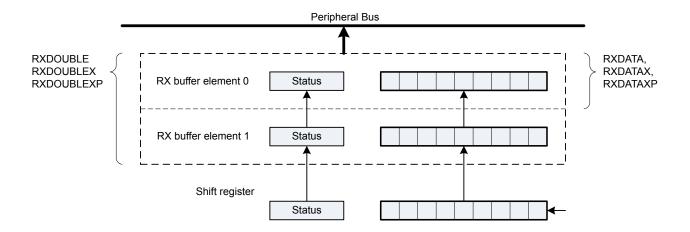


Figure 18.6. USART Receive Buffer Operation

The receive buffer, including the receive shift register can be cleared by setting CLEARRX in USARTn_CMD. Any frame currently being received will not be discarded.

18.3.2.10 Blocking Incoming Data

When using hardware frame recognition, as detailed in 18.3.2.20 Multi-Processor Mode and 18.3.2.21 Collision Detection, it is necessary to be able to let the receiver sample incoming frames without passing the frames to software by loading them into the receive buffer. This is accomplished by blocking incoming data.

Incoming data is blocked as long as RXBLOCK in USARTn_STATUS is set. When blocked, frames received by the receiver will not be loaded into the receive buffer, and software is not notified by the RXDATAV flag in USARTn_STATUS or the RXDATAV interrupt flag in USARTn_IF at their arrival. For data to be loaded into the receive buffer, RXBLOCK must be cleared in the instant a frame is fully received by the receiver. RXBLOCK is set by setting RXBLOCKEN in USARTn_CMD and disabled by setting RXBLOCKDIS also in USARTn_CMD. There is one exception where data is loaded into the receive buffer even when RXBLOCK is set. This is when an address frame is received when operating in multi-processor mode. See 18.3.2.20 Multi-Processor Mode for more information.

Frames received containing framing or parity errors will not result in the FERR and PERR interrupt flags in USARTn_IF being set while RXBLOCK in USARTn_STATUS is set. Hardware recognition is not applied to these erroneous frames, and they are silently discarded.

Note:

- If a frame is received while RXBLOCK in USARTn_STATUS is cleared, but stays in the receive shift register because the receive buffer is full, the received frame will be loaded into the receive buffer when space becomes available even if RXBLOCK is set at that time.
- The overflow interrupt flag RXOF in USARTn_IF will be set if a frame in the receive shift register, waiting to be loaded into the receive buffer is overwritten by an incoming frame even though RXBLOCK in USARTn_STATUS is set.

18.3.2.11 Clock Recovery and Filtering

The receiver samples the incoming signal at a rate 16, 8, 6 or 4 times higher than the given baud rate, depending on the oversampling mode given by OVS in USARTn_CTRL. Lower oversampling rates make higher baud rates possible, but give less room for errors.

When a high-to-low transition is registered on the input while the receiver is idle, this is recognized as a start-bit, and the baud rate generator is synchronized with the incoming frame.

For oversampling modes 16, 8 and 6, every bit in the incoming frame is sampled three times to gain a level of noise immunity. These samples are aimed at the middle of the bit-periods, as visualized in Figure 18.7 USART Sampling of Start and Data Bits on page 615. With OVS=0 in USARTn_CTRL, the start and data bits are thus sampled at locations 8, 9 and 10 in the figure, locations 4, 5 and 6 for OVS=1 and locations 3, 4, and 5 for OVS=2. The value of a sampled bit is determined by majority vote. If two or more of the three bit-samples are high, the resulting bit value is high. If the majority is low, the resulting bit value is low.

Majority vote is used for all oversampling modes except 4x oversampling. In this mode, a single sample is taken at position 3 as shown in Figure 18.7 USART Sampling of Start and Data Bits on page 615.

Majority vote can be disabled by setting MVDIS in USARTn CTRL.

If the value of the start bit is found to be high, the reception of the frame is aborted, filtering out false start bits possibly generated by noise on the input.

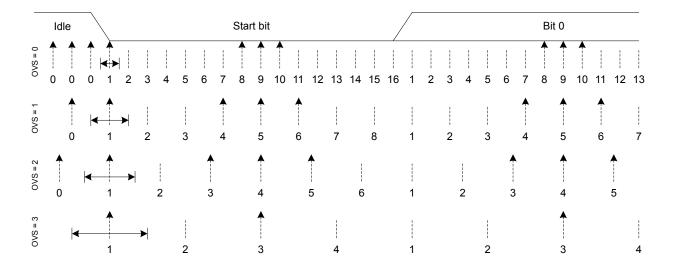


Figure 18.7. USART Sampling of Start and Data Bits

If the baud rate of the transmitter and receiver differ, the location each bit is sampled will be shifted towards the previous or next bit in the frame. This is acceptable for small errors in the baud rate, but for larger errors, it will result in transmission errors.

When the number of stop bits is 1 or more, stop bits are sampled like the start and data bits as seen in Figure 18.8 USART Sampling of Stop Bits when Number of Stop Bits are 1 or More on page 616. When a stop bit has been detected by sampling at positions 8, 9 and 10 for normal mode, or 4, 5 and 6 for smart mode, the USART is ready for a new start bit. As seen in Figure 18.8 USART Sampling of Stop Bits when Number of Stop Bits are 1 or More on page 616, a stop-bit of length 1 normally ends at c, but the next frame will be received correctly as long as the start-bit comes after position a for OVS=0 and OVS=3, and b for OVS=1 and OVS=2.

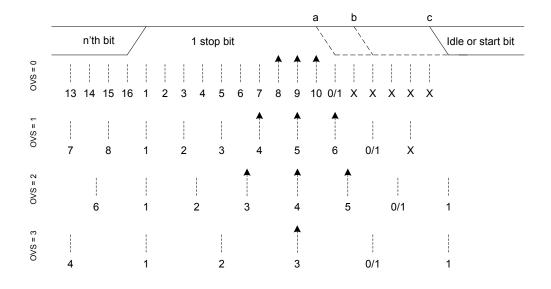


Figure 18.8. USART Sampling of Stop Bits when Number of Stop Bits are 1 or More

When working with stop bit lengths of half a baud period, the above sampling scheme no longer suffices. In this case, the stop-bit is not sampled, and no framing error is generated in the receiver if the stop-bit is not generated. The line must still be driven high before the next start bit however for the USART to successfully identify the start bit.

18.3.2.12 Parity Error

When parity bits are enabled, a parity check is automatically performed on incoming frames. When a parity error is detected in an incoming frame, the data parity error bit PERR in the frame is set, as well as the interrupt flag PERR in USARTn_IF. Frames with parity errors are loaded into the receive buffer like regular frames.

PERR can be accessed by reading the frame from the receive buffer using the USARTn_RXDATAX, USARTn_RXDATAXP, USARTn_RXDOUBLEX or USARTn_RXDOUBLEXP registers.

If ERRSTX in USARTn_CTRL is set, the transmitter is disabled on received parity and framing errors. If ERRSRX in USARTn_CTRL is set, the receiver is disabled on parity and framing errors.

18.3.2.13 Framing Error and Break Detection

A framing error is the result of an asynchronous frame where the stop bit was sampled to a value of 0. This can be the result of noise and baud rate errors, but can also be the result of a break generated by the transmitter on purpose.

When a framing error is detected in an incoming frame, the framing error bit FERR in the frame is set. The interrupt flag FERR in USARTn IF is also set. Frames with framing errors are loaded into the receive buffer like regular frames.

FERR can be accessed by reading the frame from the receive buffer using the USARTn_RXDATAX, USARTn_RXDATAXP, USARTn_RXDOUBLEX or USARTn_RXDOUBLEXP registers.

If ERRSTX in USARTn_CTRL is set, the transmitter is disabled on parity and framing errors. If ERRSRX in USARTn_CTRL is set, the receiver is disabled on parity and framing errors.

18.3.2.14 Local Loopback

The USART receiver samples U(S)n_RX by default, and the transmitter drives U(S)n_TX by default. This is not the only option however. When LOOPBK in USARTn_CTRL is set, the receiver is connected to the U(S)n_TX pin as shown in Figure 18.9 USART Local Loopback on page 617. This is useful for debugging, as the USART can receive the data it transmits, but it is also used to allow the USART to read and write to the same pin, which is required for some half duplex communication modes. In this mode, the U(S)n_TX pin must be enabled as an output in the GPIO.

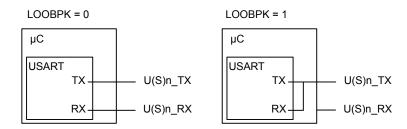


Figure 18.9. USART Local Loopback

18.3.2.15 Asynchronous Half Duplex Communication

When doing full duplex communication, two data links are provided, making it possible for data to be sent and received at the same time. In half duplex mode, data is only sent in one direction at a time. There are several possible half duplex setups, as described in the following sections.

18.3.2.16 Single Data-link

In this setup, the USART both receives and transmits data on the same pin. This is enabled by setting LOOPBK in USARTn_CTRL, which connects the receiver to the transmitter output. Because they are both connected to the same line, it is important that the USART transmitter does not drive the line when receiving data, as this would corrupt the data on the line.

When communicating over a single data-link, the transmitter must thus be tristated whenever not transmitting data. This is done by setting the command bit TXTRIEN in USARTn_CMD, which tristates the transmitter. Before transmitting data, the command bit TXTRI-DIS, also in USARTn_CMD, must be set to enable transmitter output again. Whether or not the output is tristated at a given time can be read from TXTRI in USARTn_STATUS. If TXTRI is set when transmitting data, the data is shifted out of the shift register, but is not put out on U(S)n_TX.

When operating a half duplex data bus, it is common to have a bus master, which first transmits a request to one of the bus slaves, then receives a reply. In this case, the frame transmission control bits, which can be set by writing to USARTn_TXDATAX, can be used to make the USART automatically disable transmission, tristate the transmitter and enable reception when the request has been transmitted, making it ready to receive a response from the slave.

The timer, 18.3.10 Timer, can also be used to add delay between the RX and TX frames so that the interrupt service routine has time to process data that was just received before transmitting more data. Also hardware flow control is another method to insert time for processing the frame. RTS and CTS can be used to halt either the link partner's transmitter or the local transmitter. See the section on hardware flow control, 18.3.4 Hardware Flow Control, for more details.

Tristating the transmitter can also be performed automatically by the USART by using AUTOTRI in USARTn_CTRL. When AUTOTRI is set, the USART automatically tristates U(S)n_TX whenever the transmitter is idle, and enables transmitter output when the transmitter goes active. If AUTOTRI is set TXTRI is always read as 0.

Note: Another way to tristate the transmitter is to enable wired-and or wired-or mode in GPIO. For wired-and mode, outputting a 1 will be the same as tristating the output, and for wired-or mode, outputting a 0 will be the same as tristating the output. This can only be done on buses with a pull-up or pull-down resistor respectively.

18.3.2.17 Single Data-link With External Driver

Some communication schemes, such as RS-485 rely on an external driver. Here, the driver has an extra input which enables it, and instead of tristating the transmitter when receiving data, the external driver must be disabled.

This can be done manually by assigning a GPIO to turn the driver on or off, or it can be handled automatically by the USART. If AUTOCS in USARTn_CTRL is set, the USn_CS output is automatically activated a configurable number of baud periods before the transmitter starts transmitting data, and deactivated a configurable number of baud periods after the last bit has been transmitted and there is no more data in the transmit buffer to transmit. The number of baud periods are controlled by CSSETUP and CSHOLD in USARTn_TIMING. This feature can be used to turn the external driver on when transmitting data, and turn it off when the data has been transmitted.

The timer, 18.3.10 Timer, can also be used to configure CSSETUP and CSHOLD values between 1 to 256 baud-times by using TCMPVAL0, TCMPVAL1, or TCMPVAL2 for the TX sequencer.

USn CS is immediately deasserted when the transmitter becomes disabled.

Figure 18.10 USART Half Duplex Communication with External Driver on page 618 shows an example configuration where USn_CS is used to automatically enable and disable an external driver.

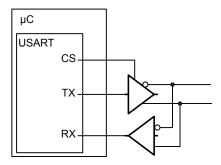


Figure 18.10. USART Half Duplex Communication with External Driver

The USn_CS output is active low by default, but its polarity can be changed with CSINV in USARTn_CTRL. AUTOCS works regardless of which mode the USART is in, so this functionality can also be used for automatic chip/slave select when in synchronous mode (e.g. SPI).

18.3.2.18 Two Data-links

Some limited devices only support half duplex communication even though two data links are available. In this case software is responsible for making sure data is not transmitted when incoming data is expected.

TXARXnEN in USARTn_TRIGCTRL may be used to automatically start transmission after the end of the RX frame plus any TXSTDE-LAY and CSSETUP delay in USARTn_TIMING. For enabling the receiver either use RXENAT in USARTn_TXDATAX or RXATXnEN in USARTn_TRIGCTRL.

18.3.2.19 Large Frames

As each frame in the transmit and receive buffers holds a maximum of 9 bits, both the elements in the buffers are combined when working with USART-frames of 10 or more data bits.

To transmit such a frame, at least two elements must be available in the transmit buffer. If only one element is available, the USART will wait for the second element before transmitting the combined frame. Both the elements making up the frame are consumed when transmitting such a frame.

When using large frames, the 9th bits in the buffers are unused. For an 11 bit frame, the 8 least significant bits are thus taken from the first element in the buffer, and the 3 remaining bits are taken from the second element as shown in Figure 18.11 USART Transmission of Large Frames on page 619. The first element in the transmit buffer, i.e. element 0 in Figure 18.11 USART Transmission of Large Frames on page 619 is the first element written to the FIFO, or the least significant byte when writing two bytes at a time using USARTn_TXDOUBLE.

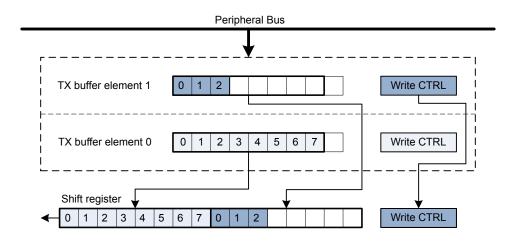


Figure 18.11. USART Transmission of Large Frames

As shown in Figure 18.11 USART Transmission of Large Frames on page 619, frame transmission control bits are taken from the second element in FIFO.

The two buffer elements can be written at the same time using the USARTn_TXDOUBLE or USARTn_TXDOUBLEX register. The TXDATAX0 bitfield then refers to buffer element 0, and TXDATAX1 refers to buffer element 1.

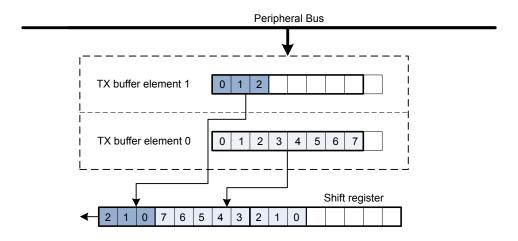


Figure 18.12. USART Transmission of Large Frames, MSBF

Figure 18.12 USART Transmission of Large Frames, MSBF on page 619 illustrates the order of the transmitted bits when an 11 bit frame is transmitted with MSBF set. If MSBF is set and the frame is smaller than 10 bits, only the contents of transmit buffer 0 will be transmitted.

When receiving a large frame, BYTESWAP in USARTn_CTRL determines the order the way the large frame is split into the two buffer elements. If BYTESWAP is cleared, the least significant 8 bits of the received frame are loaded into the first element of the receive buffer, and the remaining bits are loaded into the second element, as shown in Figure 18.13 USART Reception of Large Frames on page 620. The first byte read from the buffer thus contains the 8 least significant bits. Set BYTESWAP to reverse the order.

The status bits are loaded into both elements of the receive buffer. The frame is not moved from the receive shift register before there are two free spaces in the receive buffer.

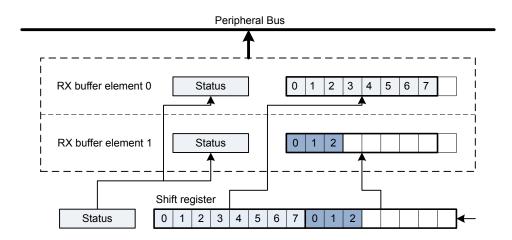


Figure 18.13. USART Reception of Large Frames

The two buffer elements can be read at the same time using the USARTn_RXDOUBLE or USARTn_RXDOUBLEX register. RXDATA0 then refers to buffer element 0 and RXDATA1 refers to buffer element 1.

Large frames can be used in both asynchronous and synchronous modes.

18.3.2.20 Multi-Processor Mode

To simplify communication between multiple processors, the USART supports a special multi-processor mode. In this mode the 9th data bit in each frame is used to indicate whether the content of the remaining 8 bits is data or an address.

When multi-processor mode is enabled, an incoming 9-bit frame with the 9th bit equal to the value of MPAB in USARTn_CTRL is identified as an address frame. When an address frame is detected, the MPAF interrupt flag in USARTn_IF is set, and the address frame is loaded into the receive register. This happens regardless of the value of RXBLOCK in USARTn_STATUS.

Multi-processor mode is enabled by setting MPM in USARTn_CTRL, and the value of the 9th bit in address frames can be set in MPAB. Note that the receiver must be enabled for address frames to be detected. The receiver can be blocked however, preventing data from being loaded into the receive buffer while looking for address frames.

Basic usage of the multi-processor mode is as follows:

- 1. All slaves enable multi-processor mode and, enable and block the receiver. They will now not receive data unless it is an address frame. MPAB in USARTn CTRL is set to identify frames with the 9th bit high as address frames.
- 2. The master sends a frame containing the address of a slave and with the 9th bit set
- 3. All slaves receive the address frame and get an interrupt. They can read the address from the receive buffer. The selected slave unblocks the receiver to start receiving data from the master.
- 4. The master sends data with the 9th bit cleared
- 5. Only the slave with RX enabled receives the data. When transmission is complete, the slave blocks the receiver and waits for a new address frame.

When a slave has received an address frame and wants to receive the following data, it must make sure the receiver is unblocked before the next frame has been completely received in order to prevent data loss.

BIT8DV in USARTn_CTRL can be used to specify the value of the 9th bit without writing to the transmit buffer with USARTn_TXDATAX or USARTn_TXDOUBLEX, giving higher efficiency in multi-processor mode, as the 9th bit is only set when writing address frames, and 8-bit writes to the USART can be used when writing the data frames.

18.3.2.21 Collision Detection

The USART supports a basic form of collision detection. When the receiver is connected to the output of the transmitter, either by using the LOOPBK bit in USARTn_CTRL or through an external connection, this feature can be used to detect whether data transmitted on the bus by the USART did get corrupted by a simultaneous transmission by another device on the bus.

For collision detection to be enabled, CCEN in USARTn_CTRL must be set, and the receiver enabled. The data sampled by the receiver is then continuously compared with the data output by the transmitter. If they differ, the CCF interrupt flag in USARTn_IF is set. The collision check includes all bits of the transmitted frames. The CCF interrupt flag is set once for each bit sampled by the receiver that differs from the bit output by the transmitter. When the transmitter output is disabled, i.e. the transmitter is tristated, collisions are not registered.

18.3.2.22 SmartCard Mode

In SmartCard mode, the USART supports the ISO 7816 I/O line T0 mode. With exception of the stop-bits (guard time), the 7816 data frame is equal to the regular asynchronous frame. In this mode, the receiver pulls the line low for one baud, half a baud into the guard time to indicate a parity error. This NAK can for instance be used by the transmitter to re-transmit the frame. SmartCard mode is a half duplex asynchronous mode, so the transmitter must be tristated whenever not transmitting data.

To enable SmartCard mode, set SCMODE in USARTn_CTRL, set the number of databits in a frame to 8, and configure the number of stopbits to 1.5 by writing to STOPBITS in USARTn_FRAME.

The SmartCard mode relies on half duplex communication on a single line, so for it to work, both the receiver and transmitter must work on the same line. This can be achieved by setting LOOPBK in USARTn_CTRL or through an external connection. The TX output should be configured as open-drain in the GPIO module.

When no parity error is identified by the receiver, the data frame is as shown in Figure 18.14 USART ISO 7816 Data Frame Without Error on page 622. The frame consists of 8 data bits, a parity bit, and 2 stop bits. The transmitter does not drive the output line during the guard time.

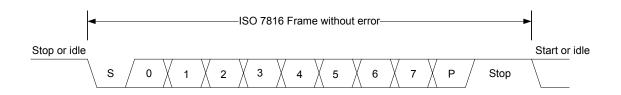


Figure 18.14. USART ISO 7816 Data Frame Without Error

If a parity error is detected by the receiver, it pulls the line I/O line low after half a stop bit, see Figure 18.15 USART ISO 7816 Data Frame With Error on page 622. It holds the line low for one bit-period before it releases the line. In this case, the guard time is extended by one bit period before a new transmission can start, resulting in a total of 3 stop bits.

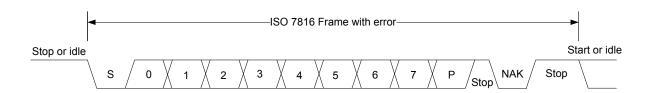


Figure 18.15. USART ISO 7816 Data Frame With Error

On a parity error, the NAK is generated by hardware. The NAK generated by the receiver is sampled as the stop-bit of the frame. Because of this, parity errors when in SmartCard mode are reported with both a parity error and a framing error.

When transmitting a T0 frame, the USART receiver on the transmitting side samples position 16, 17 and 18 in the stop-bit to detect the error signal when in 16x oversampling mode as shown in Figure 18.16 USART SmartCard Stop Bit Sampling on page 623. Sampling at this location places the stop-bit sample in the middle of the bit-period used for the error signal (NAK).

If a NAK is transmitted by the receiver, it will thus appear as a framing error at the transmitter, and the FERR interrupt flag in USARTn_IF will be set. If SCRETRANS USARTn_CTRL is set, the transmitter will automatically retransmit a NACK'ed frame. The transmitter will retransmit the frame until it is ACK'ed by the receiver. This only works when the number of databits in a frame is configured to 8.

Set SKIPPERRF in USARTn_CTRL to make the receiver discard frames with parity errors. The PERR interrupt flag in USARTn_IF is set when a frame is discarded because of a parity error.

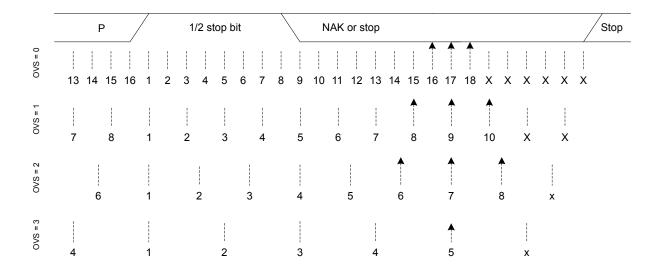


Figure 18.16. USART SmartCard Stop Bit Sampling

For communication with a SmartCard, a clock signal needs to be generated for the card. This clock output can be generated using one of the timers. See the ISO 7816 specification for more info on this clock signal.

SmartCard T1 mode is also supported. The T1 frame format used is the same as the asynchronous frame format with parity bit enabled and one stop bit. The USART must then be configured to operate in asynchronous half duplex mode.

18.3.3 Synchronous Operation

Most of the features in asynchronous mode are available in synchronous mode. Multi-processor mode can be enabled for 9-bit frames, loopback is available and collision detection can be performed.

18.3.3.1 Frame Format

The frames used in synchronous mode need no start and stop bits since a single clock is available to all parts participating in the communication. Parity bits cannot be used in synchronous mode.

The USART supports frame lengths of 4 to 16 bits per frame. Larger frames can be simulated by transmitting multiple smaller frames, i.e. a 22 bit frame can be sent using two 11-bit frames, and a 21 bit frame can be generated by transmitting three 7-bit frames. The number of bits in a frame is set using DATABITS in USARTn_FRAME.

The frames in synchronous mode are by default transmitted with the least significant bit first like in asynchronous mode. The bit-order can be reversed by setting MSBF in USARTn CTRL.

The frame format used by the transmitter can be inverted by setting TXINV in USARTn_CTRL, and the format expected by the receiver can be inverted by setting RXINV, also in USARTn_CTRL.

18.3.3.2 Clock Generation

Note: Not all USART instances are using the same peripheral clock. Normally the USART uses HFPERCLK_{USARTn}, however USART2 supports higher frequencies and therefore uses HFPERBCLK_{USART2}. This chapter describes the general case and therefore uses HFPERCLK_{USARTn} and f _{HFPERBCLK}, which should be interpreted as HFPERBCLK_{USARTn} and f _{HFPERBCLK} for USART2. 10.3.1.4 HFPERCLK, HFPERBCLK, HFPERCCLK - High Frequency Peripheral Clocks shows which peripheral uses what peripheral clock.

The bit-rate in synchronous mode is given by Figure 18.17 USART Synchronous Mode Bit Rate on page 624. As in the case of asynchronous operation, the clock division factor have a 15-bit integral part and a 5-bit fractional part.

 $br = f_{HFPERCLK}/(2 x (1 + USARTn_CLKDIV/256))$

Figure 18.17. USART Synchronous Mode Bit Rate

Given a desired baud rate brdesired, the clock divider USARTn_CLKDIV can be calculated using Figure 18.18 USART Synchronous Mode Clock Division Factor on page 624

USARTn CLKDIV = $256 \times (f_{HFPERCLK}/(2 \times brdesired) - 1)$

Figure 18.18. USART Synchronous Mode Clock Division Factor

When the USART operates in master mode, the highest possible bit rate is half the peripheral clock rate. When operating in slave mode however, the highest bit rate is an eighth of the peripheral clock:

Master mode: br_{max} = f_{HFPERCLK}/2

• Slave mode: br_{max} = f_{HFPERCLK}/8

On every clock edge data on the data lines, MOSI and MISO, is either set up or sampled. When CLKPHA in USARTn_CTRL is cleared, data is sampled on the leading clock edge and set-up is done on the trailing edge. If CLKPHA is set however, data is set-up on the leading clock edge, and sampled on the trailing edge. In addition to this, the polarity of the clock signal can be changed by setting CLKPOL in USARTn_CTRL, which also defines the idle state of the clock. This results in four different modes which are summarized in Table 18.8 USART SPI Modes on page 624. Figure 18.19 USART SPI Timing on page 625 shows the resulting timing of data set-up and sampling relative to the bus clock.

Table 18.8. USART SPI Modes

SPI mode	CLKPOL	CLKPHA	Leading Edge	Trailing Edge
0	0	0	Rising, sample	Falling, set-up
1	0	1	Rising, set-up	Falling, sample
2	1	0	Falling, sample	Rising, set-up
3	1	1	Falling, set-up	Rising, sample

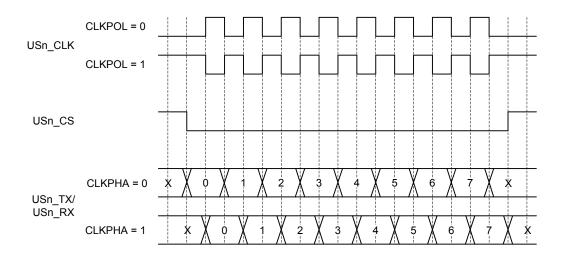


Figure 18.19. USART SPI Timing

If CPHA=1, the TX underflow flag, TXUF, will be set on the first setup clock edge of a frame in slave mode if TX data is not available. If CPHA=0, TXUF is set if data is not available in the transmit buffer three HFPERCLK cycles prior to the first sample clock edge. The RXDATAV flag is updated on the last sample clock edge of a transfer, while the RX overflow interrupt flag, RXOF, is set on the first sample clock edge if the receive buffer overflows. When a transfer has been performed, interrupt flags TXBL and TXC are updated on the first setup clock edge of the succeeding frame, or when CS is deasserted.

18.3.3.3 Master Mode

When in master mode, the USART is in full control of the data flow on the synchronous bus. When operating in full duplex mode, the slave cannot transmit data to the master without the master transmitting to the slave. The master outputs the bus clock on USn CLK.

Communication starts whenever there is data in the transmit buffer and the transmitter is enabled. The USART clock then starts, and the master shifts bits out from the transmit shift register using the internal clock.

When there are no more frames in the transmit buffer and the transmit shift register is empty, the clock stops, and communication ends. When the receiver is enabled, it samples data using the internal clock when the transmitter transmits data. Operation of the RX and TX buffers is as in asynchronous mode.

18.3.3.4 Operation of USn_CS Pin

When operating in master mode, the USn_CS pin can have one of two functions, or it can be disabled.

If USn_CS is configured as an output, it can be used to automatically generate a chip select for a slave by setting AUTOCS in USARTn_CTRL. If AUTOCS is set, USn_CS is activated before a transmission begins, and deactivated after the last bit has been transmitted and there is no more data in the transmit buffer.

The time between when CS is asserted and the first bit is transmitted can be controlled using the USART Timer and with CSSETUP in USARTn_TIMING. Any of the three comparators can be used to set this delay. If new data is ready for transmission before CS is deas-serted, the data is sent without deasserting CS in between. CSHOLD in USARTn_TIMING keeps CS asserted after the end of frame for the number of baud-times specified.

By default, USn_CS is active low, but its polarity can be inverted by setting CSINV in USARTn_CTRL.

When USn_CS is configured as an input, it can be used by another master that wants control of the bus to make the USART release it. When USn_CS is driven low, or high if CSINV is set, the interrupt flag SSM in USARTn_IF is set, and if CSMA in USARTn_CTRL is set, the USART goes to slave mode.

18.3.3.5 AUTOTX

A synchronous master is required to transmit data to a slave in order to receive data from the slave. In some cases, only a few words are transmitted and a lot of data is then received from the slave. In that case, one solution is to keep feeding the TX with data to transmit, but that consumes system bandwidth. Instead AUTOTX can be used.

When AUTOTX in USARTn_CTRL is set, the USART transmits data as long as there is available space in the RX shift register for the chosen frame size. This happens even though there is no data in the TX buffer. The TX underflow interrupt flag TXUF in USARTn_IF is set on the first word that is transmitted which does not contain valid data.

During AUTOTX the USART will always send the previous sent bit, thus reducing the number of transitions on the TX output. So if the last bit sent was a 0, 0's will be sent during AUTOTX and if the last bit sent was a 1, 1's will be sent during AUTOTX.

18.3.3.6 Slave Mode

When the USART is in slave mode, data transmission is not controlled by the USART, but by an external master. The USART is therefore not able to initiate a transmission, and has no control over the number of bytes written to the master.

The output and input to the USART are also swapped when in slave mode, making the receiver take its input from USn_TX (MOSI) and the transmitter drive USn_RX (MISO).

To transmit data when in slave mode, the slave must load data into the transmit buffer and enable the transmitter. The data will remain in the USART until the master starts a transmission by pulling the USn_CS input of the slave low and transmitting data. For every frame the master transmits to the slave, a frame is transferred from the slave to the master. After a transmission, MISO remains in the same state as the last bit transmitted. This also applies if the master transmits to the slave and the slave TX buffer is empty.

If the transmitter is enabled in synchronous slave mode and the master starts transmission of a frame, the underflow interrupt flag TXUF in USARTn_IF will be set if no data is available for transmission to the master.

If the slave needs to control its own chip select signal, this can be achieved by clearing CSPEN in the ROUTE register. The internal chip select signal can then be controlled through CSINV in the CTRL register. The chip select signal will be CSINV inverted, i.e. if CSINV is cleared, the chip select is active and vice versa.

18.3.3.7 Synchronous Half Duplex Communication

Half duplex communication in synchronous mode is very similar to half duplex communication in asynchronous mode as detailed in 18.3.2.15 Asynchronous Half Duplex Communication. The main difference is that in this mode, the master must generate the bus clock even when it is not transmitting data, i.e. it must provide the slave with a clock to receive data. To generate the bus clock, the master should transmit data with the transmitter tristated, i.e. TXTRI in USARTn_STATUS set, when receiving data. If 2 bytes are expected from the slave, then transmit 2 bytes with the transmitter tristated, and the slave uses the generated bus clock to transmit data to the master. TXTRI can be set by setting the TXTRIEN command bit in USARTn_CMD.

Note: When operating as SPI slave in half duplex mode, TX has to be tristated (not disabled) during data reception if the slave is to transmit data in the current transfer.

18.3.3.8 I2S

I2S is a synchronous format for transmission of audio data. The frame format is 32-bit, but since data is always transmitted with MSB first, an I2S device operating with 16-bit audio may choose to only process the 16 msb of the frame, and only transmit data in the 16 msb of the frame.

In addition to the bit clock used for regular synchronous transfers, I2S mode uses a separate word clock. When operating in mono mode, with only one channel of data, the word clock pulses once at the start of each new word. In stereo mode, the word clock toggles at the start of new words, and also gives away whether the transmitted word is for the left or right audio channel; A word transmitted while the word clock is low is for the left channel, and a word transmitted while the word clock is high is for the right.

When operating in I2S mode, the CS pin is used as a the word clock. In master mode, this is automatically driven by the USART, and in slave mode, the word clock is expected from an external master.

18.3.3.9 Word Format

The general I2S word format is 32 bits wide, but the USART also supports 16-bit and 8-bit words. In addition to this, it can be specified how many bits of the word should actually be used by the USART. These parameters are given by FORMAT in USARTn_I2SCTRL.

As an example, configuring FORMAT to using a 32-bit word with 16-bit data will make each word on the I2S bus 32-bits wide, but when receiving data through the USART, only the 16 most significant bits of each word can be read out of the USART. Similarly, only the 16 most significant bits have to be written to the USART when transmitting. The rest of the bits will be transmitted as zeroes.

18.3.3.10 Major Modes

The USART supports a set of different I2S formats as shown in Table 18.9 USART I2S Modes on page 628, but it is not limited to these modes. MONO, JUSTIFY and DELAY in USARTn_I2SCTRL can be mixed and matched to create an appropriate format. MONO enables mono mode, i.e. one data stream instead of two which is the default. JUSTIFY aligns data within a word on the I2S bus, either left or right which can bee seen in figures Figure 18.22 USART Left-Justified I2S Waveform on page 629 and Figure 18.23 USART Right-Justified I2S Waveform on page 629. Finally, DELAY specifies whether a new I2S word should be started directly on the edge of the word-select signal, or one bit-period after the edge.

Table 18.9. USART I2S Modes

Mode	MONO	JUSTIFY	DELAY	CLKPOL
Regular I2S	0	0	1	0
Left-Justified	0	0	0	1
Right-Justified	0	1	0	1
Mono	1	0	0	0

The regular I2S waveform is shown in Figure 18.20 USART Standard I2S Waveform on page 628 and Figure 18.21 USART Standard I2S Waveform (Reduced Accuracy) on page 628. The first figure shows a waveform transmitted with full accuracy. The wordlength can be configured to 32-bit, 16-bit or 8-bit using FORMAT in USARTn_I2SCTRL. In the second figure, I2S data is transmitted with reduced accuracy, i.e. the data transmitted has less bits than what is possible in the bus format.

Note that the msb of a word transmitted in regular I2S mode is delayed by one cycle with respect to word select

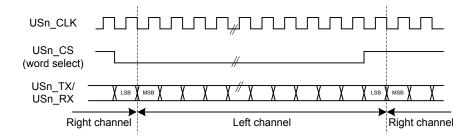


Figure 18.20. USART Standard I2S Waveform

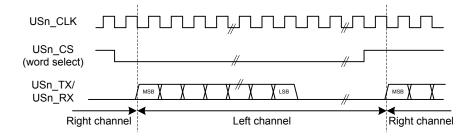


Figure 18.21. USART Standard I2S Waveform (Reduced Accuracy)

A left-justified stream is shown in Figure 18.22 USART Left-Justified I2S Waveform on page 629. Note that the MSB comes directly after the edge on the word-select signal in contradiction to the regular I2S waveform where it comes one bit-period after.

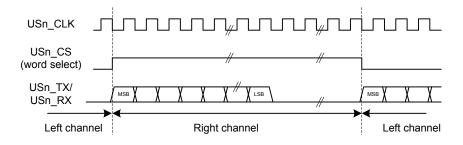


Figure 18.22. USART Left-Justified I2S Waveform

A right-justified stream is shown in Figure 18.23 USART Right-Justified I2S Waveform on page 629. The left and right justified streams are equal when the data-size is equal to the word-width.

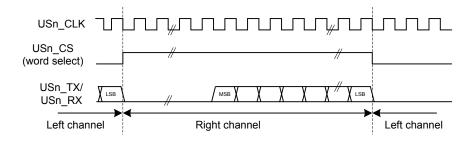


Figure 18.23. USART Right-Justified I2S Waveform

In mono-mode, the word-select signal pulses at the beginning of each word instead of toggling for each word. Mono I2S waveform is shown in Figure 18.24 USART Mono I2S Waveform on page 629.

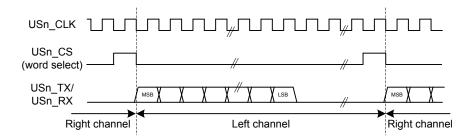


Figure 18.24. USART Mono I2S Waveform

18.3.3.11 Using I2S Mode

When using the USART in I2S mode, DATABITS in USARTn_FRAME must be set to 8 or 16 data-bits. 8 databits can be used in all modes, and 16 can be used in the modes where the number of bytes in the I2S word is even. In addition to this, MSBF in USARTn CTRL should be set, and CLKPOL and CLKPHA in USARTn CTRL should be cleared.

The USART does not have separate TX and RX buffers for left and right data, so when using I2S in stereo mode, the application must keep track of whether the buffers contain left or right data. This can be done by observing TXBLRIGHT, RXDATAVRIGHT and RXFULLRIGHT in USARTn_STATUS. TXBLRIGHT tells whether TX is expecting data for the left or right channel. It will be set with TXBL if right data is expected. The receiver will set RXDATAVRIGHT if there is at least one right element in the buffer, and RXFULL-RIGHT if the buffer is full of right elements.

When using I2S with DMA, separate DMA requests can be used for left and right data by setting DMASPLIT in USARTn I2SCTRL.

In both master and slave mode the USART always starts transmitting on the LEFT channel after being enabled. In master mode, the transmission will stop if TX becomes empty. In that case, TXC is set. Continuing the transmission in this case will make the data-stream continue where it left off. To make the USART start on the LEFT channel after going empty, disable and re-enable TX.

18.3.4 Hardware Flow Control

Hardware flow control can be used to hold off the link partner's transmission until RX buffer space is available. Use RTSPEN and CTSPEN in USARTn_ROUTEPEN to allocate the hardware flow control to GPlOs. RTS is an out going signal which indicates that RX buffer space is available to receive a frame. The link partner is being requested to send its data when RTS is asserted. CTS is an incoming signal to stop the next TX data from going out. When CTS is negated, the frame currently being transmitted is completed before stopping. CTS indicates that the link partner has RX buffer space available, and the local transmitter is clear to send. Also use CTSEN in USARTn_CTLX to enable the CTS input into the TX sequencer. For debug use set DBGHALT in USARTn_CTRLX which will force the RTS to request one frame from the link partner when the CPU core single steps.

18.3.5 Debug Halt

When DBGHALT in USART_CTRLX is clear, RTS is only dependent on the RX buffer having space available to receive data. Incoming data is always received until both the RX buffer is full and the RX shift register is full regardless of the state of DBGHALT or chip halt. Additional incoming data is discarded. When DBGHALT is set, RTS deasserts on RX buffer full or when chip halt is high. However, a low pulse detected on chip halt will keep RTS asserted when no frame is being received. At the start of frame reception, RTS will deassert if chip halt is high and DBGHALT is set. This behavior allows single stepping to pulse the chip halt low for a cycle, and receive the next frame. The link partner must stop transmitting when RTS is deasserted, or the RX buffer could overflow. All data in the transmit buffer is sent out even when chip halt is asserted; therefore, the DMA will need to be set to stop sending the USART TX data during chip halt.

18.3.6 PRS-triggered Transmissions

If a transmission must be started on an event with very little delay, the PRS system can be used to trigger the transmission. The PRS channel to use as a trigger can be selected using TSEL in USARTn_TRIGCTRL. When a positive edge is detected on this signal, the receiver is enabled if RXTEN in USARTn_TRIGCTRL is set, and the transmitter is enabled if TXTEN in USARTn_TRIGCTRL is set. Only one signal input is supported by the USART.

The AUTOTX feature can also be enabled via PRS. If an external SPI device sets a pin high when there is data to be read from the device, this signal can be routed to the USART through the PRS system and be used to make the USART clock data out of the external device. If AUTOTXTEN in USARTn_TRIGCTRL is set, the USART will transmit data whenever the PRS signal selected by TSEL is high given that there is enough room in the RX buffer for the chosen frame size. Note that if there is no data in the TX buffer when using AUTOTX, the TX underflow interrupt will be set.

AUTOTXTEN can also be combined with TXTEN to make the USART transmit a command to the external device prior to clocking out data. To do this, disable TX using the TXDIS command, load the TX buffer with the command and enable AUTOTXTEN and TXTEN. When the selected PRS input goes high, the USART will now transmit the loaded command, and then continue clocking out while both the PRS input is high and there is room in the RX buffer

18.3.7 PRS RX Input

The USART can be configured to receive data directly from a PRS channel by setting RXPRS in USARTn_INPUT. The PRS channel used is selected using RXPRSSEL in USARTn_INPUT. This way, for example, a differential RX signal can be input to the ACMP and the output routed via PRS to the USART.

18.3.8 PRS CLK Input

The USART can be configured to receive clock directly from a PRS channel by setting CLKPRS in USARTn_INPUT. The PRS channel used is selected using CLKPRSSEL in USARTn_INPUT. This is useful in synchronous slave mode and can together with RX PRS input be used to input data from PRS.

18.3.9 DMA Support

The USART has full DMA support. The DMA controller can write to the transmit buffer using the registers USARTn_TXDATA, USARTn_TXDOUBLE and USARTn_TXDOUBLEX, and it can read from the receive buffer using the registers USARTn_RXDATA, USARTn_RXDATAX, USARTn_RXDOUBLE and USARTn_RXDOUBLEX. This enables single byte transfers, 9 bit data + control/status bits, double byte and double byte + control/status transfers both to and from the USART.

A request for the DMA controller to read from the USART receive buffer can come from the following source:

- · Data available in the receive buffer
- Data available in the receive buffer and data is for the RIGHT I2S channel. Only used in I2S mode.

A write request can come from one of the following sources:

- Transmit buffer and shift register empty. No data to send.
- Transmit buffer has room for more data. This does not check the TXBIL for half full. For DMA use, it is either full or empty.
- · Transmit buffer has room for RIGHT I2S data. Only used in I2S mode

Even though there are two sources for write requests to the DMA, only one should be used at a time, since the requests from both sources are cleared even though only one of the requests are used.

In some cases, it may be sensible to temporarily stop DMA access to the USART when an error such as a framing error has occurred. This is enabled by setting ERRSDMA in USARTn CTRL.

For Synchronous mode full duplex operation, if both receive buffer and transmit buffer are served by DMA, to make sure receive buffer is not overflowed the settings below should be followed.

- The DMA channel that serves receive buffer should have higher priority than the DMA channel that serves transmit buffer.
- TXBL should be used as write request for transmit buffer DMA channel.
- IGNORESREQ should be set for both DMA channel.

18.3.10 Timer

In addition to the TX sequence timer, there is a versatile 8 bit timer that can generate up to three event pulses. These pulses can be used to create timing for a variety of uses such as RX timeout, break detection, response timeout, and RX enable delay. Transmission delay, CS setup, inter-character spacing, and CS hold use the TX sequence counter. The TX sequencer counter can use the three 8 bit compare values or preset values for delays. There is one general counter with three comparators. Each comparator has a start source, a stop source, a restart enable, and a timer compare value. The start source enables the comparator, resets the counter, and starts the counter. If the counter is already running, the start source will reset the counter and restart it.

Any comparator could start the counter using the same start source but have different timing events programmed into TCMPVALn in USARTn_TIMECMPn. The TCMP0, TCMP1, or TCMP2 events can be preempted by using the comparator stop source to disable the comparator before the counter reaches TCMPVAL0, TCMPVAL1, or TCMPVAL2. If one comparator gets disabled while the other comparator is still enabled, the counter continues counting. By default the counter will count up to 256 and stop unless a RESTARTEN is set in one of the USARTn_TIMECMPn registers. By using RESTARTEN and an interval programmed into TCMPVAL, an interval timer can be set up. The TSTART field needs to be changed to DISABLE to stop the interval timer. The timer stops running once all of the comparators are disabled. If a comparator's start and stop sources both trigger the same cycle, the TCMPn event triggers, the comparator stays enabled, and the counter begins counting from zero.

The TXDELAY, CSSETUP, ICS, and CSHOLD in USARTn_TIMING are used to program start of transmission delay, chip select setup delay, inter-character space, and chip select hold delay. Either a preset value of 0, 1, 2, 3, or 7 can be used for any of these delays; or the value in TCMPVALn may be used to set the delay. Using the preset values leaves the TCMPVALn free for other uses. The same TCMPVALn may be used for multiple events that require the same timing. The transmit sequencer's counter can run in parallel with the timer's counter. The counters and controls are shown in Figure 18.25 USART Timer Block Diagram on page 633.

Figure 18.25. USART Timer Block Diagram

The following sections will go into more details on programming the various usage cases.

Table 18.10. USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn

Application	TSTARTn	TSTOPn	TCMPVALn	Other
Response Timeout	TSTART0 = TXEOF	TSTOP0 = RXACT	TCMPVAL0 = 0x08	TCMP0 in USARTn_IEN
Receiver Timeout	TSTART1 = RXEOF	TSTOP1 = RXACT	TCMPVAL1 = 0x08	TCMP1 in USARTn_IEN
Large Receiver Timeout	TSTART1 = RXEOF, TCMP1	TSTOP1 = RXACT	TCMPVAL1 = 0xFF	TCMP1 in USARTn_IEN; TIME- RRESTARTED in USARTn_STA- TUS; RESTART1EN in USARTn_TIMECMP1

Application	TSTARTn	TSTOPn	TCMPVALn	Other
Break Detect	TSTART1 = RXACT	TSTOP1 = RXACTN	TCMPVAL1 = 0x0C	TCMP1 in USARTn_IEN
TX delayed start of transmission and CS setup	TSTART0 = DISA- BLE, TSTART1 = DISABLE	TSTOP0 = TCMP0, TSTOP1 = TCMP1	TCMPVAL0 = 0x04, TCMPVAL1 = 0x02	TXDELAY = TCMP0, CSSETUP = TCMP1 in USARTn_TIMING; AUTOCS in USARTn_CTRL
TX inter-character spacing	TSTART2 = DISA- BLE	TSTOP2 = TCMP2	TCMPVAL2 = 0x03	ICS = TCMP2 in USARTn_TIMING; AUTOCS in USARTn_CTRL
TX Chip Select End Delay	TSTART1 = DISA- BLE	TSTOP1 = TCMP1	TCMPVAL1 = 0x04	CSHOLD = TCMP1 in USARTn_TIMING; AUTOCS in USARTn_CTRL
Response Delay	TSTART1 = RXEOF	TSTOP1 = TCMP1	TCMPVAL1 = 0x08	TXARX1EN in USARTn_TRIGCTRL
Combined TX and RX Example	TSTART1 = RXEOF, TSTART0 = TXEOF	TSTOP1 = TCMP1, TSTOP0 = TCMP0	TCMPVAL1 = 0x1C, TCMPVAL0 = 0x10	TXARX1EN, RXATX0EN in USARTn_TRIGCTRL; CSSETUP = 0x7, CSHOLD = 0x3 in USARTn_TIMING
Combined Delayed TX and Receiver Timeout Example	TSTART0 = TCMPVAL0, TSTART1 = RXEOF	TSTOP0 = RXACTN, TSTOP1 = RXACT	TCMPVAL0 = 0x20, TCMPVAL1 = 0x0C	TXARX0EN in USARTn_TRIGCTRL; TCMP0 in USARTn_IEN

Table 18.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 633 shows some examples of how the USART timer can be programmed for various applications. The following sections will describe more details for each applications shown in the table.

18.3.10.1 Response Timeout

Response Timeout is when a UART master sends a frame and expects the slave to respond within a certain number of baud-times. Refer to Table 18.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 633 for specific register settings. Comparator 0 will be looking for TX end of frame to use as the timer start source. For this example, a receiver start of frame RXACT has not been detected for 8 baud-times, and the TCMP0 interrupt in USARTn_IF is set. If an RX start bit is detected before the 8 baud-times, comparator 0 is disabled before the TCMP0 event can trigger.

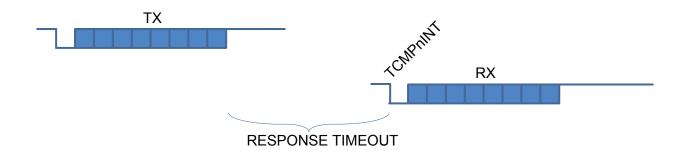


Figure 18.26. USART Response Timeout

18.3.10.2 RX Timeout

A receiver timeout function can be implemented by using the RX end of frame to start comparator 1 and look for the RX start bit RXACT to disable the comparator. See Table 18.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 633 for details on setting up this example. As long as the next RX start bit occurs before the counter reaches the comparator 1 value TCMPVAL1, the interrupt will not get set. In this example the RX Timeout was set to 8 baud-times. To get an RX timeout larger than 256 baud-times, RESTART1EN in USARTn_TIMER can used to restart the counter when it reaches TCMPVAL1. By setting TCMPVAL1 in USARTn_TIMING to 0xFF, an interrupt will be generated after 256 baud-times. An interrupt service routine can then increment a memory location until the desired timeout is reached. Once the RX start bit is detected, comparator 1 will be disabled. If TIMERRESTARTED in USARTn_STATUS is clear, the TCMP1 interrupt is the first interrupt after RXEOF.

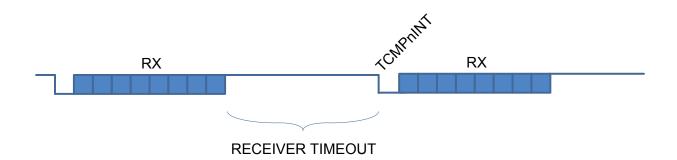


Figure 18.27. USART RX Timeout

18.3.10.3 Break Detect

LIN bus and half-duplex UARTs can take advantage of the timer configured for break detection where RX is held low for a number of baud-times to indicate a break condition. Table 18.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 633 shows the settings for this mode. Each time RX is active (default of low) such as for a start bit, the timer begins counting. If the counter reaches 12 baud-times before RX goes to inactive RXACTN (default of high), an interrupt is asserted.

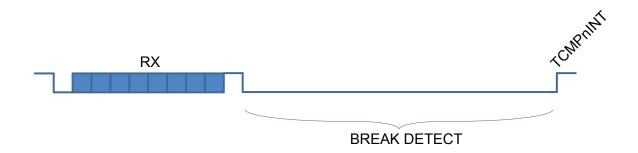


Figure 18.28. USART Break Detection

18.3.10.4 TX Start Delay

Some applications may require a delay before the start of transmission. This example in Figure 18.29 USART TXSEQ Timing on page 636 shows the TXSEQ timer used to delay the start of transmission by 4 baud times before the start of CS, and by 2 baud times with CS asserted. See Table 18.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 633 for details on how to configure this mode. The TX sequencer could be enabled on PRS and start the TXSEQ counter running for 4 baud times as programmed in TCMPVAL0. Then CS is asserted for 2 baud times before the transmitter begins sending TX data. TXDELAY in USARTn_TIMING is the initial delay before any CS assertion, and CSSETUP is the delay during CS assertion. There are several small preset timing values such as 1, 2, 3, or 7 that can be used for some of the TX sequencer timing which leaves TCMPVAL0, TCMPVAL1, and TCMPVAL2 free for other uses.

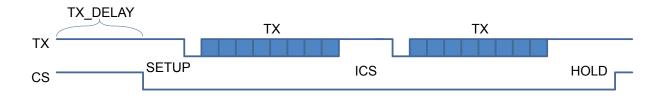


Figure 18.29. USART TXSEQ Timing

18.3.10.5 Inter-Character Space

In addition to delaying the start of frame transmission, it is sometimes necessary to also delay the time between each transmit character (inter-character space). After the first transmission, the inter-character space will delay the start of all subsequent transmissions until the transmit buffer is empty. See Table 18.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 633 for details on setting up this example. For this example in Figure 18.29 USART TXSEQ Timing on page 636 ICS is set to TCMP2 in USARTn_TIMING. To keep CS asserted during the inter-character space, set AUTOCS in USARTn_CTRL. There are a few small preset timing values provided for TX sequence timing. Using these preset timing values can free up the TCMPVALn for other uses. For this example, the inter-character space is set to 0x03 and a preset value could be used.

18.3.10.6 TX Chip Select End Delay

The assertion of CS can be extended after the final character of the frame by using CSHOLD in USARTn_TIMING. See Table 18.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 633 for details on setting up this example. AUTOCS in USARTn_CTRL needs to be set to extend the CS assertion after the last TX character is transmitted as shown in Figure 18.29 USART TXSEQ Timing on page 636.

18.3.10.7 Response Delay

A response delay can be used to hold off the transmitter until a certain number of baud-times after the RX frame. See Table 18.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 633 for details on setting up this example. TXARX1EN in USARTn_TRIGCTRL tells the TX sequencer to trigger after RX EOF plus tcmp1val baud times.

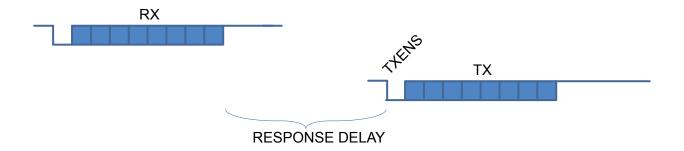


Figure 18.30. USART Response Delay

18.3.10.8 Combined TX and RX Example

This example describes how to alternate between TX and RX frames. This has a 28 baud-time space after RX and a 16 baud-time space after TX. The TSTART1 in USARTn_TIMECMP1 is set to RXEOF which uses the the receiver end of frame to start the timer. The TSTOP1 is set to TCMP1 to generate an event after 28 baud times. Set TXARX1EN in USARTn_TRIGCTRL, and the transmitter is held off until 28 baud times. TCMPVAL in USARTn_TIMECMP1 is set to 0x1C for 28 baud times. By setting TSTART0 in USARTn_TIMECMP0 to TXEOF, the timer will be started after the transmission has completed. RXATX0EN in USARTn_TRIGCTRL is used to delay enabling of the receiver until 16 baud times after the transmitter has completed. Write 0x10 into TCMPVAL of USARTn_TIMECMP0 for a 16 baud time delay. CS is also asserted 7 baud-times before start of transmission by setting CSSETUP to 0x7 in USARTn_TIMING. To keep CS asserted for 3 baud-times after transmission completes, CSHOLD is set to 0x3 in USARTn_TIMING. See Table 18.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 633 for details on setting up this example.

18.3.10.9 Combined TX Delay and RX Break Detect

This example describes how to delay TX transmission after an RX frame and how to have a break condition signal an interrupt. See Table 18.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 633 for details on setting up this example. The TX delay is set up by using transmit after RX, TXARX0EN in USARTn_TRIGCTRL to start the timer. TSTART0 in USARTn_TIMECMP0 is set to RXEOF which enables the transitter of the timer delay. For this example TCMPVAL in USARTn_TIMECMP0 is set to 0x20 to create a 32 baud-time delay between the end of the RX frame and the start of the TX frame. The break detect is configured by setting TSTART1 to RXACT to detect the start bit, and setting TSTOP1 to RXACTN to detect RX going high. In this case the interrupt asserts after RX stays low for 12 baud-times, so TCMPVAL1 is set to 0x0C.

18.3.10.10 Other Stop Conditions

There is also a timer stop on TX start using the TXST setting in TSTOP of USARTn_TIMECMPn. This can be used to see that the DMA has not written to the TXBUFFER for a given time.

18.3.11 Interrupts

The interrupts generated by the USART are combined into two interrupt vectors. Interrupts related to reception are assigned to one interrupt vector, and interrupts related to transmission are assigned to the other. Separating the interrupts in this way allows different priorities to be set for transmission and reception interrupts.

The transmission interrupt vector groups the transmission-related interrupts generated by the following interrupt flags:

- TXC
- TXBL
- TXOF
- CCF
- TXIDLE

The reception interrupt on the other hand groups the reception-related interrupts, triggered by the following interrupt flags:

- RXDATAV
- RXFULL
- RXOF
- RXUF
- PERR
- FERR
- MPAF
- SSM
- TCMPn

If USART interrupts are enabled, an interrupt will be made if one or more of the interrupt flags in USART_IF and their corresponding bits in USART_IEN are set.

18.3.12 IrDA Modulator/ Demodulator

The IrDA modulator implements the physical layer of the IrDA specification, which is necessary for communication over IrDA. The modulator takes the signal output from the USART module, and modulates it before it leaves the USART. In the same way, the input signal is demodulated before it enters the actual USART module. The modulator implements the original Rev. 1.0 physical layer and one high speed extension which supports speeds from 2.4 kbps to 1.152 Mbps.

The data from and to the USART is represented in a NRZ (Non Return to Zero) format, where the signal value is at the same level through the entire bit period. For IrDA, the required format is RZI (Return to Zero Inverted), a format where a "1" is signalled by holding the line low, and a "0" is signalled by a short high pulse. An example is given in Figure 18.31 USART Example RZI Signal for a given Asynchronous USART Frame on page 638.

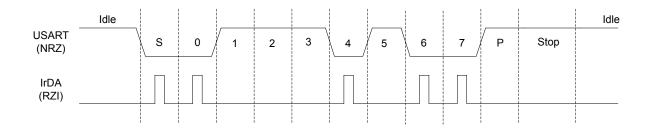


Figure 18.31. USART Example RZI Signal for a given Asynchronous USART Frame

The IrDA module is enabled by setting IREN. The USART transmitter output and receiver input is then routed through the IrDA modulator.

The width of the pulses generated by the IrDA modulator is set by configuring IRPW in USARTn_IRCTRL. Four pulse widths are available, each defined relative to the configured bit period as listed in Table 18.11 USART IrDA Pulse Widths on page 638.

IRPW	Pulse width OVS=0	Pulse width OVS=1	Pulse width OVS=2	Pulse width OVS=3
00	1/16	1/8	1/6	1/4
01	2/16	2/8	2/6	N/A
10	3/16	3/8	N/A	N/A
11	4/16	N/A	N/A	N/A

Table 18.11. USART IrDA Pulse Widths

By default, no filter is enabled in the IrDA demodulator. A filter can be enabled by setting IRFILT in USARTn_IRCTRL. When the filter is enabled, an incoming pulse has to last for 4 consecutive clock cycles to be detected by the IrDA demodulator.

Note that by default, the idle value of the USART data signal is high. This means that the IrDA modulator generates negative pulses, and the IrDA demodulator expects negative pulses. To make the IrDA module use RZI signalling, both TXINV and RXINV in USARTn_CTRL must be set.

The IrDA module can also modulate a signal from the PRS system, and transmit a modulated signal to the PRS system. To use a PRS channel as transmitter source instead of the USART, set IRPRSEN in USARTn_IRCTRL high. The channel is selected by configuring IRPRSSEL in USARTn_IRCTRL.

18.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	USARTn_CTRL	RW	Control Register
0x004	USARTn_FRAME	RW	USART Frame Format Register
0x008	USARTn_TRIGCTRL	RW	USART Trigger Control Register
0x00C	USARTn_CMD	W1	Command Register
0x010	USARTn_STATUS	R	USART Status Register
0x014	USARTn_CLKDIV	RWH	Clock Control Register
0x018	USARTn_RXDATAX	R(a)	RX Buffer Data Extended Register
0x01C	USARTn_RXDATA	R(a)	RX Buffer Data Register
0x020	USARTn_RXDOUBLEX	R(a)	RX Buffer Double Data Extended Register
0x024	USARTn_RXDOUBLE	R(a)	RX FIFO Double Data Register
0x028	USARTn_RXDATAXP	R	RX Buffer Data Extended Peek Register
0x02C	USARTn_RXDOUBLEXP	R	RX Buffer Double Data Extended Peek Register
0x030	USARTn_TXDATAX	W	TX Buffer Data Extended Register
0x034	USARTn_TXDATA	W	TX Buffer Data Register
0x038	USARTn_TXDOUBLEX	W	TX Buffer Double Data Extended Register
0x03C	USARTn_TXDOUBLE	W	TX Buffer Double Data Register
0x040	USARTn_IF	R	Interrupt Flag Register
0x044	USARTn_IFS	W1	Interrupt Flag Set Register
0x048	USARTn_IFC	(R)W1	Interrupt Flag Clear Register
0x04C	USARTn_IEN	RW	Interrupt Enable Register
0x050	USARTn_IRCTRL	RW	IrDA Control Register
0x058	USARTn_INPUT	RW	USART Input Register
0x05C	USARTn_I2SCTRL	RW	I2S Control Register
0x060	USARTn_TIMING	RW	Timing Register
0x064	USARTn_CTRLX	RW	Control Register Extended
0x068	USARTn_TIMECMP0	RW	Used to Generate Interrupts and Various Delays
0x06C	USARTn_TIMECMP1	RW	Used to Generate Interrupts and Various Delays
0x070	USARTn_TIMECMP2	RW	Used to Generate Interrupts and Various Delays
0x074	USARTn_ROUTEPEN	RW	I/O Routing Pin Enable Register
0x078	USARTn_ROUTELOC0	RW	I/O Routing Location Register
0x07C	USARTn_ROUTELOC1	RW	I/O Routing Location Register

18.5 Register Description

18.5.1 U	.5.1 USARTn_CTRL - Control Register																															
Offset		Bit Position																														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	9	6	8	7	0 r	ç	4	3	2	1	0
Reset	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0x0		0	0	0	0	0
Access	₩ M	Z.	Z.	ZW W			Z.	W.	₩ N	W.	W.	W.	₩ M	W.	W.	₩ M	W.	₩ M	W.	₩ N	W.	Z.	W.	Z.		₩ W		RW	RW	₩.	RW	Z.
Name	SMSDELAY	MVDIS	AUTOTX	BYTESWAP			SSSEARLY	ERRSTX	ERRSRX	ERRSDMA	BIT8DV	SKIPPERRF	SCRETRANS	SCMODE	AUTOTRI	AUTOCS	CSINV	TXINV	RXINV	TXBIL	CSMA	MSBF	CLKPHA	CLKPOL		SVO		MPAB	MPM	CCEN	LOOPBK	SYNC
Bit	Na	me					Re	set			Ac	ces	s I	Description																		
31	SM	1SDI	ELA	Υ			0				RW	RW Synchronous Master Sample Delay																				
		lay s	•	chro	nou	s Ma	aste	r sa	mple	e po	int to	o the	e ne	ext s	etup	edo	ge to	im	prov	e tir	ning	j an	d all	ow (com	ımunic	ati	on a	at hi	ghe	r	
30	M\	/DIS	3				0				RW Majority Vote Disable																					
	Dis	sable	e ma	ajori	ty vo	ote f	or 1	6x, 8	Зх а	nd 6	ον χον	ers.	amp	ling	mo	des.																
29	AU	ITO	ТХ				0				RV	/	4	Alw	ays	Tra	nsm	nit V	Vhe	n R)	(No	t F	ıll									
	Tra	ansn	nits	as lo	ong	as F	RX is	s no	t full	. If 7	TX is	em	ıpty,	unc	derfl	ows	are	ger	erat	ted.												
28	BY	TES	SWA	ŀΡ			0				RW	/	ı	Byte	eswa	ap i	n Do	oub	le A	ссе	Byteswap in Double Accesses											

28	BYTESWAP	0	RW	Byteswap in Double Accesses

Set to switch the order of the bytes in double accesses.

Value	Description
0	Normal byte order
1	Byte order swapped

	1			Byte order swapped							
27:26	Reserved	To ensur tions	re compatibility	with future devices, always write bits to 0. More information in 1.2 Conver							
25	SSSEARLY	0	RW	Synchronous Slave Setup Early							
	Setup data on sa	Setup data on sample edge in synchronous slave mode to improve MOSI setup time									
24	ERRSTX	0	RW	Disable TX on Error							
	When set, the transmitter is disabled on framing and parity errors (asynchronous mode only) in the receiver.										
	Value			Description							
	0			Received framing and parity errors have no effect on transmitter							
	1			Received framing and parity errors disable the transmitter							
23	ERRSRX	0	RW	Disable RX on Error							
	When set, the rec	When set, the receiver is disabled on framing and parity errors (asynchronous mode only).									
	Value			Description							
	0			Framing and parity errors have no effect on receiver							

	Name	Reset	Access	Description							
	1			Framing and parity errors disable the receiver							
22	ERRSDMA	0	RW	Halt DMA on Error							
	When set, DMA re	equests will be c	leared on fram	ning and parity errors (asynchronous mode only).							
	Value			Description							
	0			Framing and parity errors have no effect on DMA requests from the USART							
	1			DMA requests from the USART are blocked while the PERR or FERR interrupt flags are set							
21	BIT8DV	0	RW	Bit 8 Default Value							
	The default value the 9th bit is set to			re used, and an 8-bit write operation is done, leaving the 9th bit unspecified,							
20	SKIPPERRF	0	RW	Skip Parity Error Frames							
	When set, the rec	eiver discards fra	ames with par	ity errors (asynchronous mode only). The PERR interrupt flag is still set.							
19	SCRETRANS	0	RW	SmartCard Retransmit							
	When in SmartCard mode, a NACK'ed frame will be kept in the shift register and retransmitted if the transmitter is still enabled.										
18	SCMODE	0	RW	SmartCard Mode							
	Use this bit to ena	Use this bit to enable or disable SmartCard mode.									
	When enabled TX										
	mission starts.	KTRI is set by ha	ardware whene	ever the transmitter is idle, and TXTRI is cleared by hardware when trans-							
		XTRI is set by ha	ardware whene	ever the transmitter is idle, and TXTRI is cleared by hardware when trans-							
	mission starts.	XTRI is set by ha	ardware whene	· 							
	mission starts. Value	XTRI is set by ha	ardware whene	Description The output on U(S)n_TX when the transmitter is idle is defined by							
16	Value	O	RW	Description The output on U(S)n_TX when the transmitter is idle is defined by TXINV							
16	value 0 1 AUTOCS	0 e output on USn	RW	Description The output on U(S)n_TX when the transmitter is idle is defined by TXINV U(S)n_TX is tristated whenever the transmitter is idle							
16	mission starts. Value 0 1 AUTOCS When enabled, th	0 e output on USn	RW	Description The output on U(S)n_TX when the transmitter is idle is defined by TXINV U(S)n_TX is tristated whenever the transmitter is idle Automatic Chip Select							
	Mission starts. Value 0 1 AUTOCS When enabled, the transmission ends CSINV	0 e output on USn s.	RW _CS will be ac	Description The output on U(S)n_TX when the transmitter is idle is defined by TXINV U(S)n_TX is tristated whenever the transmitter is idle Automatic Chip Select ctivated one baud-period before transmission starts, and deactivated when							
	Mission starts. Value 0 1 AUTOCS When enabled, th transmission ends CSINV Default value is ac	0 e output on USn s.	RW _CS will be ac	Description The output on U(S)n_TX when the transmitter is idle is defined by TXINV U(S)n_TX is tristated whenever the transmitter is idle Automatic Chip Select etivated one baud-period before transmission starts, and deactivated when Chip Select Invert							
	Mission starts. Value 0 1 AUTOCS When enabled, the transmission ends CSINV Default value is as as a slave.	0 e output on USn s.	RW _CS will be ac	Description The output on U(S)n_TX when the transmitter is idle is defined by TXINV U(S)n_TX is tristated whenever the transmitter is idle Automatic Chip Select ctivated one baud-period before transmission starts, and deactivated when Chip Select Invert selection of external slaves, as well as the selection of the microcontroller							
	Mission starts. Value 0 1 AUTOCS When enabled, th transmission ends CSINV Default value is as a slave. Value	0 e output on USn s.	RW _CS will be ac	Description The output on U(S)n_TX when the transmitter is idle is defined by TXINV U(S)n_TX is tristated whenever the transmitter is idle Automatic Chip Select ctivated one baud-period before transmission starts, and deactivated when Chip Select Invert selection of external slaves, as well as the selection of the microcontroller Description							
	mission starts. Value 0 1 AUTOCS When enabled, th transmission ends CSINV Default value is as as a slave. Value 0 1 TXINV	0 e output on USn s. 0 ctive low. This af	RW _CS will be ac RW fects both the	Description The output on U(S)n_TX when the transmitter is idle is defined by TXINV U(S)n_TX is tristated whenever the transmitter is idle Automatic Chip Select ctivated one baud-period before transmission starts, and deactivated when Chip Select Invert selection of external slaves, as well as the selection of the microcontroller Description Chip select is active low							
15	mission starts. Value 0 1 AUTOCS When enabled, th transmission ends CSINV Default value is as as a slave. Value 0 1 TXINV	0 e output on USn s. 0 ctive low. This af	RW _CS will be ac RW fects both the	Description The output on U(S)n_TX when the transmitter is idle is defined by TXINV U(S)n_TX is tristated whenever the transmitter is idle Automatic Chip Select ctivated one baud-period before transmission starts, and deactivated when Chip Select Invert selection of external slaves, as well as the selection of the microcontroller Description Chip select is active low Chip select is active high Transmitter Output Invert							

Bit	Name	Reset	Access	Description						
	1			Output from the transmitter is inverted before it is passed to U(S)n_TX						
13	RXINV	0	RW	Receiver Input Invert						
	Setting this bit will inv	ert the input to t	he USART	receiver.						
	Value			Description						
	0			Input is passed directly to the receiver						
	1			Input is inverted before it is passed to the receiver						
12	TXBIL	0	RW	TX Buffer Interrupt Level						
	Determines the interrupt and status level of the transmit buffer.									
	Value	Mode		Description						
	0	EMPTY		TXBL and the TXBL interrupt flag are set when the transmit buffer becomes empty. TXBL is cleared when the buffer becomes nonempty.						
	1	HALFFULL		TXBL and TXBLIF are set when the transmit buffer goes from full to half-full or empty. TXBL is cleared when the buffer becomes full.						
11	CSMA	0	RW	Action on Slave-Select in Master Mode						
	This register determine master mode.	nes the action to	be perforn	ned when slave-select is configured as an input and driven low while in						
	Value	Mode		Description						
	0	NOACTION		No action taken						
	1	GOTOSLAVE	MODE	Go to slave mode						
10	MSBF	0	RW	Most Significant Bit First						
	Decides whether data	a is sent with the	least sign	ificant bit first, or the most significant bit first.						
	Value			Description						
	0			Data is sent with the least significant bit first						
	1			Data is sent with the most significant bit first						
9	CLKPHA	0	RW	Clock Edge for Setup/Sample						
	Determines where da	ta is set-up and	sampled a	according to the bus clock when in synchronous mode.						
	Value	Mode		Description						
	0	SAMPLELEA	DING	Data is sampled on the leading edge and set-up on the trailing edge of the bus clock in synchronous mode						
	1	SAMPLETRA	ILING	Data is set-up on the leading edge and sampled on the trailing edge of the bus clock in synchronous mode						
8	CLKPOL	0	RW	Clock Polarity						
	Determines the clock	polarity of the b	us clock us	sed in synchronous mode.						
	Value	Mode		Description						
	0	IDLELOW		The bus clock used in synchronous mode has a low base value						

Bit	Name	Reset	Access	Description							
	1	IDLEHIGH		The bus clock used in synchronous mode has a high base value							
7	Reserved	To ensure co	mpatibility v	y with future devices, always write bits to 0. More information in 1.2 Conve							
6:5	ovs	0x0	RW	Oversampling							
	Sets the number of clock periods in a UART bit-period. More clock cycles gives better robustness, while less clock cyc gives better performance.										
	Value	Mode		Description							
	0	X16		Regular UART mode with 16X oversampling in asynchronous mode							
	1	X8		Double speed with 8X oversampling in asynchronous mode							
	2	X6		6X oversampling in asynchronous mode							
	3	X4		Quadruple speed with 4X oversampling in asynchronous mode							
4	MPAB	0	RW	Multi-Processor Address-Bit							
		of the multi-proces		s bit. An incoming frame with its 9th bit equal to the value of this bit marks							
3	MPM	0	RW	Multi-Processor Mode							
	Multi-processor mode uses the 9th bit of the USART frames to tell whether the frame is an address frame or a data frame.										
	Value			Description							
	0			The 9th bit of incoming frames has no special function							
	1			An incoming frame with the 9th bit equal to MPAB will be loaded into the receive buffer regardless of RXBLOCK and will result in the MPAB interrupt flag being set							
2	CCEN	0	RW	Collision Check Enable							
	Enables collision of	checking on data w	hen operat	ing in half duplex modus.							
	Value			Description							
	0			Collision check is disabled							
	1			Collision check is enabled. The receiver must be enabled for the check to be performed							
1	LOOPBK	0	RW	Loopback Enable							
	Allows the receiver to be connected directly to the USART transmitter for loopback and half duplex communication.										
	Value			Description							
	0			The receiver is connected to and receives data from U(S)n_RX							
	0			The receiver is connected to and receives data from U(S)n_RX The receiver is connected to and receives data from U(S)n_TX							
0		0	RW								
0	1 SYNC			The receiver is connected to and receives data from U(S)n_TX							
0	1 SYNC			The receiver is connected to and receives data from U(S)n_TX USART Synchronous Mode							

Bit	Name	Reset	Access	Description
	1			The USART operates in synchronous mode

18.5.2 USARTn_FRAME - USART Frame Format Register

Offset				Bi	it Positior	1											
0x004	1 2 3 4 5 6 7 8 8 9 9 9 1 1 1 1 1 1 1										0 1 2 3						
Reset						0×1		0×0				0x5					
Access	ess $\stackrel{>}{\sim}$ $\stackrel{>}{\sim}$									A N							
						BITS		>			SITS						
Name						STOPBITS		PARITY				DATABITS					
Bit	Name	Reset	Reset Access Description														
31:14	Reserved	To ensure c	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven- ions														
13:12	STOPBITS 0x1 RW Stop-Bit Mode																
	Determines the number of stop-bits used.																
	Value	Mode		Description													
	0	HALF		The transmitter generates a half stop bit. Stop-bits are not verified by receiver													
	1	ONE		One stop bit is generated and verified													
	2	ONEANDAH	HALF	The transmitter generates one and a half stop bit. The receiver verifies the first stop bit													
	3	TWO		The transmitter generates two stop bits. The receiver checks the first stop-bit only													
11:10	Reserved	To ensure c	ompatibility	with future	devices,	always wi	rite bits	to 0. Mc	re info	rmatio	n in	1.2 Conven-					
9:8	PARITY	0x0	RW	Parity-E	Bit Mode												
	Determines whether parity bits are enabled, and whether even or odd parity should be used. Only available in asynchronous mode.																
	Value	Mode		Descript	tion												
	0	NONE		Parity bits are not used													
	2	EVEN		Even parity are used. Parity bits are automatically generated and checked by hardware.													
	3	ODD		Odd parity is used. Parity bits are automatically generated and checked by hardware.													
7:4	Reserved	To ensure c	ompatibility	with future	e devices, a	always wi	rite bits	to 0. Mc	re info	rmatio	n in	1.2 Conven-					
3:0	DATABITS																
	This register sets the number of data bits in a USART frame.																
	Value	Mode		Description													
	1	FOUR		Each fra	me contai	ns 4 data	bits										
	2	FIVE		Each fra	me contai	ns 5 data	bits										

Bit	Name	Reset	Access	Description
	3	SIX		Each frame contains 6 data bits
	4	SEVEN		Each frame contains 7 data bits
	5	EIGHT		Each frame contains 8 data bits
	6	NINE		Each frame contains 9 data bits
	7	TEN		Each frame contains 10 data bits
	8	ELEVEN		Each frame contains 11 data bits
	9	TWELVE		Each frame contains 12 data bits
	10	THIRTEEN		Each frame contains 13 data bits
	11	FOURTEEN		Each frame contains 14 data bits
	12	FIFTEEN		Each frame contains 15 data bits
	13	SIXTEEN		Each frame contains 16 data bits

18.5.3 USARTn_TRIGCTRL - USART Trigger Control Register

Offset												Bit	Ро	sitio	n														
0x008	30	29	27	26	25	23	22	21	20	19	18	17	16	15	4	13	12	11	10	တ	∞	7	9	2	4	က	2	~ c	—
Reset											1	0X		0				0	0	0 0 0 0 0									
Access											AW .						X N	RW	ZW W	X ≪	Σ	¥ N	% S	\ N	S.				
Name												TSEL					RXATX2EN	RXATX1EN	RXATX0EN	TXARX2EN	TXARX1EN	TXARX0EN	AUTOTXTEN	TXTEN	RXTEN				
Bit	Name				Rese	t		Ac	ces	s I	Desc	ript	ion																
31:19	Resen	/ed	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions																										
18:16	TSEL				0x0			RV	V		Trigger PRS Channel Select													_					
	Select USART PRS trigger channel. The PRS signal can enable RX and/or TX, depending on the setting of RXTEN and TXTEN.																												
	Value Mode										Description																		
	0 PRSCH0								PRS Channel 0 selected																				
	1				PRSCH1						PRS Channel 1 selected																		
	2				PRSCH2						PRS Channel 2 selected																		
	3				PRS	l	PRS Channel 3 selected																						
	4				PRS	CH4				l	PRS Channel 4 selected																		
	5				PRS	CH5				l	PRS Channel 5 selected																		
	6				PRS	CH6					PRS Channel 6 selected																		
	7				PRS	CH7				ı	PRS Channel 7 selected																		
15:13	Reserv	/ed			To en	nsure	con	npati	ibilit _.	y wi	th fut	ure	dev	ices,	alv	vays	s wr	ite b	its t	o 0.	Мо	re in	nforn	natio	on ir	า 1.2	? Cor	nven-	
12	RXAT	K2EN			0			RV	V		Enable Receive Trigger After TX End of Frame Plus TCMPVAL2 Baud-times												_						
	When	set, a	TX en	ıd of	frame	will 1	rigg	er th	e re	ceiv	er af	ter a	а ТС	CMP	VAL	_2 b	aud	-tim	e de	elay									
11	RXATX1EN 0 RW											Enable Receive Trigger After TX End of Frame Plus TCMPVAL1 Baud-times																	
	When	set, a	TX en	ıd of	frame	will t	rigg	er th	e re	ceiv	er af	ter a	a TC	CMP	VAL	_1 b	aud	-tim	e de	elay									
10	RXAT	K0EN			0			RV	V	Enable Receive Trigger After TX End of Frame Plus TCMPVAL0 Baud-times)											
	When	set, a	TX en	d of	frame	will 1	rigg	er th	e re	ceiv	er af	ter a	a TC	CMP	VAL	_0 b	aud	-tim	e de	elay									
9	TXAR	K2EN			0			RV	V	I	Enab	le T	ran	smi	t Tr	igge	er A	fter	RX	En	d of	Fra	ame	Plu	s T	СМР	2VA	L	
	When	set, ar	RX e	end (of fran	ne wil	I trig	ger	the	tran	smitte	er af	fter	TCM	1P2	VAL	bit	time	es to	for	се а	mir	nimu	ım r	esp	onse	del	ay	
8	TXAR	K1EN			0			RV	V	I	Enab	le T	ran	smi	t Tr	igge	er A	fter	RX	En	d of	Fra	ame	Plu	s T	СМР	1VA	L	
	When	set, ar	RX e	end (of fran	ne wil	I trig	ger	the	tran	smitte	er af	fter	TCM	1P1	VAL	bit	time	es to	for	ce a	mir	nimu	ım r	esp	onse	del	ay	_

Bit	Name	Reset	Access	Description
7	TXARX0EN	0	RW	Enable Transmit Trigger After RX End of Frame Plus TCMP0VAL
	When set, an RX e	nd of frame will t	rigger the tra	ansmitter after TCMP0VAL bit times to force a minimum response delay
6	AUTOTXTEN	0	RW	AUTOTX Trigger Enable
	When set, AUTOTX	K is enabled as l	ong as the P	RS channel selected by TSEL has a high value
5	TXTEN	0	RW	Transmit Trigger Enable
	When set, the PRS	channel selecte	d by TSEL s	ets TXEN, enabling the transmitter on positive trigger edges.
4	RXTEN	0	RW	Receive Trigger Enable
	When set, the PRS	channel selecte	d by TSEL s	ets RXEN, enabling the receiver on positive trigger edges.
3:0	Reserved	To ensure c	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

18.5.4 USARTn_CMD - Command Register

								3																								
Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		•		•										•		•	•				0	0	0	0	0	0	0	0	0	0	0	0
Access																					W1	W	W	W	W	W	×	W	×	W	W	W1
Name																					CLEARRX	CLEARTX	TXTRIDIS	TXTRIEN	RXBLOCKDIS	RXBLOCKEN	MASTERDIS	MASTEREN	TXDIS	TXEN	RXDIS	RXEN
Bit	Na	me					Re	set			Ac	ces	s	Des	crip	tion																
31:12	Re	serv	/ed				То	ens	ure	con	npati	ibilit	v wi	th fu	ture	dev	/ices	s. al	way	s wr	ite k	its t	to 0.	Мо	re ir	forn	natio	on in	1.2	Co	nvei	7-

-				
Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
11	CLEARRX	0	W1	Clear RX
	Set to clear receive	buffer and the	RX shift regis	ter.
10	CLEARTX	0	W1	Clear TX
	Set to clear transmi	it buffer and the	TX shift regis	ster.
9	TXTRIDIS	0	W1	Transmitter Tristate Disable
	Disables tristating of	of the transmitte	r output.	
8	TXTRIEN	0	W1	Transmitter Tristate Enable
	Tristates the transm	nitter output.		
7	RXBLOCKDIS	0	W1	Receiver Block Disable
	Set to clear RXBLC	OCK, resulting in	all incoming	frames being loaded into the receive buffer.
6	RXBLOCKEN	0	W1	Receiver Block Enable
	Set to set RXBLOC	K, resulting in a	III incoming fr	ames being discarded.
5	MASTERDIS	0	W1	Master Disable
	Set to disable mast	er mode, clearir	ng the MASTI	ER status bit and putting the USART in slave mode.
4	MASTEREN	0	W1	Master Enable
				R status bit. Master mode should not be enabled while TXENS is set to 1. STEREN before TXEN, or enable them both in the same write operation.
3	TXDIS	0	W1	Transmitter Disable
	Set to disable trans	mission.		
2	TXEN	0	W1	Transmitter Enable
	Set to enable data t	transmission.		
1	RXDIS	0	W1	Receiver Disable
	Set to disable data	reception. If a fi	rame is under	reception when the receiver is disabled, the incoming frame is discarded.
0	RXEN	0	W1	Receiver Enable
	Set to activate data	reception on U	(S)n_RX.	

18.5.5 USARTn_STATUS - USART Status Register

Offset													Bi	t Po	siti	on														
0x010	31	29	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	_	0
Reset		·	·		·								2	OXO		0	_	0	0	0	0	0	0	_	0	0	0	0	0	0
Access													۵	۲		2	2	22	22	2	2	22	<u>~</u>	22	22	22	22	22	~	2
Name													TIVOTITAL	INDOLONI		TIMERRESTARTED	TXIDLE	RXFULLRIGHT	RXDATAVRIGHT	TXBSRIGHT	TXBDRIGHT	RXFULL	RXDATAV	TXBL	TXC	TXTRI	RXBLOCK	MASTER	TXENS	RXENS
Bit	Name				Res	et		,	Aco	cess	s [Desc	crip	tion																
31:18	Reserve	ed			To e		ıre d	omp	oatii	bility	v wit	h fu	ture	dev	vices	s, al	way	s wr	ite b	its t	o 0.	Мо	re in	forn	natio	on in	1.2	? Co	nver	1-
17:16	TXBUF	CNT			0x0				R		1	ГΧЕ	Buff	er C	our	nt														
	Count of shifter r			entr	у 0, є	entr	у 1,	and	TX	shi	ft re	giste	er. F	or la	arge	e fra	mes	, the	e co	unt i	s or	ıly o	f TX	(but	ffer	entry	y 0 a	and '	the ⁻	ГΧ
15	Reserve	ed			To e		ıre c	ютр	oatii	bility	v wit	h fu	ture	dev	vices	s, al	way	s wr	ite b	its t	o 0.	Мо	re in	forn	natio	on in	1.2	Co	nver	7-
14	TIMERI	REST	ARTE	ΞD	0				R		7	Γhe	US	ART	Tir	ner	Res	tart	ed I	tsel	f									
	When the second triangle with the second trian	equei interr	nce of upt a	f mul nd T	tiple . IMEF	TCI RRE	MP 6	even ART	its. ED	Any is (nor 0x0,	n TC an	MP inte	time errup	ers otse	tart ervic	ever	nts v	vill c	lear	TIN	1ER	RES	STAI	RTE	D. V	Vhe	n th	ere i	s a
13	TXIDLE	<u> </u>			1				R		7	ΓX I	dle																	
	Set whe	en TX	idle																											
12	RXFUL	LRIG	HT		0				R		F	RX F	ull	of R	Righ	t Da	ata													
	When s	et, th	e enti	re R	X buf	fer	cont	ains	rig	ht d	ata.	Onl	y us	sed i	in I2	2S m	node	;												
11	RXDAT	AVR	GHT		0				R		F	RX E	Data	Rig	ght															
	When s	et, re	ading	RXI	DATA	or	RXI	DAT	AX	give	es ri	ght o	data	ı. Els	se le	eft d	ata i	is re	ad.	Only	/ us	ed ir	12S	S mo	ode					
10	TXBSR	IGHT	•		0				R		7	ΓΧ Ε	Buff	er E	xpe	cts	Sin	gle	Rigl	nt D	ata									
	When s			buffe		ect	s at			sing													ed in	I2S	mo	de				
9	TXBDR				0				R					er E	•															
	When s		e TX	buffe		ect	s do			ht c						pect	as	ingle	rig	ht da	ata d	or le	ft da	ata.	Only	/ US	ed ir	128	3 mc	de
8	RXFUL				0				R) Fu															_	
	Set who									1 the	e red	ceive	e bu	iffer	is n	o lo	nger	full	. Wr	en t	his	bit is	s se	t, th	ere	is st	ill ro	om	for c	ne —
7	RXDAT	AV			0				R		F	RX [Data	Val	lid															
	Set whe	en da	ta is a	availa	ıble i	n th	e re	ceiv	e b	uffe	r. CI	eare	ed w	hen	the	rec	eive	but	fer i	s en	npty									
6	TXBL				1				R					er L																
	Indicate Otherw															set v	whe	neve	er th	e tra	ansn	nit b	uffe	r is	com	plet	ely e	emp	ty.	

Bit	Name	Reset	Access	Description
5	TXC	0	R	TX Complete
		smission has comp ten to the transmit		more data is available in the transmit buffer and shift register. Cleared
4	TXTRI	0	R	Transmitter Tristated
	Set when the traiting this bit is always		d, and cleared	when transmitter output is enabled. If AUTOTRI in USARTn_CTRL is set
3	RXBLOCK	0	R	Block Incoming Data
		ceiver discards inc the frame has bee		s. An incoming frame will not be loaded into the receive buffer if this bit is received.
2	MASTER	0	R	SPI Master Mode
	Set when the US mand.	SART operates as	a master. Set	using the MASTEREN command and clear using the MASTERDIS com-
1	TXENS	0	R	Transmitter Enable Status
	Set when the tra	nsmitter is enabled	d.	
0	RXENS	0	R	Receiver Enable Status
	Set when the rec	ceiver is enabled.		

18.5.6 USARTn_CLKDIV - Clock Control Register

Offset															Bit	Pos	itio	n													
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	<u>Ω</u>	4	13	12	7	10	6	8	7	9	5	4 ო	0	1	- 0
Reset	0		•			,				,		•				<u>'</u>		1	00000	nannan					•			'		•	
Access	RW																														
Name	AUTOBAUDEN																		2	2											

Bit	Name	Reset	Access	Description
31	AUTOBAUDEN	0	RW	AUTOBAUD Detection Enable
	Detects the baud rate	based on recei	ving a 0x55	frame (0x00 for IrDA). This is used in Asynchronous mode.
30:23	Reserved	To ensure cor	npatibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
22:3	DIV	0x00000	RWH	Fractional Clock Divider
	Specifies the fractional field.	al clock divider f	or the USA	RT. Setting AUTOBAUDEN in USARTn_CLKDIV will overwrite the DIV
2:0	Reserved	To ensure cor tions	npatibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-

18.5.7 USARTn_RXDATAX - RX Buffer Data Extended Register (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset		•					•		•	1	•	1		1	•		0	0								•		000x0		'		
Access																	œ	22										œ				
Name																	FERR	PERR										RXDATA				

D:4	N			
Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15	FERR	0	R	Data Framing Error
	Set if data in buff	er has a framing e	error. Can be	the result of a break condition.
14	PERR	0	R	Data Parity Error
	Set if data in buff	er has a parity err	or (asynchro	nous mode only).
13:9	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	RXDATA	0x000	R	RX Data
	Use this register	to access data rea	ad from the U	SART. Buffer is cleared on read access.

18.5.8 USARTn_RXDATA - RX Buffer Data Register (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	œ	7	9	2	4	က	2	_	0
Reset				•		•	'	•		•						•		'			•		•	'			•	2	0000			
Access																												۵	۷			
Name																												V - V - V - V - V - V - V - V - V - V -	¥ 14044			

Bit	Name	Reset	Acces	s Description
31:8	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	RXDATA	0x00	R	RX Data
	Use this register register.	to access data re	ead from USA	ART. Buffer is cleared on read access. Only the 8 LSB can be read using this

18.5.9 USARTn_RXDOUBLEX - RX Buffer Double Data Extended Register (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	r m	2	_	0
Reset	0	0		•	•				•			000x0					0	0				•			•		•	00000				
Access	œ	22										<u>~</u>					œ	œ										Ω	<u> </u>			
Name	FERR1	PERR1										RXDATA1					FERR0	PERR0										RXDATA0	<u> </u>			

Bit	Name	Reset	Access	Description
31	FERR1	0	R	Data Framing Error 1
	Set if data in buffe	er has a framing e	error. Can be	the result of a break condition.
30	PERR1	0	R	Data Parity Error 1
	Set if data in buffe	er has a parity err	or (asynchror	nous mode only).
29:25	Reserved	To ensure o	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
24:16	RXDATA1	0x000	R	RX Data 1
	Second frame rea	nd from buffer.		
15	FERR0	0	R	Data Framing Error 0
	Set if data in buffe	er has a framing e	error. Can be	the result of a break condition.
14	PERR0	0	R	Data Parity Error 0
	Set if data in buffe	er has a parity err	or (asynchror	nous mode only).
13:9	Reserved	To ensure o	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	RXDATA0	0x000	R	RX Data 0
	First frame read fi	rom buffer.		

18.5.10 USARTn_RXDOUBLE - RX FIFO Double Data Register (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	ω	7	9	2	4	က	2	_	0
Reset		'	•		1		'			•				'		'		•	1	2	000	•	1	•				2	0000	'		·
Access																				۵	۷							۵	۷			
Name																				Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ו לו								מין אין אין			

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:8	RXDATA1	0x00	R	RX Data 1
	Second frame read fr	om buffer.		
7:0	RXDATA0	0x00	R	RX Data 0
	First frame read from	buffer.		

18.5.11 USARTn_RXDATAXP - RX Buffer Data Extended Peek Register

Offset	Bit P	osition
0x028	31 30 30 29 29 27 27 27 27 27 27 27 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40	4 7
Reset		0 00000
Access		x x x
Name		PERRP RXDATAP

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
15	FERRP	0	R	Data Framing Error Peek
	Set if data in buffer ha	as a framing erro	or. Can be	the result of a break condition.
14	PERRP	0	R	Data Parity Error Peek
	Set if data in buffer ha	as a parity error	(asynchror	nous mode only).
13:9	Reserved	To ensure cor	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	RXDATAP	0x000	R	RX Data Peek
	Use this register to ac	cess data read	from the U	SART.

18.5.12 USARTn_RXDOUBLEXP - RX Buffer Double Data Extended Peek Register

Offset															Bi	t Pc	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset	0	0							00000																							
Access	2	2							α α α α α α α α α α α α α α α α α α α																							
Name	FERRP1	PERRP1										RXDATAP1					FERRP0	PERRP0										RXDATAP0				

Dit	Nama	Booot	A 00000	Description
Bit	Name	Reset	Access	Description
31	FERRP1	0	R	Data Framing Error 1 Peek
	Set if data in buffer h	as a framing erro	or. Can be	the result of a break condition.
30	PERRP1	0	R	Data Parity Error 1 Peek
	Set if data in buffer h	as a parity error	(asynchror	nous mode only).
29:25	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
24:16	RXDATAP1	0x000	R	RX Data 1 Peek
	Second frame read f	rom FIFO.		
15	FERRP0	0	R	Data Framing Error 0 Peek
	Set if data in buffer h	as a framing erro	or. Can be	the result of a break condition.
14	PERRP0	0	R	Data Parity Error 0 Peek
	Set if data in buffer h	as a parity error	(asynchror	nous mode only).
13:9	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	RXDATAP0	0x000	R	RX Data 0 Peek
	First frame read from	FIFO.		

18.5.13 USARTn_TXDATAX - TX Buffer Data Extended Register

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset			1								•						0	0	0	0	0						•	000x0				
Access																	>	>	8	≥	8							≥				
Name																	RXENAT	TXDISAT	TXBREAK	TXTRIAT	UBRXAT							TXDATAX				

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure tions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
15	RXENAT	0	W	Enable RX After Transmission
	Set to enable red	ception after trans	mission.	
14	TXDISAT	0	W	Clear TXEN After Transmission
	Set to disable tra	insmitter and relea	ase data bus o	directly after transmission.
13	TXBREAK	0	W	Transmit Data as Break
	Set to send data value of TXDATA		oient will see a	a framing error or a break condition depending on its configuration and the
12	TXTRIAT	0	W	Set TXTRI After Transmission
	Set to tristate tra	nsmitter by setting	TXTRI after	transmission.
11	UBRXAT	0	W	Unblock RX After Transmission
	Set to clear RXB	LOCK after transr	mission, unblo	ocking the receiver.
10:9	Reserved	To ensure tions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	TXDATAX	0x000	W	TX Data
	Use this register	to write data to th	e USART. If T	TXEN is set, a transfer will be initiated at the first opportunity.

18.5.14 USARTn_TXDATA - TX Buffer Data Register

Offset															Bi	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		•					•		•	'	•	1				1		'	1	•		•	1	•		•		6	noxo			
Access																												3	>			
Name																													I YDAI A			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	TXDATA	0x00	W	TX Data
	This frame will be a	dded to TX buff	er. Only 8 LS	SB can be written using this register. 9th bit and control bits will be cleared.

18.5.15 USARTn_TXDOUBLEX - TX Buffer Double Data Extended Register

Offset															Ві	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset	0	0	0	0	0						•	000x0				•	0	0	0	0	0		•		•		•	000x0		•		
Access	>	>	>	>	>							≥					8	>	8	>	8							≥				
Name	RXENAT1	TXDISAT1	TXBREAK1	TXTRIAT1	UBRXAT1							TXDATA1					RXENAT0	TXDISAT0	TXBREAK0	TXTRIAT0	UBRXAT0							TXDATA0				

			<u> </u>	
Bit	Name	Reset	Access	Description
31	RXENAT1	0	W	Enable RX After Transmission
	Set to enable recept	ion after transmi	ssion.	
30	TXDISAT1	0	W	Clear TXEN After Transmission
	Set to disable transr	nitter and release	e data bus	directly after transmission.
29	TXBREAK1	0	W	Transmit Data as Break
	Set to send data as value of USARTn_T		nt will see a	a framing error or a break condition depending on its configuration and the
28	TXTRIAT1	0	W	Set TXTRI After Transmission
	Set to tristate transm	nitter by setting T	XTRI after	transmission.
27	UBRXAT1	0	W	Unblock RX After Transmission
	Set clear RXBLOCK	after transmission	on, unblock	ring the receiver.
26:25	Reserved	To ensure co tions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
24:16	TXDATA1	0x000	W	TX Data
	Second frame to wri	te to FIFO.		
15	RXENAT0	0	W	Enable RX After Transmission
	Set to enable recept	ion after transmi	ssion.	
14	TXDISAT0	0	W	Clear TXEN After Transmission
	Set to disable transr	nitter and release	e data bus	directly after transmission.
13	TXBREAK0	0	W	Transmit Data as Break
	Set to send data as value of TXDATA.	a break. Recipie	nt will see a	a framing error or a break condition depending on its configuration and the
12	TXTRIAT0	0	W	Set TXTRI After Transmission
	Set to tristate transm	nitter by setting T	XTRI after	transmission.
11	UBRXAT0	0	W	Unblock RX After Transmission
	Set clear RXBLOCK	after transmission	on, unblock	sing the receiver.
10:9	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	TXDATA0	0x000	W	TX Data
	First frame to write to	o buffer.		

18.5.16 USARTn_TXDOUBLE - TX Buffer Double Data Register

Offset															Bi	t Po	siti	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			•										'	'							OXO			•				2	OXO			
Access																				}	>							3	>			
Name																				1 × 1 × 1	IADAIA							F 4 C	OA I AUX I			

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
15:8	TXDATA1	0x00	W	TX Data
	Second frame to write	to buffer.		
7:0	TXDATA0	0x00	W	TX Data
	First frame to write to	buffer.		

18.5.17 USARTn_IF - Interrupt Flag Register

Offset	Bit	Ро	sitic	on														
0x040	1	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0
Access		~	~	~	2	~	R	2	~	2	22	22	22	2	2	22	22	<u>~</u>
Name		TCMP2	TCMP1	TCMP0	TXIDLE	CCF	SSM	MPAF	FERR	PERR	TXUF	TXOF	RXUF	RXOF	RXFULL	RXDATAV	TXBL	TXC

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
16	TCMP2	0	R	Timer Comparator 2 Interrupt Flag
	Set when the tim	er reaches the co	mparator 2 va	alue, TCMP2.
15	TCMP1	0	R	Timer Comparator 1 Interrupt Flag
	Set when the tim	er reaches the co	mparator 1 va	alue, TCMP1.
14	TCMP0	0	R	Timer Comparator 0 Interrupt Flag
	Set when the Tin	ner reaches the co	omparator 0 v	ralue, TCMP0.
13	TXIDLE	0	R	TX Idle Interrupt Flag
	Set when TX goe	es idle. At this poin	nt, transmissio	on has ended
12	CCF	0	R	Collision Check Fail Interrupt Flag
	Set when a collis	ion check notices	an error in th	e transmitted data.
11	SSM	0	R	Slave-Select in Master Mode Interrupt Flag
	Set when the dev	vice is selected as	a slave whe	n in master mode.
10	MPAF	0	R	Multi-Processor Address Frame Interrupt Flag
	Set when a multi-	-processor addres	ss frame is de	etected.
9	FERR	0	R	Framing Error Interrupt Flag
	Set when a frame	e with a framing ei	rror is receive	ed while RXBLOCK is cleared.
8	PERR	0	R	Parity Error Interrupt Flag
	Set when a frame	e with a parity erro	or (asynchron	ous mode only) is received while RXBLOCK is cleared.
7	TXUF	0	R	TX Underflow Interrupt Flag
	Set when operati of a new frame.	ng as a synchrono	ous slave, no	data is available in the transmit buffer when the master starts transmission
6	TXOF	0	R	TX Overflow Interrupt Flag
	Set when a write	is done to the tran	nsmit buffer v	while it is full. The data already in the transmit buffer is preserved.
5	RXUF	0	R	RX Underflow Interrupt Flag
	Set when trying t	o read from the re	ceive buffer v	when it is empty.
4	RXOF	0	R	RX Overflow Interrupt Flag
	Set when data is	incoming while th	e receive shi	ft register is full. The data previously in the shift register is lost.

Bit	Name	Reset	Access	Description
3	RXFULL	0	R	RX Buffer Full Interrupt Flag
	Set when the rece	eive buffer becom	es full.	
2	RXDATAV	0	R	RX Data Valid Interrupt Flag
	Set when data be	comes available i	n the receive	buffer.
1	TXBL	1	R	TX Buffer Level Interrupt Flag
	Set when buffer be fied buffer level.	ecomes empty if	buffer level is	s set to 0x0, or when the number of empty TX buffer elements equals speci-
0	TXC	0	R	TX Complete Interrupt Flag
	This interrupt is se	et after a transmis	ssion when bo	oth the TX buffer and shift register are empty.

18.5.18 USARTn_IFS - Interrupt Flag Set Register

Offset															Ві	t Po	siti	on														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset			•			•	•				•					0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
Access																W	W1	×	W	W	W1	W W	W1	W1	W	W 1	W1	W1	N K			W
Name																TCMP2	TCMP1	TCMP0	TXIDLE	CCF	SSM	MPAF	FERR	PERR	TXUF	TXOF	RXUF	RXOF	RXFULL			TXC

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
16	TCMP2	0	W1	Set TCMP2 Interrupt Flag
	Write 1 to set the TC	MP2 interrupt fla	g	
15	TCMP1	0	W1	Set TCMP1 Interrupt Flag
	Write 1 to set the TC	MP1 interrupt fla	g	
14	TCMP0	0	W1	Set TCMP0 Interrupt Flag
	Write 1 to set the TC	MP0 interrupt fla	g	
13	TXIDLE	0	W1	Set TXIDLE Interrupt Flag
	Write 1 to set the TXI	DLE interrupt fla	g	
12	CCF	0	W1	Set CCF Interrupt Flag
	Write 1 to set the CC	F interrupt flag		
11	SSM	0	W1	Set SSM Interrupt Flag
	Write 1 to set the SSI	M interrupt flag		
10	MPAF	0	W1	Set MPAF Interrupt Flag
	Write 1 to set the MP.	AF interrupt flag		
9	FERR	0	W1	Set FERR Interrupt Flag
	Write 1 to set the FEF	RR interrupt flag		
8	PERR	0	W1	Set PERR Interrupt Flag
	Write 1 to set the PER	RR interrupt flag		
7	TXUF	0	W1	Set TXUF Interrupt Flag
	Write 1 to set the TXL	JF interrupt flag		
6	TXOF	0	W1	Set TXOF Interrupt Flag
	Write 1 to set the TX0	OF interrupt flag		
5	RXUF	0	W1	Set RXUF Interrupt Flag
	Write 1 to set the RXI	JF interrupt flag		
4	RXOF	0	W1	Set RXOF Interrupt Flag
	Write 1 to set the RX0	OF interrupt flag		
3	RXFULL	0	W1	Set RXFULL Interrupt Flag
	Write 1 to set the RXI	FULL interrupt fla	ag	

Bit	Name	Reset	Access	Description
2:1	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	TXC	0	W1	Set TXC Interrupt Flag
	Write 1 to set the	TXC interrupt fla	ıg	

18.5.19 USARTn_IFC - Interrupt Flag Clear Register

30 29	28	56	25	4 6	3	2 22	20	T	2	~														_	က	2		
		1	11				ı ō	1	~	18	17	16	15	4	5	12	7	10	6	ω	_	9	2	4	(,)	(1	_	0
					•							0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
												2		2														
												(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1			(R)W1
												TCMP2	TCMP1	TCMP0	TXIDLE	CCF	SSM	MPAF	FERR	PERR	TXUF	TXOF	RXUF	RXOF	RXFULL			TXC
Name			Res	et		A	cces	ss	1	Des	crip	tion																
Reserved					ес	ompa	atibili	ty I	wit	h fu	ture	dev	/ices	s, al	way	s wr	ite b	its t	o O.	Мог	re in	forn	natio	n in	1.2	? Coi	nver	-
TCMP2			0			(1	R)W1		(Clea	r T	CMF	2 Ir	nter	rupt	Fla	g											
										retu	ırns	the	valı	ue c	of the	e IF	and	clea	ırs tl	he c	orre	spo	ndir	ıg in	terr	upt f	lags	
TCMP1			0			(1	R)W1		(Clea	r T	CMF	P1 Ir	nter	rupt	Fla	g											
										retu	ırns	the	valı	ue c	of the	e IF	and	clea	ırs tl	he c	orre	spo	ndir	ıg in	terr	upt f	lags	
TCMP0			0			(1	R)W1		(Clea	r T	CMF	PO Ir	nter	rupt	Fla	g											
										retu	ırns	the	valı	ue c	of the	e IF	and	clea	ırs tl	he c	orre	spo	ndir	ıg in	terr	upt f	lags	
TXIDLE			0			(1	R)W1		(Clea	r T	XIDI	E I	nter	rup	t Fla	g											
										reti	urns	the	val	ue c	of the	e IF	and	clea	ars t	he c	corre	espo	ndir	ng ir	nterr	upt 1	flags	i
CCF			0			(1	R)W1		(Clea	r C	CF I	nte	rrup	t Fl	ag												
								ng	ret	urns	s the	e va	lue	of th	ne IF	and	d cle	ars	the	corr	espo	ondi	ng i	nter	rupt	flag	s (T	his
SSM			0			(1	R)W1		(Clea	r S	SM	Inte	rrup	t FI	ag												
								ng	re	turn	s th	e va	llue	of th	ne IF	and	d cle	ears	the	corr	esp	ond	ing i	nter	rupt	flag	js (T	his
MPAF			0			(1	R)W1	l	(Clea	r M	PAF	Int	erru	ıpt l	Flag												
										etur	ns t	he v	/alue	e of	the	IF a	nd c	lear	s the	e co	rres	pon	ding	inte	errup	pt fla	ags	
FERR			0			(1	R)W1		(Clea	r Fl	ERR	Int	errı	ıpt F	lag												
										etur	ns t	he v	/alue	e of	the	IF a	nd c	lears	s the	e co	rres	pon	ding	inte	errup	ot fla	igs	
PERR			0			(1	R)W1		(Clea	r P	ERR	R Int	errı	ıpt F	Flag												
										etur	ns t	he v	/alue	e of	the	IF a	nd c	lear	s the	e co	rres	pon	ding	inte	errup	pt fla	ags	
TXUF			0			(1	R)W1		(Clea	r T	XUF	Inte	erru	pt F	lag												
	Reserved TCMP2 Write 1 to 0 (This feature TXIDLE) Write 1 to 0 (This feature TXIDLE)	TCMP2 Write 1 to clear th (This feature mus) TCMP1 Write 1 to clear th (This feature mus) TCMP0 Write 1 to clear th (This feature mus) TXIDLE Write 1 to clear th (This feature mus) CCF Write 1 to clear th feature must be e SSM Write 1 to clear th feature must be e MPAF Write 1 to clear th (This feature mus) FERR Write 1 to clear th (This feature mus) FERR Write 1 to clear th (This feature mus) PERR Write 1 to clear th (This feature mus) TXUF	TCMP2 Write 1 to clear the TC (This feature must be TCMP1 Write 1 to clear the TC (This feature must be TCMP0 Write 1 to clear the TC (This feature must be TXIDLE Write 1 to clear the TX (This feature must be CCF Write 1 to clear the CC feature must be enabl SSM Write 1 to clear the SS feature must be enabl MPAF Write 1 to clear the MI (This feature must be ERR Write 1 to clear the FE (This feature must be PERR Write 1 to clear the PE (This feature must be TXUF	Reserved To e tions TCMP2 Write 1 to clear the TCMP2 (This feature must be enabled to clear the TCMP1 TCMP1 Write 1 to clear the TCMP1 (This feature must be enabled to clear the TCMP0) Write 1 to clear the TCMP0 (This feature must be enabled to clear the TXIDLE (This feature must be enabled to clear the TXIDLE (This feature must be enabled to clear the CCF interfeature must be enabled glowsome of the company of the company of the clear the SSM interfeature must be enabled glowsome of the clear the MPAF in (This feature must be enabled glowsome of the clear the MPAF in (This feature must be enabled glowsome of the clear the SSM interfeature must be enabled glowsome of the clear the PERR in (This feature must be enabled per clear the per clear	Reserved To ensurtions TCMP2 Write 1 to clear the TCMP2 inter (This feature must be enabled glater) TCMP1 Write 1 to clear the TCMP1 inter (This feature must be enabled glater) TCMP0 Write 1 to clear the TCMP0 inter (This feature must be enabled glater) TXIDLE Write 1 to clear the TXIDLE inter (This feature must be enabled glater) Write 1 to clear the CCF interrup feature must be enabled globally SSM Write 1 to clear the SSM interrup feature must be enabled globally MPAF Write 1 to clear the MPAF interrup (This feature must be enabled globally MPAF Write 1 to clear the FERR interrup (This feature must be enabled globally FERR Write 1 to clear the FERR interrup (This feature must be enabled globally TXUF 0	Reserved To ensure of tions TCMP2 Write 1 to clear the TCMP2 interrup (This feature must be enabled global TCMP1 Write 1 to clear the TCMP1 interrup (This feature must be enabled global TCMP0 Write 1 to clear the TCMP0 interrup (This feature must be enabled global TXIDLE Write 1 to clear the TXIDLE interrup (This feature must be enabled global TXIDLE Write 1 to clear the TXIDLE interrup (This feature must be enabled global TXIDLE to clear the TXIDLE interrup (This feature must be enabled global global TXIDLE to clear the CCF interrupt flat feature must be enabled globally in TXIDLE to clear the SSM interrupt flat feature must be enabled globally in TXIDLE to clear the MPAF interrupt (This feature must be enabled global TXIDLE to clear the FERR interrupt (This feature must be enabled global TXIDLE to clear the PERR interrupt (This feature must be enabled global TXIDLE to clear the PERR interrupt (This feature must be enabled global TXIDLE to clear the PERR interrupt (This feature must be enabled global TXIDLE to clear the PERR interrupt (This feature must be enabled global TXIDLE to clear the PERR interrupt (This feature must be enabled global TXIDLE to clear the PERR interrupt (This feature must be enabled global TXIDLE to clear the PERR interrupt to clear the PE	To ensure compations TCMP2 0 (Fig. 1) Write 1 to clear the TCMP2 interrupt flag (This feature must be enabled globally in TCMP1 0 (Fig. 1) Write 1 to clear the TCMP1 interrupt flag (This feature must be enabled globally in TCMP0 0 (Fig. 1) Write 1 to clear the TCMP0 interrupt flag (This feature must be enabled globally in TXIDLE 0 (Fig. 1) Write 1 to clear the TXIDLE interrupt flag (This feature must be enabled globally in TXIDLE 0 (Fig. 1) Write 1 to clear the CCF interrupt flag Resture must be enabled globally in MSC (Fig. 2) Write 1 to clear the SSM interrupt flag Resture must be enabled globally in MSC (Fig. 2) Write 1 to clear the MPAF interrupt flag (This feature must be enabled globally in MSC (Fig. 2) Write 1 to clear the FERR interrupt flag (This feature must be enabled globally in FERR 0 (Fig. 2) Write 1 to clear the FERR interrupt flag (This feature must be enabled globally in PERR 0 (Fig. 2) Write 1 to clear the PERR interrupt flag (This feature must be enabled globally in PERR 0 (Fig. 3) Write 1 to clear the PERR interrupt flag (This feature must be enabled globally in PERR 0 (Fig. 3) Write 1 to clear the PERR interrupt flag (This feature must be enabled globally in PERR 0 (Fig. 3)	To ensure compatibilitions TCMP2 0 (R)W1 Write 1 to clear the TCMP2 interrupt flag. Rea (This feature must be enabled globally in MSC). SSM 0 (R)W1 Write 1 to clear the CCF interrupt flag. Reading feature must be enabled globally in MSC). MPAF 0 (R)W1 Write 1 to clear the MPAF interrupt flag. Reading feature must be enabled globally in MSC (This feature must be enabled globally i	To ensure compatibility tions TCMP2 0 (R)W1 Write 1 to clear the TCMP2 interrupt flag. Readi (This feature must be enabled globally in MSC.) TCMP1 0 (R)W1 Write 1 to clear the TCMP1 interrupt flag. Readi (This feature must be enabled globally in MSC.) TCMP0 0 (R)W1 Write 1 to clear the TCMP0 interrupt flag. Readi (This feature must be enabled globally in MSC.) TXIDLE 0 (R)W1 Write 1 to clear the TXIDLE interrupt flag. Readi (This feature must be enabled globally in MSC.) CCF 0 (R)W1 Write 1 to clear the CCF interrupt flag. Reading feature must be enabled globally in MSC.). SSM 0 (R)W1 Write 1 to clear the SSM interrupt flag. Reading feature must be enabled globally in MSC.). MPAF 0 (R)W1 Write 1 to clear the MPAF interrupt flag. Reading feature must be enabled globally in MSC.). FERR 0 (R)W1 Write 1 to clear the FERR interrupt flag. Reading (This feature must be enabled globally in MSC.) FERR 0 (R)W1 Write 1 to clear the FERR interrupt flag. Reading (This feature must be enabled globally in MSC.) PERR 0 (R)W1 Write 1 to clear the PERR interrupt flag. Reading (This feature must be enabled globally in MSC.) PERR 0 (R)W1 Write 1 to clear the PERR interrupt flag. Reading (This feature must be enabled globally in MSC.)	To ensure compatibility with tions TCMP2	To ensure compatibility with futions TCMP2 0 (R)W1 Clear Write 1 to clear the TCMP2 interrupt flag. Reading return (This feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear Write 1 to clear the TCMP1 interrupt flag. Reading return (This feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear Write 1 to clear the TCMP0 interrupt flag. Reading return (This feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear Write 1 to clear the TXIDLE interrupt flag. Reading return (This feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear Write 1 to clear the CCF interrupt flag. Reading return feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear Write 1 to clear the SSM interrupt flag. Reading return feature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear Write 1 to clear the MPAF interrupt flag. Reading return feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear Write 1 to clear the FERR interrupt flag. Reading return (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear Write 1 to clear the FERR interrupt flag. Reading return (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear Write 1 to clear the FERR interrupt flag. Reading return (This feature must be enabled globally in MSC.).	To ensure compatibility with future tions TCMP2 0 (R)W1 Clear To Write 1 to clear the TCMP2 interrupt flag. Reading returns (This feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear To Write 1 to clear the TCMP1 interrupt flag. Reading returns (This feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear To Write 1 to clear the TCMP0 interrupt flag. Reading returns (This feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TO Write 1 to clear the TXIDLE interrupt flag. Reading returns (This feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CO Write 1 to clear the CCF interrupt flag. Reading returns the feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear CO Write 1 to clear the SSM interrupt flag. Reading returns the feature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear St Write 1 to clear the SSM interrupt flag. Reading returns the feature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear Mrite 1 to clear the MPAF interrupt flag. Reading returns the feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear Mrite 1 to clear the FERR interrupt flag. Reading returns the feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear File Write 1 to clear the FERR interrupt flag. Reading returns the feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear File Write 1 to clear the PERR interrupt flag. Reading returns the feature must be enabled globally in MSC.).	To ensure compatibility with future detations TCMP2 0 (R)W1 Clear TCMP Write 1 to clear the TCMP2 interrupt flag. Reading returns the (This feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP Write 1 to clear the TCMP1 interrupt flag. Reading returns the (This feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP Write 1 to clear the TCMP0 interrupt flag. Reading returns the (This feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDL Write 1 to clear the TXIDLE interrupt flag. Reading returns the (This feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF IV (This feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear CCF IV (This feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM (The SSM) Write 1 to clear the SSM interrupt flag. Reading returns the varieature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear MPAF (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear MPAF (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR (This feature must be enabled globally in MSC.).	To ensure compatibility with future devices tions TCMP2 0 (R)W1 Clear TCMP2 In Write 1 to clear the TCMP2 interrupt flag. Reading returns the validation of the content of	To ensure compatibility with future devices, al tions TCMP2 0 (R)W1 Clear TCMP2 Interrupt flag. Reading returns the value of this feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt flag. Reading returns the value of this feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt flag. Reading returns the value of this feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt flag. Reading returns the value of this feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt flag. Reading returns the value of this feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Write 1 to clear the CCF interrupt flag. Reading returns the value of the feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Write 1 to clear the SSM interrupt flag. Reading returns the value of the feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Write 1 to clear the SSM interrupt flag. Reading returns the value of the feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear MPAF Interrupt flag. Reading returns the value of (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt flag. Reading returns the value of (This feature must be enabled globally in MSC.). PERR 0 (R)W1 Clear PERR Interrupt flag. Reading returns the value of (This feature must be enabled globally in MSC.).	To ensure compatibility with future devices, always tions TCMP2 0 (R)W1 Clear TCMP2 Interrupt flag. Reading returns the value of the (This feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt flag. Reading returns the value of the (This feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt flag. Reading returns the value of the (This feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt flag. Reading returns the value of the (This feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt flag. Reading returns the value of the (This feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Flag. Reading returns the value of the IF feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag. Reading returns the value of the IF feature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear SSM Interrupt Flag. Reading returns the value of the IF feature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear SSM Interrupt II Clear MPAF Interrupt II Clear MPAF Interrupt II Clear MPAF Interrupt II MSC.). MPAF 0 (R)W1 Clear MPAF Interrupt II Clear MPAF I	To ensure compatibility with future devices, always writions TCMP2 0 (R)W1 Clear TCMP2 Interrupt Fla Write 1 to clear the TCMP2 interrupt flag. Reading returns the value of the IF (This feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt Fla Write 1 to clear the TCMP1 interrupt flag. Reading returns the value of the IF (This feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt Fla Write 1 to clear the TCMP0 interrupt flag. Reading returns the value of the IF (This feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt Fla Write 1 to clear the TXIDLE interrupt flag. Reading returns the value of the IF (This feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Flag Write 1 to clear the CCF interrupt flag. Reading returns the value of the IF and feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the SSM interrupt flag. Reading returns the value of the IF and feature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear MPAF Interrupt Flag Write 1 to clear the MPAF interrupt flag. Reading returns the value of the IF and feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and (This feature must be enabled globally in MSC.).	To ensure compatibility with future devices, always write betions TCMP2 0 (R)W1 Clear TCMP2 Interrupt Flag Write 1 to clear the TCMP2 interrupt flag. Reading returns the value of the IF and (This feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt Flag Write 1 to clear the TCMP1 interrupt flag. Reading returns the value of the IF and (This feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt Flag Write 1 to clear the TCMP0 interrupt flag. Reading returns the value of the IF and (This feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt Flag Write 1 to clear the TXIDLE interrupt flag. Reading returns the value of the IF and (This feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Flag Write 1 to clear the CCF interrupt flag. Reading returns the value of the IF and clear the total clear the CCF interrupt flag. Reading returns the value of the IF and clear the total clear the SSM interrupt flag. Reading returns the value of the IF and clear the total clear the SSM interrupt flag. Reading returns the value of the IF and clear the total clear the SSM interrupt flag. Reading returns the value of the IF and clear the total clear the MPAF interrupt flag. Reading returns the value of the IF and clear the total clear the MPAF interrupt flag. Reading returns the value of the IF and clear the feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clear the feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clear the feature must be enabled globally in MSC.).	To ensure compatibility with future devices, always write bits to tions TCMP2 0 (R)W1 Clear TCMP2 Interrupt Flag Write 1 to clear the TCMP2 interrupt flag. Reading returns the value of the IF and clear flower in the realized globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt Flag Write 1 to clear the TCMP1 interrupt flag. Reading returns the value of the IF and clear flower in the realized globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt Flag Write 1 to clear the TCMP0 interrupt flag. Reading returns the value of the IF and clear flower in the realized globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt Flag Write 1 to clear the TXIDLE interrupt flag. Reading returns the value of the IF and clear flower in the realized globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Flag Write 1 to clear the CCF interrupt flag. Reading returns the value of the IF and clears feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the SSM interrupt flag. Reading returns the value of the IF and clears feature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear MPAF Interrupt Flag Write 1 to clear the MPAF interrupt flag. Reading returns the value of the IF and clears feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear MPAF Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears feature must be enabled globally in MSC.). PERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears feature must be enabled globally in MSC.).	To ensure compatibility with future devices, always write bits to 0. tions TCMP2 0 (R)W1 Clear TCMP2 Interrupt Flag Write 1 to clear the TCMP2 interrupt flag. Reading returns the value of the IF and clears to (This feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt Flag Write 1 to clear the TCMP1 interrupt flag. Reading returns the value of the IF and clears to (This feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt Flag Write 1 to clear the TCMP0 interrupt flag. Reading returns the value of the IF and clears to (This feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt Flag Write 1 to clear the TXIDLE interrupt flag. Reading returns the value of the IF and clears to (This feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Flag Write 1 to clear the CCF interrupt flag. Reading returns the value of the IF and clears the feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the SSM interrupt flag. Reading returns the value of the IF and clears the feature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear MPAF Interrupt Flag Write 1 to clear the MPAF interrupt flag. Reading returns the value of the IF and clears the feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear MPAF Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the feature must be enabled globally in MSC.).	To ensure compatibility with future devices, always write bits to 0. Montions TCMP2 0 (R)W1 Clear TCMP2 Interrupt Flag Write 1 to clear the TCMP2 interrupt flag. Reading returns the value of the IF and clears the of (This feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt Flag Write 1 to clear the TCMP1 interrupt flag. Reading returns the value of the IF and clears the of (This feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt Flag Write 1 to clear the TCMP0 interrupt flag. Reading returns the value of the IF and clears the of (This feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt Flag Write 1 to clear the TXIDLE interrupt flag. Reading returns the value of the IF and clears the of (This feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Flag Write 1 to clear the CCF interrupt flag. Reading returns the value of the IF and clears the correlature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the SSM interrupt flag. Reading returns the value of the IF and clears the correlature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear MPAF Interrupt Flag Write 1 to clear the MPAF interrupt flag. Reading returns the value of the IF and clears the correlature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the correlature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the correlation must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the correlation must be enabled globally in MSC.).	To ensure compatibility with future devices, always write bits to 0. More in tions TCMP2 0 (R)W1 Clear TCMP2 Interrupt Flag Write 1 to clear the TCMP2 interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt Flag Write 1 to clear the TCMP1 interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt Flag Write 1 to clear the TCMP0 interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt Flag Write 1 to clear the TXIDLE interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Flag Write 1 to clear the CCF interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the SSM interrupt flag. Reading returns the value of the IF and clears the corresponding must be enabled globally in MSC.). MPAF 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the MPAF interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.).	To ensure compatibility with future devices, always write bits to 0. More informations TCMP2 0 (R)W1 Clear TCMP2 Interrupt Flag Write 1 to clear the TCMP2 interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt Flag Write 1 to clear the TCMP1 interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt Flag Write 1 to clear the TCMP0 interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt Flag Write 1 to clear the TXIDLE interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Flag Write 1 to clear the CCF interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the SSM interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear MPAF Interrupt Flag Write 1 to clear the MPAF interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding feature must be enabled globally in MSC.).	To ensure compatibility with future devices, always write bits to 0. More information tions TCMP2 0 (R)W1 Clear TCMP2 Interrupt Flag Write 1 to clear the TCMP2 interrupt flag. Reading returns the value of the IF and clears the corresponding from this feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt Flag Write 1 to clear the TCMP1 interrupt flag. Reading returns the value of the IF and clears the corresponding from the feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt Flag Write 1 to clear the TCMP0 interrupt flag. Reading returns the value of the IF and clears the corresponding from the feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt Flag Write 1 to clear the TXIDLE interrupt flag. Reading returns the value of the IF and clears the corresponding from the feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Flag Write 1 to clear the CCF interrupt flag. Reading returns the value of the IF and clears the corresponding infeature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the SSM interrupt flag. Reading returns the value of the IF and clears the corresponding infeature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the MPAF interrupt flag. Reading returns the value of the IF and clears the corresponding (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding (This feature must be enabled globally in MSC.). FERR 0 (R)W1 Clear PERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding (This feature must be enabled globally in MSC.).	To ensure compatibility with future devices, always write bits to 0. More information in tions TCMP2 0 (R)W1 Clear TCMP2 Interrupt Flag Write 1 to clear the TCMP2 interrupt flag. Reading returns the value of the IF and clears the corresponding in (This feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt Flag Write 1 to clear the TCMP1 interrupt flag. Reading returns the value of the IF and clears the corresponding in (This feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt Flag Write 1 to clear the TCMP0 interrupt flag. Reading returns the value of the IF and clears the corresponding in (This feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt Flag Write 1 to clear the TXIDLE interrupt flag. Reading returns the value of the IF and clears the corresponding in (This feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Flag Write 1 to clear the CCF interrupt flag. Reading returns the value of the IF and clears the corresponding interfeature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the SSM interrupt flag. Reading returns the value of the IF and clears the corresponding interfeature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the MPAF interrupt flag. Reading returns the value of the IF and clears the corresponding interfeature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding interfeature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding interfeature must be enabled globally in MSC.). FERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the PERR interrupt flag. Reading returns the value of the IF and clears the corresponding interfeature must be enab	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 fions TCMP2	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Controls TCMP2 0 (R)W1 Clear TCMP2 Interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt of this feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt Flag Write 1 to clear the TCMP1 interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt of this feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt Flag Write 1 to clear the TCMP0 interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt of this feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt Flag Write 1 to clear the TXIDLE interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt of this feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear TXIDLE Interrupt Flag Write 1 to clear the CCF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flag feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the SSM interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flag feature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the MPAF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flag feature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear MPAF Interrupt Flag Write 1 to clear the MPAF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flag feature must be enabled globally in MSC.). PERR 0 (R)W1 Clear FERR Interrupt Flag Write 1 to clear the PERR interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flag from the c	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions TCMP2 0 (R)W1 Clear TCMP2 Interrupt Flag Write 1 to clear the TCMP2 interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.). TCMP1 0 (R)W1 Clear TCMP1 Interrupt Flag Write 1 to clear the TCMP1 interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.). TCMP0 0 (R)W1 Clear TCMP0 Interrupt Flag Write 1 to clear the TCMP0 interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.). TXIDLE 0 (R)W1 Clear TXIDLE Interrupt Flag Write 1 to clear the TXIDLE interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.). CCF 0 (R)W1 Clear CCF Interrupt Flag Write 1 to clear the CCF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (Theature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the SSM interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (Theature must be enabled globally in MSC.). SSM 0 (R)W1 Clear SSM Interrupt Flag Write 1 to clear the SSM interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (Theature must be enabled globally in MSC.). MPAF 0 (R)W1 Clear MPAF Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.). PERR 0 (R)W1 Clear PERR Interrupt Flag Write 1 to clear the FERR interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).

(This feature must be enabled globally in MSC.).

Bit	Name	Reset	Access	Description
6	TXOF	0	(R)W1	Clear TXOF Interrupt Flag
		the TXOF interruptust be enabled glob		g returns the value of the IF and clears the corresponding interrupt flags .
5	RXUF	0	(R)W1	Clear RXUF Interrupt Flag
		the RXUF interrup		g returns the value of the IF and clears the corresponding interrupt flags .
4	RXOF	0	(R)W1	Clear RXOF Interrupt Flag
		the RXOF interrup ust be enabled glob		g returns the value of the IF and clears the corresponding interrupt flags .
3	RXFULL	0	(R)W1	Clear RXFULL Interrupt Flag
		the RXFULL internust be enabled glob		ling returns the value of the IF and clears the corresponding interrupt flags .
2:1	Reserved	To ensure tions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	TXC	0	(R)W1	Clear TXC Interrupt Flag
		the TXC interrupt feenabled globally in		returns the value of the IF and clears the corresponding interrupt flags (This

18.5.20 USARTn_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x04C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	3	2	_	0
Reset			'		'						•					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access																₩ M	RW W	Z.	₩ M	₩ M	RW	₩ W	RW	W.	Z M	Z.	Z.	Z.	₩ W	RW	₩ M	RW
Name																TCMP2	TCMP1	TCMP0	TXIDLE	CCF	SSM	MPAF	FERR	PERR	TXUF	TXOF	RXUF	RXOF	RXFULL	RXDATAV	TXBL	TXC

	Name	Reset	Access	Description
31:17	Reserved	To ensure contions	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
16	TCMP2	0	RW	TCMP2 Interrupt Enable
	Enable/disable the TO	CMP2 interrupt		
15	TCMP1	0	RW	TCMP1 Interrupt Enable
	Enable/disable the TO	CMP1 interrupt		
14	TCMP0	0	RW	TCMP0 Interrupt Enable
	Enable/disable the TO	CMP0 interrupt		
13	TXIDLE	0	RW	TXIDLE Interrupt Enable
	Enable/disable the TX	(IDLE interrupt		
12	CCF	0	RW	CCF Interrupt Enable
	Enable/disable the CO	CF interrupt		
11	SSM	0	RW	SSM Interrupt Enable
	Enable/disable the SS	SM interrupt		
10	MPAF	0	RW	MPAF Interrupt Enable
	Enable/disable the Mi	PAF interrupt		
9	FERR	0	RW	FERR Interrupt Enable
	Enable/disable the FE	RR interrupt		
8	PERR	0	RW	PERR Interrupt Enable
	Enable/disable the PE	ERR interrupt		
7	TXUF	0	RW	TXUF Interrupt Enable
	Enable/disable the TX	(UF interrupt		
6	TXOF	0	RW	TXOF Interrupt Enable
	Enable/disable the TX	OF interrupt		
5	RXUF	0	RW	RXUF Interrupt Enable
	Enable/disable the RX	KUF interrupt		
4	RXOF	0	RW	RXOF Interrupt Enable
	Enable/disable the R	KOF interrupt		

Bit	Name	Reset	Access	Description
3	RXFULL	0	RW	RXFULL Interrupt Enable
	Enable/disable the R	KFULL interrupt		
2	RXDATAV	0	RW	RXDATAV Interrupt Enable
	Enable/disable the R	KDATAV interru	ot	
1	TXBL	0	RW	TXBL Interrupt Enable
	Enable/disable the TX	(BL interrupt		
0	TXC	0	RW	TXC Interrupt Enable
	Enable/disable the TX	(C interrupt		

18.5.21 USARTn_IRCTRL - IrDA Control Register

Offset				В	it Positio	n										
0x050	31 39 39 27 28 29 29 29 29	22 23 24 25 25 25 23	20 5	2 2 5	15 16	4 (5 5	7	10	တ ထ	^	ω u	4	ო	7 -	0
Reset										0×0	0			0	0×0	0
Access										ΑŠ	₹			₹	RW	₩
Name										IRPRSSEL	IRPRSEN			IRFILT	IRPW	IREN
Bit	Name	Reset	Access	Descrip	otion											
31:11	Reserved	To ensure cor tions	mpatibility v	with future	e devices,	alwa	ays w	rite b	oits to	0. Mc	ore in	forma	tion ir	1.2	Conve	n-
10:8	IRPRSSEL	0x0	RW	IrDA PF	RS Chanr	nel S	elect									
	A PRS can be used a	s input to the pu	ulse modula	ator instea	ad of TX.	This	value	sele	ects t	he cha	nnel	to use	€.			
	Value	Mode		Descrip	tion											_
	0	PRSCH0		PRS Ch	nannel 0 s	elec	ted									_
	1	PRSCH1		PRS Ch	nannel 1 s	elec	ted									
	2	PRSCH2		PRS Ch	nannel 2 s	elec	ted									
	3	PRSCH3		PRS Ch	nannel 3 s	elec	ted									
	4	PRSCH4		PRS Ch	nannel 4 s	elec	ted									
	5	PRSCH5		PRS Ch	nannel 5 s	elec	ted									
	6	PRSCH6		PRS Ch	nannel 6 s	elec	ted									
	7	PRSCH7		PRS Ch	nannel 7 s	elec	ted									_
7	IRPRSEN	0	RW	IrDA PF	RS Chanr	nel E	nable)								
	Enable the PRS chan	nel selected by	IRPRSSEL	as input	to IrDA m	nodu	le ins	tead	of T	Χ.						
6:4	Reserved	To ensure cor tions	mpatibility v	with future	e devices,	alwa	ays w	rite b	oits to	0. Mc	ore in	forma	tion ir	1.2	Conve	n-
3	IRFILT	0	RW	IrDA R	K Filter											
	Set to enable filter on	IrDA demodula	tor.													
	Value			Descrip	tion											_
	0			No filter	enabled											
	1				nabled. Ir[o be dete		ulse n	nust	be h	igh for	at le	ast 4 o	conse	cutiv	e clock	
2:1	IRPW	0x0	RW	IrDA TX	(Pulse W	/idth	1									
	Configure the pulse w	vidth generated l	by the IrDA	modulate	or as a fra	action	n of th	ie co	nfigu	red US	SAR	Γbit p	eriod.			
	Value	Mode		Descrip	tion											
	0	ONE		IrDA pu	lse width	is 1/	16 for	OVS	S=0 a	and 1/8	3 for	OVS=	1			_
	1	TWO		IrDA pu	lse width	is 2/	16 for	OVS	S=0 a	and 2/8	3 for	OVS=	1			

Bit	Name	Reset	Access	Description
	2	THREE		IrDA pulse width is 3/16 for OVS=0 and 3/8 for OVS=1
	3	FOUR		IrDA pulse width is 4/16 for OVS=0 and 4/8 for OVS=1
0	IREN	0	RW	Enable IrDA Module
	Enable IrDA module	and rout USAR	T signals th	rough it.

18.5.22 USARTn_INPUT - USART Input Register

Offset				Bit Po	siti	on													
0x058	33 28 29 27 26 26 27	22 23 24 25 22 23 24 25	20 20 19		15	4	13	12	7	10	o 0	∞ ι	_	9	2	4	3	7 7	- 0
Reset					0				•	,	0×0								 S
Access					RW O						RW 0		_ }						⊃ } }
					Ŕ							ì	2					Ĺ	<u> </u>
Name					CLKPRS						CLKPRSSEL		RXPRS						KAPROSEL
Bit	Name	Reset	Access	Description															
31:16	Reserved	To ensure cor tions	mpatibility v	vith future de	/ices	s, al	way	's wr	ite b	its to	o 0. N	/lore	int	forma	atioi	n in	1.2	Conv	en-
15	CLKPRS	0	RW	PRS CLK E	nab	le													
	When set, the PRS ch	nannel selected	as input to	CLK.															
14:11	Reserved	To ensure cor tions	mpatibility v	vith future de	/ices	s, al	way	's wr	ite b	its to	o 0. N	/lore	int	forma	atioi	n in	1.2	Conv	en-
10:8	CLKPRSSEL	0x0	RW	CLK PRS C	han	nel	Sel	ect											
	Select PRS channel a	s input to CLK.																	
	Value	Mode		Description															
	0	PRSCH0		PRS Chann	el 0	sele	ecte	d											
	1	PRSCH1		PRS Chann	el 1	sele	ecte	d											
	2	PRSCH2		PRS Chann	el 2	sele	ecte	d											
	3	PRSCH3		PRS Chann	el 3	sele	ecte	d											
	4	PRSCH4		PRS Chann	el 4	sele	ecte	d											
	5	PRSCH5		PRS Chann	el 5	sele	ecte	d											
	6	PRSCH6		PRS Chann	el 6	sele	ecte	d											
	7	PRSCH7		PRS Chann	el 7	sele	ecte	d											
7	RXPRS	0	RW	PRS RX En	able)													
	When set, the PRS ch	nannel selected	as input to	RX.															
6:3	Reserved	To ensure cor tions	npatibility v	vith future de	/ices	s, al	'way	's wr	ite b	its to	o 0. N	/lore	int	forma	atioi	n in	1.2	Conv	en-
2:0	RXPRSSEL	0x0	RW	RX PRS Ch	ann	el S	Sele	ct											
	Select PRS channel a	s input to RX.																	
	Value	Mode		Description															
	0	PRSCH0		PRS Chann	el 0	sele	ecte	d											
	1	PRSCH1		PRS Chann	el 1	sele	ecte	d											
	2	PRSCH2		PRS Chann	el 2	sele	ecte	d											
	3	PRSCH3		PRS Chann	el 3	sele	ecte	d											

Bit	Name	Reset	Access	Description
	4	PRSCH4		PRS Channel 4 selected
	5	PRSCH5		PRS Channel 5 selected
	6	PRSCH6		PRS Channel 6 selected
	7	PRSCH7		PRS Channel 7 selected

18.5.23 USARTn_I2SCTRL - I2S Control Register

Offset				Bit Position				
0x05C	30 39 29 29 29 29 29 29 29 29 29 29 29 29 29	22 23 24 25 22 23 23 24	5 2 2	8 7 7 9 4 5 7 7 0 6	2 0 4	4 ω	7	- 0
Reset				0x0		0	0	0
Access				RW		RW RW	RW	R W
Name				FORMAT		DELAY	JUSTIFY	MONO
Bit	Name	Reset	Access	Description				
31:11	Reserved	To ensure comp tions	patibility v	ith future devices, always write bits to 0). More informatio	n in 1.2	? Con	ven-
10:8	FORMAT	0x0	RW	I2S Word Format				
	Configure the data-wid	dth used internally	y for I2S	lata				
	Value	Mode		Description				
	0	W32D32		32-bit word, 32-bit data				
	1	W32D24M		32-bit word, 32-bit data with 8 lsb mask	ked			
	2	W32D24		32-bit word, 24-bit data				
	3	W32D16		32-bit word, 16-bit data				
	4	W32D8		32-bit word, 8-bit data				
	5	W16D16		16-bit word, 16-bit data				
	6	W16D8		16-bit word, 8-bit data				
	7	W8D8		8-bit word, 8-bit data				
7:5	Reserved	To ensure comp tions	patibility v	rith future devices, always write bits to 0). More informatio	n in 1.2	? Con	ven-
4	DELAY	0	RW	Delay on I2S Data				
	Set to add a one-cycle ard I2S format	e delay between a	a transitio	n on the word-clock and the start of the l	I2S word. Should	be set	for st	and-
3	DMASPLIT	0	RW	Separate DMA Request for Left/Righ	nt Data			
	When set DMA reques	sts for right-chanr	nel data a	re put on the TXBLRIGHT and RXDATA	AVRIGHT DMA re	quests	·	
2	JUSTIFY	0	RW	Justification of I2S Data				
	Determines whether the	he I2S data is left	or right ju	stified				
	Value	Mode		Description				
	0	LEFT		Data is left-justified				
	1	RIGHT		Data is right-justified				
1	MONO	0	RW	Stero or Mono				
	Switch between stered	o and mono mode	e. Set for	mono				

Bit	Name	Reset	Access	Description
0	EN	0	RW	Enable I2S Mode
	Set the U(S)ART in I2	S mode.		

18.5.24 USARTn_TIMING - Timing Register

Offset															Bi	t Po	siti	on														
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			0x0				0X0				0X0				0×0			•							•		•					
Access			W.				₽				X ≪				₽																	
Name			CSHOLD				ICS				CSSETUP				TXDELAY																	

Bit	Name	Reset	Access	Description
31	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
30:28	CSHOLD	0x0	RW	Chip Select Hold

Chip Select will be asserted after the end of frame transmission. When using TCMPn, normally set TIMECMPn_TSTART to DISABLE to stop general timer and to prevent unwanted interrupts.

Value	Mode	Description
0	ZERO	Disable CS being asserted after the end of transmission
1	ONE	CS is asserted for 1 baud-times after the end of transmission
2	TWO	CS is asserted for 2 baud-times after the end of transmission
3	THREE	CS is asserted for 3 baud-times after the end of transmission
4	SEVEN	CS is asserted for 7 baud-times after the end of transmission
5	TCMP0	CS is asserted after the end of transmission for TCMPVAL0 baud-times
6	TCMP1	CS is asserted after the end of transmission for TCMPVAL1 baud-times
7	TCMP2	CS is asserted after the end of transmission for TCMPVAL2 baud-times
Pesenved	To ensure comp	atibility with future devices, always write hits to 0. More information in 1.2 Conven

27	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
26:24	ICS	0x0	RW	Inter-character Spacing

Inter-character spacing after each TX frame while the TX buffer is not empty. When using USART_TIMECMPn, normally set TSTART to DISABLE to stop general timer and to prevent unwanted interrupts.

Value	Mode	Description
0	ZERO	There is no space between charcters
1	ONE	Create a space of 1 baud-times before start of transmission
2	TWO	Create a space of 2 baud-times before start of transmission
3	THREE	Create a space of 3 baud-times before start of transmission
4	SEVEN	Create a space of 7 baud-times before start of transmission
5	TCMP0	Create a space of before the start of transmission for TCMPVAL0 baud-times

				JSART - Universal Synchronous Asynchronous Receiver/Transmitte
Bit	Name	Reset	Access	Description
	6	TCMP1		Create a space of before the start of transmission for TCMPVAL1 baud-times
	7	TCMP2		Create a space of before the start of transmission for TCMPVAL2 baud-times
23	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
22:20	CSSETUP	0x0	RW	Chip Select Setup
				rame transmission. When using USART_TIMECMPn, normally set TSTART tunwanted interrupts.
	Value	Mode		Description
	0	ZERO		CS is not asserted before start of transmission
	1	ONE		CS is asserted for 1 baud-times before start of transmission
	2	TWO		CS is asserted for 2 baud-times before start of transmission
	3	THREE		CS is asserted for 3 baud-times before start of transmission
	4	SEVEN		CS is asserted for 7 baud-times before start of transmission
	5	TCMP0		CS is asserted before the start of transmission for TCMPVAL0 baud-times
	6	TCMP1		CS is asserted before the start of transmission for TCMPVAL1 baud-times
	7	TCMP2		CS is asserted before the start of transmission for TCMPVAL2 baudtimes
19	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
18:16	TXDELAY	0x0	RW	TX Frame Start Delay
				e transmission. When using USART_TIMECMPn, normally set TSTART to nwanted interrupts.
	Value	Mode	-	Description
	0	DISABLE		Disable - TXDELAY in USARTn_CTRL can be used for legacy
	1	ONE		Start of transmission is delayed for 1 baud-times
	2	TWO		Start of transmission is delayed for 2 baud-times
	3	THREE		Start of transmission is delayed for 3 baud-times
	4	SEVEN		Start of transmission is delayed for 7 baud-times
	5	TCMP0		Start of transmission is delayed for TCMPVAL0 baud-times
	6	TCMP1		Start of transmission is delayed for TCMPVAL1 baud-times
	7	TCMP2		Start of transmission is delayed for TCMPVAL2 baud-times
15:0	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-

18.5.25 USARTn_CTRLX - Control Register Extended

Offset					B	it Posi	tion_												
0x064	7 0 0 8 7	~ (0 l0 4	ε Z	- O		T T		8	0 -	- 0	T	Т							
Reset	30 31 32 34 53	25 25 24	23	2 2	19 17	9 4	5 4	13	7 7	- 6	6	- ω	7	9	5	4	က	7	_
-																	0	0	0 >
Access																	\X	₩ M	Z S
Name																	RTSINV	CTSEN	CTSINV
Bit	Name	Reset		Access	Descrip	otion													
31:4	Reserved	To ens	ure com	patibility	with future	e devic	es, ai	ways	write	bits	to (). Мо	re in	form	atio	on in	1.2	? Co	nve
3	RTSINV	0		RW	RTS Pi	n Invei	sion												
	When set, the R	TS pin polarity	is inver	ted.															
	Value				Descrip	tion													
	0				The US	n_RTS	pin i	s low	true										
	1				The US	n_RTS	pin i	s hig	h true										
2	CTSEN	0		RW	CTS Fu	ınction	Ena	bled											
	When set, frame	s in the TXRII	En will n	not be se	nt until link		or ood	earte	CTS	Δην	data	a in t	he T	X sh	ift r	عنمو	4		
	ue transmitting, t									, uiy					1111	cgis	ter v	WIII C	con
						ne TX s				7 ti iy							ster v	WIII C	con
	ue transmitting, t				load into th	ne TX s				7 11 19						- Gis	eter v	WIII C	con
	ue transmitting, t				load into the Descrip	tion	hift r	egist	er								eter v	WIII C	con
I	ve transmitting, t				Descrip	tion CTS unsmitti	hift ro	egist	er								eter v	WIII C	con
	ve transmitting, to Value	the next TXBL	JFn data	RW	Descrip Ingore (Stop tra	tion CTS unsmitti	hift ro	egist	er								eter v	WIII C	con
I	ve transmitting, t Value 0 1 CTSINV	the next TXBL	JFn data	RW	Descrip Ingore (Stop tra	tion CTS ansmitti	hift ro	egist	er								iter v	WIII C	con
1	ue transmitting, t Value 0 1 CTSINV When set, the C	the next TXBL	JFn data	RW	Descrip Ingore (Stop tra	tion CTS unsmitti n Invertion	ng w	hen (er CTS is								iter v	WIII C	con
1	ue transmitting, t Value 0 1 CTSINV When set, the CT Value	the next TXBL	JFn data	RW	Descrip Ingore (Stop tra CTS Pin	tion CTS unsmitti n Invertion n_CTS	ng w	hen (CTS is	s neg							iter v	WIII C	con
	ue transmitting, t Value 0 1 CTSINV When set, the C- Value 0	the next TXBL	JFn data	RW	Descrip Ingore (Stop tra CTS Pin Descrip The US	tion CTS ansmitti n Invertion n_CTS	ng w	hen (CTS is	s neg							iter v	WIII C	con
	ue transmitting, to Value 0 1 CTSINV When set, the Converted to Value 0 1	0 TS pin polarity	JFn data	RW ted.	Descrip Ingore (Stop tra CTS Pin Descrip The US The US	tion CTS ansmitti n Invertion n_CTS	ng w	hen (CTS is	s neg							iter v	WIII C	con
	ue transmitting, to Value 0 1 CTSINV When set, the Converted to Value 0 1	0 TS pin polarity	JFn data	RW ted.	Descrip Ingore (Stop tra CTS Pin Descrip The US The US	tion CTS Insmitti In Invertion In_CTS In_CTS In_CTS	ng w	hen (CTS is	s neg							iter v	WIII C	con
0	ue transmitting, to Value 0 1 CTSINV When set, the CT Value 0 1 DBGHALT	0 TS pin polarity	JFn data	RW ted.	Descrip Ingore (Stop tra CTS Pin Descrip The US The US Debug	tion CTS Insmitti In Invertion In_CTS In_CTS In_CTS In_CTS In_CTS	ng w	nen (CTS is	s neg	ate	d					iter v	WIII C	con

frames instead of just transmitting one frame.

18.5.26 USARTn_TIMECMP0 - Used to Generate Interrupts and Various Delays

Offset			Bit Position
0x068	330 29 28 27	22 23 23 24 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	0 1 2 3 4 4 5 6 6 7 8 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reset		0 000	0000
Access		W W	NA N
Name		RESTARTEN	TSTART
Bit	Name	Reset Access	Description
31:25	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
24	RESTARTEN	0 RW	Restart Timer on TCMP0
	Each TCMP0 ever	nt will reset and restart the tim	er
	Value		Description
	0		Disable the timer restarting on TCMP0
	1		Enable the timer restarting on TCMP0
23	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
22:20	TSTOP	0x0 RW	Source Used to Disable Comparator 0
	Select the source	which disables comparator 0	
	Value	Mode	Description
	0	TCMP0	Comparator 0 is disabled when the counter equals TCMPVAL and triggers a TCMP0 event
	1	TXST	Comparator 0 is disabled at the start of transmission
	2	RXACT	Comparator 0 is disabled on RX going going Active (default: low)
	3	RXACTN	Comparator 0 is disabled on RX going Inactive
19	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
18:16	TSTART	0x0 RW	Timer Start Source
	Source used to sta	art comparator 0 and timer	
	Value	Mode	Description
	0	DISABLE	Comparator 0 is disabled
		TXEOF	Comparator 0 and timer are started at TX end of frame
	1	IXEOF	·
	2	TXC	Comparator 0 and timer are started at TX Complete
			·

Bit	Name	Reset	Access	Description
15:8	Reserved	To ensure cortions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	TCMPVAL	0x00	RW	Timer Comparator 0
	•	,	0	TCMP0 event and sets the TCMP0 flag. This event can also be used to 0x00 represents 256 baud times.

18.5.27 USARTn_TIMECMP1 - Used to Generate Interrupts and Various Delays

Offset										E	Bit Po	ositio	on														
0x06C	30 29	28	26	25	24 2	23 23	1 2	20	19	18	: 19	15	4	13	12	7	10	6	ω	7	9	2	4	က	7	- 0	_
Reset		,			0		0x0			OXO	8		1	•		'	1	'		'		,	00×0		'	,	_
Access				i	չ		ΑŠ			<u>8</u>													S S				
Name					RESTARTEN		TSTOP			TSTART													TCMPVAL	ļ			_
Bit	Name			Res	et		Ac	ces	s I	Descri	ption	n .															
31:25	Reserved			To e		re co	mpati	ibility	y wi	th futui	e de	/ices	s, alv	vays	writ	te b	its to	0.	Mor	e in	forma	atio	n in	1.2	Con	ven-	l
24	RESTARTE	ΞN		0			RV	V		Restar	t Tim	ner o	n T	СМР	1												_
	Each TCMF	P1 eve	nt wil	ll rese	et an	d res	tart t	he ti	mer																		
	Value									Descri	otion																
	0									Disable	e the	time	r res	starti	ng o	n T	СМІ	P1									
	1									Enable	the t	imer	res	tartir	ng oi	n T	CMF	21									
23	Reserved			To e		re co	mpati	patibility with future devices, always write bits to 0. More information in 1.2 Conven-																			
22:20	TSTOP			0x0			RV	V	;	Source	e Use	d to	Dis	able	Co	mp	arat	tor 1	ı								_
	Select the s	source	whic	h disa	ables	s con	npara	itor 1	1																		
	Value			Mod	е					Descri	otion																
	0			TCM	1P1					Compa gers a					l wh	en t	the o	cour	nter	equa	als T	CM	IPVA	AL a	ınd t	rig-	
	1			TXS	Т					Compa	arator	1 is	disa	ablec	l at	TX :	start	TX	Eng	gine							
	2			RXA						Compa	arator	1 is	disa	abled	on	RX	goii	ng g	oing	g Ac	tive (def	ault:	lov	v)		
	3			RXA	CTN	1				Compa	arator	1 is	disa	ablec	on	RX	goii	ng Ir	nact	ive							
19	Reserved			To e		re co	mpati	ibility	y wi	th futui	e de	/ices	s, alv	vays	writ	te b	its to	0.	Mor	e in	forma	atio	n in	1.2	Con	ven-	
18:16	TSTART			0x0			RV	V		Timer	Start	Sou	ırce														
	Source use	d to sta	art co	ompa	rator	r 1 ar	nd tim	er																			
	Value			Mod	е					Descri	otion																
	0			DISA	ABLE	E				Compa	arator	1 is	disa	ablec	i												
	1			TXE	OF					Compa	arator	1 ar	nd tii	mer	are s	star	ted	at T	X er	nd o	f fran	ne					
	2			TXC					Compa																		
	3			RXA	CT					Compa low)	arator	1 ar	nd tii	mer	are s	star	ted	at R	X g	oing	goin	ıg A	ctive	e (d	efau	lt:	
	4			RXE	OF					Compa	arator	1 ar	nd tii	mer	are s	star	ted	at R	X e	nd o	f frar	ne					

Bit	Name	Reset	Access	Description
15:8	Reserved	To ensure co tions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	TCMPVAL	0x00	RW	Timer Comparator 1
	•	,	0	a TCMP1 event and sets the TCMP1 flag. This event can also be used to 0x00 represents 256 baud times.

18.5.28 USARTn_TIMECMP2 - Used to Generate Interrupts and Various Delays

Offset											В	it Po	sitio	on															
0x070	30 29	28	26	25	24	23	22	2 2	6	ξ α	1 5	16	15	14	13	12	11	9	6	ω	7	ی .	2	,	4 (n (N 4	- 0	
Reset		'			0			0000			0×0														00×0		'		_
Access					₩			≩ Y			∑														¥				-
Name					RESTARTEN			40ISI			TSTART														TCMPVAL				_
Bit	Name			Res	et		4	Acce	ss	De	scrip	otion																	
31:25	Reserved			To e		ıre d	comp	atibil	ity w	/ith	future	e dev	/ices	s, alv	vays	s wr	ite k	its t	o 0.	Мо	re i	infoi	mat	ion	in 1	1.2 (Conv	/en-	
24	RESTARTE	ΞN		0				₹W		Re	start	Tim	er c	n T	СМЕ	2													-
	Each TCM	P2 eve	nt wi	II rese	et a	nd r	esta	t the	time	er																			
	Value									De	scrip	tion																	
	0									Dis	sable	the	time	r res	start	ing (on T	СМ	P2										
	1									En	able	the t	imer	res	tarti	ng c	n T	СМІ	P2										
23	Reserved			To e		ıre d	сотр	atibil	tibility with future devices, always write bits to 0. More information in 1.2 Conven-									/en-	Ī										
22:20	TSTOP			0x0			ı	₹W		So	urce	Use	ed to	Dis	sabl	e Co	omp	oara	tor	2									
	Select the s	source	whic	ch dis	able	es c	ompa	arator	2																				
	Value			Mod	de					De	scrip	tion																	
	0			TCN	ИР2	!					mpa rs a l					d wh	nen	the	cou	nter	eq	uals	s TC	MF	PVA	L ar	ıd tri	g-	
	1			TXS	ST					Со	mpa	rator	2 is	disa	able	d at	TX	star	t TX	En	gin	e							
	2			RXA	ACT	•				Со	mpa	rator	2 is	disa	able	d on	RX	goi	ng (goin	g A	Activ	e (de	efa	ult:	low)			
	3			RXA	ACT	N				Со	mpa	rator	2 is	disa	able	d on	RX	goi	ng I	nac	tive	9							
19	Reserved			To e		ıre (сотр	atibil	ity w	/ith	future	e dev	/ices	s, alv	vays	s wr	ite Ł	its t	o 0.	Мо	re i	infoi	mat	ion	in 1	1.2 (Conv	/en-	
18:16	TSTART			0x0				₹W		Tir	ner S	Start	Sou	ırce															-
	Source use	d to st	art c	ompa	arato	or 2	and f	imer																					
	Value			Mod	de					De	scrip	tion																	
	0			DIS	ABL	.E				Со	mpa	rator	2 is	disa	able	d													
	1			TXE	OF					Со	mpa	rator	2 ar	nd ti	mer	are	sta	rted	at T	Хε	nd	of f	rame	Э					
	2			TXC						Со	mpa	rator	2 ar	nd ti	mer	are	sta	rted	at 1	TX C	Con	nple	te						
	3			RXA	ACT	•				Co	mpaı v)	rator	2 ar	nd ti	mer	are	sta	rted	at F	RX g	goir	ng g	oing	Ac	tive	(de	fault	t:	
	4			RXE	EOF					Со	mpa	rator	2 ar	nd ti	mer	are	sta	rted	at F	RX e	end	of f	rame	e					

Bit	Name	Reset	Access	Description
15:8	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	TCMPVAL	0x00	RW	Timer Comparator 2
	•		•	a TCMP2 event and sets the TCMP2 flag. This event can also be used to 0x00 represents 256 baud times.

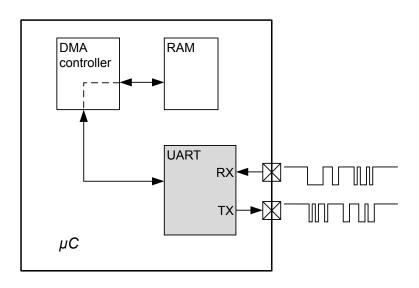
18.5.29 USARTn_ROUTEPEN - I/O Routing Pin Enable Register

Offset												Bit	Pos	ition														
0x074	30	29	28	26	25	23	22	21	20	19	∞ i	1	19	15	<u>+</u>	5 5	1 =	10	6	8	7	9	5	4	က	2	_	0
Reset			ı								1					1							0	0	0	0	0	0
Access																							S.	R M	S.	W.	₹	RW
Name																							RTSPEN	CTSPEN	CLKPEN	CSPEN	TXPEN	RXPEN
Bit	Name				Reset	t		Ac	ces	s [Desci	ript	tion															
31:6	Reser	ved			To en tions	sure	com	pati	ibility	y wit	h futu	ire	devi	ces, a	alw	ays v	vrite	bits	to 0	. Мо	re ir	nforn	natio	on in	1.2	? Co	nvei	7-
5	RTSP	EN			0			RW	V	F	RTS I	Pin	Ena	ble														
	When	set, th	ne RTS	S pin	of the	USA	RT i	is er	nable	ed.																		
	Value										Descr	ipti	on															_
	0									7	The U	Sn	_RT	S pin	is	disab	oled											
	1									7	The U	Sn	_RT	S pin	is	enab	led											_
4	CTSP	ΈN			0			RV	V	(CTS I	Pin	Ena	ble														
	When	set, th	ne CTS	S pin	of the	USA	RT i	is er	nable	ed.																		
	Value										Descr	ipti	on															
	0									7	The U	Sn	_CT	S pin	is	disab	oled											
	1									7	The U	Sn	_CT	S pin	is	enab	led											_
3	CLKP	EN			0			RW	V	(CLK I	Pin	Ena	ble														
	When	set, th	ne CLk	(pin	of the	USA	RT i	is er	nable	ed.																		
	Value										Descr	ipti	on															
	0									7	The U	Sn	_CL	K pin	is	disab	led											
	1									1	The U	Sn	_CL	K pin	is	enab	led											_
2	CSPE	:N			0			RV	V	(CS Pi	n E	Enab	le														
	When	set, th	ne CS	pin c	of the L	JSAF	RT is	ena	able	d.																		
	Value									Е	Descr	ipti	on															_
	0									7	The U	Sn	_CS	pin i	s d	isabl	ed											
	1									7	The U	Sn	_CS	pin i	s e	nable	ed											_
1	TXPE	N			0			RW	V	7	TX Pi	n E	nab	le														
	When	set, th	ne TX/	MOS	SI pin o	f the	USA	٩RT	is e	nab	led																	
	Value										Descr	ipti	on															_
	0									7	The U	(S))n_T	X (M	os	l) pin	is di	sab	led									
	1									7	The U	(S))n_T	X (M	os	l) pin	is er	nab	led									

Bit	Name	Reset	Access	Description			
0	RXPEN	0	RW	RX Pin Enable			
	When set, the RX/	MISO pin of the l	JSART is en	abled.			
	Value			Description			
	0			The U(S)n_RX (MISO) pin is disabled			
	1		The U(S)n_RX (MISO) pin is enabled				

18.5.30 USARTn_ROUTELOC0 - I/O Routing Location Register

		_			•			•													
Offset									Bit Po	sition											
0x078	30	29	27 26 26	25	23	1 2	50	$\frac{1}{2}$	16	2 4	13	12 5	19	တ ထ	_	9	2	4	က	. Z	- 0
Reset			00×0					0x00					0×00						0x00		
Access			Z Š					S.					S.						Z Š		
								O											O		
Name			CLKLOC					CSLOC					TXLOC						RXLOC		
Bit	Name			Reset		Acc	ess	Desci	ription)											
31:30	Reserv	ved .		To ens	ure co	mpatik	oility v	with futu	ıre dev	∕ices, a	lway	s write	e bits t	o 0. Mc	ore in	form	natic	n in	1.2 (Conve	en-
29:24	CLKLC	DC		0x00		RW		I/O Lo	catio	n											
	Decide	es the I	ocation o	f the US	ART C	CLK pir	٦.														
	Value			Mode				Descr	iption												
	0			LOC0				Locati	on 0												
	1			LOC1				Locati	on 1												
	2			LOC2				Locati	on 2												
	3			LOC3				Locati	on 3												
	4			LOC4				Location 4													
	5			LOC5				Locati	on 5												
	6			LOC6				Locati	on 6												
23:22	Reserv	ved		To ens	ure co	mpatik	oility v	with futu	ıre de	/ices, a	lway	s write	e bits t	o 0. Mo	ore in	form	natic	n in	1.2 (Conve	en-
21:16	CSLO	С		0x00		RW		I/O Lo	catio	n											
	Decide	es the I	ocation o	f the US	ART C	S pin.															
	Value			Mode				Descr	iption												
	0			LOC0				Locati	on 0												
	1			LOC1				Locati	on 1												
	2			LOC2				Locati	on 2												
	3			LOC3				Locati	on 3												
	4			LOC4				Locati	on 4												
	5			LOC5				Locati	on 5												
	6			LOC6				Locati	on 6												
15:14	Reserv	ved		To ens	ure co	mpatik	oility v	with futu	ıre dev	/ices, a	lway	s write	e bits t	o 0. Mc	ore in	form	natic	n in	1.2 (Conve	en-
13:8	TXLOC	0		0x00		RW		I/O Lo	catio	n											
	Decide	es the I	ocation o	f the US	ART T	X pin.															


				· · · · · · · · · · · · · · · · · · ·
Bit	Name	Reset	Access	Description
	Value	Mode		Description
	0	LOC0		Location 0
	1	LOC1		Location 1
	2	LOC2		Location 2
	3	LOC3		Location 3
	4	LOC4		Location 4
	5	LOC5		Location 5
	6	LOC6		Location 6
7:6	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
5:0	RXLOC	0x00	RW	I/O Location
	Decides the loca	ation of the USART R	X pin.	
	Value	Mode		Description
	0	LOC0		Location 0
	1	LOC1		Location 1
	2	LOC2		Location 2
	3	LOC3		Location 3
	4	LOC4		Location 4
	5	LOC5		Location 5

18.5.31 USARTn_ROUTELOC1 - I/O Routing Location Register

. 5.0.0 1	OOAINII_INO	J	J	"O IV	- Juli	a -	Juli	· · · · ·	.29.3																
Offset										Ві	it Posi	tion													
0x07C	30 29	28	26	25	23	22	21	10	2 8	17	16	4	13	15	11	10	6	∞	7	9	2	4	3	1	- 0
Reset																0x0							00×0		
Access																 ≷							Z K		
Name																RTSLOC							CTSLOC		
																<u>~</u>							Ö		
Bit	Name			Reset			Acce	ss	Des	crip	tion														
31:14	Reserved			To en	sure	comp	atibil	lity v	vith fu	ıture	devic	es, al	lway	/s v	vrite	bits	to 0.	Мо	re in	form	natio	on in	1.2 C	on	ven-
13:8	RTSLOC			0x00			RW		I/O	Loca	ation														
	Decides the	e locati	on o	f the US	SART	r RTS	S pin.																		
	Value			Mode					Des	cript	tion														
	0			LOC0					Loc	atior	า 0														
	1			LOC1					Loc	atior	า 1														
	2			LOC2					Loc	atior	ո 2														
	3			LOC3					Loc	atior	า 3														
	4			LOC4					Loc	atior	า 4														
	5			LOC5					Loc	atior	า 5														
	6			LOC6					Loc	atior	า 6														
7:6	Reserved			To ens	sure	сотр	atibii	lity v	vith fu	ıture	device	es, ai	lway	/S V	write	bits	to 0.	Мо	re in	form	natio	on in	1.2 C	on	ven-
5:0	CTSLOC			0x00			RW		I/O	Loc	ation														
	Decides the	e locati	on o	f the US	SART	ГСТ	S pin.																		
	Value			Mode					Des	cript	tion														
	0			LOC0					Loc	atior	า 0														
	1			LOC1					Loc	atior	า 1														
	2			LOC2					Loc	atior	า 2														
	3			LOC3					Loc	atior	า 3														
	4			LOC4					Loc	atior	า 4														
	5			LOC5					Loc	atior	n 5														
	6			LOC6					Loc	atior	า 6														
														_											

19. UART - Universal Asynchronous Receiver/ Transmitter

Quick Facts

What?

The UART is capable of high-speed asynchronous serial communication

Why?

Serial communication is frequently used in embedded systems and the UART allows efficient communication with a wide range of external devices.

How?

The UART has a wide selection of operating modes, frame formats and baud rates. The multi-processor mode allows the UART to remain idle when not addressed. Triple buffering and DMA support makes high data rates possible with minimal CPU intervention and it is possible to transmit and receive large frames while the MCU remains in EM1.

19.1 Introduction

The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module. It supports full- and half-duplex asynchronous UART communication.

19.2 Features

- · Full duplex and half duplex
- Separate TX/RX enable
- Separate receive / transmit multiple entry buffers, with additional separate shift registers
- Programmable baud rate, generated as an fractional division from the peripheral clock (HFPERCLK_{UARTn})
- · Max bit-rate
 - UART mode, peripheral clock rate/16, 8, 6, or 4
- · Asynchronous mode supports
 - · Majority vote baud-reception
 - · False start-bit detection
 - · Break generation/detection
 - · Multi-processor mode
- Configurable number of data bits, 4-16 (plus the parity bit, if enabled)
 - · HW parity bit generation and check
- · Configurable number of stop bits in asynchronous mode: 0.5, 1, 1.5, 2
- · HW collision detection
- · Multi-processor mode
- · Separate interrupt vectors for receive and transmit interrupts
- · Loopback mode
 - · Half duplex communication
 - · Communication debugging
- · PRS RX input
- · Hardware Flow Control
- · Automatic Baud Rate Detection

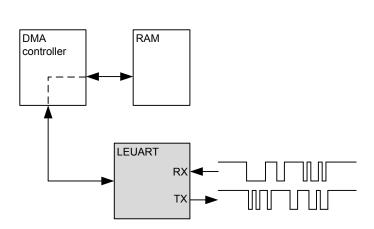
19.3 Functional Description

The UART is functionally equivalent to the USART with the exceptions defined in the following table. The register map and register descriptions are equal to those of the USART. See the USART chapter for detailed information on the operation of the UART.

Table 19.1. UART Limitations

Feature	Limitation
Synchronous operation	Not available. SYNC, CSMA, SMSDELAY, SSSEARLY, CSINV, CPOL and CPHA in USARTn_CTRL, and MASTEREN in USARTn_STATUS are always 0.
Transmission direction	Always LSB first. MSBF in USARTn_CTRL is always 0.
Chip-select	Not available. AUTOCS in USARTn_CTRL is always 0.
SmartCard mode	Not available. SCMODE in USARTn_CTRL is always 0.
IrDA	Not available. IREN in USARTn_IRCTRL is always 0.

19.4 Register Map


The register map of the UART is equivalent to the register map of the USART. See the USART chapter for complete information.

19.5 Register Description

The register description of the UART is equivalent to the register description of the USART except the limitations mentioned in Table 19.1 UART Limitations on page 689. See the USART chapter for complete information.

20. LEUART - Low Energy Universal Asynchronous Receiver/Transmitter

Quick Facts

What?

The LEUART provides full UART communication using a low frequency 32.768 kHz clock, and has special features for communication without CPU intervention.

Why?

It allows UART communication to be performed in low energy modes, using only a few μA during active communication and only 150 nA when waiting for incoming data.

How?

A low frequency clock signal allows communication with less energy. Using DMA, the LEUART can transmit and receive data with minimal CPU intervention. Special UART-frames can be configured to help control the data flow, further automating data transmission.

20.1 Introduction

The unique Low Energy UART (LEUART) is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud.

Even when the system is in low energy mode EM2 DeepSleep (with most core functionality turned off), the LEUART can wait for an incoming UART frame while having an extremely low energy consumption. When a UART frame is completely received, the CPU can quickly be woken up. Alternatively, multiple frames can be transferred via the Direct Memory Access (DMA) module into RAM memory before waking up the CPU.

Received data can optionally be blocked until a configurable start frame is detected. A signal frame can be configured to generate an interrupt indicating the end of a data transmission. The start frame and signal frame can be used in combination to handle higher level communication protocols.

Similarly, data can be transmitted in EM2 DeepSleep either on a frame-by-frame basis with data from the CPU or through use of the DMA.

The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimal software overhead and low energy consumption.

20.2 Features

- · Low energy asynchronous serial communications
- · Full/half duplex communication
- · Separate TX / RX enable
- · Separate double buffered transmit buffer and receive buffer
- · Programmable baud rate, generated as a fractional division of the LFBCLK
 - · Supports baud rates from 300 baud to 9600 baud
- · Can use a high frequency clock source for even higher baud rates
- Configurable number of data bits: 8 or 9 (plus parity bit, if enabled)
- · Configurable parity: off, even or odd
 - · HW parity bit generation and check
- · Configurable number of stop bits, 1 or 2
- · Capable of sleep-mode wake-up on received frame
 - · Either wake-up on any received byte or
 - · Wake up only on specified start and signal frames
- · Supports transmission and reception in EM0 Active, EM1 Sleep and EM2 DeepSleep with
 - Full DMA support
 - · Specified start-frame can start reception automatically
- IrDA modulator (pulse generator, pulse extender)
- · Multi-processor mode
- · Loopback mode
 - · Half duplex communication
 - · Communication debugging
- · PRS RX input

20.3 Functional Description

An overview of the LEUART module is shown in Figure 20.1 LEUART Overview on page 692.

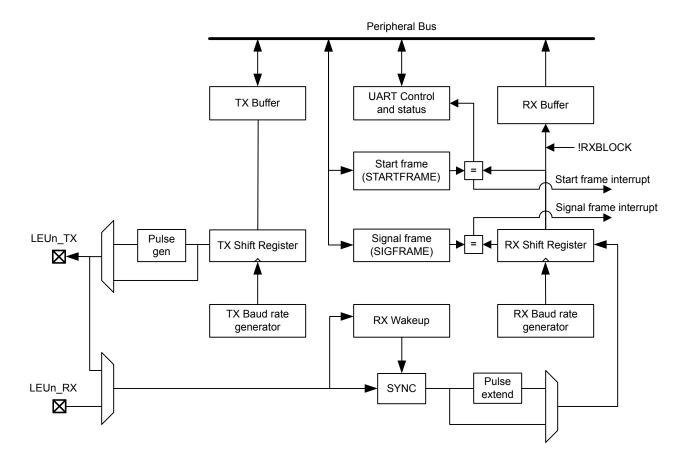


Figure 20.1. LEUART Overview

20.3.1 Frame Format

The frame format used by the LEUART consists of a set of data bits in addition to bits for synchronization and optionally a parity bit for error checking. A frame starts with one start-bit (S), where the line is driven low for one bit-period. This signals the start of a frame, and is used for synchronization. Following the start bit are 8 or 9 data bits and an optional parity bit. The data is transmitted with the least significant bit first. Finally, a number of stop-bits, where the line is driven high, end the frame. The frame format is shown in Figure 20.2 LEUART Asynchronous Frame Format on page 693.

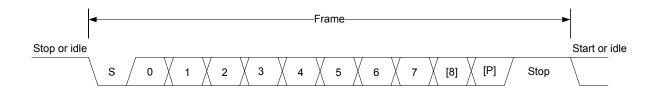


Figure 20.2. LEUART Asynchronous Frame Format

The number of data bits in a frame is set by DATABITS in LEUARTn_CTRL, and the number of stop-bits is set by STOPBITS in LEUARTn_CTRL. Whether or not a parity bit should be included, and whether it should be even or odd is defined by PARITY in LEUARTn_CTRL. For communication to be possible, all parties of an asynchronous transfer must agree on the frame format being used.

The frame format used by the LEUART can be inverted by setting INV in LEUARTn_CTRL. This affects the entire frame, resulting in a low idle state, a high start-bit, inverted data and parity bits, and low stop-bits. INV should only be changed while the receiver is disabled.

20.3.1.1 Parity Bit Calculation and Handling

Hardware automatically inserts parity bits into outgoing frames and checks the parity bits of incoming frames. The possible parity modes are defined in Table 20.1 LEUART Parity Bit on page 693. When even parity is chosen, a parity bit is inserted to make the number of high bits (data + parity) even. If odd parity is chosen, the parity bit makes the total number of high bits odd. When parity bits are disabled, which is the default configuration, the parity bit is omitted.

Table 20.1. LEUART Parity Bit

PARITY [1:0]	Description
00	No parity (default)
01	Reserved
10	Even parity
11	Odd parity

See 20.3.5.4 Parity Error for more information on parity bit handling.

20.3.2 Clock Source

The LEUART clock source is selected by the LFB bit field the CMU_LFBCLKSEL register. The clock is prescaled by the LEUARTn bitfield in the CMU_LFBPRESC0 register and enabled by the LEUARTn bit in the CMU_LFBCLKEN0. See Figure 10.2 CMU Overview - Low Frequency Portion on page 298 for a diagram of the clocking structure.

To use this module, the LE interface clock must be enabled in CMU HFBUSCLKENO, in addition to the module clock.

20.3.3 Clock Generation

The LEUART clock defines the transmission and reception data rate. The clock generator employs a fractional clock divider to allow baud rates that are not attainable by integral division of the 32.768 kHz clock that drives the LEUART.

The clock divider used in the LEUART is a 14-bit value, with a 9-bit integral part and a 5-bit fractional part. The baud rate of the LEUART is given by:

br = fLEUARTn / (1 + LEUARTn CLKDIV / 256)

Figure 20.3. LEUART Baud Rate Equation

where fLEUARTn is the clock frequency supplied to the LEUART. The value of LEUARTn_CLKDIV thus defines the baud rate of the LEUART. The integral part of the divider is right-aligned in the upper 24 bits of LEUARTn_CLKDIV and the fractional part is left-aligned in the lower 8 bits. The divider is thus a 256th of LEUARTn CLKDIV as seen in the equation.

As an example let us assume fLEUART = 22.5 kHz and the value of DIV in LEUARTn_CLKDIV is $0x0028 \text{ (LEUARTn_CLKDIV = } 0x00000140)$. The baud rate = 22.5 kHz / (1 + 0x140 / 256) = 22.5 kHz / 2.25 = 10 kHz.

For a desired baud rate br_{DESIRED}, LEUARTn_CLKDIV can be calculated by using:

LEUARTn_CLKDIV = 256 x (fLEUARTn/br_{DESIRED} - 1)

Figure 20.4. LEUART CLKDIV Equation

It's important to note that this equation results in a 32bit value for the LEUARTn_CLKDIV register but only bits [16:3] are valid and all others must be 0. For example if we have a 32 kHz clock and whish to achieve a baud rate of 10 kHz the equation above results in a LEUARTn_CLKDIV value of 0x233. However, the actual value of the register will be 0x230 since bits [2:0] cannot be set. This limits the best achievable acuracy. In this example the actual baud rate will be 32 kHz / (1+ 0x230 / 255) = 10.039 kHz instead of 32 kHz / (1+ 0x233 / 255) = 10.002 kHz.

Table 20.2 LEUART Baud Rates on page 694 lists a set of desired baud rates and the closest baud rates reachable by the LEUART with a 32.768 kHz clock source. It also shows the average baud rate error.

Desired baud rate	LEUARTn_CLKDIV	LEUARTn_CLKDIV/256	Actual Baud Rate	Error [%]
300	27704	108.21875	300.0217	0.01
600	13728	53.625	599.8719	-0.02
1200	6736	26.3125	1199.744	-0.02
2400	3240	12.65625	2399.487	-0.02
4800	1488	5.8125	4809.982	0.21
9600	616	2.40625	9619.963	0.21

Table 20.2. LEUART Baud Rates

20.3.4 Data Transmission

Data transmission is initiated by writing data to the transmit buffer using one of the methods described in 20.3.4.1 Transmit Buffer Operation. When the transmit shift register is empty and ready for new data, a frame from the transmit buffer is loaded into the shift register, and if the transmitter is enabled, transmission begins. When the frame has been transmitted, a new frame is loaded into the shift register if available, and transmission continues. If the transmit buffer is empty, the transmitter goes to an idle state, waiting for a new frame to become available. Transmission is enabled through the command register LEUARTn_CMD by setting TXEN, and disabled by setting TXDIS. When the transmitter is disabled using TXDIS, any ongoing transmission is aborted, and any frame currently being transmitted is discarded. When disabled, the TX output goes to an idle state, which by default is a high value. Whether or not the transmitter is enabled at a given time can be read from TXENS in LEUARTn_STATUS. After a transmission, when there is no more data in the shift register or transmit buffer, the TXC flag in LEUARTn_STATUS and the TXC interrupt flag in LEUARTn_IF are set, signaling that the transmitter is idle. The TXC status flag is cleared when a new byte becomes available for transmission, but the TXC interrupt flag must be cleared by software.

20.3.4.1 Transmit Buffer Operation

A frame can be loaded into the transmit buffer by writing to LEUARTn_TXDATA or LEUARTn_TXDATAX. Using LEUARTn_TXDATA allows 8 bits to be written to the buffer. If 9 bit frames are used, the 9th bit will in that case be set to the value of BIT8DV in LEUARTn_CTRL. To set the 9th bit directly and/or use transmission control, LEUARTn_TXDATAX must be used. When writing data to the transmit buffer using LEUARTn_TXDATAX, the 9th bit written to LEUARTn_TXDATAX overrides the value in BIT8DV, and alone defines the 9th bit that is transmitted if 9-bit frames are used.

If a write is attempted to the transmit buffer when it is not empty, the TXOF interrupt flag in LEUARTn_IF is set, indicating the overflow. The data already in the buffer is in that case preserved, and no data is written.

In addition to the interrupt flag TXC in LEUARTn_IF and the status flag TXC in LEUARTn_STATUS which are set when the transmitter becomes idle, TXBL in LEUARTn_STATUS and the TXBL interrupt flag in LEUARTn_IF are used to indicate the level of the transmit buffer. Whenever the transmit buffer becomes empty, these flags are set high. Both the TXBL status flag and the TXBL interrupt flag are cleared automatically when data is written to the transmit buffer.

There is also TXIDLE status in LEUART_STATUS which can be used to detect when the transmit state machine is in the idle state.

The transmit buffer, including the TX shift register can be cleared by setting command bit CLEARTX in LEUARTn_CMD. This will prevent the LEUART from transmitting the data in the buffer and shift register, and will make them available for new data. Any frame currently being transmitted will not be aborted. Transmission of this frame will be completed. An overview of the operation of the transmitter is shown in Figure 20.5 LEUART Transmitter Overview on page 695.

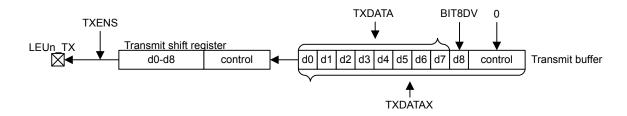


Figure 20.5. LEUART Transmitter Overview

20.3.4.2 Frame Transmission Control

The transmission control bits, which can be written using LEUARTn_TXDATAX, affect the transmission of the written frame. The following options are available:

- Generate break: By setting TXBREAK, the output will be held low during the first stop-bit period to generate a framing error. A receiver that supports break detection detects this state, allowing it to be used e.g. for framing of larger data packets. The line is driven high for one bit period before the next frame is transmitted so the next start condition can be identified correctly by the recipient. Continuous breaks lasting longer than an UART frame are thus not supported by the LEUART. GPIO can be used for this. Note that when AUTOTRI in LEUARTn_CTRL is used, the transmitter is not tristated before the high-bit after the break has been transmitted.
- · Disable transmitter after transmission: If TXDISAT is set, the transmitter is disabled after the frame has been fully transmitted.
- Enable receiver after transmission: If RXENAT is set, the receiver is enabled after the frame has been fully transmitted. It is enabled in time to detect a start-bit directly after the last stop-bit has been transmitted.

The transmission control bits in the LEUART cannot tristate the transmitter. This is performed automatically by hardware if AUTOTRI in LEUARTn_CTRL is set. See 20.3.7 Half Duplex Communication for more information on half duplex operation.

20.3.5 Data Reception

Data reception is enabled by setting RXEN in LEUARTn_CMD. When the receiver is enabled, it actively samples the input looking for a transition from high to low indicating the start bit of a new frame. When a start bit is found, reception of the new frame begins if the receive shift register is empty and ready for new data. When the frame has been received, it is pushed into the receive buffer, making the shift register ready for another frame of data, and the receiver starts looking for another start bit. If the receive buffer is full, the received frame remains in the shift register until more space in the receive buffer is available.

If an incoming frame is detected while both the receive buffer and the receive shift register are full, the data in the receive shift register is overwritten, and the RXOF interrupt flag in LEUARTn_IF is set to indicate the buffer overflow.

The receiver can be disabled by setting the command bit RXDIS in LEUARTn_CMD. Any frame currently being received when the receiver is disabled is discarded. Whether or not the receiver is enabled at a given time can be read out from RXENS in LEUARTn_STATUS.

The receive buffer,can be cleared by setting command bit CLEARRX in LEUARTn_CMD. This will make it avaliable for new data. Any frame currently being received will not be aborted and will become the first received frame when complete.

20.3.5.1 Receive Buffer Operation

When data becomes available in the receive buffer, the RXDATAV flag in LEUARTn_STATUS and the RXDATAV interrupt flag in LEUARTn_IF are set. Both the RXDATAV status flag and the RXDATAV interrupt flag are cleared by hardware when data is no longer available, i.e. when data has been read out of the buffer.

Data can be read from receive buffer using either LEUARTn_RXDATA or LEUARTn_RXDATAX. LEUARTn_RXDATA gives access to the 8 least significant bits of the received frame, while LEUARTn_RXDATAX must be used to get access to the 9th, most significant bit. The LEUARTn_RXDATAX register also contains status information regarding the frame.

When a frame is read from the receive buffer using LEUARTn_RXDATA or LEUARTn_RXDATAX, the frame is removed from the buffer, making room for a new one. If an attempt is done to read more frames from the buffer than what is available, the RXUF interrupt flag in LEUARTn IF is set to signal the underflow, and the data read from the buffer is undefined.

Frames can also be read from the receive buffer without removing the data by using LEUARTn_RXDATAXP, which gives access to the frame in the buffer including control bits. Data read from this register when the receive buffer is empty is undefined. No underflow interrupt is generated by a read using LEUARTn_RXDATAXP, i.e. the RXUF interrupt flag is never set as a result of reading from LEUARTn_RXDATAXP.

An overview of the operation of the receiver is shown in Figure 20.6 LEUART Receiver Overview on page 696.

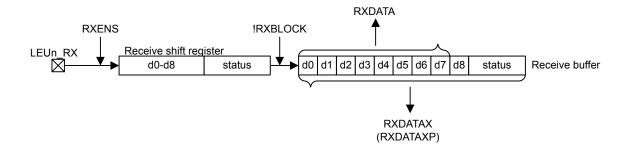


Figure 20.6. LEUART Receiver Overview

20.3.5.2 Blocking Incoming Data

When using hardware frame recognition, as detailed in 20.3.5.6 Programmable Start Frame, 20.3.5.7 Programmable Signal Frame, and 20.3.5.8 Multi-Processor Mode, it is necessary to be able to let the receiver sample incoming frames without passing the frames to software by loading them into the receive buffer. This is accomplished by blocking incoming data.

Incoming data is blocked as long as RXBLOCK in LEUARTn_STATUS is set. When blocked, frames received by the receiver will not be loaded into the receive buffer, and software is not notified by the RXDATAV bit in LEUARTn_STATUS or the RXDATAV interrupt flag in LEUARTn_IF at their arrival. For data to be loaded into the receive buffer, RXBLOCK must be cleared in the instant a frame is fully received by the receiver. RXBLOCK is set by setting RXBLOCKEN in LEUARTn_CMD and disabled by setting RXBLOCKDIS also in LEUARTn_CMD. There are two exceptions where data is loaded into the receive buffer even when RXBLOCK is set. The first is when an address frame is received when in operating in multi-processor mode as shown in 20.3.5.8 Multi-Processor Mode. The other case is when receiving a start-frame when SFUBRX in LEUARTn_CTRL is set; see 20.3.5.6 Programmable Start Frame

Frames received containing framing or parity errors will not result in the FERR and PERR interrupt flags in LEUARTn_IF being set while RXBLOCK is set. Hardware recognition is not applied to these erroneous frames, and they are silently discarded.

Note:

- If a frame is received while RXBLOCK in LEUARTn_STATUS is cleared, but stays in the receive shift register because the receive buffer is full, the received frame will be loaded into the receive buffer when space becomes available even if RXBLOCK is set at that time
- The overflow interrupt flag RXOF in LEUARTn_IF will be set if a frame in the receive shift register, waiting to be loaded into the receive buffer is overwritten by an incoming frame even though RXBLOCK is set.

20.3.5.3 Data Sampling

The receiver samples each incoming bit as close as possible to the middle of the bit-period. Except for the start-bit, only a single sample is taken of each of the incoming bits.

The length of a bit-period is given by 1 + LEUARTn_CLKDIV/256, as a number of 32.768 kHz clock periods. Let the clock cycle where a start-bit is first detected be given the index 0. The optimal sampling point for each bit in the UART frame is then given by the following equation:

 $S_{opt}(n) = n (1 + LEUARTn_CLKDIV/256) + LEUARTn_CLKDIV/512$

Figure 20.7. LEUART Optimal Sampling Point

where n is the bit-index.

Since samples are only done on the positive edges of the 32.768 kHz clock, the actual samples are performed on the closest positive edge, i.e. the edge given by the following equation:

 $S(n) = floor(n \times (1 + LEUARTn CLKDIV/256) + LEUARTn CLKDIV/512)$

Figure 20.8. LEUART Actual Sampling Point

The sampling location will thus have jitter according to difference between S_{opt} and S. The start-bit is found at n=0, then follows the data bits, any parity bit, and the stop bits.

If the value of the start-bit is found to be high, then the start-bit is discarded, and the receiver waits for a new start-bit.

20.3.5.4 Parity Error

When the parity bit is enabled, a parity check is automatically performed on incoming frames. When a parity error is detected in a frame, the data parity error bit PERR in the frame is set, as well as the interrupt flag PERR. Frames with parity errors are loaded into the receive buffer like regular frames.

PERR can be accessed by reading the frame from the receive buffer using the LEUARTn_RXDATAX register.

20.3.5.5 Framing Error and Break Detection

A framing error is the result of a received frame where the stop bit was sampled to a value of 0. This can be the result of noise and baud rate errors, but can also be the result of a break generated by the transmitter on purpose.

When a framing error is detected, the framing error bit FERR in the received frame is set. The interrupt flag FERR in LEUARTn_IF is also set. Frames with framing errors are loaded into the receive buffer like regular frames.

FERR can be accessed by reading the frame from the receive buffer using the LEUARTn_RXDATAX or LEUARTn_RXDATAXP registers.

20.3.5.6 Programmable Start Frame

The LEUART can be configured to start receiving data when a special start frame is detected on the input. This can be useful when operating in low energy modes, allowing other devices to gain the attention of the LEUART by transmitting a given frame.

When SFUBRX in LEUARTn_CTRL is set, an incoming frame matching the frame defined in LEUARTn_STARTFRAME will result in RXBLOCK in LEUARTn_STATUS being cleared. This can be used to enable reception when a specified start frame is detected. If the receiver is enabled and blocked, i.e. RXENS and RXBLOCK in LEUARTn_STATUS are set, the receiver will receive all incoming frames, but unless an incoming frame is a start frame it will be discarded and not loaded into the receive buffer. When a start frame is detected, the block is cleared, and frames received from that point, including the start frame, are loaded into the receive buffer.

An incoming start frame results in the STARTF interrupt flag in LEUARTn_IF being set, regardless of the value of SFUBRX in LEUARTn CTRL. This allows an interrupt to be made when the start frame is detected.

When 8 data-bit frame formats are used, only the 8 least significant bits of LEUARTn_STARTFRAME are compared to incoming frames. The full length of LEUARTn_STARTFRAME is used when operating with frames consisting of 9 data bits.

Note: The receiver must be enabled for start frames to be detected. In addition, a start frame with a parity error or framing error is not detected as a start frame.

20.3.5.7 Programmable Signal Frame

As well as the configurable start frame, a special signal frame can be specified. When a frame matching the frame defined in LEUARTn_SIGFRAME is detected by the receiver, the SIGF interrupt flag in LEUARTn_IF is set. As for start frame detection, the receiver must be enabled for signal frames to be detected.

One use of the programmable signal frame is to signal the end of a multi-frame message transmitted to the LEUART. An interrupt will then be triggered when the packet has been completely received, allowing software to process it. Used in conjunction with the programmable start frame and DMA, this makes it possible for the LEUART to automatically begin the reception of a packet on a specified start frame, load the entire packet into memory, and give an interrupt when reception of a packet has completed. The device can thus wait for data packets in EM2 DeepSleep, and only be woken up when a packet has been completely received.

A signal frame with a parity error or framing error is not detected as a signal frame.

20.3.5.8 Multi-Processor Mode

To simplify communication between multiple processors and maintain compatibility with the USART, the LEUART supports a multi-processor mode. In this mode the 9th data bit in each frame is used to indicate whether the content of the remaining 8 bits is data or an address.

When multi-processor mode is enabled, an incoming 9-bit frame with the 9th bit equal to the value of MPAB in LEUARTn_CTRL is identified as an address frame. When an address frame is detected, the MPAF interrupt flag in LEUARTn_IF is set, and the address frame is loaded into the receive register. This happens regardless of the value of RXBLOCK in LEUARTn_STATUS.

Multi-processor mode is enabled by setting MPM in LEUARTn_CTRL. The mode can be used in buses with multiple slaves, allowing the slaves to be addressed using the special address frames. An addressed slave, which was previously blocking reception using RXBLOCK, would then unblock reception, receive a message from the bus master, and then block reception again, waiting for the next message. See the USART for a more detailed example.

Note: The programmable start frame functionality can be used for automatic address matching, enabling reception on a correctly configured incoming frame.

An address frame with a parity error or a framing error is not detected as an address frame. The Start, Signal, and address frames should not be set to match the same frame since each of these uses separate synchronization to the peripherial clock domain.

20.3.6 Loopback

The LEUART receiver samples LEUn_RX by default, and the transmitter drives LEUn_TX by default. This is not the only configuration however. When LOOPBK in LEUARTn_CTRL is set, the receiver is connected to the LEUn_TX pin as shown in Figure 20.9 LEUART Local Loopback on page 699. This is useful for debugging, as the LEUART can receive the data it transmits, but it is also used to allow the LEUART to read and write to the same pin, which is required for some half duplex communication modes. In this mode, the LEUn_TX pin must be enabled as an output in the GPIO.

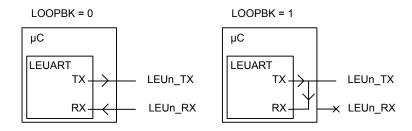


Figure 20.9. LEUART Local Loopback

20.3.7 Half Duplex Communication

When doing full duplex communication, two data links are provided, making it possible for data to be sent and received at the same time. In half duplex mode, data is only sent in one direction at a time. There are several possible half duplex setups, as described in the following sections.

20.3.7.1 Single Data-link

In this setup, the LEUART both receives and transmits data on the same pin. This is enabled by setting LOOPBK in LEUARTn_CTRL, which connects the receiver to the transmitter output. Because they are both connected to the same line, it is important that the LEUART transmitter does not drive the line when receiving data, as this would corrupt the data on the line.

When communicating over a single data-link, the transmitter must thus be tristated whenever not transmitting data. If AUTOTRI in LEUARTn_CTRL is set, the LEUART automatically tristates LEUn_TX whenever the transmitter is inactive. It is then the responsibility of the software protocol to make sure the transmitter is not transmitting data whenever incoming data is expected.

The transmitter can also be tristated from software by configuring the GPIO pin as an input and disabling the LEUART output on LEUn_TX.

Note: Another way to tristate the transmitter is to enable wired-and or wired-or mode in GPIO. For wired-and mode, outputting a 1 will be the same as tristating the output, and for wired-or mode, outputting a 0 will be the same as tristating the output. This can only be done on buses with a pull-up or pull-down resistor respectively.

20.3.7.2 Single Data-link With External Driver

Some communication schemes, such as RS-485 rely on an external driver. Here, the driver has an extra input which enables it, and instead of Tristating the transmitter when receiving data, the external driver must be disabled. The USART has hardware support for automatically turning the driver on and off. When using the LEUART in such a setup, the driver must be controlled by a GPIO. Figure 20.10 LEUART Half Duplex Communication with External Driver on page 700 shows an example configuration using an external driver.

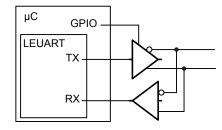


Figure 20.10. LEUART Half Duplex Communication with External Driver

20.3.7.3 Two Data-links

Some limited devices only support half duplex communication even though two data links are available. In this case software is responsible for making sure data is not transmitted when incoming data is expected.

20.3.8 Transmission Delay

By configuring TXDELAY in LEUARTn_CTRL, the transmitter can be forced to wait a number of bit-periods from when it is ready to transmit data, to when it actually transmits the data. This delay is only applied to the first frame transmitted after the transmitter has been idle. When transmitting frames back-to-back the delay is not introduced between the transmitted frames.

This is useful on half duplex buses, because the receiver always returns received frames to software during the first stop-bit. The bus may still be driven for up to 3 bit periods, depending on the current frame format. Using the transmission delay, a transmission can be started when a frame is received, and it is possible to make sure that the transmitter does not begin driving the output before the frame on the bus is completely transmitted.

To route the UART TX and RX signals to a pin first select the desired pins using the RXLOC and TXLOC fields in the LEUARTn_ROUTELOC0 register. Then enable the connection using TXPEN and RXPEN in the LEUARTn_ROUTPEN register. See the device data sheet for mappings between UART locations (LOC0, LOC1, etc.) and device pins (PA0, PA1, etc.).

20.3.9 PRS RX Input

In addition to receiving data on an external pin the LEUART can be configured to receive data directly from a PRS channel by setting RX_PRS in LEUARTn_INPUT. The PRS channel used can be selected using RX_PRS_SEL in LEUARTn_INPUT. See the PRS chapter for more details on the PRS block.

For example the output of a comparator could be routed to the LEUART through the PRS to allow for receiving a signal with low peak-to-peak voltage or a significant DC offset.

20.3.10 DMA Support

The LEUART has full DMA support in energy modes EM0 Active – EM2 DeepSleep. The DMA controller can write to the transmit buffer using the registers LEUARTn_TXDATA and LEUARTn_TXDATAX, and it can read from receive buffer using the registers LEUARTn_RXDATA and LEUARTn_RXDATAX. This enables single byte transfers and 9 bit data + control/status bits transfers both to and from the LEUART. The DMA will start up the HFRCO and run from this when it is waken by the LEUART in EM2. The HFRCO is disabled once the transaction is done.

A request for the DMA controller to read from the receive buffer can come from one of the following sources:

· Receive buffer full

A write request can come from one of the following sources:

- · Transmit buffer and shift register empty. No data to send.
- · Transmit buffer empty

In some cases, it may be sensible to temporarily stop DMA access to the LEUART when a parity or framing error has occurred. This is enabled by setting ERRSDMA in LEUARTn_CTRL. When this bit is set, the DMA controller will not get requests from the receive buffer if a framing error or parity error is detected in the received byte. The ERRSDMA bit applies only to the RX DMA.

When operating in EM2 DeepSleep, the DMA controller must be powered up in order to perform the transfer. This is automatically performed for read operations if RXDMAWU in LEUARTn_CTRL is set and for write operations if TXDMAWU in LEUARTn_CTRL is set. To make sure the DMA controller still transfers bits to and from the LEUART in low energy modes, these bits must thus be configured accordingly.

Note: When RXDMAWU or TXDMAWU is set, the system will not be able to go to EM2 DeepSleep/EM3 Stop before all related LEUART DMA requests have been processed. This means that if RXDMAWU is set and the LEUART receives a frame, the system will not be able to go to EM2 DeepSleep/EM3 Stop before the frame has been read from the LEUART. In order for the system to go to EM2 during the last byte transmission, LEUART_CTRL_TXDMAWU must be cleared in the DMA interrupt service routine. This is because TXBL will be high during that last byte transfer.

20.3.11 Pulse Generator/ Pulse Extender

The LEUART has an optional pulse generator for the transmitter output, and a pulse extender on the receiver input. These are enabled by setting PULSEEN in LEUARTn_PULSECTRL, and with INV in LEUARTn_CTRL set, they will change the output/input format of the LEUART from NRZ to RZI as shown in Figure 20.11 LEUART - NRZ vs. RZI on page 701.

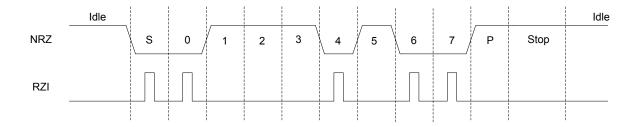


Figure 20.11. LEUART - NRZ vs. RZI

If PULSEEN in LEUARTn_PULSECTRL is set while INV in LEUARTn_CTRL is cleared, the output waveform will look like RZI shown in Figure 20.11 LEUART - NRZ vs. RZI on page 701, only inverted.

The width of the pulses from the pulse generator can be configured using PULSEW in LEUARTn_PULSECTRL. The generated pulse width is PULSEW + 1 cycles of the 32.768 kHz clock, which makes pulse width from 31.25µs to 500µs possible.

Since the incoming signal is only sampled on positive clock edges, the width of the incoming pulses must be at least two 32.768 kHz clock periods wide for reliable detection by the LEUART receiver. They must also be shorter than half a UART bit period.

At 2400 baud or lower, the pulse generator is able to generate RZI pulses compatible with the IrDA physical layer specification. The external IrDA device must generate pulses of sufficient length for successful two-way communication.

PULSEFILT in the LEUARTn_PULSECTRL register can be used to extend the minimum receive pulse width from 2 clock periods to 3 clock periods.

20.3.11.1 Interrupts

The interrupts generated by the LEUART are combined into one interrupt vector. If LEUART interrupts are enabled, an interrupt will be made if one or more of the interrupt flags in LEUARTn_IF and their corresponding bits in LEUART_IEN are set.

20.3.12 Register Access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers. Refer to 4.3 Access to Low Energy Peripherals (Asynchronous Registers) for a description on how to perform register accesses to Low Energy Peripherals.

The registers LEUARTn_FREEZE and LEUARTn_SYNCBUSY are used for synchronization of this peripheral.

20.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LEUARTn_CTRL	RW	Control Register
0x004	LEUARTn_CMD	W1	Command Register
0x008	LEUARTn_STATUS	R	Status Register
0x00C	LEUARTn_CLKDIV	RW	Clock Control Register
0x010	LEUARTn_STARTFRAME	RW	Start Frame Register
0x014	LEUARTn_SIGFRAME	RW	Signal Frame Register
0x018	LEUARTn_RXDATAX	R(a)	Receive Buffer Data Extended Register
0x01C	LEUARTn_RXDATA	R(a)	Receive Buffer Data Register
0x020	LEUARTn_RXDATAXP	R	Receive Buffer Data Extended Peek Register
0x024	LEUARTn_TXDATAX	W	Transmit Buffer Data Extended Register
0x028	LEUARTn_TXDATA	W	Transmit Buffer Data Register
0x02C	LEUARTn_IF	R	Interrupt Flag Register
0x030	LEUARTn_IFS	W1	Interrupt Flag Set Register
0x034	LEUARTn_IFC	(R)W1	Interrupt Flag Clear Register
0x038	LEUARTn_IEN	RW	Interrupt Enable Register
0x03C	LEUARTn_PULSECTRL	RW	Pulse Control Register
0x040	LEUARTn_FREEZE	RW	Freeze Register
0x044	LEUARTn_SYNCBUSY	R	Synchronization Busy Register
0x054	LEUARTn_ROUTEPEN	RW	I/O Routing Pin Enable Register
0x058	LEUARTn_ROUTELOC0	RW	I/O Routing Location Register
0x064	LEUARTn_INPUT	RW	LEUART Input Register

20.5 Register Description

Offset

20.5.1 LEUARTn_CTRL - Control Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Bit Position

0x000	5	S 8	ç	ç3	78	27	26	70	24	1	23	22	21	20	ì	19	18	17	16	15	4	13	12	7	9	တ	∞	7	9	2	4	က	7	_	0
Reset			·	·	•				•				•	•				(OXO	0	0	0	0	0	0	0	0	0	0	2	3	0	0		
Access																				:	≥ Y	S.	¥ N	N N	\ N	S.	₩ M	N N	S. ≷	₩ M	₩ M	<u> </u>		RW	Z N
Name																				i i	IXDELAY	TXDMAWU	RXDMAWU	BIT8DV	MPAB	MPM	SFUBRX	LOOPBK	ERRSDMA	N	STOPBITS	YTIAVd	-	DATABITS	AUTOTRI
Bit	N	lame						F	Rese	t			A	cce	SS	;	Des	crip	otio	n															
31:16	R	Reser	ve	d					o en	su	ire (со	тра	tibil	ity	W	ith fu	ıture	e de	vice	s, al	way	's Wr	ite t	oits i	to 0.	Мо	re ir	nforr	natio	on ir	า 1.2	Cor	nvei	n-
15:14	T.	XDE	LA	Υ				0)x0				R'	Ν			TX	Dela	ıy T	rans	smis	sio	n												
	С	onfig	jura	abl	e de	elay	be	for	e ne	W	trar	nsf	ers.	Fra	m	es	sen	t ba	ck-t	o-ba	ck a	re n	ot d	elay	ed.										
	V	'alue						١	/lode	:							Des	crip	tion																_
	0							١	ION	E							Fra	nes	are	trar	smi	tted	imn	nedi	atel	y									
	1							S	SING	LE	•						Tra	nsm	issi	on o	fnev	v fra	mes	s are	e de	laye	d by	/as	singl	e bit	t per	iod			
	2							С	OUI	ВL	E						Tra	nsm	issi	on o	f nev	v fra	mes	s are	e de	laye	d by	/ two	o bit	per	iods	1			
	3							Т	RIPI	LE							Tra	nsm	issi	on o	f nev	v fra	mes	s are	e de	laye	d by	/ thr	ee b	oit pe	erio	ds			_
13	T.	XDM	A۷	٧U				0					R	Ν			TX	DM/	A W	ake	ир														
	S	et to	wa	ake	the	DN	ИΑ	со	ntroll	ler	up	W	nen	in E	M	2 a	and	spac	e is	s ava	ilab	le in	the	trar	nsm	it bu	ffer.								
	V	'alue															Des	crip	tion																_
	0																			/I2, tl e in						ill n	ot ge	et re	eque	sts a	aboı	ut sp	ace	be-	•
	1																DM tran				e in	EM	2 for	the	req	ues	t abo	out :	spac	ce a	vaila	able i	n th	е	
12	R	XDM	lA۱	٧U				0)				R	Ν			RX	DM	A W	/ake	up														
	S	et to	wa	ake	the	DN	ИΑ	со	ntroll	ler	up	w	nen	in E	M	2 a	and	data	is	avail	able	in t	he r	ecei	ve b	ouffe	r.								
	V	'alue															Des	crip	tion																
	0																			/12, tl the					er w	ill n	ot ge	et re	que	sts a	aboı	ut da	ta b	eing	9
	1																DM fer	A is	ava	ilabl	e in	EM	2 for	the	req	ues	t ab	out (data	in t	he r	eceiv	/e b	uf-	
11	R	IT8D	V					0)				R'	Ν			Bit	8 De	efau	ılt V	alue														

then the value of BIT8DV is assigned to the 9th bit of the outgoing frame. If a frame is written with TXDATAX however, the

default value is overridden by the written value.

B.//	N.			
Bit	Name	Reset	Access	Description
10	MPAB	0	RW	Multi-Processor Address-Bit
		e of the multi-proc nulti-processor add		s bit. An incoming frame with its 9th bit equal to the value of this bit marks
9	MPM	0	RW	Multi-Processor Mode
	Set to enable mu	ılti-processor mod	e.	
	Value			Description
	0			The 9th bit of incoming frames have no special function
	1			An incoming frame with the 9th bit equal to MPAB will be loaded into the receive buffer regardless of RXBLOCK and will result in the MPAB interrupt flag being set
8	SFUBRX	0	RW	Start-Frame UnBlock RX
	Clears RXBLOC	K when the start-f	rame is found	in the incoming data. The start-frame is loaded into the receive buffer.
	Value			Description
	0			Detected start-frames have no effect on RXBLOCK
	1			When a start-frame is detected, RXBLOCK is cleared and the start-frame is loaded into the receive buffer
7	LOOPBK	0	RW	Loopback Enable
	Set to connect re	eceiver to LEUn_T	X instead of L	EUn_RX.
	Value			Description
	0			The receiver is connected to and receives data from LEUn_RX
	1			The receiver is connected to and receives data from LEUn_TX
6	ERRSDMA	0	RW	Clear RX DMA on Error
	When set, RX D	MA requests will b	e cleared on t	framing and parity errors.
	Value			Description
	0			Framing and parity errors have no effect on DMA requests from the LEUART
	1			RX DMA requests from the LEUART are disabled if a framing error or parity error occurs.
5	INV	0	RW	Invert Input and Output
	Set to invert the	output on LEUn_T	X and input o	n LEUn_RX.
	Value			Description
	0			A high value on the input/output is 1, and a low value is 0.
	1			A low value on the input/output is 1, and a high value is 0.
4	STOPBITS	0	RW	Stop-Bit Mode
	Determines the r present.	number of stop-bit	s used. Only ι	used when transmitting data. The receiver only verifies that one stop bit is
	Value	Mode		Description
		-		<u> </u>

Bit	Name	Reset	Access	Description
	0	ONE		One stop-bit is transmitted with every frame
	1	TWO		Two stop-bits are transmitted with every frame
3:2	PARITY	0x0	RW	Parity-Bit Mode
	Determines whet	her parity bits are	enabled, and	I whether even or odd parity should be used.
	Value	Mode		Description
	0	NONE		Parity bits are not used
	2	EVEN		Even parity are used. Parity bits are automatically generated and checked by hardware.
	3	ODD		Odd parity is used. Parity bits are automatically generated and checked by hardware.
1	DATABITS	0	RW	Data-Bit Mode
	This register sets	the number of da	ta bits.	
	Value	Mode		Description
	0	EIGHT		Each frame contains 8 data bits
	1	NINE		Each frame contains 9 data bits
0	AUTOTRI	0	RW	Automatic Transmitter Tristate
	When set, LEUn	_TX is tristated wh	enever the tr	ansmitter is inactive.
	Value			Description
	0			LEUn_TX is held high when the transmitter is inactive. INV inverts the inactive state.
	1			LEUn_TX is tristated when the transmitter is inactive

20.5.2 LEUARTn_CMD - Command Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset	Bit Position								
0x004	33 30 30 30 30 30 30 30 30 30 30 30 30 3	7	9	2	4	က	2	_	0
Reset		0	0	0	0	0	0	0	0
Access		N M	W W	W W	W W	W M	W1	M	×
Name		CLEARRX	CLEARTX	RXBLOCKDIS	RXBLOCKEN	TXDIS		RXDIS	RXEN

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co tions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7	CLEARRX	0	W1	Clear RX
	Set to clear receive	buffer and the R	K shift regis	ter.
6	CLEARTX	0	W1	Clear TX
	Set to clear transmit	buffer and the T	X shift regi	ster.
5	RXBLOCKDIS	0	W1	Receiver Block Disable
	Set to clear RXBLO	CK, resulting in a	II incoming	frames being loaded into the receive buffer.
4	RXBLOCKEN	0	W1	Receiver Block Enable
	Set to set RXBLOCI	K, resulting in all	incoming fr	ames being discarded.
3	TXDIS	0	W1	Transmitter Disable
	Set to disable transi	nission.		
2	TXEN	0	W1	Transmitter Enable
	Set to enable data t	ransmission.		
1	RXDIS	0	W1	Receiver Disable
	Set to disable data	eception. If a frai	me is unde	reception when the receiver is disabled, the incoming frame is discarded.
0	RXEN	0	W1	Receiver Enable
	Set to activate data	reception on LEU	Jn_RX.	

20.5.3 LEUARTn_STATUS - Status Register

Offset															Ві	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset																										_	0	_	0	0	0	0
Access																										2	22	22	22	22	22	2
Name																										TXIDLE	RXDATAV	TXBL	TXC	RXBLOCK	TXENS	RXENS

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure c tions	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
6	TXIDLE	1	R	TX Idle
	Set when TX is id	dle		
5	RXDATAV	0	R	RX Data Valid
	Set when data is	available in the red	ceive buffer.	Cleared when the receive buffer is empty.
4	TXBL	1	R	TX Buffer Level
	Indicates the leve	el of the transmit bu	uffer. Set who	en the transmit buffer is empty, and cleared when it is full.
3	TXC	0	R	TX Complete
	Set when a trans sion starts.	mission has compl	eted and no	more data is available in the transmit buffer. Cleared when a new transmis-
2	RXBLOCK	0	R	Block Incoming Data
		ceiver discards ince the frame has bee		s. An incoming frame will not be loaded into the receive buffer if this bit is a received.
1	TXENS	0	R	Transmitter Enable Status
	Set when the tran	nsmitter is enabled		
0	RXENS	0	R	Receiver Enable Status
	Set when the rec dress bit detection		he receiver r	must be enabled for start frames, signal frames, and multi-processor ad-

20.5.4 LEUARTn_CLKDIV - Clock Control Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	က	2	_	0
Reset			•	•								•		•	•			•	·		•	0000	2000	•	•	•	•				•	•
Access																						Š										
Name																						2	<u>:</u>									

Bit	Name	Reset	Access	Description							
31:17	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-							
16:3	DIV	0x0000	RW	Fractional Clock Divider							
		6:8] + [7:3]/32).	To make t	ART. Bits [7:3] are the fractional part and bits [16:8] are the integer part. he math easier the total divider can also be calculated as '([16:8] + [7:0]/							
2:0	Reserved	To ensure contions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Con								

20.5.5 LEUARTn_STARTFRAME - Start Frame Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Pc	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	5	4	8	2	_	0
Reset																												000×0				
Access																												R ≪				
Name																												STARTFRAME				

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure o	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	STARTFRAME	0x000	RW	Start Frame
		•		cted by the receiver, STARTF interrupt flag is set, and if SFUBRX is set, led into the RX buffer.

20.5.6 LEUARTn_SIGFRAME - Signal Frame Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	_	0
Reset			•					•				,				•		•					,					000x0				
Access																												ΑX				
Name																												SIGFRAME				

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	SIGFRAME	0x000	RW	Signal Frame
	When a frame matc	hing SIGFRAM	E is detected	by the receiver, SIGF interrupt flag is set.

20.5.7 LEUARTn_RXDATAX - Receive Buffer Data Extended Register (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset																	0	0										000×0				
Access																	2	22										22				
Name																	FERR	PERR										RXDATA				

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15	FERR	0	R	Receive Data Framing Error
	Set if data in buffer ha	as a framing erro	or. Can be	the result of a break condition.
14	PERR	0	R	Receive Data Parity Error
	Set if data in buffer ha	as a parity error.		
13:9	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
8:0	RXDATA	0x000	R	RX Data
	Use this register to a	ccess data read	from the LI	EUART. Buffer is cleared on read access.

20.5.8 LEUARTn_RXDATA - Receive Buffer Data Register (Actionable Reads)

Offset															Bi	t Po	sitio	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	8	7	9	5	4	3	2	_	0
Reset														•														0	000			
Access																												Ω	۷			
Name																												DYDATA	7			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	RXDATA	0x00	R	RX Data
	Use this register to act this register.	ccess data read	from LEUA	ART. Buffer is cleared on read access. Only the 8 LSB can be read using

20.5.9 LEUARTn_RXDATAXP - Receive Buffer Data Extended Peek Register

Offset	Bit Po	osition
0x020	33 30 30 30 30 30 30 30 30 30 30 30 30 3	5 4 5 7
Reset		0 000x0
Access		α α
Name		PERRP RXDATAP

Bit	Name	Reset	Access	Description						
31:16	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-						
15	FERRP	0	R	Receive Data Framing Error Peek						
	Set if data in buffer ha	as a framing erro	or. Can be	the result of a break condition.						
14 PERRP 0 R Receive Data Parity Error Peek										
	Set if data in buffer ha	as a parity error.								
13:9	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-						
8:0	RXDATAP	0x000	R	RX Data Peek						
	Use this register to a	cess data read	from the L	EUART.						

20.5.10 LEUARTn_TXDATAX - Transmit Buffer Data Extended Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset				Bit Posit	ion				
0x024	30 33 24 28 29 30 34	23 24 25 29 29 29 29 29 29 29 29 29 29 29 29 29	20 2	9 2 2 2	4	13	2 1	6 6	8 7 9 2 4 6 7 0
Reset				0	0	0			00000
Access				>	≥	>			3
				F	<u>-</u>	¥			<
Name				RXENAT	TXDISAT	TXBREAK			ТХВАТА
					<u> </u>				<u> </u>
Bit	Name	Reset	Access	Description					
31:16	Reserved	To ensure contions	mpatibility	with future device	es, al	way	s write b	its to 0.	More information in 1.2 Conven-
15	RXENAT	0	W	Enable RX Aft	er Tr	rans	mission	I	
	Set to enable recepti	ion after transmis	ssion.						
	Value			Description					
	0			The receiver is	not e	enal	oled after	the fra	me has been transmitted
	1			The receiver is transmitted	enal	bled	(setting	RXENS	s) after the frame has been
14	TXDISAT	0	W	Disable TX Af	ter T	rans	smissior	1	
	Set to disable transm	nitter directly afte	r transmiss	sion has compete	ed.				
	Value			Description					
	0			The transmitter	is n	ot di	sabled a	fter the	frame has been transmitted
	1			The transmitter transmitted	is di	isab	led (clea	ring TX	ENS) after the frame has been
13	TXBREAK	0	W	Transmit Data	as E	3rea	ık		
	Set to send data as a value of TXDATA.	a break. Recipier	nt will see a	a framing error or	a br	eak	condition	n deper	ding on its configuration and the
	Value			Description					
	0			The specified r	iumb	er o	f stop-bit	s are tr	ansmitted
	1				is ge	ner	ated afte		nsmitted to generate a break. A eak to allow the receiver to de-
12:9	Reserved	To ensure contions	mpatibility (with future device	es, al	way	s write b	its to 0.	More information in 1.2 Conven-
8:0	TXDATA	0x000	W	TX Data					
	Use this register to w	vrite data to the L	EUART. If	the transmitter is	ena	bled	d, a trans	fer will	be initiated at the first opportunity.

20.5.11 LEUARTn_TXDATA - Transmit Buffer Data Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	ω	7	9	5	4	3	2	~	0
Reset																												2	000			
Access																												}	>			
Name																												\	ל ל ל			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	TXDATA	0x00	W	TX Data
	This frame will be add cleared.	ded to the transr	nit buffer. (Only 8 LSB can be written using this register. 9th bit and control bits will be

20.5.12 LEUARTn_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	5	4	က	2	_	0
Reset																						0	0	0	0	0	0	0	0	0	_	0
Access																						22	2	œ	22	22	22	22	22	2	2	~
Name																						SIGF	STARTF	MPAF	FERR	PERR	TXOF	RXUF	RXOF	RXDATAV	TXBL	TXC

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure tions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
10	SIGF	0	R	Signal Frame Interrupt Flag
	Set when a signal f different synchronize		ed. MPA, STAI	RT, and SIGNAL should not be set to match the same frame since they use
9	STARTF	0	R	Start Frame Interrupt Flag
	Set when a start fra different synchroniz		I. MPA, STAR	T, and SIGNAL should not be set to match the same frame since they use
8	MPAF	0	R	Multi-Processor Address Frame Interrupt Flag
	Set when a multi-po frame since they us			tected. MPA, START, and SIGNAL should not be set to match the same
7	FERR	0	R	Framing Error Interrupt Flag
	Set when a frame v	vith a framing e	error is receive	d while RXBLOCK is cleared.
6	PERR	0	R	Parity Error Interrupt Flag
	Set when a frame v	vith a parity err	or is received	while RXBLOCK is cleared.
5	TXOF	0	R	TX Overflow Interrupt Flag
	Set when a write is	done to the tra	nsmit buffer w	hile it is full. The data already in the transmit buffer is preserved.
4	RXUF	0	R	RX Underflow Interrupt Flag
	Set when trying to	read from the re	eceive buffer v	vhen it is empty.
3	RXOF	0	R	RX Overflow Interrupt Flag
	Set when data is in new data.	coming while th	ne receive shif	t register is full. The data previously in shift register is overwritten by the
2	RXDATAV	0	R	RX Data Valid Interrupt Flag
	Set when data become	omes available	in the receive	buffer.
1	TXBL	1	R	TX Buffer Level Interrupt Flag
	Set when space be	comes availabl	e in the transr	nit buffer for a new frame.
0	TXC	0	R	TX Complete Interrupt Flag
	Set after a transmis	ssion when both	n the TX buffe	r and shift register are empty.

20.5.13 LEUARTn_IFS - Interrupt Flag Set Register

Offset															Ві	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			'		'								'	•	'	'	•					0	0	0	0	0	0	0	0			0
Access																						W1	×	W1	W1	W1	W1	W1	W1			W1
Name																						SIGF	STARTF	MPAF	FERR	PERR	TXOF	RXUF	RXOF			TXC

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
10	SIGF	0	W1	Set SIGF Interrupt Flag
	Write 1 to set the	e SIGF interrupt fla	g	
9	STARTF	0	W1	Set STARTF Interrupt Flag
	Write 1 to set the	e STARTF interrup	t flag	
8	MPAF	0	W1	Set MPAF Interrupt Flag
	Write 1 to set the	e MPAF interrupt fla	ag	
7	FERR	0	W1	Set FERR Interrupt Flag
	Write 1 to set the	e FERR interrupt fla	ag	
6	PERR	0	W1	Set PERR Interrupt Flag
	Write 1 to set the	e PERR interrupt fla	ag	
5	TXOF	0	W1	Set TXOF Interrupt Flag
	Write 1 to set the	e TXOF interrupt fla	ag	
4	RXUF	0	W1	Set RXUF Interrupt Flag
	Write 1 to set the	e RXUF interrupt fla	ag	
3	RXOF	0	W1	Set RXOF Interrupt Flag
	Write 1 to set the	e RXOF interrupt fla	ag	
2:1	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	TXC	0	W1	Set TXC Interrupt Flag
	Write 1 to set the	e TXC interrupt flag	J	

20.5.14	LEUARTn_IFC - I	nterrupt Flag Cl	ear Regist	er																
Offset					В	it Posit	ion													
0x034	330 29 28 28	25 25 24 23 23	22 22	19	18 7	15	41	13	1 =	10	ဝ	ω	7	9	5	4	က	2	_	0
Reset								,		0	0	0	0	0	0	0	0			0
Access										(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1			(R)W1
Name										SIGF	STARTF	MPAF	FERR	PERR	TXOF	RXUF	RXOF			TXC
Bit	Name	Reset	Acce	ess l	Descrip	otion														
31:11	Reserved	To ensure tions	e compatibi	lity wi	th future	e device	s, alı	ways v	vrite i	bits t	o 0.	Мо	re in	forn	natio	on in	1.2	? Coi	nven	1-
10	SIGF	0	(R)W	'1 (Clear S	IGF Inte	errup	ot Flag	ı											
		the SIGF interrup ust be enabled glo			eturns tl	ne value	of th	ne IF a	ind c	ears	the	cor	resp	ond	ling	inte	rrup	t flaç	gs	
9	STARTF	0	(R)W	'1	Clear S	TARTF	Inte	rrupt l	Flag											
		the STARTF inter ust be enabled glo			ng returr	ns the va	alue	of the	IF an	d cle	ears	the	corr	esp	ond	ing i	inter	rupt	flag	S
8	MPAF	0	(R)W	1 (Clear N	IPAF In	terru	ıpt Fla	g											
		the MPAF interru ust be enabled glo			returns	the valu	e of t	the IF	and (clear	s the	e co	rres	pon	ding	j inte	erru	pt fla	ags	
7	FERR	0	(R)W	'1	Clear F	ERR Int	terru	pt Fla	g											
		the FERR interru ust be enabled glo			returns	the valu	e of t	the IF	and o	elear	s the	e co	rres	pon	ding	j inte	errup	ot fla	igs	
6	PERR	0	(R)W	'1	Clear P	ERR In	terru	pt Fla	g											
		the PERR interru ust be enabled glo			returns	the valu	e of t	the IF	and (clear	s the	e co	rres	pon	ding	g inte	erru	pt fla	ags	
5	TXOF	0	(R)W	1 (Clear T	XOF Int	erru	pt Fla	g											
		the TXOF interrupust be enabled glo			eturns	the valu	e of t	he IF	and o	lear	s the	e co	rres	pon	ding	inte	errup	ot fla	ıgs	
	(0	,	,																

Write 1 to clear the RXUF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).

RXOF (R)W1 **Clear RXOF Interrupt Flag**

Write 1 to clear the RXOF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).

2:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-0 **TXC** 0

(R)W1 **Clear TXC Interrupt Flag**

Write 1 to clear the TXC interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).

3

20.5.15 LEUARTn_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	3	2	_	0
Reset																						0	0	0	0	0	0	0	0	0	0	0
Access																						₩ W	RW	R.	₹	W.	R.	RW	₩ M	₽	₩ M	RW
Name																						SIGF	STARTF	MPAF	FERR	PERR	TXOF	RXUF	RXOF	RXDATAV	TXBL	TXC

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure c	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
10	SIGF	0	RW	SIGF Interrupt Enable
	Enable/disable th	e SIGF interrupt		
9	STARTF	0	RW	STARTF Interrupt Enable
	Enable/disable th	ne STARTF interru	pt	
8	MPAF	0	RW	MPAF Interrupt Enable
	Enable/disable th	e MPAF interrupt		
7	FERR	0	RW	FERR Interrupt Enable
	Enable/disable th	e FERR interrupt		
6	PERR	0	RW	PERR Interrupt Enable
	Enable/disable th	e PERR interrupt		
5	TXOF	0	RW	TXOF Interrupt Enable
	Enable/disable th	e TXOF interrupt		
4	RXUF	0	RW	RXUF Interrupt Enable
	Enable/disable th	e RXUF interrupt		
3	RXOF	0	RW	RXOF Interrupt Enable
	Enable/disable th	e RXOF interrupt		
2	RXDATAV	0	RW	RXDATAV Interrupt Enable
	Enable/disable th	ne RXDATAV interi	rupt	
1	TXBL	0	RW	TXBL Interrupt Enable
	Enable/disable th	e TXBL interrupt		
0	TXC	0	RW	TXC Interrupt Enable
	Enable/disable th	e TXC interrupt		

20.5.16 LEUARTn_PULSECTRL - Pulse Control Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

01 111010						,,	• .		9										9) .				()		00				٠,٠			
Offset															Bi	it P	ositi	ion														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	5	4	3	2	_	Ī
Reset		•	•		•		•					•		•	•	•	•		,		•		·	•	•	•	0	0		ć) X	_
Access																											₩ W	ZW W		2	<u>}</u>	
Name																											PULSEFILT	PULSEEN			YOLSEW	
Bit	Na	ame					Re	set			Ac	ces	s	Des	crip	tio	n															
31:6	Name Reset Access Description Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 C tions													2 Co	nve	7																
5	Ρl	JLSI	EFIL	T			0				RV	/		Puls	se F	ilte	r															
	Er	nable	e a o	ne-d	cycle	e pu	lse f	ilter	for	puls	e ex	ten	der																			
	Va	alue												Des	cript	ion																_
	0													Filte tecti		disa	abled	d. Pı	ulse	es m	ust I	oe a	it lea	ast 2	сус	les I	ong	for	relia	ble	de-	
	1													Filte tecti		ena	blec	l. Pu	ılse	es m	ust b	e a	t lea	ıst 3	cycl	les lo	ong	for r	elia	ble o	de-	
4	Pl	JLSE	EEN				0				RV	/		Puls	se G	en	erat	or/E	xte	ende	r En	abl	е									_
	Fil	lter L	.EU	ART	out	put	thro	ugh	puls	e ge	ener	ator	an	d the	e LE	UA	RT i	nput	t th	roug	h th	е рі	ılse	exte	nde	r.						
3:0	Pl	JLSE	ΞW				0x0)			RV	/		Puls	se W	/idt	h															

Configure the pulse width of the pulse generator as a number of 32.768 kHz clock cycles.

The LEUART is not updated with the new written value.

20.5.17 LEUARTn_FREEZE - Freeze Register

1

FREEZE

Offset															Bi	it Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset					•	•				•		•			•	•		•	•									•				0
Access																																RW
Name																																REGFREEZE
-																																ш
Bit	Na	me					Re	set			Ac	ces	s I	Des	crip	tion			i													<u>.</u>
Bit 31:1		me serv	red					ens	ure	com								s, al	lwa	/s w	rite l	bits i	o 0.	Мо	re in	forn	natio	on in	1.2	? Coi	nver	
	Re			ZE			То	ens	ure	com		bility	/ wit	th fu	ture		rices				rite l	bits	^t o 0.	Moi	re in	forn	natio	on in	1.2	? Coi	nver	
31:1	Re RE	serv	REE	:he i			To tion 0 of th	ens 1s			pati RW	bility I	y wit	th fu	ture iste	r Up	dat	e Fı	ree	ze												7-
31:1	Re RE Wh	Serv EGFF	REE	:he i			To tion 0 of th	ens ns e LE			pati RW	bility I	/ wit	th fu	iste ers	r Up	dat	e Fı	ree	ze												7-

20.5.18 LEUARTn_SYNCBUSY - Synchronization Busy Register

Offset															Bi	t Po	siti	on														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset			'		'									•	'					'		•		'	0	0	0	0	0	0	0	0
Access																									2	œ	œ	œ	œ	œ	œ	<u>~</u>
Name																									PULSECTRL	TXDATA	TXDATAX	SIGFRAME	STARTFRAME	CLKDIV	CMD	CTRL

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7	PULSECTRL	0	R	PULSECTRL Register Busy
	Set when the value v	vritten to PULSE	CTRL is be	eing synchronized.
6	TXDATA	0	R	TXDATA Register Busy
	Set when the value v	vritten to TXDAT	A is being	synchronized.
5	TXDATAX	0	R	TXDATAX Register Busy
	Set when the value v	vritten to TXDAT	AX is bein	g synchronized.
4	SIGFRAME	0	R	SIGFRAME Register Busy
	Set when the value v	vritten to SIGFR	AME is bei	ng synchronized.
3	STARTFRAME	0	R	STARTFRAME Register Busy
	Set when the value v	vritten to START	FRAME is	being synchronized.
2	CLKDIV	0	R	CLKDIV Register Busy
	Set when the value v	vritten to CLKDI\	/ is being s	ynchronized.
1	CMD	0	R	CMD Register Busy
	Set when the value v	vritten to CMD is	being syn	chronized.
0	CTRL	0	R	CTRL Register Busy
	Set when the value v	vritten to CTRL is	s being syr	achronized.

20.5.19 LEUARTn_ROUTEPEN - I/O Routing Pin Enable Register

Offset															Bi	t Po	siti	on														
0x054	31	30	59	28	27	56	25	24	23	22	71	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	,
Reset																															0	,
Access																															Z.	i
Name																															TXPEN	֡֝֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֓
Bit	Na	me					Res	set			Acc	cess	s I	Des	crip	tion																
31:2	Re	serv	/ed				To tion		ure	com	pati	bility	v wit	h fu	ture	dev	ices	s, alı	way	'S WI	rite l	bits	to 0.	Мо	re ir	nforr	natio	on in	1.2	2 Co	nve	7-
1	TX	PEN	1				0				RW	/	7	ГΧ Р	Pin E	Enak	ole															
	Wł	nen :	set,	the '	TΧ μ	oin c	of the	e LE	UAI	RT is	s en	able	ed.																			
	Va	lue											[Desc	cript	ion																_
	0													The	LEU	Jn_T	Хр	in is	dis	able	ed											
	1												-	The	LEU	Jn_T	Хр	in is	en	able	d											
0	RX	(PEI	٧				0				RW	/	F	RX F	Pin I	Enal	ole															_
	Wł	nen :	set,	the	RX _l	pin d	of the	e LE	UA	RT i	s en	able	ed.																			
																																_

Description

The LEUn_RX pin is disabled

The LEUn_RX pin is enabled

Value

0

1

20.5.20 LEUARTn_ROUTELOC0 - I/O Routing Location Register

Offset												E	3it	Pos	itior	1														
0x058	30 37	78	27	56	25	4 8	23 23	3 5	2 5	2 4	5 6	2 5	=	9 ;	<u>ئ خ</u>	<u>+</u>	13	12	7	9	6	∞	7	9	2	4	ď	2	· [—	
Reset		•	•			•			•		•		•	•	•					00x0				•				00X0	•	
Access																				 } }								 } }		
Name																				S N								RXLOC		
Bit	Name				Rese	et		A	cce	ss	De	scri	ipti	on																
31:14	Reserved	'			To e		re co	отра	atibil	ity	with	futui	re d	devid	ces,	alı	ways	s W	rite	bits i	to 0.	. Мо	re ir	nforr	nati	on ii	n 1.	.2 C	onve	∍n-
13:8	TXLOC				0x00			F	W		I/C) Lo	cat	ion																
	Decides the	he Ic	catio	n of	f the L	.EU	ART	TX	pin.	Se	e the	de\	/ice	e da	a sh	ee	et for	r th	e m	appi	ng t	etw	een	loca	atior	n an	d p	hysi	cal p	oins.
	Value				Mode						De	escri	ptic	n																_
	0				LOC	0					Lo	catio	on ()																
	1				LOC	1					Lo	catio	on '	1																
	2				LOC	2					Lo	catio	on 2	2																
	3				LOC	3					Lo	catio	on (3																
	4				LOC	4					Lo	catio	on 4	4																
	5				LOC	5					Lo	catio	n (5																
7:6	Reserved	1			To e		re co	отра	atibil	ity	with	futui	re d	devid	ces,	alı	ways	S W	rite	bits i	to 0.	Мо	re ir	nforr	nati	on ii	n 1.	.2 C	onve	∍n-
5:0	RXLOC				0x00			F	W		I/C) Lo	cat	ion																
	Decides the	he Ic	catic	n of	f the L	.EU	ART	RX	pin.	Se	e the	e de	vice	e da	ta sh	e	et fo	r th	ie m	appi	ng I	oetw	een/	loc	atio	n an	ıd p	hysi	cal	pins
	Value				Mode	e					De	escri	ptic	n																—
	0				LOC	0					Lo	catio	on ()																
	1				LOC	1					Lo	catio	n ·	1																
	2				LOC	2					Lo	catio	on 2	2																
	3				LOC	3					Lo	catio	on (3																
	4				LOC	4					Lo	catio	on 4	4																
	5				LOC	5					Lo	catio	on (5																

20.5.21 LEUARTn_INPUT - LEUART Input Register

Offset															Bi	t Posi	tion	1														
0x064	2	- e	59	28	27	56	25	24	23	22	21	20	19	18	17	16	5 4	<u> </u>	$\frac{1}{2}$	7 2	- 5	10	တ	∞	7	9	2	4	က	7	_	0
Reset																											0				0×0	
Access																											W.				ΑW	
Name																											RXPRS				RXPRSSEL	
Bit	1	lame					Re	set			Ac	cess	s I	Des	crip	tion																
31:6	F	Reser	ved				To tion		ure	com	pati	bility	/ wit	th fu	ture	devic	es, a	alwa	ays ı	vrite	bit	s to	0.	Мо	re ir	nforr	natio	on ir	1.2	? Co	nve	n-
5	F	RXPR	S				0				RW	/	ı	PRS	RX	Enab	le															
	٧	Vhen	set,	the	PRS	6 ch	anne	el se	elect	ed a	as in	put	to R	X.																		
4:3	F	Reser	ved				To tion		ure	com	pati	bility	/ wit	th fu	ture	devic	es, a	alw	ays ı	vrite	bit	s to	0.	Мо	re ir	nfori	natio	on ir	1.2	? Co	nve	n-
2:0	F	RXPR	SSE	L			0x0)			RW	1	ı	RX I	PRS	Char	nel	Se	lect													
	5	Select	PR	S ch	ann	el as	s inp	out to	c Rλ	<.																						
	١	/alue					Мо	de					I	Des	cript	ion																_
	C)					PR	SCI	H0					PRS	Ch	annel	0 se	lec	ted													
	1						PR	SCI	1 1					PRS	Ch	annel	1 se	lec	ted													
	2	2					PR	SCI	1 2				ı	PRS	Ch	annel	2 se	lec	ted													
	3	2 PRSCH2 3 PRSCH3											Ī	PRS	Ch	annel	3 se	lec	ted													

PRS Channel 4 selected

PRS Channel 5 selected

PRS Channel 6 selected

PRS Channel 7 selected

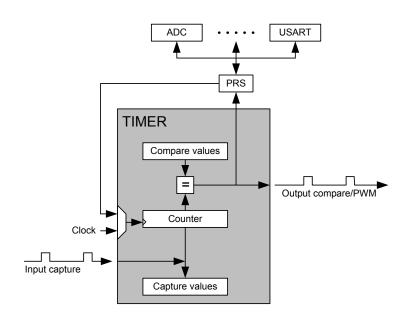
4

5

6

7

PRSCH4


PRSCH5

PRSCH6

PRSCH7

21. TIMER/WTIMER - Timer/Counter

Quick Facts

What?

The TIMER (Timer/Counter) keeps track of timing and counts events, generates output waveforms, and triggers timed actions in other peripherals.

Why?

Most applications have activities that need to be timed accurately with as little CPU intervention and energy consumption as possible.

How?

The flexible 16/32-bit timer can be configured to provide PWM waveforms with optional dead-time insertion (e.g. motor control) or work as a frequency generator. The timer can also count events and control other peripherals through the PRS, which offloads the CPU and reduces energy consumption.

21.1 Introduction

The general purpose timer has 3 or 4 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output.

The TIMER and WTIMER peripherals are identical except for the timer width. A TIMER is 16-bits wide and a WTIMER is 32-bits wide. Some timers also include a Dead-Time Insertion module suitable for motor control applications.

Refer to the device data sheet to determine the capabilities (capture/compare channel count and DTI) of each timer instance.

21.2 Features

- · 16/32-bit auto reload up/down counter
 - Dedicated 16/32-bit reload register which serves as counter maximum
- 3 or 4 Compare/Capture channels
 - · Individually configurable as either input capture or output compare/PWM
- · Multiple Counter modes
 - · Count up
 - · Count down
 - · Count up/down
 - · Quadrature Decoder
 - · Direction and count from external pins
- · 2x Count Mode
- · Counter control from PRS or external pin
 - Start
 - · Stop
 - · Reload and start
- · Inter-Timer connection
 - · Allows 32-bit counter mode
 - · Start/stop synchronization between several timers
- · Input Capture
 - · Period measurement
 - · Pulse width measurement
 - · Two capture registers for each capture channel
 - · Capture on either positive or negative edge
 - · Capture on both edges
 - · Optional digital noise filtering on capture inputs
- · Output Compare
 - · Compare output toggle/pulse on compare match
 - · Immediate update of compare registers
- PWM
 - · Up-count PWM
 - Up/down-count PWM
 - Predictable initial PWM output state (configured by SW)
 - Buffered compare register to ensure glitch-free update of compare values
- Clock sources
 - HFPERCLK_{TIMERn}
 - · 10-bit Prescaler
 - · External pin
 - · Peripheral Reflex System
- · Debug mode
 - · Configurable to either run or stop when processor is stopped (halt/breakpoint)
- Interrupts, PRS output and/or DMA request on:
 - · Underflow
 - · Overflow
 - · Compare/Capture event

- · Dead-Time Insertion Unit
 - · Complementary PWM outputs with programmable dead-time
 - · Dead-time is specified independently for rising and falling edge
 - · 10-bit prescaler
 - · 6-bit time value
 - · Outputs have configurable polarity
 - · Outputs can be set inactive individually by software.
 - · Configurable action on fault
 - · Set outputs inactive
 - · Clear output
 - · Tristate output
 - · Individual fault sources
 - · One or two PRS signals
 - Debugger
 - · Support for automatic restart
 - · Core lockup
 - · Configuration lock

21.3 Functional Description

An overview of the TIMER/WTIMER module is shown in Figure 21.1 TIMER/WTIMER Block Overview on page 725 and it consists of a 16/32 bit up/down counter with 3 Compare/Capture channels connected to pins TIMn_CC0, TIMn_CC1, and TIMn_CC2.

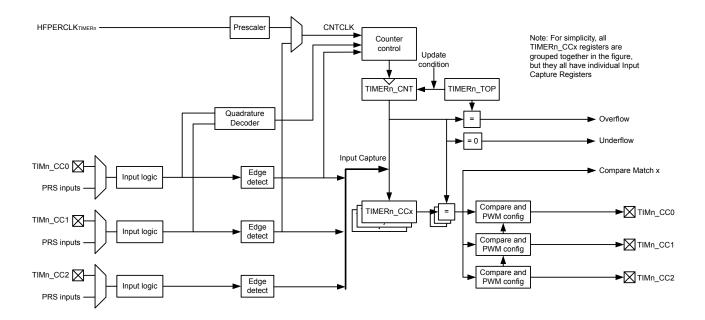


Figure 21.1. TIMER/WTIMER Block Overview

WTIMERs (Wide TIMERs) are 32-bit variants of the TIMER/WTIMER module.

21.3.1 Counter Modes

The timer consists of a counter that can be configured to the following modes:

- 1. Up-count: Counter counts up until it reaches the value in TIMERn_TOP, where it is reset to 0 before counting up again.
- 2. Down-count: The counter starts at the value in TIMERn_TOP and counts down. When it reaches 0, it is reloaded with the value in TIMERn_TOP.
- 3. Up/Down-count: The counter starts at 0 and counts up. When it reaches the value in TIMERn_TOP, it counts down until it reaches 0 and starts counting up again.
- 4. Quadrature Decoder: Two input channels where one determines the count direction, while the other pin triggers a clock event.

In addition, to the TIMER/WTIMER modes listed above, the TIMER/WTIMER also supports a 2x Count Mode. In this mode the counter increments/decrements by 2. The 2x Count Mode intended use is to generate 2x PWM frequency when the Compare/Capture channel is put in PWM mode. The 2x Count Mode can be enabled by setting the X2CNT bitfield in the TIMERn_CTRL register.

The counter value can be read or written by software at any time by accessing the CNT field in TIMERn_CNT.

21.3.1.1 Events

Overflow is set when the counter value shifts from TIMERn_TOP to the next value when counting up. In up-count mode and Quadrature Decoder mode the next value is 0. In up/down-count mode, the next value is TIMERn_TOP-1.

Underflow is set when the counter value shifts from 0 to the next value when counting down. In down-count mode and Quadrature Decoder mode, the next value is TIMERn_TOP. In up/down-count mode the next value is 1.

An update event occurs on overflow in up-count mode and on underflow in down-count or up/down count mode. Additionally, an update event also occurs on overflow and underflow in Quadrature Decoder Mode. This event is used to time updates of buffered values.

21.3.1.2 Operation

Figure 21.2 TIMER/WTIMER Hardware Timer/Counter Control on page 727 shows the hardware Timer/Counter control. Software can start or stop the counter by setting the START or STOP bits in TIMERn_CMD. The counter value (CNT in TIMERn_CNT) can always be written by software to any 16/32-bit value.

It is also possible to control the counter through either an external pin or PRS input. This is done through the input logic for the Compare/Capture Channel 0. The Timer/Counter allows individual actions (start, stop, reload) to be taken for rising and falling input edges. This is configured in the RISEA and FALLA fields in TIMERn_CTRL. The reload value is 0 in up-count and up/down-count mode and TOP in down-count mode.

The RUNNING bit in TIMERn_STATUS indicates if the timer is running or not. If the SYNC bit in TIMERn_CTRL is set, the timer is started/stopped/reloaded (external pin or PRS) when any of the other timers are started/stopped/reloaded.

Note: TIMER0 uses a different peripheral clock compared to the other timers. Therefore it can normally not be used to start/stop/reload other timers. When using SYNC in TIMERn_CTRL for other timers make sure DYSSYNCOUT in TIMER0_CTRL is set to prevent it from triggering start/stop/reload in other timers and resulting in undesired behavior. This restriction does not apply when both HFPERCLK and HFPERBCLK are non-prescaled versions of HFCLK.

The DIR bit in TIMERn_STATUS indicates the counting direction of the timer at any given time. The counter value can be read or written by software through the CNT field in TIMERn_CNT. In Up/Down-Count mode the count direction will be set to up if the CNT value is written by software.

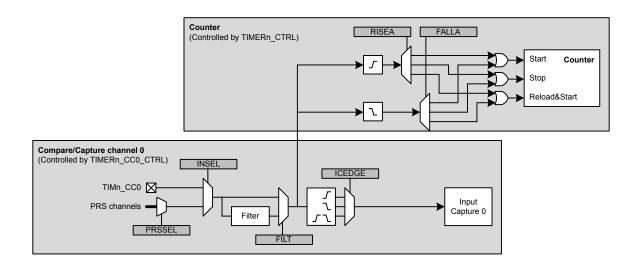


Figure 21.2. TIMER/WTIMER Hardware Timer/Counter Control

21.3.1.3 Clock Source

The counter can be clocked from several sources, which are all synchronized with the peripheral clock (HFPERCLK). See Figure 21.3 TIMER/WTIMER Clock Selection on page 728.

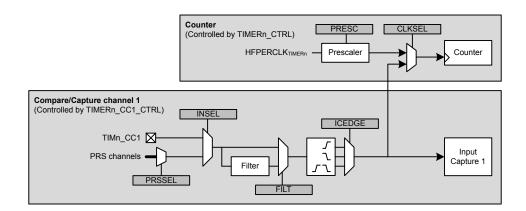


Figure 21.3. TIMER/WTIMER Clock Selection

Note: Not all TIMER instances are using the same peripheral clock. Normally the TIMER uses HFPERCLK_{TIMERn}, however TIMER0 supports higher frequencies and therefore uses HFPERBCLK_{TIMER0}. This chapter describes the general case and therefore uses HFPERCLK_{TIMERn} and f HFPERBCLK, which should be interpreted as HFPERBCLK_{TIMERn} and f HFPERBCLK, for TIMER0. 10.3.1.4 HFPERBCLK, HFPERBCLK, HFPERCCLK - High Frequency Peripheral Clocks shows which peripheral uses what peripheral clock.

21.3.1.4 Peripheral Clock (HFPERCLK)

The peripheral clock (HFPERCLK) can be used as a source with a configurable prescale factor of 2^PRESC, where PRESC is an integer between 0 and 10, which is set in PRESC in TIMERn_CTRL. However, if 2x Count Mode is enabled and the Compare/Capture channels are put in PWM mode, the CC output is updated on both clock edges so prescaling the peripheral clock will produce an incorrect result. The prescaler is stopped and reset when the timer is stopped.

21.3.1.5 Compare/ Capture Channel 1 Input

The timer can also be clocked by positive and/or negative edges on the Compare/Capture channel 1 input. This input can either come from the TIMn_CC1 pin or one of the PRS channels. The input signal must not have a higher frequency than f_{HFPERCLK}/3 when running from a pin input or a PRS input with FILT enabled in TIMERn_CCx_CTRL. When running from PRS without FILT, the frequency can be as high as f_{HFPERCLK}. Note that when clocking the timer from the same pulse that triggers a start (through RISEA/FALLA in TIMERn_CTRL), the starting pulse will not update the Counter Value.

21.3.1.6 Underflow/Overflow From Neighboring Timer

All timers are linked together (see Figure 21.4 TIMER/WTIMER Connections on page 729), allowing timers to count on overflow/ underflow from the lower numbered neighbouring timers to form a 32-bit or 48-bit timer. Note that all timers must be set to same count direction and less significant timer(s) can only be set to count up or down.

Note: TIMER0 uses a different peripheral clock compared to the other timers. Therefore it can normally not be used to start/stop/reload other timers. When using SYNC in TIMERn_CTRL for other timers make sure DYSSYNCOUT in TIMER0_CTRL is set to prevent it from triggering start/stop/reload in other timers and resulting in undesired behavior. This restriction does not apply when both HFPERCLK and HFPERBCLK are non-prescaled versions of HFCLK.

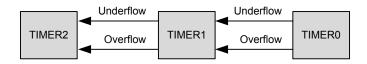


Figure 21.4. TIMER/WTIMER Connections

21.3.1.7 One-Shot Mode

By default, the counter counts continuously until it is stopped. If the OSMEN bit is set in the TIMERn_CTRL register, however, the counter is disabled by hardware on the first *update event* (see 21.3.1.1 Events). Note that when the counter is running with CC1 as clock source (0b01 in CLKSEL in TIMERn_CTRL) and OSMEN is set, a CC1 capture event will not take place on the *update event* (CC1 rising edge) that stops the timer.

21.3.1.8 Top Value Buffer

The TIMERn_TOP register can be altered either by writing it directly or by writing to the TIMER_TOPB (buffer) register. When writing to the buffer register the TIMERn_TOPB register will be written to TIMERn_TOP on the next *update event*. Buffering ensures that the TOP value is not set below the actual count value. The TOPBV flag in TIMERn_STATUS indicates whether the TIMERn_TOPB register contains data that has not yet been written to the TIMERn_TOP register (see Figure 21.5 TIMER/WTIMER TOP Value Update Functionality on page 729).

Note: When writing to TIMERn_TOP register directly, the TIMERn_TOPB register value will be invalidated and the TOPBV flag will be cleared. This prevents TIMERn_TOP register from being immediately updated by an existing valid TIMERn_TOPB value during the next *update event*.

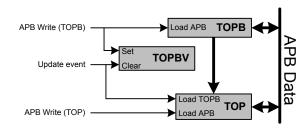


Figure 21.5. TIMER/WTIMER TOP Value Update Functionality

21.3.1.9 Quadrature Decoder

Quadrature Decoding mode is used to track motion and determine both rotation direction and position. The Quadrature Decoder uses two input channels that are 90 degrees out of phase (see Figure 21.6 TIMER/WTIMER Quadrature Encoded Inputs on page 730).

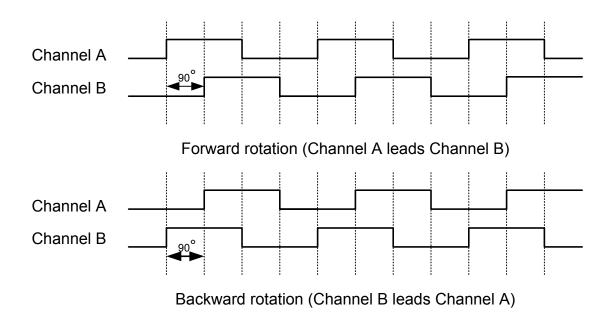


Figure 21.6. TIMER/WTIMER Quadrature Encoded Inputs

In the timer these inputs are tapped from the Compare/Capture channel 0 (Channel A) and 1 (Channel B) inputs before edge detection. The Timer/Counter then increments or decrements the counter, based on the phase relation between the two inputs. The Quadrature Decoder Mode supports two channels, but if a third channel (Z-terminal) is available, this can be connected to an external interrupt and trigger a counter reset from the interrupt service routine. By connecting a periodic signal from another timer as input capture on Compare/Capture Channel 2, it is also possible to calculate speed and acceleration.

Note: In Quadrature Decoder mode, overflow and underflow triggers an update event.

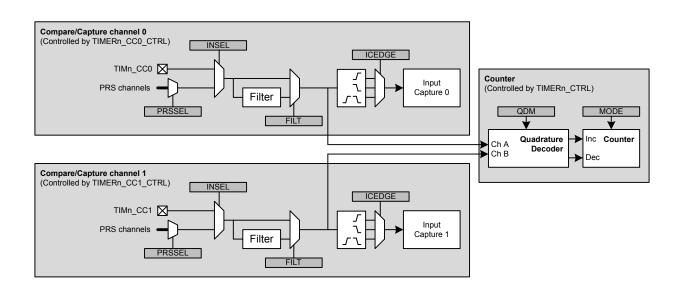


Figure 21.7. TIMER/WTIMER Quadrature Decoder Configuration

The Quadrature Decoder can be set in either X2 or X4 mode, which is configured in the QDM bit in TIMERn_CTRL. See Figure 21.7 TIMER/WTIMER Quadrature Decoder Configuration on page 730

21.3.1.10 X2 Decoding Mode

In X2 Decoding mode, the counter increments or decrements on every edge of Channel A, see Table 21.1 TIMER/WTIMER Counter Response in X2 Decoding Mode on page 731 and Figure 21.8 TIMER/WTIMER X2 Decoding Mode on page 731.

Table 21.1. TIMER/WTIMER Counter Response in X2 Decoding Mode

Channel B	Chan	nel A
Cildililei B	Rising	Falling
0	Increment	Decrement
1	Decrement	Increment

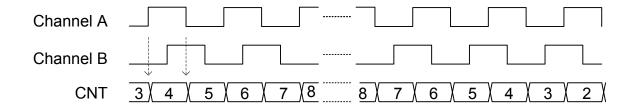


Figure 21.8. TIMER/WTIMER X2 Decoding Mode

21.3.1.11 X4 Decoding Mode

In X4 Decoding mode, the counter increments or decrements on every edge of Channel A and Channel B, see Figure 21.9 TIMER/WTIMER X4 Decoding Mode on page 731 and Table 21.2 TIMER/WTIMER Counter Response in X4 Decoding Mode on page 731.

Table 21.2. TIMER/WTIMER Counter Response in X4 Decoding Mode

Opposite Channel	Chan	nel A	Chan	nnel B
	Rising	Falling	Rising	Falling
Channel A = 0			Decrement	Increment
Channel A = 1			Increment	Decrement
Channel B = 0	Increment	Decrement		
Channel B = 1	Decrement	Increment		

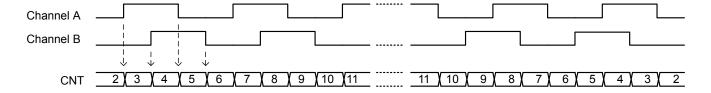


Figure 21.9. TIMER/WTIMER X4 Decoding Mode

21.3.1.12 TIMER/WTIMER Rotational Position

To calculate a position Figure 21.10 TIMER/WTIMER Rotational Position Equation on page 732 can be used.

$$pos^{\circ} = (CNT/X \times N) \times 360^{\circ}$$

Figure 21.10. TIMER/WTIMER Rotational Position Equation

where X = Encoding type and N = Number of pulses per revolution.

21.3.2 Compare/Capture Channels

The timer contains 3 Compare/Capture channels, which can be configured in the following modes:

- 1. Input Capture
- 2. Output Compare
- 3. PWM

21.3.2.1 Input Pin Logic

Each Compare/Capture channel can be configured as an input source for the Capture Unit or as external clock source for the timer (see Figure 21.11 TIMER/WTIMER Input Pin Logic on page 732). Compare/Capture channels 0 and 1 are the inputs for the Quadrature Decoder Mode. The input channel can be filtered before it is used, which requires the input to remain stable for 5 cycles in a row before the input is propagated to the output.

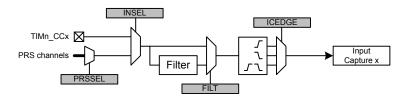


Figure 21.11. TIMER/WTIMER Input Pin Logic

21.3.2.2 Compare/Capture Registers

The Compare/Capture channel registers are prefixed with TIMERn_CCx_, where the x stands for the channel number. Since the Compare/Capture channels serve three functions (input capture, compare, PWM), the behavior of the Compare/Capture registers (TIMERn_CCx_CCV) and buffer registers (TIMERn_CCx_CCVB) change depending on the mode the channel is set in.

21.3.2.3 Input Capture

In Input Capture Mode, the counter value (TIMERn_CNT) can be captured in the Compare/Capture Register (TIMERn_CCx_CCV) (see Figure 21.12 TIMER/WTIMER Input Capture on page 733). The CCPOL bits in TIMERn_STATUS indicate the polarity of the edge that triggered the capture in TIMERn CCx CCV.

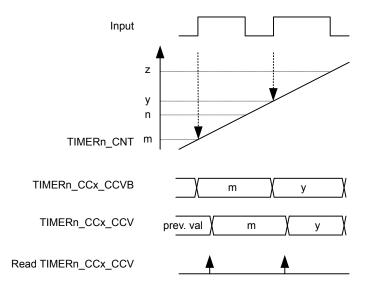


Figure 21.12. TIMER/WTIMER Input Capture

The Compare/Capture Buffer Register (TIMERn_CCx_CCVB) and the TIMERn_CCx_CCV register form double-buffered capture registers allowing two subsequent capture events to take place before a read-out is required. The first capture can always be read from TIMERn_CCx_CCV, and reading this address will load the next capture value into TIMERn_CCx_CCV from TIMERn_CCx_CCVB if it contains valid data. The CC value can be read without altering the FIFO contents by reading TIMERn_CCx_CCVP. TIMERn_CCx_CCVB can also be read without altering the FIFO contents. The ICV flag in TIMERn_STATUS indicates if there is a valid unread capture in TIMERn_CCx_CCV. In this mode, TIMERn_CCx_CCV is read-only.

In the case where a capture is triggered while both TIMERn_CCx_CCV and TIMERn_CCx_CCVB contain unread capture values, the buffer overflow interrupt flag (ICBOF in TIMERn_IF) will be set. On overflow new capture values will overwrite the value in TIMERn_CCx_CCVB and the value of TIMERn_CCx_CCV will remain unchanged. TIMERn_CCx_CCV will always contain the oldest unread value and TIMERn_CCx_CCVB will always contain the newest value.

Note: In input capture mode, the timer will only trigger interrupts when it is running.

21.3.2.4 Period/Pulse-Width Capture

Period and/or pulse-width capture can only be possible with Channel 0 (CC0), because this is the only channel that can start and stop the timer. This can be done by setting the RISEA field in TIMERn_CTRL to Clear&Start, and select the wanted input from either external pin or PRS, see Figure 21.13 TIMER/WTIMER Period and/or Pulse width Capture on page 734. For period capture, the Compare/Capture Channel should then be set to input capture on a rising edge of the same input signal. To capture the width of a high pulse, the Compare/Capture Channel should be set to capture on a falling edge of the input signal. To measure the low pulse-width of a signal, opposite polarities should be chosen.

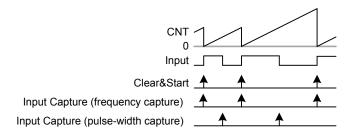


Figure 21.13. TIMER/WTIMER Period and/or Pulse width Capture

21.3.2.5 Compare

Each Compare/Capture channel contains a comparator which outputs a compare match if the contents of TIMERn_CCx_CCV matches the counter value, see Figure 21.14 TIMER/WTIMER Block Diagram Showing Comparison Functionality on page 735. In compare mode, each compare channel can be configured to either set, clear or toggle the output on an event (compare match, overflow or underflow). The output from each channel is represented as an alternative function on the port it is connected to, which needs to be enabled for the CC outputs to propagate to the pins.

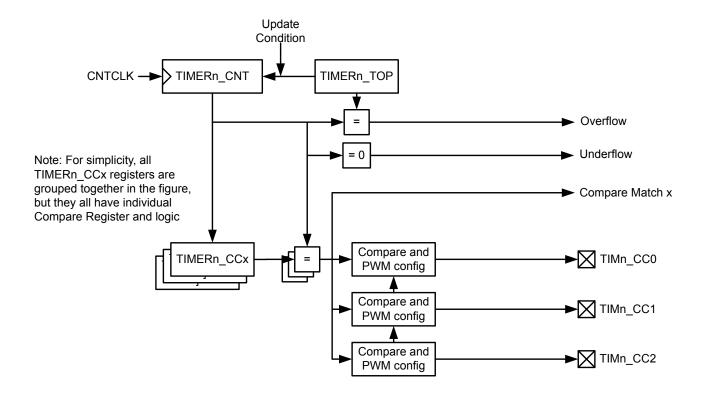


Figure 21.14. TIMER/WTIMER Block Diagram Showing Comparison Functionality

The compare output is delayed by one cycle to allow for full 0% to 100% PWM generation. If occurring in the same cycle, match action will have priority over overflow or underflow action.

The input selected (through PRSSEL, INSEL and FILTSEL in TIMERn_CCx_CTRL) for the CC channel will also be sampled on compare match and the result is found in the CCPOL bits in TIMERn_STATUS. It is also possible to configure the CCPOL to always track the inputs by setting ATI in TIMERn_CTRL.

The COIST bit in TIMERn_CCx_CTRL is the initial state of the compare/PWM output. The COIST bit can also be used as an initial value to the compare outputs on a reload-start when RSSCOIST is set in TIMERn_CTRL. Also the resulting output can be inverted by setting OUTINV in TIMERn_CCx_CTRL. It is recommended to turn off the CC channel before configuring the output state to avoid any pulses on the output. The CC channel can be turned off by setting MODE to OFF in TIMER_CCx_CTRL. The following figure shows the output logic for the TIMER/WTIMER module.

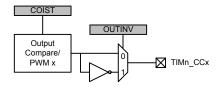


Figure 21.15. TIMER/WTIMER Output Logic

21.3.2.6 Compare Mode Registers

When running in Output Compare or PWM mode, the value in TIMERn_CCx_CCV will be compared against the count value. In Compare mode the output can be configured to toggle, clear or set on compare match, overflow, and underflow through the CMOA, COFOA and CUFOA fields in TIMERn_CCx_CTRL. TIMERn_CCx_CCV can be accessed directly or through the buffer register TIMERn_CCx_CCVB, see Figure 21.16 TIMER/WTIMER Output Compare/PWM Buffer Functionality Detail on page 736. When writing to the buffer register, the value in TIMERn_CCx_CCVB will be written to TIMERn_CCx_CCV on the next *update event*. This functionality ensures glitch free PWM outputs. The CCVBV flag in TIMERn_STATUS indicates whether the TIMERn_CCx_CCVB register contains data that has not yet been written to the TIMERn_CCx_CCV register. Note that when writing 0 to TIMERn_CCx_CCVB in updown count mode the CCV value is updated when the timer counts from 0 to 1. Thus, the compare match for the next period will not happen until the timer reaches 0 again on the way down.

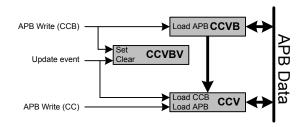


Figure 21.16. TIMER/WTIMER Output Compare/PWM Buffer Functionality Detail

21.3.2.7 Frequency Generation (FRG)

Frequency generation (see Figure 21.17 TIMER/WTIMER Up-count Frequency Generation on page 737) can be achieved in compare mode by:

- · Setting the counter in up-count mode
- · Enabling buffering of the TOP value.
- · Setting the CC channels overflow action to toggle

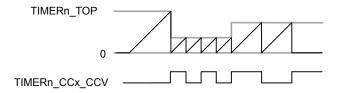


Figure 21.17. TIMER/WTIMER Up-count Frequency Generation

The output frequency is given by Figure 21.18 TIMER/WTIMER Up-count Frequency Generation Equation on page 737

$$f_{FRG} = f_{HFPERCLK}/(2^{(PRESC + 1) x (TOP + 1) x 2)}$$

Figure 21.18. TIMER/WTIMER Up-count Frequency Generation Equation

The figure below provides cycle accurate timing and event generation information for frequency generation.

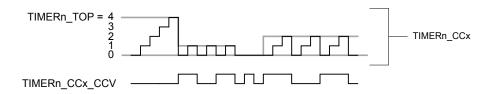


Figure 21.19. TIMER/WTIMER Up-count Frequency Generation Detail

21.3.2.8 Pulse-Width Modulation (PWM)

In PWM mode, TIMERn_CCx_CCV is buffered to avoid glitches in the output. The settings in the Compare Output Action configuration bits are ignored in PWM mode and PWM generation is only supported for up-count and up/down-count mode.

21.3.2.9 Up-count (Single-slope) PWM

If the counter is set to up-count and the Compare/Capture channel is put in PWM mode, single slope PWM output will be generated (see Figure 21.20 TIMER/WTIMER Up-count PWM Generation on page 738). In up-count mode the PWM period is TOP+1 cycles and the PWM output will be high for a number of cycles equal to TIMERn_CCx_CCV. This means that a constant high output is achieved by setting TIMERn_CCx_CCV to TOP+1 or higher. The PWM resolution (in bits) is then given by Figure 21.21 TIMER/WTIMER Up-count PWM Resolution Equation on page 738.

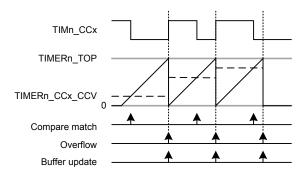


Figure 21.20. TIMER/WTIMER Up-count PWM Generation

$$R_{PWM_{UD}} = log(TOP+1)/log(2)$$

Figure 21.21. TIMER/WTIMER Up-count PWM Resolution Equation

The PWM frequency is given by Figure 21.22 TIMER/WTIMER Up-count PWM Frequency Equation on page 738:

$$f_{PWM_{UD/down}} = f_{HFPERCLK}/(2^{PRESC} \times (TOP + 1))$$

Figure 21.22. TIMER/WTIMER Up-count PWM Frequency Equation

The high duty cycle is given by Figure 21.23 TIMER/WTIMER Up-count Duty Cycle Equation on page 738

$$DS_{up} = CCVx/(TOP+1)$$

Figure 21.23. TIMER/WTIMER Up-count Duty Cycle Equation

The figure below provides cycle accurate timing and event generation information for up-count mode.

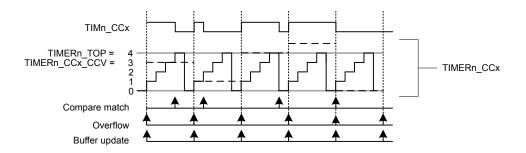


Figure 21.24. TIMER/WTIMER Up-count PWM Generation Detail

21.3.2.10 2x Count Mode (Up-count)

When the timer is set in 2x mode, the TIMER/WTIMER will count up by two. This will in effect make any odd Top value be rounded down to the closest even number. Similarly, any odd CC value will generate a match on the closest lower even value as shown in Figure 21.25 TIMER/WTIMER CC out in 2x mode on page 739

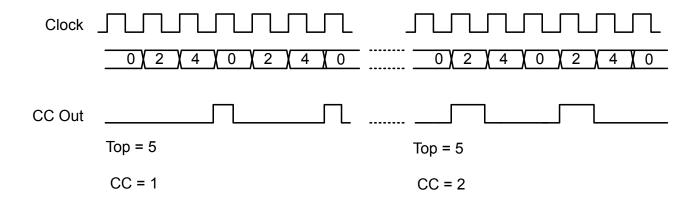


Figure 21.25. TIMER/WTIMER CC out in 2x mode

The PWM resolution is given by Figure 21.26 TIMER/WTIMER 2x PWM Resolution Equation on page 739.

 $R_{PWM_{2xmode}} = log(TOP/2+1)/log(2)$

Figure 21.26. TIMER/WTIMER 2x PWM Resolution Equation

The PWM frequency is given by Figure 21.27 TIMER/WTIMER 2x Mode PWM Frequency Equation (Up-count) on page 739:

 $f_{PWM_{2xmode}} = f_{HFPERCLK} / floor(TOP/2) + 1$

Figure 21.27. TIMER/WTIMER 2x Mode PWM Frequency Equation(Up-count)

The high duty cycle is given by Figure 21.28 TIMER/WTIMER 2x Mode Duty Cycle Equation on page 739

 $DS_{2xmode} = CCVx/((floor(TOP/2)+1)*2)$

Figure 21.28. TIMER/WTIMER 2x Mode Duty Cycle Equation

21.3.2.11 Up/Down-count (Dual-slope) PWM

If the counter is set to up-down count and the Compare/Capture channel is put in PWM mode, dual slope PWM output will be generated by Figure 21.29 TIMER/WTIMER Up/Down-count PWM Generation on page 740. The resolution (in bits) is given by Figure 21.30 TIMER/WTIMER Up/Down-count PWM Resolution Equation on page 740.

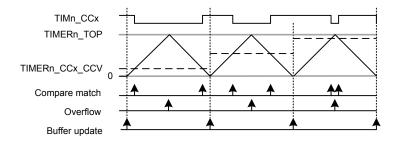


Figure 21.29. TIMER/WTIMER Up/Down-count PWM Generation

$$R_{PWM_{up/down}} = log(TOP+1)/log(2)$$

Figure 21.30. TIMER/WTIMER Up/Down-count PWM Resolution Equation

The PWM frequency is given by Figure 21.31 TIMER/WTIMER Up/Down-count PWM Frequency Equation on page 740:

$$f_{PWM_{up/down}} = f_{HFPERCLK}/(2^{(PRESC+1)} \times TOP))$$

Figure 21.31. TIMER/WTIMER Up/Down-count PWM Frequency Equation

The high duty cycle is given by Figure 21.32 TIMER/WTIMER Up/Down-count Duty Cycle Equation on page 740

$$DS_{up/down} = CCVx/TOP$$

Figure 21.32. TIMER/WTIMER Up/Down-count Duty Cycle Equation

The figure below provides cycle accurate timing and event generation information for up-count mode.

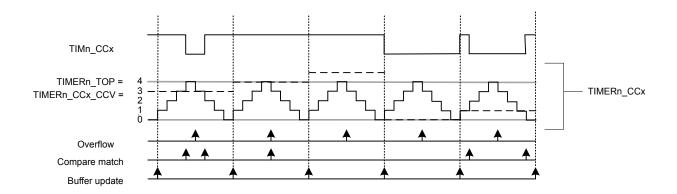


Figure 21.33. TIMER/WTIMER Up/Down-count PWM Generation

21.3.2.12 2x Count Mode (Up/Down-count)

When the timer is set in 2x mode, the TIMER/WTIMER will count up/down by two. This will in effect make any odd Top value be rounded down to the closest even number. Similarly, any odd CC value will generate a match on the closest lower even value as shown in Figure 21.34 TIMER/WTIMER CC out in 2x mode on page 741

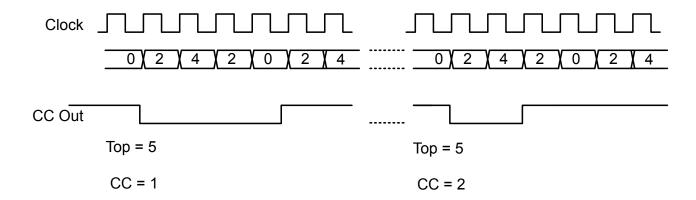


Figure 21.34. TIMER/WTIMER CC out in 2x mode

Figure 21.35 TIMER/WTIMER 2x PWM Resolution Equation on page 741.

 $R_{PWM_{2xmode}} = log(TOP/2+1)/log(2)$

Figure 21.35. TIMER/WTIMER 2x PWM Resolution Equation

The PWM frequency is given by Figure 21.36 TIMER/WTIMER 2x Mode PWM Frequency Equation(Up/Down-count) on page 741:

 $f_{PWM_{2ymode}} = f_{HFPERCLK} / (floor(TOP/2)*2)$

Figure 21.36. TIMER/WTIMER 2x Mode PWM Frequency Equation(Up/Down-count)

The high duty cycle is given by two equations based on the CCVx values. Figure 21.37 TIMER/WTIMER 2x Mode Duty Cycle Equation for CCVx = 1 or CCVx = 0 on page 741 and Figure 21.38 TIMER/WTIMER 2x Mode Duty Cycle Equation for all other CCVx = 0 odd values on page 741

 $DS_{2xmode} = (CCVx*2)/(floor(TOP/2)*4)$

Figure 21.37. TIMER/WTIMER 2x Mode Duty Cycle Equation for CCVx = 1 or CCVx = even

 $DS_{2xmode} = (CCVx*2 - CCVx)/(floor(TOP/2)*4)$

Figure 21.38. TIMER/WTIMER 2x Mode Duty Cycle Equation for all other CCVx = odd values

21.3.2.13 Timer Configuration Lock

To prevent software errors from making changes to the timer configuration, a configuration lock is available similar to DTI configuration Lock. Writing any value but 0xCE80 to LOCKKEY in TIMERn_LOCK results in TIMERn_CTRL, TIMERn_CMD, TIMERn_TOP, TIMERn_CNT, TIMERn_CCx_CTRL and TIMERn_CCx_CCV being locked from writing. To unlock the registers, write 0xCE80 to LOCKKEY in TIMERn_LOCK. The value of TIMERn_LOCK is 1 when the lock is active, and 0 when the registers are unlocked.

21.3.3 Dead-Time Insertion Unit

Some of the timers include a Dead-Time Insertion module suitable for motor control applications. Refer to the device data sheet to check if a timer has this feature. The example settings in this section are for TIMER0, but identical settings can be used for other timers with DTI as well. The Dead-Time Insertion Unit aims to make control of brushless DC (BLDC) motors safer and more efficient by introducing complementary PWM outputs with dead-time insertion and fault handling, see Figure 21.39 TIMER/WTIMER Dead-Time Insertion Unit Overview on page 742.

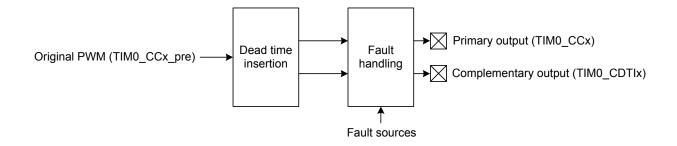


Figure 21.39. TIMER/WTIMER Dead-Time Insertion Unit Overview

When used for motor control, the PWM outputs TIM0_CC0, TIM0_CC1 and TIM0_CC2 are often connected to the high-side transistors of a triple half-bridge setup (UH, VH and WH), and the complementary outputs connected to the respective low-side transistors (UL, VL, WL shown in Figure 21.40 TIMER/WTIMER Triple Half-Bridge on page 742). Transistors used in such a bridge often do not open/close instantaneously, and using the exact complementary inputs for the high and low side of a half-bridge may result in situations where both gates are open. This can give unnecessary current-draw and short circuit the power supply. The DTI unit provides dead-time insertion to deal with this problem.

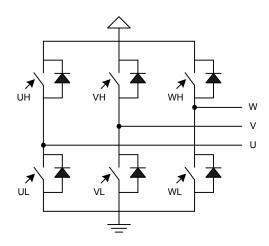


Figure 21.40. TIMER/WTIMER Triple Half-Bridge

For each of the 3 compare-match outputs of TIMER0, an additional complementary output is provided by the DTI unit. These outputs, named TIM0_CDTI0, TIM0_CDTI1 and TIM0_CDTI2 are provided to make control of e.g. 3-channel BLDC or permanent magnet AC (PMAC) motors possible using only a single timer, see Figure 21.41 TIMER/WTIMER Overview of Dead-Time Insertion Block for a Single PWM channel on page 743.

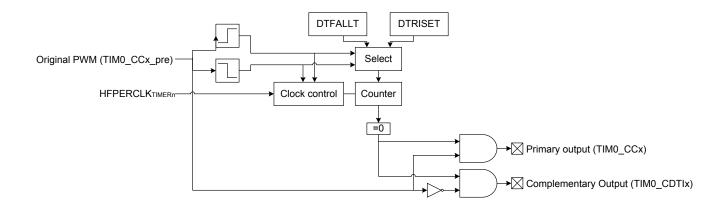


Figure 21.41. TIMER/WTIMER Overview of Dead-Time Insertion Block for a Single PWM channel

The DTI unit is enabled by setting DTEN in TIMER0_DTCTRL. In addition to providing the complementary outputs, the DTI unit then also overrides the compare match outputs from the timer.

The DTI unit gives the rising edges of the PWM outputs and the rising edges of the complementary PWM outputs a configurable time delay. By doing this, the DTI unit introduces a dead-time where both the primary and complementary outputs in a pair are inactive as seen in Figure 21.42 TIMER/WTIMER Polarity of Both Signals are Set as Active-High on page 743.

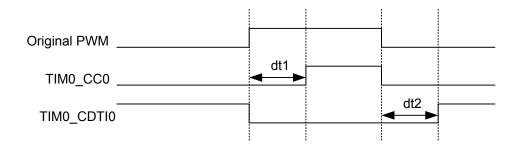


Figure 21.42. TIMER/WTIMER Polarity of Both Signals are Set as Active-High

Dead-time is specified individually for the rising and falling edge of the original PWM. These values are shared across all the three PWM channels of the DTI unit. A single prescaler value is provided for the DTI unit, meaning that both the rising and falling edge dead-times share prescaler value. The prescaler divides the HFPERCLK_{TIMERn} by a configurable factor between 1 and 1024, which is set in the DTPRESC field in TIMERO_DTTIME. The rising and falling edge dead-times are configured in DTRISET and DTFALLT in TIMERO_DTTIME to any number between 1-64 HFPERCLK_{TIMERO} cycles.

The DTAR and DTFATS bits in TIMER0_DTCTRL control the DTI output behavior when the timer stops. By default the DTI block stops when the timer is stopped. Setting the DTAR bit will cause the DTI to output on channel 0 to continue when the timer is stopped. DTAR effects only channel 0. See 21.3.3.2 PRS Channel as a Source for an example of when this can be used. While in this mode the undivided HFPERCLK_TIMER0 (DTPRESC=0) is always used regardless of programmed DTPRESC value in TIMER0_DTTIME. This means that rise and fall dead times are calculated assuming DTPRESC = 0.

When the timer stops DTI outputs are frozen by default, preserving their last state. To allow the outputs to go to a safe state as programmed in the DTFA field of TIMERO_DTFC register and set the DTFATS bitfield in the TIMERO_DTCTRL reg. Note that when DTAR is also set, DTAR has priority over DTFATS for DTI channel 0 output.

The following table shows the DTI output when the timer is halted.

Table 21.3. DTI Output When Timer Halted

DTAR	DTFATS	State
0	0	frozen
0	1	safe
1	0	running
1	1	running

21.3.3.1 Output Polarity

The value of the primary and complementary outputs in a pair will never be set active at the same time by the DTI unit. The polarity of the outputs can be changed if this is required by the application. The active values of the primary and complementary outputs are set by the DTIPOL and DTCINV bits in the TIMERO_DTCTRL register. The DTIPOL bit of this register specifies the base polarity. If DTIPOL =0, then the outputs are active-high, and if DTIPOL = 1 they are active-low. The relative phase of the primary and complementary outputs is not changed by DTIPOL, as the polarity of both outputs is changed, see Figure 21.43 TIMER/WTIMER Output Polarities on page 744.

In some applications, it may be required that the primary outputs are active-high, while the complementary outputs are active-low. This can be accomplished by manipulating the DTCINV bit of the TIMERO_DTCTRL register, which inverts the polarity of the complementary outputs relative to the primary outputs. As an example, DTIPOL = 0 and DTCINV = 0 results in outputs with opposite phase and active-high states. Similarly, DTIPOL = 1 and DTCINV = 1 results in outputs with equal phase and the primary output will be active-high while the complementary will be active-low.

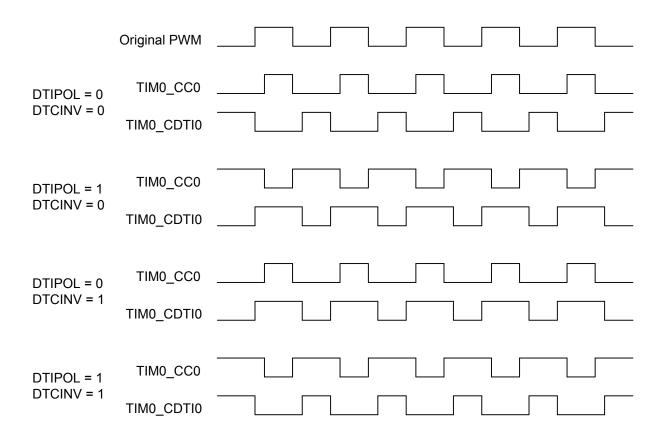


Figure 21.43. TIMER/WTIMER Output Polarities

Output generation on the individual DTI outputs can be disabled by configuring TIMER0_DTOGEN. When output generation on an output is disabled that output will go to and stay in its inactive state.

21.3.3.2 PRS Channel as a Source

A PRS channel can be used as input to the DTI module instead of the PWM output from the timer for DTI channel 0. Setting DTPRSEN in TIMERO_DTCTRL will override the source of the first DTI channel, driving TIMO_CC0 and TIMO_CDTI0, with the value on the PRS channel. The rest of the DTI channels will continue to be driven by the PWM output from the timer. The input PRS channel is chosen by configuring DTPRSSEL in TIMERO_DTCTRL. Note that the timer must be running even when PRS is used as DTI source. However, if it is required to keep the DTI channel 0 running even when the timer is stopped, set DTAR in TIMERO_DTCTRL. When this bit is set, it uses DTPRESC=0 regardless of the value programmed in DTPRESC in TIMERO_DTTIME.

The DTI prescaler, set by DTPRESC in TIMER0_DTTIME determines the accuracy with which the DTI can insert dead-time into a PRS signal. The maximum dead-time error equals 2^{DTPRESC} clock cycles. With zero prescaling, the inserted dead-times are therefore accurate, but they may be inaccurate for larger prescaler settings.

21.3.3.3 Fault Handling

The fault handling system of the DTI unit allows the outputs of the DTI unit to be put in a well-defined state in case of a fault. This hardware fault handling system enables a fast reaction to faults, reducing the possibility of damage to the system.

The fault sources which trigger a fault in the DTI module are determined by the bitfields of TIMER0_DTFC register. Any combination of the available error sources can be selected:

- PRS source 0, determined by DTPRS0FSEL in TIMER0_DTFC
- · PRS source 1, determined by DTPRS1FSEL in TIMER0 DTFC
- Debugger
- · Core Lockup

One or two PRS channels can be used as an error source. When PRS source 0 is selected as an error source, DTPRS0FSEL determines which PRS channel is used for this source. DTPRS1FSEL determines which PRS channel is selected as PRS source 1. Note that for Core Lockup, the LOCKUPRDIS in RMU_CTRL must be set. Otherwise this will generate a full reset of the chip.

21.3.3.4 Action on Fault

When a fault occurs, the bit representing the fault source is set in TIMER0_DTFAULT register, and the outputs from the DTI unit are set to a well-defined state. The following options are available, and can be enabled by configuring DTFACT in TIMER0_DTFC:

- · Set outputs to inactive level
- · Clear outputs
- · Tristate outputs

With the first option enabled, the output state in case of a fault depends on the polarity settings for the individual outputs. An output set to be active high will be set low if a fault is detected, while an output set to be active low will be driven high.

When a fault occurs, the fault source(s) can be read out from TIMER0 DTFAULT register.

Additionally a fault action can also be triggered when the timer stops if DTFATS in TIMER0_DTCTRL is set. This allows the DTI output to go to safe state programmed in DTFACT in TIMER0_DTFC when timer stops. When DTAR and DTFATS in TIMER0_DTCTRL are both set, DTI channel 0 keeps running even when the timer stops. This is useful when DTI channel 0 has an input coming from PRS.

21.3.3.5 Exiting Fault State

When a fault is triggered by the PRS system, software intervention is required to re-enable the outputs of the DTI unit. This is done by manually clearing bits in TIMER0_DTFAULT register. If the fault source as determined by checking TIMER0_DEFAULT is the debugger alone, the outputs can be automatically restarted when the debugger exits. To enable automatic restart set DTDAS in TIMER0_DCTRL. When an automatic restart occurs the DTDBGF bit in TIMER0_DTFAULT will be automatically cleared by hardware. If any other bits in the TIMER0_DTFAULT register are set when the hardware clears DTDBGF the DTI module will not exit the fault state.

21.3.3.6 DTI Configuration Lock

To prevent software errors from making changes to the DTI configuration, a configuration lock is available. Writing any value but 0xCE80 to LOCKKEY in TIMER0_DTLOCK results in TIMER0_DTFC, TIMER0_DTCTRL, TIMER0_DTTIME and TIMER0_ROUTE being locked from writing. To unlock the registers, write 0xCE80 to LOCKKEY in TIMER0_DTLOCK. The value of TIMER0_DTLOCK is 1 when the lock is active, and 0 when the registers are unlocked.

Note: Some of the ROUTE locations have non-interference priority. These locations prevent the use of the selected pin for other alternate functions. Thus these can be used to secure TIMER PWM outputs from software errors (i.e. another alternate function enabled to the same pin inadvertently). Therefore, it is recommended to use these locations to fully make use of the DTI Configuration Lock feature. An overview of these locations is provided in the pin map section of the device data sheet.

21.3.4 Debug Mode

When the CPU is halted in debug mode, the timer can be configured to either continue to run or to be frozen. This is configured in DEBUGRUN in TIMERn CTRL.

21.3.5 Interrupts, DMA and PRS Output

The timer has 3 different types of output events:

- Counter Underflow
- · Counter Overflow
- · Compare match or input capture (one per Compare/Capture channel)

Each of the events has its own interrupt flag. Also, there is one interrupt flag for each Compare/Capture channel which is set on buffer overflow in capture mode. Buffer overflow happens when a new capture pushes an old unread capture out of the TIMERn_CCx_CCV/TIMERn_CCx_CCVB register pair.

If the interrupt flags are set and the corresponding interrupt enable bits in TIMERn_IEN are set high, the timer will send out an interrupt request. Each of the events will also lead to a one HFPERCLK_{TIMERn} cycle high pulse on individual PRS outputs. Setting PRSOCNF to LEVEL in TIMERn_CCx_CTRL will make the compare match PRS output follow the compare match output, instead of outputting one HFPERCLK_{TIMERn} cycle high pulse. Interrupts are cleared by setting the corresponding bit in the TIMERn_IFC register.

Each of the events will also set a DMA request when they occur. The different DMA requests are cleared when certain acknowledge conditions are met, see Table 21.4 TIMER/WTIMER DMA Events on page 746. Events which clear the DMA requests do not clear interrupt flags. Software must still manually clear the interrupt flag if interrupts are in use.

If DMACLRACT is set in TIMERn_CTRL, the DMA request is cleared when the triggered DMA channel is active, without having to access any timer registers. This is useful in cases where a timer event is used to trigger a DMA transfer that does not target the CCV or CCVB register.

Lunderflow/Overflow

Read or write to TIMERn_CNT or TIMERn_TOPB

Read or write to TIMERn_CC0_CCV or TIMERn_CC0_CCVB

Read or write to TIMERn_CC1_CCV or TIMERn_CC1_CCVB

Read or write to TIMERn_CC1_CCV or TIMERn_CC1_CCVB

Table 21.4. TIMER/WTIMER DMA Events

21.3.6 GPIO Input/Output

The TIMn_CCx inputs/outputs and TIM0_CDTIx outputs are accessible as alternate functions through GPIO. Each pin connection can be enabled/disabled separately by setting the corresponding CCxPEN or CDTIxPEN bits in TIMERn_ROUTE. The LOCATION bits in the same register can be used to move all enabled pins to alternate pins. See the device data sheet for the mapping between block locations (LOC0, LOC1, etc.) and actual device pins (PA0, PA1, etc.).

21.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	TIMERn_CTRL	RW	Control Register
0x004	TIMERn_CMD	W1	Command Register
0x008	TIMERn_STATUS	R	Status Register
0x00C	TIMERn_IF	R	Interrupt Flag Register
0x010	TIMERn_IFS	W1	Interrupt Flag Set Register
0x014	TIMERn_IFC	(R)W1	Interrupt Flag Clear Register
0x018	TIMERn_IEN	RW	Interrupt Enable Register
0x01C	TIMERn_TOP	RWH	Counter Top Value Register
0x020	TIMERn_TOPB	RW	Counter Top Value Buffer Register
0x024	TIMERn_CNT	RWH	Counter Value Register
0x02C	TIMERn_LOCK	RWH	TIMER Configuration Lock Register
0x030	TIMERn_ROUTEPEN	RW	I/O Routing Pin Enable Register
0x034	TIMERn_ROUTELOC0	RW	I/O Routing Location Register
0x03C	TIMERn_ROUTELOC2	RW	I/O Routing Location Register
0x060	TIMERn_CC0_CTRL	RW	CC Channel Control Register
0x064	TIMERn_CC0_CCV	RWH(a)	CC Channel Value Register
0x068	TIMERn_CC0_CCVP	R	CC Channel Value Peek Register
0x06C	TIMERn_CC0_CCVB	RWH	CC Channel Buffer Register
	TIMERn_CCx_CTRL	RW	CC Channel Control Register
	TIMERn_CCx_CCV	RWH(a)	CC Channel Value Register
	TIMERn_CCx_CCVP	R	CC Channel Value Peek Register
	TIMERn_CCx_CCVB	RWH	CC Channel Buffer Register
0x090	TIMERn_CC3_CTRL	RW	CC Channel Control Register
0x094	TIMERn_CC3_CCV	RWH(a)	CC Channel Value Register
0x098	TIMERn_CC3_CCVP	R	CC Channel Value Peek Register
0x09C	TIMERn_CC3_CCVB	RWH	CC Channel Buffer Register
0x0A0	TIMERn_DTCTRL	RW	DTI Control Register
0x0A4	TIMERn_DTTIME	RW	DTI Time Control Register
0x0A8	TIMERn_DTFC	RW	DTI Fault Configuration Register
0x0AC	TIMERn_DTOGEN	RW	DTI Output Generation Enable Register
0x0B0	TIMERn_DTFAULT	R	DTI Fault Register
0x0B4	TIMERn_DTFAULTC	W1	DTI Fault Clear Register
0x0B8	TIMERn_DTLOCK	RWH	DTI Configuration Lock Register

21.5 Register Description

21.5.1 T	IME	Rn_(CTR	L -	Con	trol	Re	gist	er																						
Offset															Bi	it Po	siti	on													
0x000	31	30	59	28	27	56	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	7	- 0
Reset		•	0	0		5	OX O				•	•		•	9	OXO		0	0		2	OX O	5	OX O	0	0	0	0	0		0x0
Access			S.	Z.		2	<u>}</u>								Š	≩		RW	W.		2	<u>}</u>	2	<u>}</u>	% N	Z.	Z.	RW W	\ N		RW
Name			RSSCOIST	ATI		College	7 2 2 3								<u> </u>	CLKSEL		DISSYNCOUT	X2CNT		V V	LALLA	A LI OI O	A LION	DMACLRACT	DEBUGRUN	QDM	OSMEN	SYNC		MODE
Bit	Na	me		Reset Access Description																											
31:30	Re	serv	⁄ed		Reset Access Description To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions													nven-													
29	RS	SC	OIS	Γ			0				RV	V		Relo	oad-	-Sta	rt Se	ets (Con	npar	e O	utp	ut In	iitia	l Sta	ate					
	Wh	nen :	set,	com	par	e ou	tpu	t is s	et to	CC	DIST	√val	ue a	at R	eloa	d-St	art e	ever	nt												
28	AT	I					0				RV	V		Alw	ays	Tra	ck lı	npu	ts												
	wh	en s	et, r	mak	es C	CP	OL	alwa	iys t	rack	the	pol	arity	y of	the i	input	S														
27:24	PR	ESC	2				0x	0			RV	V		Pres	scal	er S	ettii	ng													
	Th	ese	bits	sele	ect tl	ne p	res	calin	g fa	ctor																					
	Va	lue					Mc	ode						Des	cript	tion															
	0						DI	V1						The	HFF	PER	CLK	(is t	undi	vide	d										
	1						Dľ	V2						The	HFF	PER	CLK	is (divid	led b	ру 2										
	2						Dľ	V4						The	HFF	PER	CLK	is (divid	led b	оу 4										
	3						Dľ	V8						The	HFF	PER	CLK	is (divid	led b	ру 8										

Reserved	To ensure compa	atibility with future devices, always write bits to 0. More information in 1.2 Con
10	DIV1024	The HFPERCLK is divided by 1024
9	DIV512	The HFPERCLK is divided by 512
8	DIV256	The HFPERCLK is divided by 256
7	DIV128	The HFPERCLK is divided by 128
6	DIV64	The HFPERCLK is divided by 64
5	DIV32	The HFPERCLK is divided by 32
4	DIV16	The HFPERCLK is divided by 16
3	DIV8	The HFPERCLK is divided by 8
2	DIV4	The HFPERCLK is divided by 4
1	DIV2	The HFPERCLK is divided by 2
0	DIV1	The HFPERCLK is undivided
Value	Mode	Description

Clock Source Select

Prescaled HFPERCLK

Description

CLKSEL

Value

0

17:16

tions

0x0

Mode

PRESCHFPERCLK

These bits select the clock source for the timer.

RW

Bit	Name	Reset	Access	Description
	1	CC1		Compare/Capture Channel 1 Input
	2	TIMEROUF		Timer is clocked by underflow(down-count) or overflow(up-count) in the lower numbered neighbor Timer
15	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
14	DISSYNCOUT	0	RW	Disable Timer From Start/Stop/Reload Other Synchronized Timers
	When this bit is set	, the Timer does n	ot start/sto	p/reload other timer with SYNC bit set
	Value			Description
	0			Timer can start/stop/reload other timers with SYNC bit set
	1			Timer cannot start/stop/reload other timers with SYNC bit set
13	X2CNT	0	RW	2x Count Mode
	Enable 2x count mo	ode		
12	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
11:10	FALLA	0x0	RW	Timer Falling Input Edge Action
	These bits select th	ne action taken in t	the counter	when a falling edge occurs on the input.
	Value	Mode		Description
	0	NONE		No action
	1	START		Start counter without reload
	2	STOP		Stop counter without reload
	3	RELOADSTA	.RT	Reload and start counter
9:8	RISEA	0x0	RW	Timer Rising Input Edge Action
	These bits select th	ne action taken in t	the counter	when a rising edge occurs on the input.
	Value	Mode		Description
	0	NONE		No action
	1	START		Start counter without reload
	2	STOP		Stop counter without reload
	3	RELOADSTA	.RT	Reload and start counter
7	DMACLRACT	0	RW	DMA Request Clear on Active
	When this bit is set DMA requests to be			ed when the corresponding DMA channel is active. This enables the timer he timer.
6	DEBUGRUN	0	RW	Debug Mode Run Enable
	Set this bit to enabl	e timer to run in d	ebug mode	.
	Value			Description
				Timer is frazen in debug mede
	0			Timer is frozen in debug mode

Bit	Name	Reset	Access	Description
5	QDM	0	RW	Quadrature Decoder Mode Selection
	This bit sets the	mode for the quad	rature decode	er.
	Value	Mode		Description
	0	X2		X2 mode selected
	1	X4		X4 mode selected
4	OSMEN	0	RW	One-shot Mode Enable
	Enable/disable of	one shot mode.		
3	SYNC	0	RW	Timer Start/Stop/Reload Synchronization
	When this bit is	set, the Timer is sta	arted/stopped	//reloaded by start/stop/reload commands in the other timers
	Value			Description
	0			Timer is not started/stopped/reloaded by other timers
	1			Timer is started/stopped/reloaded by other timers
2	Danamad	T	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2	Reserved	tions		· •
1:0	MODE		RW	Timer Mode
	MODE These bits set the	0x0 ne counting mode f	RW or the Timer.	
	MODE These bits set the	0x0 ne counting mode f	RW or the Timer.	Timer Mode Note, when Quadrature Decoder Mode is selected (MODE = 'b11), the
	MODE These bits set the CLKSEL is don't	0x0 ne counting mode for taking the taking t	RW or the Timer.	Timer Mode Note, when Quadrature Decoder Mode is selected (MODE = 'b11), the he Decoder Mode clock output.
	MODE These bits set the CLKSEL is don't	0x0 ne counting mode for t care. The Timer is	RW or the Timer.	Timer Mode Note, when Quadrature Decoder Mode is selected (MODE = 'b11), the he Decoder Mode clock output. Description
	MODE These bits set the CLKSEL is don't Value	0x0 ne counting mode for t care. The Timer is Mode UP	RW or the Timer.	Timer Mode Note, when Quadrature Decoder Mode is selected (MODE = 'b11), the he Decoder Mode clock output. Description Up-count mode

21.5.2 TIMERn_CMD - Command Register

Offset															Bi	t Pc	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	8	7	9	5	4	က	2	_	0
Reset				'	'									'	'		•			'				•		•		•	'		0	0
Access																															W1	W1
Name																															STOP	START

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
1	STOP	0	W1	Stop Timer
	Set this bit to stop time	ner		
0	START	0	W1	Start Timer
	Set this bit to start time	ner		

21.5.3 TIMERn_STATUS - Status Register

26

25

24

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	7	_	0
Reset					0	0	0	0					0	0	0	0					0	0	0	0						0	0	0
Access					2	2	2	2					2	2	2	22					2	2	2	2						~	22	~
Name					CCPOL3	CCPOL2	CCPOL1	CCPOLO					ICV3	ICV2	ICV1	ICV0					CCVBV3	CCVBV2	CCVBV1	CCVBV0						TOPBV	DIR	RUNNING

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
27	CCPOL3	0	R	CC3 Polarity

In Input Capture mode, this bit indicates the polarity of the edge that triggered capture in TIMERn_CC3_CCV. In Compare/PWM mode, this bit indicates the polarity of the selected input to CC channel 3. These bits are cleared when CCMODE is written to 0b00 (Off).

Value	Mode		Description
0	LOWRISE		CC3 polarity low level/rising edge
1	HIGHFALL		CC3 polarity high level/falling edge
CCPOL2	0	R	CC2 Polarity

In Input Capture mode, this bit indicates the polarity of the edge that triggered capture in TIMERn_CC2_CCV. In Compare/PWM mode, this bit indicates the polarity of the selected input to CC channel 2. These bits are cleared when CCMODE is written to 0b00 (Off).

Value	Mode		Description
0	LOWRISE		CC2 polarity low level/rising edge
1	HIGHFALL		CC2 polarity high level/falling edge
CCPOL1	0	R	CC1 Polarity

In Input Capture mode, this bit indicates the polarity of the edge that triggered capture in TIMERn_CC1_CCV. In Compare/PWM mode, this bit indicates the polarity of the selected input to CC channel 1. These bits are cleared when CCMODE is written to 0b00 (Off).

Value	Mode		Description
0	LOWRISE		CC1 polarity low level/rising edge
1	HIGHFALI	L	CC1 polarity high level/falling edge
CCPOL0	0	R	CC0 Polarity

In Input Capture mode, this bit indicates the polarity of the edge that triggered capture in TIMERn_CC0_CCV. In Compare/PWM mode, this bit indicates the polarity of the selected input to CC channel 0. These bits are cleared when CCMODE is written to 0b00 (Off).

Value	Mode	Description
0	LOWRISE	CC0 polarity low level/rising edge
1	HIGHFALL	CC0 polarity high level/falling edge

Bit	Name	Reset	Access	Description
23:20	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
19	ICV3	0	R	CC3 Input Capture Valid
	This bit indicates th and are cleared wh			nins a valid capture value. These bits are only used in input capture mode 00 (Off).
	Value			Description
	0			TIMERn_CC3_CCV does not contain a valid capture value(FIFO empty)
	1			TIMERn_CC3_CCV contains a valid capture value(FIFO not empty)
18	ICV2	0	R	CC2 Input Capture Valid
	This bit indicates th and are cleared wh			nins a valid capture value. These bits are only used in input capture mode 00 (Off).
	Value			Description
	0			TIMERn_CC2_CCV does not contain a valid capture value(FIFO empty)
	1			TIMERn_CC2_CCV contains a valid capture value(FIFO not empty)
17	ICV1	0	R	CC1 Input Capture Valid
	This bit indicates th and are cleared wh			nins a valid capture value. These bits are only used in input capture mode 00 (Off).
	Value			Description
	0			TIMERn_CC1_CCV does not contain a valid capture value(FIFO empty)
	1			TIMERn_CC1_CCV contains a valid capture value(FIFO not empty)
16	ICV0	0	R	CC0 Input Capture Valid
	This bit indicates th and are cleared wh			nins a valid capture value. These bits are only used in input capture mode 00 (Off).
	Value			Description
	0			TIMERn_CC0_CCV does not contain a valid capture value(FIFO empty)
	1			TIMERn_CC0_CCV contains a valid capture value(FIFO not empty)
15:12	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
11	CCVBV3	0	R	CC3 CCVB Valid
				3_CCVB registers contain data which have not been written to a output compare/PWM mode and are cleared when CCMODE is written to
	Value			Description
	0			TIMERn_CC3_CCVB does not contain valid data
	1			TIMERn_CC3_CCVB contains valid data which will be written to TIMERn_CC3_CCV on the next update event

Bit	Name	Reset	Access	Description
10	CCVBV2	0	R	CC2 CCVB Valid
				2_CCVB registers contain data which have not been written to output compare/PWM mode and are cleared when CCMODE is written to
	Value			Description
	0			TIMERn_CC2_CCVB does not contain valid data
	1			TIMERn_CC2_CCVB contains valid data which will be written to TIMERn_CC2_CCV on the next update event
9	CCVBV1	0	R	CC1 CCVB Valid
				_CCVB registers contain data which have not been written to output compare/PWM mode and are cleared when CCMODE is written to
	Value			Description
	0			TIMERn_CC1_CCVB does not contain valid data
	1			TIMERn_CC1_CCVB contains valid data which will be written to TIMERn_CC1_CCV on the next update event
8	CCVBV0	0	R	CC0 CCVB Valid
8	This field indic	ates that the	TIMERn_CC0	CCVB registers contain data which have not been written to
8	This field indic	ates that the	TIMERn_CC0	CCVB registers contain data which have not been written to
8	This field indic TIMERn_CC0_C 0b00 (Off).	ates that the	TIMERn_CC0)_CCVB registers contain data which have not been written to output compare/PWM mode and are cleared when CCMODE is written to
8	This field indic TIMERn_CC0_C 0b00 (Off).	ates that the	TIMERn_CC0	D_CCVB registers contain data which have not been written to output compare/PWM mode and are cleared when CCMODE is written to Description
7:3	This field indic TIMERn_CC0_C 0b00 (Off).	cates that the CV. These bits a	TIMERn_CCC	Description TIMERn_CC0_CCVB does not contain valid data TIMERn_CC0_CCVB contains valid data which will be written to TIMERn_CC0_CCV on the next update event
	This field indic TIMERn_CC0_C 0b00 (Off). Value 0 1	cates that the CV. These bits a	TIMERn_CCC	D_CCVB registers contain data which have not been written to output compare/PWM mode and are cleared when CCMODE is written to Description TIMERn_CC0_CCVB does not contain valid data TIMERn_CC0_CCVB contains valid data which will be written to
7:3	This field indic TIMERn_CC0_C 0b00 (Off). Value 0 1 Reserved	To ensure tions 0 at TIMERn_TOPI	TIMERn_CCC are only used in e compatibility v	D_CCVB registers contain data which have not been written to output compare/PWM mode and are cleared when CCMODE is written to Description TIMERn_CC0_CCVB does not contain valid data TIMERn_CC0_CCVB contains valid data which will be written to TIMERn_CC0_CCV on the next update event with future devices, always write bits to 0. More information in 1.2 Conven-
7:3	This field indic TIMERn_CC0_C 0b00 (Off). Value 0 1 Reserved TOPBV This indicates that	To ensure tions 0 at TIMERn_TOPI	TIMERn_CCC are only used in e compatibility v	D_CCVB registers contain data which have not been written to coutput compare/PWM mode and are cleared when CCMODE is written to Description TIMERn_CC0_CCVB does not contain valid data TIMERn_CC0_CCVB contains valid data which will be written to TIMERn_CC0_CCV on the next update event with future devices, always write bits to 0. More information in 1.2 Conventored to the contain valid data which will be written to TIMERn_CC0_CCV on the next update event
7:3	This field indic TIMERn_CC0_C 0b00 (Off). Value 0 1 Reserved TOPBV This indicates that when TIMERn_T	To ensure tions 0 at TIMERn_TOPI	TIMERn_CCC are only used in e compatibility v	Description TIMERn_CC0_CCVB does not contain valid data TIMERn_CC0_CCVB contains valid data which will be written to TIMERn_CC0_CCV on the next update event with future devices, always write bits to 0. More information in 1.2 Conventional data that has not been written to TIMERn_TOP. This bit is also cleared
7:3	This field indic TIMERn_CC0_C 0b00 (Off). Value 0 1 Reserved TOPBV This indicates that when TIMERn_T Value	To ensure tions 0 at TIMERn_TOPI	TIMERn_CCC are only used in e compatibility v	Description TIMERn_CC0_CCVB does not contain valid data TIMERn_CC0_CCVB contains valid data which will be written to TIMERn_CC0_CCV on the next update event with future devices, always write bits to 0. More information in 1.2 Conventional data that has not been written to TIMERn_TOP. This bit is also cleared Description
7:3	This field indic TIMERn_CC0_C 0b00 (Off). Value 0 1 Reserved TOPBV This indicates that when TIMERn_T Value 0	To ensure tions 0 at TIMERn_TOPI	TIMERn_CCC are only used in e compatibility v	Description TIMERn_CC0_CCVB does not contain valid data TIMERn_CC0_CCVB contains valid data which will be written to TIMERn_CC0_CCV on the next update event with future devices, always write bits to 0. More information in 1.2 Conventional data that has not been written to TIMERn_TOP. This bit is also cleared Description TIMERn_TOPB does not contain valid data TIMERn_TOPB contains valid data which will be written to TIMERn_TOPB contains valid data
7:3	This field indict TIMERn_CC0_C 0b00 (Off). Value 0 1 Reserved TOPBV This indicates that when TIMERn_T Value 0 1	To ensure tions O et TIMERn_TOPIOP is written.	TIMERn_CCC are only used in e compatibility v R B contains valid	Description TIMERn_CC0_CCVB does not contain valid data TIMERn_CC0_CCVB contains valid data which will be written to TIMERn_CC0_CCV on the next update event TOPB Valid d data that has not been written to TIMERn_TOP. This bit is also cleared Description TIMERn_TOPB does not contain valid data TIMERn_TOPB contains valid data which will be written to TIMERn_TOPB contains valid data TIMERn_TOPB contains valid data TIMERn_TOPB contains valid data which will be written to TIMERn_TOPB contains valid data which will be written to TIMERn_TOPB on the next update event
7:3	This field indict TIMERn_CC0_C 0b00 (Off). Value 0 1 Reserved TOPBV This indicates the when TIMERn_T Value 0 1	To ensure tions O et TIMERn_TOPIOP is written.	TIMERn_CCC are only used in e compatibility v R B contains valid	Description TIMERn_CC0_CCVB does not contain valid data TIMERn_CC0_CCVB contains valid data which will be written to TIMERn_CC0_CCV on the next update event TOPB Valid d data that has not been written to TIMERn_TOP. This bit is also cleared Description TIMERn_TOPB does not contain valid data TIMERn_TOPB contains valid data which will be written to TIMERn_TOPB contains valid data TIMERn_TOPB contains valid data TIMERn_TOPB contains valid data which will be written to TIMERn_TOPB contains valid data which will be written to TIMERn_TOPB on the next update event
7:3	This field indic TIMERn_CC0_C 0b00 (Off). Value 0 1 Reserved TOPBV This indicates that when TIMERn_T Value 0 1 DIR Indicates count described in the country of the	To ensure tions OP is written.	TIMERn_CCC are only used in e compatibility v R B contains valid	Description TIMERn_CC0_CCVB does not contain valid data TIMERn_CC0_CCVB contains valid data which will be written to TIMERn_CC0_CCV on the next update event with future devices, always write bits to 0. More information in 1.2 Conventional data that has not been written to TIMERn_TOP. This bit is also cleared Description TIMERn_TOPB does not contain valid data TIMERn_TOPB contains valid data TIMERn_TOPB contains valid data which will be written to TIMERn_TOP on the next update event

Bit	Name	Reset	Access	Description
0	RUNNING	0	R	Running
	Indicates if timer is ru	nning or not.		

21.5.4 TIMERn_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	2	4	က	7	_	0
Reset		•	'		'	1		•		•				•	'	'			•		0	0	0	0	0	0	0	0		0	0	0
Access																					~	œ	œ	œ	œ	œ	œ	œ		œ	œ	ď
Name																					ICBOF3	ICBOF2	ICB0F1	ICBOF0	CC3	CC2	CC1	000		DIRCHG	J.	OF

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure tions	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
11	ICBOF3	0	R	CC Channel 3 Input Capture Buffer Overflow Interrupt Flag
	This bit indicates	that a new captu	re value has p	oushed an unread value out of TIMERn_CC3_CCVB.
10	ICBOF2	0	R	CC Channel 2 Input Capture Buffer Overflow Interrupt Flag
	This bit indicates	that a new captu	re value has p	oushed an unread value out of TIMERn_CC2_CCVB.
9	ICBOF1	0	R	CC Channel 1 Input Capture Buffer Overflow Interrupt Flag
	This bit indicates	that a new captur	re value has p	oushed an unread value out of TIMERn_CC1_CCVB.
8	ICBOF0	0	R	CC Channel 0 Input Capture Buffer Overflow Interrupt Flag
	This bit indicates	that a new captur	re value has p	oushed an unread value out of TIMERn_CC0_CCVB.
7	CC3	0	R	CC Channel 3 Interrupt Flag
	This bit indicates	that there has be	en an interrup	ot event on Compare/Capture channel 3.
6	CC2	0	R	CC Channel 2 Interrupt Flag
	This bit indicates	that there has be	en an interrup	ot event on Compare/Capture channel 2.
5	CC1	0	R	CC Channel 1 Interrupt Flag
	This bit indicates	that there has be	en an interrup	ot event on Compare/Capture channel 1.
4	CC0	0	R	CC Channel 0 Interrupt Flag
	This bit indicates	that there has be	en an interrup	ot event on Compare/Capture channel 0.
3	Reserved	To ensure tions	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
2	DIRCHG	0	R	Direction Change Detect Interrupt Flag
	This bit is set wh	en count direction	changes. Se	t only in Quadrature Decoder mode
1	UF	0	R	Underflow Interrupt Flag
	This bit indicates	that there has be	en an underfl	ow.
0	OF	0	R	Overflow Interrupt Flag
	This bit indicates	that there has be	en an overflo	w.

21.5.5 TIMERn_IFS - Interrupt Flag Set Register

Offset															Ві	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	ဝ	∞	7	9	5	4	က	2	_	0
Reset						•	•				•		•	•			•				0	0	0	0	0	0	0	0		0	0	0
Access																					W1	W1	W1	W1	W1	W1	W1	W1		W1	W1	W
Name																					ICB0F3	ICB0F2	ICB0F1	ICBOF0	CC3	CC2	CC1	000		DIRCHG	J.	OF

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure cor tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
11	ICBOF3	0	W1	Set ICBOF3 Interrupt Flag
	Write 1 to set the ICBOF3 interrupt flag			
10	ICBOF2	0	W1	Set ICBOF2 Interrupt Flag
	Write 1 to set the ICBOF2 interrupt flag			
9	ICBOF1	0	W1	Set ICBOF1 Interrupt Flag
	Write 1 to set the ICBOF1 interrupt flag			
8	ICBOF0	0	W1	Set ICBOF0 Interrupt Flag
	Write 1 to set the ICBOF0 interrupt flag			
7	CC3	0	W1	Set CC3 Interrupt Flag
	Write 1 to set the CC3 interrupt flag			
6	CC2	0	W1	Set CC2 Interrupt Flag
	Write 1 to set the CC2 interrupt flag			
5	CC1	0	W1	Set CC1 Interrupt Flag
	Write 1 to set the CC1 interrupt flag			
4	CC0	0	W1	Set CC0 Interrupt Flag
	Write 1 to set the CC0 interrupt flag			
3	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions			
2	DIRCHG	0	W1	Set DIRCHG Interrupt Flag
	Write 1 to set the DIRCHG interrupt flag			
1	UF	0	W1	Set UF Interrupt Flag
	Write 1 to set the UF interrupt flag			
0	OF	0	W1	Set OF Interrupt Flag
	Write 1 to set the OF interrupt flag			

21.5.6 TIMERn_IFC - Interrupt Flag Clear Register

21.5.0		\''_'		- 1111	.CIII	apt i	iay	Oic	ai i	\cg	3101	!																				
Offset															Bi	t Pc	sitio	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	_	0
Reset																					0	0	0	0	0	0	0	0		0	0	0
Access																					(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1		(R)W1	(R)W1	(R)W1
Name																					ICBOF3	ICBOF2	ICB0F1	ICBOF0	CC3	CC2	CC1	000		DIRCHG	UF	OF
Bit	Na	me					Re	set			Ac	ces	s I	Des	crip	tion																
31:12	Re	serv	ed				To tior		ure	com	pati	bility	/ wit	th fu	ture	dev	vices	s, alı	way	s wr	ite b	oits t	to 0.	Мо	re ir	forn	natio	on in	1.2	Col	nver	7-

				CC CC CC CC CC CC CC C
Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
11	ICBOF3	0	(R)W1	Clear ICBOF3 Interrupt Flag
		the ICBOF3 interroust be enabled glob		ling returns the value of the IF and clears the corresponding interrupt flags).
10	ICBOF2	0	(R)W1	Clear ICBOF2 Interrupt Flag
		the ICBOF2 interroust be enabled glob		ling returns the value of the IF and clears the corresponding interrupt flags).
9	ICBOF1	0	(R)W1	Clear ICBOF1 Interrupt Flag
		the ICBOF1 interroust be enabled glob		ling returns the value of the IF and clears the corresponding interrupt flags).
8	ICBOF0	0	(R)W1	Clear ICBOF0 Interrupt Flag
		the ICBOF0 interroust be enabled glob		ling returns the value of the IF and clears the corresponding interrupt flags).
7	CC3	0	(R)W1	Clear CC3 Interrupt Flag
		the CC3 interrupt t enabled globally i		returns the value of the IF and clears the corresponding interrupt flags (This
6	CC2	0	(R)W1	Clear CC2 Interrupt Flag
		the CC2 interrupt t enabled globally i		returns the value of the IF and clears the corresponding interrupt flags (This
5	CC1	0	(R)W1	Clear CC1 Interrupt Flag
		the CC1 interrupt t enabled globally i		returns the value of the IF and clears the corresponding interrupt flags (This
4	CC0	0	(R)W1	Clear CC0 Interrupt Flag
		the CC0 interrupt t enabled globally i		returns the value of the IF and clears the corresponding interrupt flags (This
3	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
2	DIRCHG	0	(R)W1	Clear DIRCHG Interrupt Flag
		the DIRCHG interrust be enabled glol		ding returns the value of the IF and clears the corresponding interrupt flags).

Bit	Name	Reset	Access	Description
1	UF	0	(R)W1	Clear UF Interrupt Flag
		the UF interrupt fla enabled globally ir		eturns the value of the IF and clears the corresponding interrupt flags (This
0	OF	0	(R)W1	Clear OF Interrupt Flag
		the OF interrupt fla enabled globally ir		eturns the value of the IF and clears the corresponding interrupt flags (This

21.5.7 TIMERn_IEN - Interrupt Enable Register

Offset	Bit Position											
0x018	10	7	10	၈ &	7	9	5	4	က	2	_	0
Reset		0	0	0 0	0	0	0	0		0	0	0
Access		₽	RW W	W W	R W	₩	₹	RW		ZW W	₩ M	R W
Name		ICBOF3		ICBOF1 ICBOF0	CC3	CC2	CC1	000		DIRCHG	UF	OF

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure cortions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
11	ICBOF3	0	RW	ICBOF3 Interrupt Enable
	Enable/disable the IC	BOF3 interrupt		
10	ICBOF2	0	RW	ICBOF2 Interrupt Enable
	Enable/disable the IC	BOF2 interrupt		
9	ICBOF1	0	RW	ICBOF1 Interrupt Enable
	Enable/disable the IC	BOF1 interrupt		
8	ICBOF0	0	RW	ICBOF0 Interrupt Enable
	Enable/disable the IC	BOF0 interrupt		
7	CC3	0	RW	CC3 Interrupt Enable
	Enable/disable the C	C3 interrupt		
6	CC2	0	RW	CC2 Interrupt Enable
	Enable/disable the C	C2 interrupt		
5	CC1	0	RW	CC1 Interrupt Enable
	Enable/disable the C	C1 interrupt		
4	CC0	0	RW	CC0 Interrupt Enable
	Enable/disable the C	C0 interrupt		
3	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2	DIRCHG	0	RW	DIRCHG Interrupt Enable
	Enable/disable the D	IRCHG interrupt		
1	UF	0	RW	UF Interrupt Enable
	Enable/disable the U	F interrupt		
0	OF	0	RW	OF Interrupt Enable
	Enable/disable the O	F interrupt		

21.5.8 TIMERn_TOP - Counter Top Value Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																																
Access																																
Name																0	5															

Bit	Name	Reset	Access	Description
31:0	TOP	0x0000FFFF	RWH	Counter Top Value
	These bits hold the T	OP value for the	counter.	

21.5.9 TIMERn_TOPB - Counter Top Value Buffer Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																	nannnnan															
Access																2	<u>}</u>															
Name																	<u> </u>															

Bit	Name	Reset	Access	Description
31:0	ТОРВ	0x00000000	RW	Counter Top Value Buffer
	These bits hold the TO	OP buffer value.		

21.5.10 TIMERn_CNT - Counter Value Register

Offset															Bi	it Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	. m	2	_	0
Reset																000000000000000000000000000000000000000	nnnnnnnn												·	·		
Access																	[} Y															
Name																Ė	2															
Bit	Nan	ne					Re	set			Ac	cess	s I	Des	crip	tion																
31:0	CN	Т					0x0	0000	0000	0	RW	/H	(Cou	ntei	r Va	lue															
	The	se l	oits I	hold	l the	cou	unte	r va	lue.																							

21.5.11 TIMERn_LOCK - TIMER Configuration Lock Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset							•				•														nnnnxn				•			
Access																									I X Y							
Name																								YTYYOO ICLIMIT	IIMEKLOOKKEY							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	TIMERLOCKKEY	0x0000	RWH	Timer Lock Key

Write any other value than the unlock code to lock TIMERn_CTRL, TIMERn_CMD, TIMERn_TOP, TIMERn_CNT, TIMERn_CCx_CTRL and TIMERn_CCx_CCV from editing. Write the unlock code to unlock. When reading the register, bit 0 is set when the lock is enabled.

Mode	Value	Description
Read Operation		
UNLOCKED	0	TIMER registers are unlocked
LOCKED	1	TIMER registers are locked
Write Operation		
LOCK	0	Lock TIMER registers
UNLOCK	0xCE80	Unlock TIMER registers

21.5.12 TIMERn_ROUTEPEN - I/O Routing Pin Enable Register

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																						0	0	0					0	0	0	0
Access																						Z.	RW	₩ W					₹	₽	₩ M	RW
																						E S	N N	E N					z	7	z	z
Name)TI2P)TI1P	TIOP					CC3PEI	;2PEN	1PE	COPE
																						CD	CD	CD					8	CC2	ဗ	S

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
10	CDTI2PEN	0	RW	CC Channel 2 Complementary Dead-Time Insertion Pin Enable
	Enable/disable CC ch	annel 2 comple	mentary de	ead-time insertion output connection to pin.
9	CDTI1PEN	0	RW	CC Channel 1 Complementary Dead-Time Insertion Pin Enable
	Enable/disable CC ch	nannel 1 comple	mentary de	ead-time insertion output connection to pin.
8	CDTI0PEN	0	RW	CC Channel 0 Complementary Dead-Time Insertion Pin Enable
	Enable/disable CC ch	nannel 0 comple	mentary de	ead-time insertion output connection to pin.
7:4	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
3	CC3PEN	0	RW	CC Channel 3 Pin Enable
	Enable/disable CC ch	nannel 3 output/i	nput conne	ection to pin.
2	CC2PEN	0	RW	CC Channel 2 Pin Enable
	Enable/disable CC ch	nannel 2 output/i	nput conne	ection to pin.
1	CC1PEN	0	RW	CC Channel 1 Pin Enable
	Enable/disable CC ch	nannel 1 output/i	nput conne	ection to pin.
0	CC0PEN	0	RW	CC Channel 0 Pin Enable
	Enable/disable CC Cl	hannel 0 output/	input conn	ection to pin.

21.5.13 TIMERn_ROUTELOC0 - I/O Routing Location Register

Offset					Reset Access Description																							
0x034	33	29	28	26	Reset Access Description To ensure compatibility with future devices, always write bits to 0. More information in 1.2 tions 0x00 RW I/O Location ff the CC3 pin. Mode Description LOC0 Location 0														2	- 0								
Reset				00×0						·	00×0	•	•					6	000			•					000	
Access				WW 0																								
Name				CC3LOC							CC2LO							-	CC1FO								O TOO	
Bit	Name				Res	et			Acce	ss	De	escri	otion															
31:30	Resen	/ed					re d	com	oatibi	lity	with	future	e dev	vices	, alı	way	s wr	rite l	bits i	to 0.	Mor	re int	form	natio	on ir	1.2	2 Co	nven-
29:24	CC3L0	C			0x0)			RW		I/C) Loc	atio	n														
	Decide	es the	e loca	tion c	of the	CC3	pir	١.																				
	Value				LOC0 Location 0 LOC1 Location 1																							
	0				LOC0 Location 0 LOC1 Location 1																							
	1				LOC1 Location 1 LOC2 Location 2																							
	2				LOC1 Location 1 LOC2 Location 2 LOC3 Location 3																							
	3				LOC2 Location 2 LOC3 Location 3																							
	4				LOC2 Location 2 LOC3 Location 3 LOC4 Location 4																							
	5				LOC							catio																
	6				LOC							catio																
	7				LOC	;7 					Lo	catio	n 7															
23:22	Resen	/ed			To e		re c	com	oatibi	lity	with	future	e dev	vices	, alı	way	s wr	rite l	bits 1	to 0.	Mor	re int	form	natio	on ir	า 1.:	2 Co	nven-
21:16	CC2LC	C			0x0	0			RW		I/C) Loc	atio	n														
	Decide	es the	e loca	tion c	of the	CC2	pir	١.																				
	Value				Mod	le					De	escrip	tion															
	0				LOC	0					Lo	catio	n 0															
	1				LOC	21					Lo	catio	n 1															
	2				LOC	2					Lo	catio	n 2															
	3				LOC							catio																
	4				LOC							catio																
	5				LOC							catio																
	6				LOC							catio																
	7				LOC	.7 					Lo	catio	n 7															
15:14	Resen	/ed			To e		re c	com	oatibi	lity	with	future	e dev	vices	, alı	way	s wr	ite l	bits	to 0.	Mor	e int	form	atio	on ir	1.	2 Co	nven-

Bit	Name	Reset	Access	Description
13:8	CC1LOC	0x00	RW	I/O Location
	Decides the location			
	Value	Mode		Description
	0	LOC0		Location 0
	1	LOC1		Location 1
	2	LOC2		Location 2
	3	LOC3		Location 3
	4	LOC4		Location 4
	5	LOC5		Location 5
	6	LOC6		Location 6
	7	LOC7		Location 7
7:6	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
5:0	CC0LOC	0x00	RW	I/O Location
	Decides the location	of the CC0 pin.		
	Value	Mode		Description
	0	LOC0		Location 0
	1	LOC1		Location 1
	2	LOC2		Location 2
	3	LOC3		Location 3
	4	LOC4		Location 4
	5	LOC5		Location 5
	6	LOC6		Location 6
	7	LOC7		Location 7

21.5.14 TIMERn_ROUTELOC2 - I/O Routing Location Register

Offset				Bit Po	sition			
0x03C	30 30 28 28 28	22 24 25 26 27 23 24 23 24 25 26 27	20 20	16 17 18	2 4	8 8 8 8 8 8	6 7	φ 4 m α t 0
Reset				00×0		00×0		00×0
Access				W		RW 0		NA O
Name				CDTI2LOC		СБТИLОС		СБТЮLОС
Bit	Name	Reset	Access	Description	ı			
31:22	Reserved	To ensure con tions	npatibility v	vith future dev	rices, al	ways write bits to 0. Mo	re inforn	nation in 1.2 Conven-
21:16	CDTI2LOC	0x00	RW	I/O Location	า			
	Decides the loca	tion of the CDTI2 pin.						
	Value	Mode		Description				
	0	LOC0		Location 0				
	1	LOC1		Location 1				
	2	LOC2		Location 2				
	3	LOC3		Location 3				
	4	LOC4		Location 4				
15:14	Reserved	To ensure contions	npatibility v	vith future dev	rices, al	ways write bits to 0. Mo	re inforn	nation in 1.2 Conven-
13:8	CDTI1LOC	0x00	RW	I/O Location	า			
	Decides the loca	tion of the CDTI1 pin.						
	Value	Mode		Description				
	0	LOC0		Location 0				
	1	LOC1		Location 1				
	2	LOC2		Location 2				
	3	LOC3		Location 3				
	4	LOC4		Location 4				
7:6	Reserved	To ensure contions	npatibility v	vith future dev	rices, al	ways write bits to 0. Mo	re inforn	nation in 1.2 Conven-
5:0	CDTI0LOC	0x00	RW	I/O Location	า			
	Decides the loca	tion of the CDTI0 pin.						
	Value	Mode		Description				
	0	LOC0		Location 0				
	1	LOC1		Location 1				
	2	LOC2		Location 2				

Bit	Name	Reset Access	Description
	3	LOC3	Location 3
	4	LOC4	Location 4

21.5.15 TIMERn_CCx_CTRL - CC Channel Control Register

Name	Offset															Bi	t Po	siti	on														
Access	0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	~ c	_ >
	Reset		0	0	0	5	e e	Š	Š							0×0	•			5	Š	Š	e e	2	e e				0		0	000	
PRSSEL COFOA COLFOA MODE	Access		W.	R W	W.	2	Ž	2	<u>}</u>							X N				2	<u>}</u>	2	<u>}</u>	2	<u>}</u>				₩ M		W.	RW	
	Name			INSEL	PRSCONF	L	- >	L	ICEDGE							PRSSEL				2011	£	V	¥ 0 1 0 1	V ()	۲ ا ا				COIST		OUTINV	MODE	_

		<u> </u>		A A	DO .	8	Ö		8	9	MO					
Bit	Name	Reset	Access	Description												
31	Reserved	To ensure contions	npatibility v	vith future devices, al	ways wr	ite bits to	o 0. Mo	re informa	tion in 1	.2 Con	iven-					
30	FILT	0	RW	Digital Filter												
	Enable digital filter.															
	Value	Mode		Description												
	0	DISABLE		Digital filter disabled	I											
	1	ENABLE		Digital filter enabled												
29	INSEL	0	RW	Input Selection												
	Select Compare/Capt	ure channel inpo														
	Value	Mode Description PIN TIMERnCCx pin is selected PRS PRS input (selected by PRSSEL) is selected														
	0	PIN	Mode Description PIN TIMERnCCx pin is selected													
	1	PIN TIMERnCCx pin is selected PRS PRS input (selected by PRSSEL) is selected 0 RW PRS Configuration														
28	PRSCONF	0	RW	PRS Configuration	1											
	Select PRS pulse or I	evel.														
	Value	Mode		Description												
	0	PULSE		Each CC event will	generate	e a one l	HFPER	CLK cycle	high pu	lse						
	1	LEVEL		The PRS channel w	ill follow	CC out										
27:26	ICEVCTRL	0x0	RW	Input Capture Ever	nt Conti	rol										
	These bits control wh every capture.	en a Compare/C	Capture PR	S output pulse and in	terrupt f	lag is se	t. DMA	request h	owever i	s set c	n					
	Value	Mode		Description												
	0	EVERYEDGE		PRS output pulse a	nd interr	upt flag	set on e	every capt	ure							
	1	EVERYSECO	NDEDGE	PRS output pulse a	nd interr	upt flag	set on e	every seco	ond capt	ure						
	2	RISING		PRS output pulse as = BOTH)	nd interr	upt flag	set on r	rising edge	e only (if	ICEDO	ЭE					
	3	FALLING		PRS output pulse at = BOTH)	nd interr	upt flag	set on f	falling edg	e only (if	ICED	GE					

Bit	Name	Reset	Access	Description
25:24	ICEDGE	0x0	RW	Input Capture Edge Select
	These bits control wh	nich edges the e	edge detecto	or triggers on. The output is used for input capture and external clock input.
	Value	Mode		Description
	0	RISING		Rising edges detected
	1	FALLING		Falling edges detected
	2	ВОТН		Both edges detected
	3	NONE		No edge detection, signal is left as it is
23:19	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
18:16	PRSSEL	0x0	RW	Compare/Capture Channel PRS Input Channel Selection
	Select PRS input cha	annel for Compa	re/Capture	channel.
	Value	Mode		Description
	0	PRSCH0		PRS Channel 0 selected as input
	1	PRSCH1		PRS Channel 1 selected as input
	2	PRSCH2		PRS Channel 2 selected as input
	3	PRSCH3		PRS Channel 3 selected as input
	4	PRSCH4		PRS Channel 4 selected as input
	5	PRSCH5		PRS Channel 5 selected as input
	6	PRSCH6		PRS Channel 6 selected as input
	7	PRSCH7		PRS Channel 7 selected as input
15:14	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
13:12	CUFOA	0x0	RW	Counter Underflow Output Action
	Select output action of	on counter unde	erflow.	
	Value	Mode		Description
	0	NONE		No action on counter underflow
	1	TOGGLE		Toggle output on counter underflow
	2	CLEAR		Clear output on counter underflow
	3	SET		Set output on counter underflow
11:10	COFOA	0x0	RW	Counter Overflow Output Action
	Select output action of	on counter over	flow.	
	Value	Mode		Description
	0	NONE		No action on counter overflow
	1	TOGGLE		Toggle output on counter overflow
	2	CLEAR		Clear output on counter overflow
	3	SET		Set output on counter overflow

Bit	Name	Reset	Access	Description					
9:8	CMOA	0x0	RW	Compare Match Output Action					
	Select output act	ion on compare ma	atch.						
	Value	Mode		Description					
	0	NONE		No action on compare match					
	1	TOGGLE		Toggle output on compare match					
	2	CLEAR		Clear output on compare match					
	3	SET		Set output on compare match					
7:5	Reserved	Select output action on compare match. Value Mode Description NONE No action on compare match TOGGLE Toggle output on compare match CLEAR Clear output on compare match SET Set output on compare match To ensure compatibility with future devices, always write bits to 0. More informations COIST 0 RW Compare Output Initial State This bit is only used in Output Compare and PWM mode. When this bit is set in Compare or PWM mode nigh when the counter is disabled. When counting resumes, this value will represent the initial value for the scleared, the output will be cleared when the counter is disabled. Reserved To ensure compatibility with future devices, always write bits to 0. More informations OUTINV 0 RW Output Invert Setting this bit inverts the output from the CC channel (Output compare,PWM). MODE 0x0 RW CC Channel Mode These bits select the mode for Compare/Capture channel. Value Mode Description Compare/Capture channel turned off							
4	COIST	0	RW	Compare Output Initial State					
	high when the co	Mode Description NONE No action on compare match TOGGLE Toggle output on compare match CLEAR Clear output on compare match SET Set output on compare match SET Set output on compare match To ensure compatibility with future devices, always write bits to 0. More info tions ST 0 RW Compare Output Initial State Is bit is only used in Output Compare and PWM mode. When this bit is set in Compare or PWM eared, the output will be cleared when the counter is disabled. When counting resumes, this value will represent the initial value eared, the output will be cleared when the counter is disabled. To ensure compatibility with future devices, always write bits to 0. More infortions TINV 0 RW Output Invert ting this bit inverts the output from the CC channel (Output compare,PWM). DE 0x0 RW CC Channel Mode see bits select the mode for Compare/Capture channel. July Mode Description Compare/Capture channel turned off							
3	Reserved	with future devices, always write bits to 0. More information in 1.2 Conven-							
2	OUTINV	Output Invert							
	Setting this bit in	verts the output from	m the CC ch	annel (Output compare,PWM).					
1:0	MODE	0x0	RW	CC Channel Mode					
	These bits select	the mode for Com	pare/Captur	e channel.					
	Value	Mode		Description					
	0	OFF		Compare/Capture channel turned off					
	1	INPUTCAPT	TURE	Input capture					
	2	OUTPUTCO		Output compare					
	=	0011 0100	MPARE	Output compare					

21.5.16 TIMERn_CCx_CCV - CC Channel Value Register (Actionable Reads)

Offset															Bi	it Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		00000000000000000000000000000000000000																														
Access																	[} Y															
Name																2	<u>}</u>															

Bit	Name	Reset	Access	Description
31:0	CCV	0x00000000	RWH	CC Channel Value

In input capture mode, this field holds the first unread capture value. When reading this register in input capture mode, the contents of the TIMERn_CCx_CCVB register will be written to TIMERn_CCx_CCV in the next cycle. In compare mode, this fields holds the compare value.

21.5.17 TIMERn_CCx_CCVP - CC Channel Value Peek Register

Offset															Bi	t Po	siti	on														
0x068	31	30	29	78	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		00000000000000000000000000000000000000																														
Access																۵	۷															
Name																٥/١٥	L))															

Bit	Name	Reset	Access	Description
31:0	CCVP	0x00000000	R	CC Channel Value Peek
	This field is used to re	ead the CC value	e without p	ulling data through the FIFO in capture mode.

21.5.18 TIMERn_CCx_CCVB - CC Channel Buffer Register

Offset															Bi	t Po	siti	on														
0x06C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	က	2	_	0
Reset																000000000000000000000000000000000000000	0000000000															
Access																	[} Y															
Name																٥	<u>ه</u>															

Bit	Name	Reset	Access	Description
31:0	CCVB	0x00000000	RWH	CC Channel Value Buffer

In Input Capture mode, this field holds the last capture value if the TIMERn_CCx_CCV register already contains an earlier unread capture value. In Output Compare or PWM mode, this field holds the CC buffer value which will be written to TIMERn_CCx_CCV on an update event if TIMERn_CCx_CCVB contains valid data.

21.5.19 TIMERn_DTCTRL - DTI Control Register

Offset													В	it P	osit	ion														
0x0A0	30 31	7 7 8 7 8	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1 =	10	6	∞	7	9	2	4	က	2	_	0
Reset						0														0	0				0X0		0	0	0	0
Access						Z.														Z.	Z M				₽		₩ M	RW	X ≷	S. M.
Name						DTPRSEN														DTFATS	DTAR				DTPRSSEL		DTCINV	DTIPOL	DTDAS	DTEN
Bit	Name				Res	set			Acc	cess	5	Des	crip	otio	n															
31:25	Reserved	d			To e		ure	com	pati	bility	/ Wİ	ith fu	ıture	e de	evice	s, al	way	/S V	vrite	bits t	to 0.	Мо	re in	forn	natio	on in	1.2	Col	nve	n-
24	DTPRSE	:N			0				RW	1		DTI	PR	s s	our	e E	nab	le												
	Enable/d	isable	e PR	S as	DTI	l inp	ut.																							
23:11	Reserved	d			To e		ure	com	pati	bility	/ Wİ	ith fu	ıture	e de	evice	s, al	way.	/S V	vrite	bits t	to 0.	Moi	re in	forn	natio	on in	1.2	Col	nve	n-
10	DTFATS				0				RW	,		DTI	Fau	ılt <i>F</i>	Actic	n o	n Ti	ime	r Sto	р										
	When Tir when DT channels	'AR is	s also	o se	t, D																									
9	DTAR				0				RW	1		DTI	Alw	ay	s Ru	n														
	This is us when its ue in DTF	input	sour																											
8:7	Reserved	d			To e		ure	com	pati	bility	/ Wİ	ith fu	ıture	e de	vice	s, al	way	/s v	vrite	bits t	to 0.	Мо	re in	forn	natio	on in	1.2	Col	nve	n-
6:4	DTPRSS	EL			0x0)			RW	1		DTI	PR	s s	our	e C	han	ne	l Sel	ect										
	Selects w	vhich	PRS	cha	anne	l co	mpa	are c	han	nel	0 w	/ill lis	sten	to.																
	Value				Mod	de						Des	crip	tion)															_
	0				PRS	SCH	10					PRS	S Ch	anr	nel 0	sele	ecte	d a	ıs inp	ut										_
	1				PRS	SCH	11					PRS	S Ch	anr	nel 1	sele	ecte	d a	ıs inp	ut										
	2				PRS	SCH	12					PRS	S Ch	anr	nel 2	sele	ecte	d a	s inp	ut										
	3				PRS	SCH	13					PRS	S Ch	anr	nel 3	sele	ecte	d a	s inp	ut										
	4				PRS	SCH	14					PRS	S Ch	anr	nel 4	sele	ecte	d a	s inp	ut										
	5				PRS	SCH	15					PRS	S Ch	anr	nel 5	sele	ecte	d a	s inp	ut										
	6				PRS							PRS	S Ch	anr	nel 6	sele	ecte	d a	s inp	ut										
	7				PRS	SCF	17					PRS	S Ch	anr	nel 7	sele	ecte	d a	s inp	ut										_
3	DTCINV				0				RW	,		DTI	Cor	mpl	leme	nta	ry C	Out	put l	nver	t									
	Set to inv	ert c	ompl	eme	entar	у ог	ıtpu	ts.																						

Bit	Name	Reset	Access	Description
2	DTIPOL	0	RW	DTI Inactive Polarity
	Set inactive polarity for	or outputs.		
1	DTDAS	0	RW	DTI Automatic Start-up Functionality
	Configure DTI restart	on debugger ex	it.	
	Value	Mode		Description
	0	NORESTART	•	No DTI restart on debugger exit
	1	RESTART		DTI restart on debugger exit
0	DTEN	0	RW	DTI Enable
	Enable/disable DTI.			

21.5.20 TIMERn_DTTIME - DTI Time Control Register

Offset			Bit Position
0x0A4	33 33 23 33 24 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	20 22 23 24 25 26 20 20 20 20 20 20 20 20 20 20 20 20 20	0 1 2 3 4 6 0 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reset			0000
Access			MA WA WA
Name			DTFALLT
Bit	Name	Reset Acces	s Description
31:22	Reserved	To ensure compatibilit tions	ty with future devices, always write bits to 0. More information in 1.2 Conven-
21:16	DTFALLT	0x00 RW	DTI Fall-time
	Set time span for	the falling edge.	
	Value		Description
	DTFALLT		Fall time of DTFALLT+1 prescaled HFPERCLK cycles
15:14	Reserved	To ensure compatibilit	ty with future devices, always write bits to 0. More information in 1.2 Conven-
13:8	DTRISET	0x00 RW	DTI Rise-time
	Set time span for	the rising edge.	
	Value		Description
	DTRISET		Rise time of DTRISET+1 prescaled HFPERCLK cycles
7:4	Reserved	To ensure compatibilit	ty with future devices, always write bits to 0. More information in 1.2 Conven-
3:0	DTPRESC	0x0 RW	DTI Prescaler Setting
	Select prescaler	for DTI.	
	Value	Mode	Description
	0	DIV1	The HFPERCLK is undivided
	1	DIV2	The HFPERCLK is divided by 2
	2	DIV4	The HFPERCLK is divided by 4
	3	DIV8	The HFPERCLK is divided by 8
	4	DIV16	The HFPERCLK is divided by 16
	5	DIV32	The HFPERCLK is divided by 32
	6	DIV64	The HFPERCLK is divided by 64
	7	DIV128	The HFPERCLK is divided by 128
	8	DIV256	The HFPERCLK is divided by 256
	9	DIV512	The HFPERCLK is divided by 512
	10	DIV1024	The HFPERCLK is divided by 1024

Bit Name Reset Access Description

21.5.21 TIMERn_DTFC - DTI Fault Configuration Register

Offset												B <u>it F</u>	os	ition													
0x0A8	33 33 28 28 28	27	56	25	24	23	22	21	20	19	9	77	2 1	<u>υ</u> 4	13	12	7	10	<u></u>	8	7	9	2	4	က	2	- O
Reset		0	0	0	0							0x0							0×0								0x0
Access		N N	W W	W.	RW C							RW							W.								- W
			<u>~</u>	<u> </u>	22							~							<u>~</u>								<u> </u>
Name		DTLOCKUPFEN	DTDBGFEN	DTPRS1FEN	DTPRS0FEN							DTFA							DTPRS1FSEL								DTPRS0FSEL
Bit	Name			Re	set			Ac	cess	s [Desc	criptic	on														
31:28	Reserved			To tio		ure	com	npati	bility	y wit	th fut	ture d	evid	es, al	lway	's WI	rite l	oits t	o 0. I	Mor	re in:	form	natio	on ii	1.2	2 Co	onven-
27	DTLOCKUPFE	N		0				RW	/	[DTI I	Locku	ıp F	ault I	Enal	ble											
	Set this bit to 1	to	enal	ble c	ore	lock	cup a	as a	faul	lt so	urce	!															
26	DTDBGFEN			0				RW				Debu	gge	r Fau	lt Eı	nabl	le										
	Set this bit to 1	to	enal		lebu	gge	r as																				
25	DTPRS1FEN			0				RW				PRS 1								_							
	Set this bit to 1	to	enal		PRS	sou	irce										1FS	EL)	as a	fau	lt so	urce	=				
24	DTPRS0FEN	4-		0	200			RW				PRS 0					050	- . \		c	14						
23:18	Set this bit to 1	to	enai					-																i	. 1	2 0	201/00
23.10	Reserved			tio		ure	COII	ірац	Dility	y vvit	iii iui	lur e u	evic	es, ai	way	S WI	ne i	JILS L	0 0. 1	VIOI	e III	OIII	ialic	וו וונ	1 1.4	2 00	onven-
17:16	DTFA			0x0)			RW	/	[DTI I	Fault	Act	ion													
	Select fault act	ion.																									
	Value			Мс	de					[Desc	cription	า									-					
	0			NC	NE					1	No a	ction	on 1	ault													
	1			INA	ACT	IVE				5	Set o	output	s in	active)												
	2			CL	EAF	₹				(Clea	r outp	uts														
	3			TR	IST	ATE				٦	Trista	ate ou	tpu	ts													
15:11	Reserved			To tio		ure	con	npati	bility	y wit	th fu	ture d	evid	es, al	lway	's WI	rite k	oits t	o 0. I	Mor	re in:	form	natio	on ii	า 1.2	2 Cc	onven-
10:8	DTPRS1FSEL			0x0)			RW	/	[DTI I	PRS F	au	It Sou	ırce	1 S	elec	t									
	Select PRS ch	ann	el fo	or fa	ult so	ourc	e 1.																				
	Value			Mc	de					[Desc	cription	า														
	0	PRSCH0										Chan	nel	0 sele	ecte	d as	fau	lt so	urce	1							

PRS Channel 1 selected as fault source 1

PRS Channel 2 selected as fault source 1

PRSCH1

PRSCH2

1

2

Bit	Name	Reset	Access	Description
	3	PRSCH3		PRS Channel 3 selected as fault source 1
	4	PRSCH4		PRS Channel 4 selected as fault source 1
	5	PRSCH5		PRS Channel 5 selected as fault source 1
	6	PRSCH6		PRS Channel 6 selected as fault source 1
	7	PRSCH7		PRS Channel 7 selected as fault source 1
7:3	Reserved	To ensure com	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	DTPRS0FSEL	0x0	RW	DTI PRS Fault Source 0 Select
	Calcat DDC abana	16.6.10.00		
	Select PRS channe	el for fault source 0.		
	Value	ei for fault source 0. Mode	-	Description
				Description PRS Channel 0 selected as fault source 0
	Value	Mode		· · · · · · · · · · · · · · · · · · ·
	Value 0	Mode PRSCH0		PRS Channel 0 selected as fault source 0
	Value 0 1	Mode PRSCH0 PRSCH1		PRS Channel 0 selected as fault source 0 PRS Channel 1 selected as fault source 1
	Value 0 1 2	Mode PRSCH0 PRSCH1 PRSCH2		PRS Channel 0 selected as fault source 0 PRS Channel 1 selected as fault source 1 PRS Channel 2 selected as fault source 2
	Value 0 1 2 3	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3		PRS Channel 0 selected as fault source 0 PRS Channel 1 selected as fault source 1 PRS Channel 2 selected as fault source 2 PRS Channel 3 selected as fault source 3
	Value 0 1 2 3 4	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4		PRS Channel 0 selected as fault source 0 PRS Channel 1 selected as fault source 1 PRS Channel 2 selected as fault source 2 PRS Channel 3 selected as fault source 3 PRS Channel 4 selected as fault source 4

21.5.22 TIMERn_DTOGEN - DTI Output Generation Enable Register

Offset															Bi	it Po	siti	on														
0x0AC	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset					'							•		•	'	•									•		0	0	0	0	0	0
Access																											₩.	M	₽	X ≪	RW	W.
Name																											DTOGCDTI2EN	DTOGCDT11EN	DTOGCDT10EN	DTOGCC2EN	DTOGCC1EN	DTOGCC0EN

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
5	DTOGCDTI2EN	0	RW	DTI CDTI2 Output Generation Enable
	This bit enables/disab	les output gene	ration for th	ne CDTI2 output from the DTI.
4	DTOGCDTI1EN	0	RW	DTI CDTI1 Output Generation Enable
	This bit enables/disab	les output gene	ration for th	ne CDTI1 output from the DTI.
3	DTOGCDTI0EN	0	RW	DTI CDTI0 Output Generation Enable
	This bit enables/disab	les output gene	ration for th	ne CDTI0 output from the DTI.
2	DTOGCC2EN	0	RW	DTI CC2 Output Generation Enable
	This bit enables/disab	les output gene	ration for th	ne CC2 output from the DTI.
1	DTOGCC1EN	0	RW	DTI CC1 Output Generation Enable
	This bit enables/disab	les output gene	ration for th	ne CC1 output from the DTI.
0	DTOGCC0EN	0	RW	DTI CC0 Output Generation Enable
	This bit enables/disab	les output gene	ration for th	ne CC0 output from the DTI.

21.5.23 TIMERn_DTFAULT - DTI Fault Register

Offset		Bit Position																														
0x0B0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	5	4	3	2	_	0
Reset		•	•			•											•		•						•				0	0	0	0
Access																													2	œ	œ	~
Name																													DTLOCKUPF	DTDBGF	DTPRS1F	DTPRS0F

Bit	Name	Reset	Access	Description
31:4	Reserved			with future devices, always write bits to 0. More information in 1.2 Conven-
3	DTLOCKUPF	0	R	DTI Lockup Fault
	This bit is set to 1 can be used to cle	•	fault has occu	rred and DTLOCKUPFEN is set to 1. The TIMER0_DTFAULTC register
2	DTDBGF	0	R	DTI Debugger Fault
	This bit is set to 1 used to clear fault		ult has occurre	ed and DTDBGFEN is set to 1. The TIMER0_DTFAULTC register can be
1	DTPRS1F	0	R	DTI PRS 1 Fault
	This bit is set to 1 used to clear fault		nas occurred	and DTPRS1FEN is set to 1. The TIMER0_DTFAULTC register can be
0	DTPRS0F	0	R	DTI PRS 0 Fault
	This bit is set to 1 used to clear fault		nas occurred	and DTPRS0FEN is set to 1. The TIMER0_DTFAULTC register can be

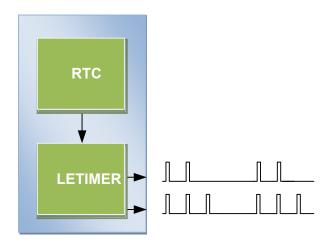
21.5.24 TIMERn_DTFAULTC - DTI Fault Clear Register

Offset		Bit Position																														
0x0B4	31	30	59	78	27	26	25	24	23	22	72	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	_	0
Reset			•	•		•										•		•				•			•	•	•		0	0	0	0
Access																													W W	W K	W1	M
Name																													TLOCKUPFC	DTDBGFC	DTPRS1FC	DTPRS0FC

Bit	Name	Reset	Access	Description										
31:4	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions												
3	TLOCKUPFC	0	W1	DTI Lockup Fault Clear										
	Write 1 to this bit t	o clear core lock	up fault.											
2	DTDBGFC	0	W1	DTI Debugger Fault Clear										
	Write 1 to this bit t	o clear debuggei	r fault.											
1	DTPRS1FC	0	W1	DTI PRS1 Fault Clear										
	Write 1 to this bit t	o clear PRS 1 fa	ult.											
0	DTPRS0FC	0	W1	DTI PRS0 Fault Clear										
	Write 1 to this bit t	o clear PRS 0 fa	ult.											

21.5.25 TIMERn_DTLOCK - DTI Configuration Lock Register

Offset	Bit P										t Po	osition																				
0x0B8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset														•											nnnnxn							
Access																									Ε 2 Υ							
Name																								\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LOCKNEY							


Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	LOCKKEY	0x0000	RWH	DTI Lock Kev

Write any other value than the unlock code to lock TIMERn_ROUTE, TIMERn_DTCTRL, TIMERn_DTTIME and TIMERn_DTFC from editing. Write the unlock code to unlock. When reading the register, bit 0 is set when the lock is enabled.

Mode	Value	Description
Read Operation		
UNLOCKED	0	TIMER DTI registers are unlocked
LOCKED	1	TIMER DTI registers are locked
Write Operation		
LOCK	0	Lock TIMER DTI registers
UNLOCK	0xCE80	Unlock TIMER DTI registers

22. LETIMER - Low Energy Timer

Quick Facts

What?

The LETIMER is a down-counter that can keep track of time and output configurable waveforms. Running on a 32768 Hz clock, the LETIMER is available in EM0 Active, EM1 Sleep, EM2 DeepSleep, and EM3 Stop.

Why?

The LETIMER can be used to provide repeatable waveforms to external components while remaining in EM2 DeepSleep. It is well suited for applications such as metering systems or to provide more compare values than available in the RTC.

How?

With buffered repeat and top value registers, the LE-TIMER can provide glitch-free waveforms at frequencies up to 16 kHz. It can be coupled with RTC using PRS, allowing advanced time-keeping and wake-up functions in EM2 DeepSleep and EM3 Stop

22.1 Introduction

The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep-Sleep, and EM3 Stop. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum.

The LETIMER can be used to output a variety of waveforms with minimal software intervention. It can also be connected to the Real Time Counter (RTC) using PRS, and can be configured to start counting on compare matches from the RTC.

22.2 Features

- · 16-bit down count timer
- · 2 Compare match registers
- · Compare register 0 can be top timer top value
- · Compare registers can be double buffered
- · Double buffered 8-bit Repeat Register
- · Same clock source as the Real Time Counter
- · LETIMER can be triggered (started) by an RTC event via PRS or by software
- · LETIMER can be started, stopped, and/or cleared by PRS
- · 2 output pins can optionally be configured to provide different waveforms on timer underflow:
 - · Toggle output pin
 - Apply a positive pulse (pulse width of one LFACLK_{LETIMER} period)
 - PWM
- Interrupt on:
 - Compare matches
 - · Timer underflow
 - · Repeat done
- · Optionally runs during debug
- · PRS Output

22.3 Functional Description

An overview of the LETIMER module is shown in Figure 22.1 LETIMER Overview on page 783. The LETIMER is a 16-bit down-counter with two compare registers, LETIMERn_COMP0 and LETIMERn_COMP1. The LETIMERn_COMP0 register can optionally act as a top value for the counter. The repeat counter LETIMERn_REP0 allows the timer to count a specified number of times before it stops. Both the LETIMERn_COMP0 and LETIMERn_REP0 registers can be double buffered by the LETIMERn_COMP1 and LETIMERn REP1 registers to allow continuous operation. The timer can generate a single pin output, or two linked outputs.

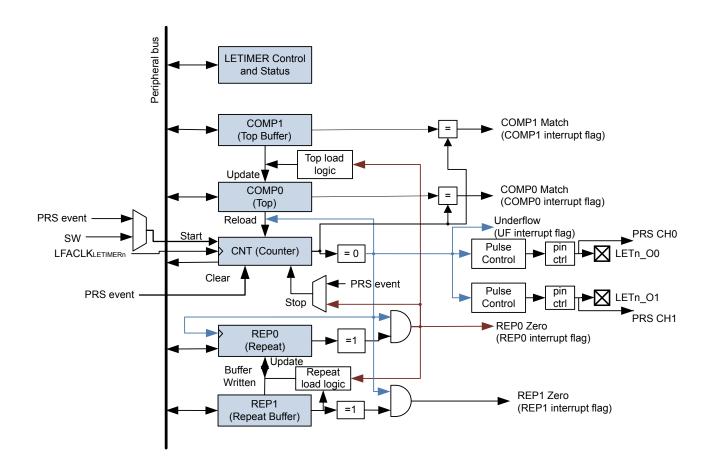


Figure 22.1. LETIMER Overview

22.3.1 Timer

The timer is started by setting command bit START in LETIMERn_CMD, and stopped by setting the STOP command bit in the same register. RUNNING in LETIMERn_STATUS is set as long as the timer is running. The timer can also be started on external signals, such as a compare match from the Real Time Counter. If START and STOP are set at the same time, STOP has priority, and the timer will be stopped.

The timer value can be read using the LETIMERn_CNT register. The value can be written, and it can also be cleared by setting the CLEAR command bit in LETIMERn_CMD. If the CLEAR and START commands are issued at the same time, the timer will be cleared, then start counting at the top value.

22.3.2 Compare Registers

The LETIMER has two compare match registers, LETIMERn_COMP0 and LETIMERn_COMP1. Each of these compare registers are capable of generating an interrupt when the counter value LETIMERn_CNT becomes equal to their value. When LETIMERn_CNT becomes equal to the value of LETIMERn_COMP0, the interrupt flag COMP0 in LETIMERn_IF is set, and when LETIMERn_CNT becomes equal to the value of LETIMERn_COMP1, the interrupt flag COMP1 in LETIMERn_IF is set.

22.3.3 Top Value

If COMPOTOP in LETIMERn_CTRL is set, the value of LETIMERn_COMPO acts as the top value of the timer, and LETIMERn_COMPO is loaded into LETIMERn_CNT on timer underflow. If COMPOTOP is cleared to 0, the timer wraps around to 0xFFFF. The underflow interrupt flag UF in LETIMERn_IF is set when the timer reaches zero.

22.3.3.1 Buffered Top Value

If BUFTOP in LETIMERn_CTRL is set, the value of LETIMERn_COMP0 is buffered by LETIMERn_COMP1. In this mode, the value of LETIMERn_COMP1 is loaded into LETIMERn_COMP0 every time LETIMERn_REP0 is about to decrement to 0. This can for instance be used in conjunction with the buffered repeat mode to generate continually changing output waveforms.

Write operations to LETIMERn COMP0 have priority over buffer loads.

22.3.3.2 Repeat Modes

By default, the timer wraps around to the top value or 0xFFFF on each underflow, and continues counting. The repeat counters can be used to get more control of the operation of the timer, including defining the number of times the counter should wrap around. Four different repeat modes are available, see Table 22.1 LETIMER Repeat Modes on page 784.

Table 22.1. LETIMER Repeat Modes

REPMODE	Mode	Description
0600	Free-running	The timer runs until it is stopped.
0b01	One-shot	The timer runs as long as LETI-MERn_REP0 != 0. LETIMERn_REP0 is decremented at each timer underflow.
0b10	Buffered	The timer runs as long as LETI-MERn_REP0 != 0. LETIMERn_REP0 is decremented on each timer underflow. If LETIMERn_REP1 has been written, it is loaded into LETIMERn_REP0 when LETI-MERn_REP0 is about to be decremented to 0.
0b11	Double	The timer runs as long as LETI-MERn_REP0 != 0 or LETIMERn_REP1 != 0. Both LETIMERn_REP0 and LETI-MERn_REP1 are decremented at each timer underflow.

The interrupt flags REP0 and REP1 in LETIMERn_IF are set whenever LETIMERn_REP0 or LETIMERn_REP1 are decremented to 0 respectively. REP0 is also set when the value of LETIMERn_REP1 is loaded into LETIMERn_REP0 in buffered mode.

22.3.3.3 Free-Running Mode

In free-running mode, the LETIMER acts as a regular timer and the repeat counter is disabled. When started, the timer runs until it is stopped using the STOP command bit in LETIMERn_CMD. A state machine for this mode is shown in Figure 22.2 LETIMER State Machine for Free-running Mode on page 785.

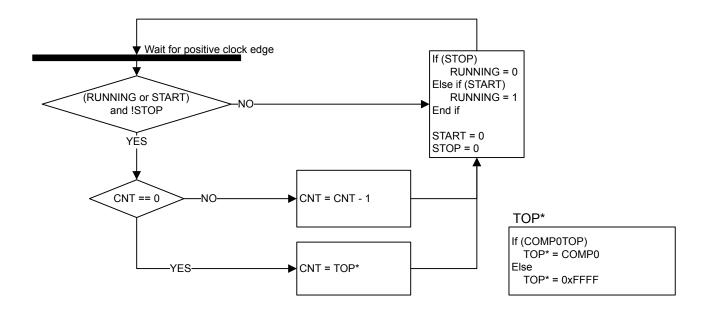


Figure 22.2. LETIMER State Machine for Free-running Mode

Note that the CLEAR command bit in LETIMERn_CMD always has priority over other changes to LETIMERn_CNT. When the clear command is used, LETIMERn_CNT is set to 0 and an underflow event will not be generated when LETIMERn_CNT wraps around to the top value or 0xFFFF. Since no underflow event is generated, no output action is performed. LETIMERn_REP0, LETIMERn_REP1, LETIMERn_COMP0 and LETIMERn_COMP1 are also left untouched.

22.3.3.4 One-shot Mode

The one-shot repeat mode is the most basic repeat mode. In this mode, the repeat register LETIMERn_REP0 is decremented every time the timer underflows, and the timer stops when LETIMERn_REP0 goes from 1 to 0. In this mode, the timer counts down LETIMERn_REP0 times, i.e. the timer underflows LETIMERn_REP0 times.

Note: Write operations to LETIMERn_REP0 have priority over the timer decrement event. If LETIMERn_REP0 is assigned a new value in the same cycle as a timer decrement event occurs, the timer decrement will not occur and the new value is assigned.

LETIMERn_REP0 can be written while the timer is running to allow the timer to run for longer periods at a time without stopping. Figure 22.3 LETIMER One-shot Repeat State Machine on page 786 .

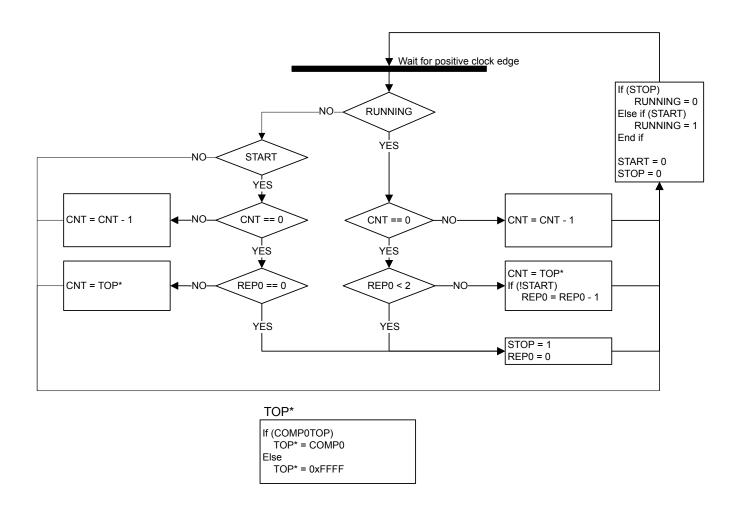


Figure 22.3. LETIMER One-shot Repeat State Machine

22.3.3.5 Buffered Mode

The Buffered repeat mode allows buffered timer operation. When started, the timer runs LETIMERn_REP0 number of times. If LETIMERn_REP1 has been written since the last time it was used and it is nonzero, LETIMERn_REP1 is then loaded into LETIMERn_REP0, and counting continues the new number of times. The timer keeps going as long as LETIMERn_REP1 is updated with a nonzero value before LETIMERn_REP0 is finished counting down. The timer top value (LETIMERn_COMP0) may also optionally be buffered by setting BUFTOP in LETIMERn_CTRL.

If the timer is started when both LETIMERn_CNT and LETIMERn_REP0 are zero but LETIMERn_REP1 is non-zero, LETIMERn_REP1 is loaded into LETIMERn REP0, and the counter counts the loaded number of times.

Used in conjunction with a buffered top value, both the top and repeat values of the timer may be buffered, and the timer can for instance be set to run 4 times with period 7 (top value 6), 6 times with period 200, then 3 times with period 50.

A state machine for the buffered repeat mode is shown in Figure 22.4 LETIMER Buffered Repeat State Machine on page 787. REP1_{USED} shown in the state machine is an internal variable that keeps track of whether the value in LETIMERn_REP1 has been loaded into LETIMERn_REP0 or not. The purpose of this is that a value written to LETIMERn_REP1 should only be counted once. REP1_{USED} is cleared whenever LETIMERn_REP1 is written.

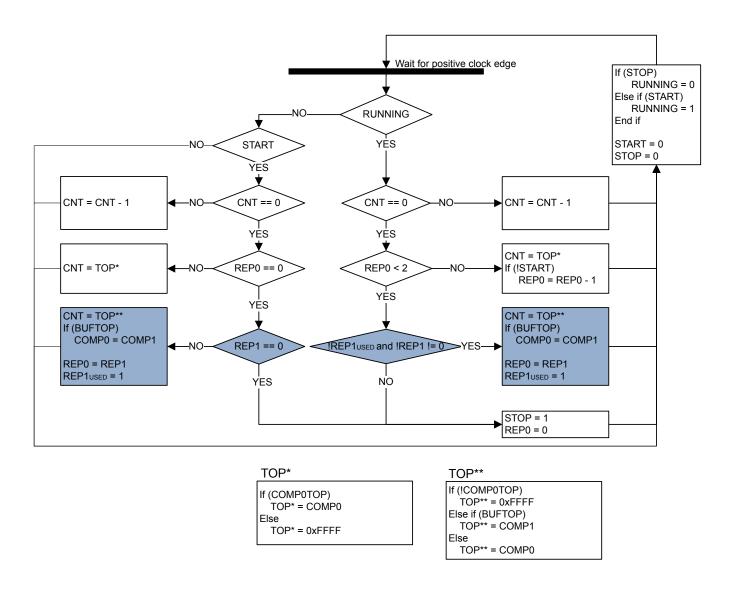


Figure 22.4. LETIMER Buffered Repeat State Machine

22.3.3.6 Double Mode

The Double repeat mode works much like the one-shot repeat mode. The difference is that, where the one-shot mode counts as long as LETIMERn_REP0 is larger than 0, the double mode counts as long as either LETIMERn_REP0 or LETIMERn_REP1 is larger than 0. As an example, say LETIMERn_REP0 is 3 and LETIMERn_REP1 is 10 when the timer is started. If no further interaction is done with the timer, LETIMERn_REP0 will now be decremented 3 times, and LETIMERn_REP1 will be decremented 10 times. The timer counts a total of 10 times, and LETIMERn_REP0 is 0 after the first three timer underflows and stays at 0. LETIMERn_REP0 and LETIMERn_REP1 can be written at any time. After a write to either of these, the timer is guaranteed to underflow at least the written number of times if the timer is running. Use the Double repeat mode to generate output on both the LETIMER outputs at the same time. The state machine for this repeat mode can be seen in Figure 22.5 LETIMER Double Repeat State Machine on page 788.

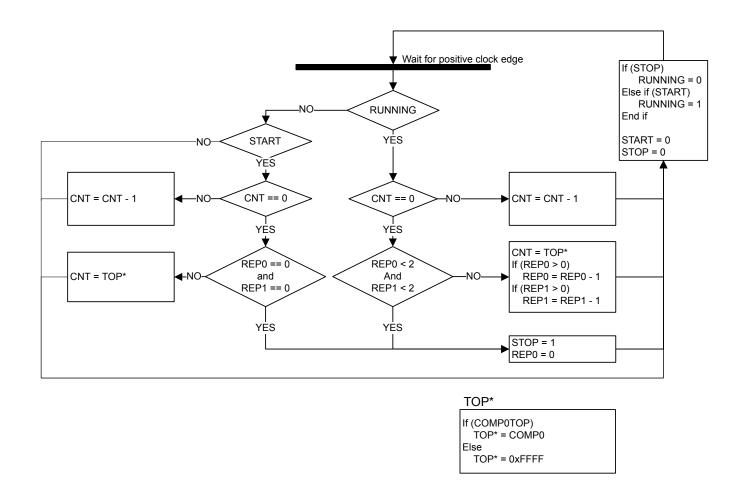


Figure 22.5. LETIMER Double Repeat State Machine

22.3.3.7 Clock Source

The LETIMER clock source and its prescaler value are defined in the Clock Management Unit (CMU). The LFACLK_{LETIMERn} has a frequency given by Figure 22.6 LETIMER Clock Frequency on page 788.

 $f_{LFACKL_LETIMERn} = 32768/2^{LETIMERn}$

Figure 22.6. LETIMER Clock Frequency

where the exponent LETIMERn is a 4 bit value in the CMU LFAPRESC0 register.

To use this module, the LE interface clock must be enabled in CMU_HFBUSCLKEN0, in addition to the module clock.

22.3.3.8 PRS Input Triggers

The LETIMER can be configured to start, stop, and/or clear based on PRS inputs. The diagram showing the functions of the PRS input triggers is shown in Figure 22.7 LETIMER PRS Input Triggers on page 789.

There are 12 PRS inputs to the LETIMER. PRSSTARTSEL, PRSSTOPSEL, and PRSCLEARSEL select which PRS inputs are used to start, stop, and/or clear the LETIMER. PRSSTARTMODE, PRSSTOPMODE, and PRSCLEARMODE select which edge or edge(s) can trigger the start, stop, and/or clear action. The PRSSTARTEN, PRSSTOPEN, and PRSCLEAREN signals shown in the diagram are derived from the PRSSTARTMODE, PRSSTOPMODE, and PRSCLEARMODE fields; if the corresponding bit field is set to NONE, the feature is disabled.

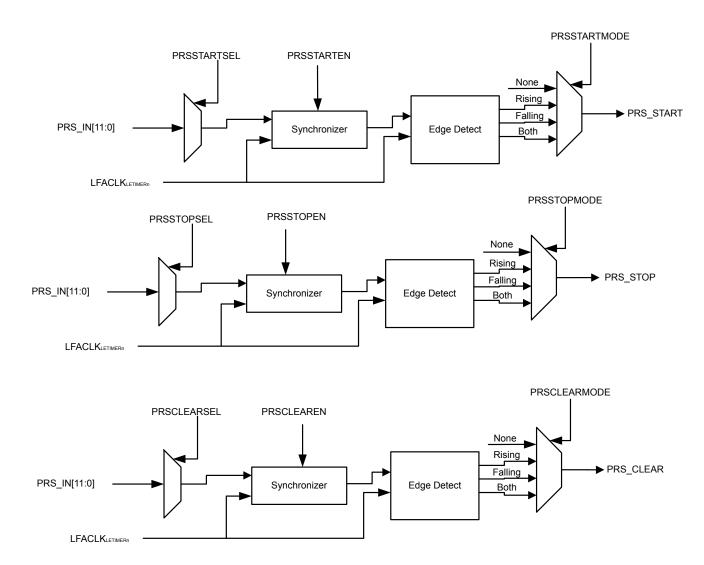


Figure 22.7. LETIMER PRS Input Triggers

22.3.3.9 Debug

If DEBUGRUN in LETIMERn_CTRL is cleared, the LETIMER automatically stops counting when the CPU is halted during a debug session, and resumes operation when the CPU continues. Because of synchronization, the LETIMER is halted two clock cycles after the CPU is halted, and continues running two clock cycles after the CPU continues. RUNNING in LETIMERn_STATUS is not cleared when the LETIMER stops because of a debug-session.

Set DEBUGRUN in LETIMERn_CTRL to allow the LETIMER to continue counting even when the CPU is halted in debug mode.

22.3.4 Underflow Output Action

For each of the repeat registers, an underflow output action can be set. The configured output action is performed every time the counter underflows while the respective repeat register is nonzero. In PWM mode, the output is similarly only changed on COMP1 match if the repeat register is nonzero. As an example, the timer will perform 7 output actions if LETIMERn_REP0 is set to 7 when starting the timer in one-shot mode and leaving it untouched.

The output actions can be set by configuring UFOA0 and UFOA1 in LETIMERn_CTRL. UFOA0 defines the action on output 0, and is connected to LETIMERn_REP0, while UFOA1 defines the action on output 1 and is connected to LETIMERn_REP1. The possible actions are defined in Table 22.2 LETIMER Underflow Output Actions on page 790.

Table 22.2. LETIMER Underflow Output Actions

UF0A0/UF0A1	Mode	Description
0b00	Idle	The output is held at its idle value
0b01	Toggle	The output is toggled on LETIMERn_CNT underflow if LEIMERn_REPx is nonzero
0b10	Pulse	The output is held active for one clock cycle on LETIMERn_CNT underflow if LETI-MERn_REPx is nonzero. It then returns to its idle value
0b11	PWM	The output is set idle on LETIMERn_CNT underflow and active on compare match with LETIMERn_COMP1 if LETI-MERn_REPx is nonzero.

Note:

- For the Pulse and PWM modes, the outputs will return to their idle states regardless of the state of the corresponding LETI-MERn_REPx registers. They will only be set active if the LETIMERn_REPx registers are nonzero however.
- For free-running mode, LETIMERn_REP0 != 0 for output generation to be enabled.

The polarity of the outputs can be set individually by configuring OPOL0 and OPOL1 in LETIMERn_CTRL. When these are cleared, their respective outputs have a low idle value and a high active value. When they are set, the idle value is high, and the active value is low.

When using the toggle action, the outputs can be driven to their idle values by setting their respective CTO0/CTO1 command bits in LETIMERn_CTRL. This can be used to put the output in a well-defined state before beginning to generate toggle output, which may be important in some applications. The command bit can also be used while the timer is running.

Some simple waveforms generated with the different output modes are shown in Figure 22.8 LETIMER Simple Waveforms Output on page 791. For the example, REPMODE in LETIMERn_CTRL has been cleared, COMP0TOP also in LETIMERn_CTRL has been set and LETIMERn_COMP0 has been written to 3. As seen in the figure, LETIMERn_COMP0 now decides the length of the signal periods. For the toggle mode, the period of the output signal is 2(LETIMERn_COMP0 + 1), and for the pulse modes, the periods of the output signals are LETIMERn_COMP0+1. Note that the pulse outputs are delayed by one period relative to the toggle output. The pulses come at the end of their periods.

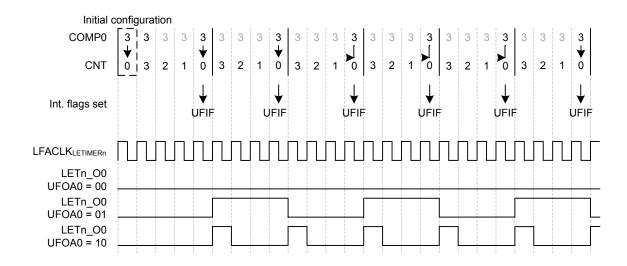


Figure 22.8. LETIMER Simple Waveforms Output

For the example in Figure 22.9 LETIMER Repeated Counting on page 791, the One-shot repeat mode has been selected, and LETI-MERn_REP0 has been written to 3. The resulting behavior is pretty similar to that shown in Figure 6, but in this case, the timer stops after counting to zero LETIMERn_REP0 times. By using LETIMERn_REP0 the user has full control of the number of pulses/toggles generated on the output.

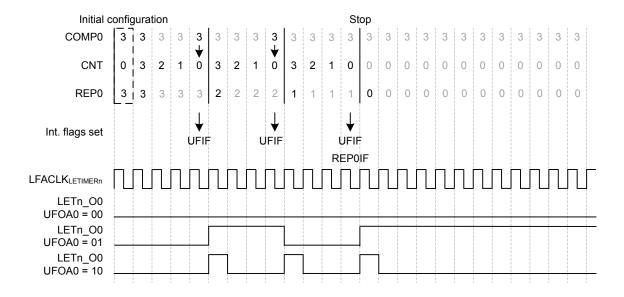


Figure 22.9. LETIMER Repeated Counting

Using the Double repeat mode, output can be generated on both the LETIMER outputs. Figure 22.10 LETIMER Dual Output on page 792 shows an example of this. UFOA0 and UFOA1 in LETIMERn_CTRL are configured for pulse output and the outputs are configured for low idle polarity. As seen in the figure, the number written to the repeat registers determine the number of pulses generated on each of the outputs.

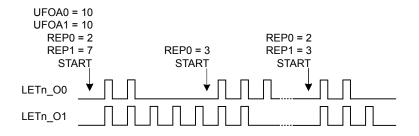


Figure 22.10. LETIMER Dual Output

22.3.5 PRS Output

The LETIMER outputs can be routed out onto the PRS system. Enabling the PRS connection can be done by setting SOURCESEL to LETIMERx and SIGSEL to LETIMERxCHn in PRS_CHx_CTRL. The PRS register description can be found in 14.5 Register Description

22.3.6 Examples

This section presents a couple of usage examples for the LETIMER.

22.3.6.1 Triggered Output Generation

If both LETIMERn_CNT and LETIMERn_REP0 are 0 in buffered mode, and COMP0TOP and BUFTOP in LETIMERn_CTRL are set, the values of LETIMERn_COMP1 and LETIMERn_REP1 are loaded into LETIMERn_CNT and LETIMERn_REP0 respectively when the timer is started. If no additional writes to LETIMERn_REP1 are done before the timer stops, LETIMERn_REP1 determines the number of pulses/toggles generated on the output, and LETIMERn_COMP1 determines the period lengths.

As the RTC can be used via PRS to start the LETIMER, the RTC and LETIMER can thus be combined to generate specific pulse-trains at given intervals. Software can update LETIMERn_COMP1 and LETIMERn_REP1 to change the number of pulses and pulse-period in each train, but if changes are not required, software does not have to update the registers between each pulse train.

For the example in Figure 22.11 LETIMER Triggered Operation on page 793, the initial values cause the LETIMER to generate two pulses with 3 cycle periods, or a single pulse 3 cycles wide every time the LETIMER is started. After the output has been generated, the LETIMER stops, and is ready to be triggered again.

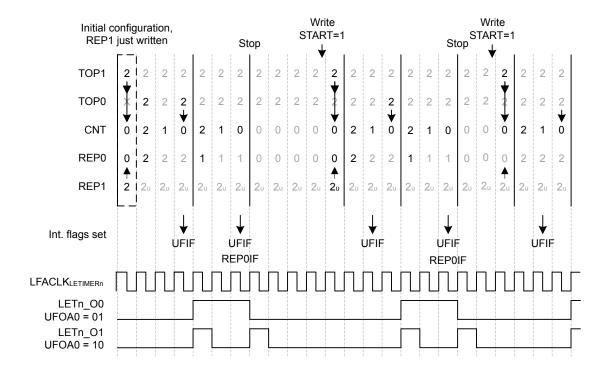


Figure 22.11. LETIMER Triggered Operation

22.3.6.2 Continuous Output Generation

In some scenarios, it might be desired to make LETIMER generate a continuous waveform. Very simple constant waveforms can be generated without the repeat counter as shown in Figure 22.8 LETIMER Simple Waveforms Output on page 791, but to generate changing waveforms, using the repeat counter and buffer registers can prove advantageous.

For the example in Figure 22.12 LETIMER Continuous Operation on page 794, the goal is to produce a pulse train consisting of 3 sequences with the following properties:

- · 3 pulses with periods of 3 cycles
- · 4 pulses with periods of 2 cycles
- · 2 pulses with periods of 3 cycles

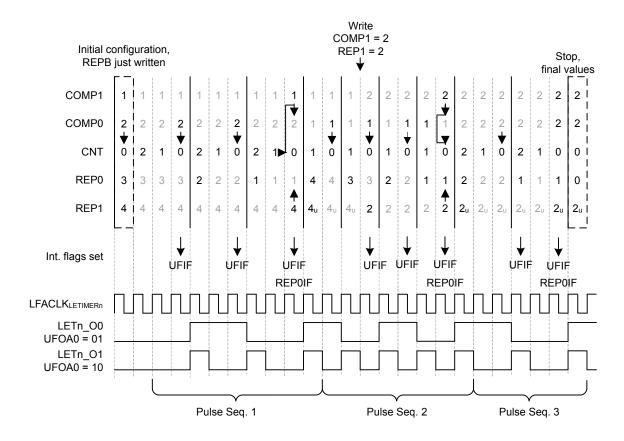


Figure 22.12. LETIMER Continuous Operation

The first two sequences are loaded into the LETIMER before the timer is started.

LETIMERn_COMP0 is set to 2 (cycles – 1), and LETIMERn_REP0 is set to 3 for the first sequence, and the second sequence is loaded into the buffer registers, i.e. COMP1 is set to 1 and LETIMERn_REP1 is set to 4.

The LETIMER is set to trigger an interrupt when LETIMERn_REP0 is done by setting REP0 in LETIMERn_IEN. This interrupt is a good place to update the values of the buffers. Last but not least REPMODE in LETIMERn_CTRL is set to buffered mode, and the timer is started.

In the interrupt routine the buffers are updated with the values for the third sequence. If this had not been done, the timer would have stopped after the second sequence.

The final result is shown in Figure 22.12 LETIMER Continuous Operation on page 794. The pulse output is grouped to show which sequence generated which output. Toggle output is also shown in the figure. Note that the toggle output is not aligned with the pulse outputs.

Note: Multiple LETIMER cycles are required to write a value to the LETIMER registers. The example in Figure 22.12 LETIMER Continuous Operation on page 794 assumes that writes are done in advance so they arrive in the LETIMER as described in the figure.

Figure 22.13 LETIMER LETIMERn_CNT Not Initialized to 0 on page 795 shows an example where the LETIMER is started while LETIMERn CNT is nonzero. In this case the length of the first repetition is given by the value in LETIMERn CNT.

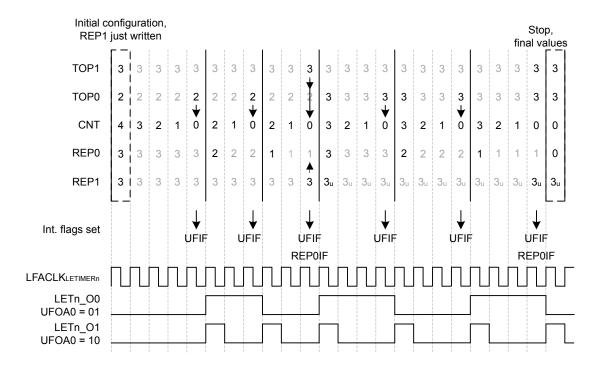


Figure 22.13. LETIMER LETIMERn_CNT Not Initialized to 0

22.3.6.3 PWM Output

There are several ways of generating PWM output with the LETIMER, but the most straight-forward way is using the PWM output mode. This mode is enabled by setting UFOA0 or UFOA1 in LETIMERn_CTRL to 3. In PWM mode, the output is set idle on timer underflow, and active on LETIMERn_COMP1 match, so if for instance COMP0TOP = 1 and OPOL0 = 0 in LETIMERn_CTRL, LETIMERn COMP0 determines the PWM period, and LETIMERn_COMP1 determines the active period.

The PWM period in PWM mode is LETIMERn_COMP0 + 1. There is no special handling of the case where LETIMERn_COMP1 > LETIMERn_COMP0, so if LETIMERn_COMP1 > LETIMERn_COMP0, the PWM output is given by the idle output value. This means that for OPOLx = 0 in LETIMERn_CTRL, the PWM output will always be 0 for at least one clock cycle, and for OPOLx = 1 LETIMERN CTRL, the PWM output will always be 1 for at least one clock cycle.

To generate a PWM signal using the full PWM range, invert OPOLx when LETIMERn_COMP1 is set to a value larger than LETI-MERn_COMP0.

22.3.6.4 Interrupts

The interrupts generated by the LETIMER are combined into one interrupt vector. If the interrupt for the LETIMER is enabled, an interrupt will be made if one or more of the interrupt flags in LETIMERn_IF and their corresponding bits in LETIMER_IEN are set.

22.3.7 Register Access

This module is a Low Energy Peripheral, and supports immediate synchronization. For description regarding immediate synchronization, the reader is referred to 4.3.1 Writing.

22.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LETIMERn_CTRL	RW	Control Register
0x004	LETIMERn_CMD	W1	Command Register
0x008	LETIMERn_STATUS	R	Status Register
0x00C	LETIMERn_CNT	RWH	Counter Value Register
0x010	LETIMERn_COMP0	RWH	Compare Value Register 0
0x014	LETIMERn_COMP1	RW	Compare Value Register 1
0x018	LETIMERn_REP0	RWH	Repeat Counter Register 0
0x01C	LETIMERn_REP1	RWH	Repeat Counter Register 1
0x020	LETIMERn_IF	R	Interrupt Flag Register
0x024	LETIMERn_IFS	W1	Interrupt Flag Set Register
0x028	LETIMERn_IFC	(R)W1	Interrupt Flag Clear Register
0x02C	LETIMERn_IEN	RW	Interrupt Enable Register
0x034	LETIMERn_SYNCBUSY	R	Synchronization Busy Register
0x040	LETIMERn_ROUTEPEN	RW	I/O Routing Pin Enable Register
0x044	LETIMERn_ROUTELOC0	RW	I/O Routing Location Register
0x050	LETIMERn_PRSSEL	RW	PRS Input Select Register

22.5 Register Description

22.5.1 LETIMERn_CTRL - Control Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

						-			•										-			•	•						•		
Offset															Ві	it I	Positi	on													
0x000	31	30	23	28	27	26	25	24	23	22	21	20	19	18	17	0	16	41	13	12	7	10	6	8	7	9	5	4	3	2	- c
Reset		•			•			•				•								0			0	0	0	0	5	OXO	OXO		0x0
Access																				S S			S.	₩ M	Z.	Z.	<u> </u>	<u>}</u>	<u> </u>		RW
Name																				DEBUGRUN			COMPOTOP	BUFTOP	OPOL1	OPOL0	100		LIFOAO	2	REPMODE
Bit	Nan	ne					Re	set			Ac	ces	s	Des	crip	ti	on														
31:13	Res	erve	d				To tio		ure	con	pati	ibilit	y w	ith fu	ıture	a	devices	s, al	way	s wr	rite l	oits t	o 0.	Мо	re ir	nforr	natio	on in	1.2	Coi	nven-
12	DE	BUG	RU	IN			0				RV	V		Deb	ug l	Me	ode R	un l	Enal	ble											
	Set	to ke	eep	the	E LE	TIM	ER	runr	ning	in d	ebu	g m	ode) .																	
	Valu	ıe												Des	cript	io	n														
	0													LET	IME	R	is froz	zen	in de	ebug	g mo	ode									
	1													LET	IME	R	is run	ning	j in d	debu	ug n	node)								
11:10	Res	erve	d				To		ure	con	pati	ibilit	y w	ith fu	ıture	a	devices	s, al	way.	s wr	rite l	oits t	o 0.	Мо	re ir	nforr	natio	on in	1.2	Coi	nven-
9	COI	MP0	ТО	Р			0				RV	V		Con	npai	re	Value	0 i	s To	p V	alu	е									
	Whe	en se	et, 1	the	cou	nter	is c	lear	ed ir	n the	e clo	ck c	ycl	e aft	er a	C	ompar	e m	atch	witl	h co	mpa	ire c	char	nnel	0.					
	Valu	ıe											-	Des	cript	io	n														
	0													The	ton	va	alue of	fthe	ıF.	ТІМІ	FR i	s 65	535	(0x	FFF	F)					

_	001100700	•	D) 4 /	
9	COMP0TOP	0	RW	Compare Value 0 is Top Value
	When set, the cou	unter is cleared	l in the clock c	ycle after a compare match with compare channel 0.
	Value			Description
	0			The top value of the LETIMER is 65535 (0xFFFF)
	1			The top value of the LETIMER is given by COMP0
3	BUFTOP	0	RW	Buffered Top
3				Buffered Top reaches 0, allowing a buffered top value.
3				•
3	Set to load COMF			reaches 0, allowing a buffered top value.
3	Set to load COMF			Description
,	Set to load COMF			Description COMP0 is only written by software
	Set to load COMF Value 0 1	P1 into COMP0	when REP0 r	Description COMP0 is only written by software COMP0 is set to COMP1 when REP0 reaches 0
7	Value 0 1 OPOL1	P1 into COMP0	when REP0 r	Description COMP0 is only written by software COMP0 is set to COMP1 when REP0 reaches 0

Bit	Name	Reset	Access	Description
5:4	UFOA1	0x0	RW	Underflow Output Action 1
	Defines the action	n on LETn_O1 on a	LETIMER	underflow.
	Value	Mode		Description
	0	NONE		LETn_O1 is held at its idle value as defined by OPOL1
	1	TOGGLE		LETn_O1 is toggled on CNT underflow
	2	PULSE		LETn_O1 is held active for one LFACLK _{LETIMER0} clock cycle on CNT underflow. The output then returns to its idle value as defined by OPOL1
	3	PWM		LETn_O1 is set idle on CNT underflow, and active on compare match with COMP1
3:2	UFOA0	0x0	RW	Underflow Output Action 0
	Defines the action	n on LETn_O0 on a	LETIMER (underflow.
	Value	Mode		Description
	0	NONE		LETn_O0 is held at its idle value as defined by OPOL0
	1	TOGGLE		LETn_O0 is toggled on CNT underflow
	2	PULSE		LETn_O0 is held active for one LFACLK _{LETIMER0} clock cycle on CNT underflow. The output then returns to its idle value as defined by OPOL0
	3	PWM		LETn_O0 is set idle on CNT underflow, and active on compare match with COMP1
1:0	REPMODE	0x0	RW	Repeat Mode
	Allows the repeat	counter to be enabl	led and dis	abled.
	Value	Mode		Description
	0	FREE		When started, the LETIMER counts down until it is stopped by software
	1	ONESHOT		The counter counts REP0 times. When REP0 reaches zero, the counter stops
	2	BUFFERED		The counter counts REP0 times. If REP1 has been written, it is loaded into REP0 when REP0 reaches zero, otherwise the counter stops
	3	DOUBLE		Both REP0 and REP1 are decremented when the LETIMER wraps around. The LETIMER counts until both REP0 and REP1 are zero

22.5.2 LETIMERn_CMD - Command Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Pc	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	_∞	7	9	2	4	က	2	_	0
Reset			'			•		1	•			•						'	•					•		•		0	0	0	0	0
Access																												W W	W M	W	W M	M
Name																												СТО1	СТОО	CLEAR	STOP	START

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure co tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4	CTO1	0	W1	Clear Toggle Output 1
	Set to drive toggle ou	tput 1 to its idle	value	
3	CTO0	0	W1	Clear Toggle Output 0
	Set to drive toggle ou	tput 0 to its idle	value	
2	CLEAR	0	W1	Clear LETIMER
	Set to clear LETIMER	₹		
1	STOP	0	W1	Stop LETIMER
	Set to stop LETIMER	1		
0	START	0	W1	Start LETIMER
	Set to start LETIMER	2		

22.5.3 LETIMERn_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	_	9	5	4	က	2	_	0
Reset																																0
Access																																22
Name																																SUNG
Name																																RUNNIN

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	RUNNING	0	R	LETIMER Running
	Set when LETIMER i	s running.		

22.5.4 LETIMERn_CNT - Counter Value Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			1		1	ı			1	1		1		•					ı		ı		'	0000	00000							
Access																								ם, אום								
Name																								TIVO	2							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	CNT	0x0000	RWH	Counter Value
	Use to read the curre	nt value of the l	ETIMER.	

22.5.5 LETIMERn_COMP0 - Compare Value Register 0 (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset	Bit Position	
0x010	33 34 35 36 37 38 39 30 30 30 30 30 30 30 30 30 30 30 30 40 <th>4 m 0 t 0</th>	4 m 0 t 0
Reset	0000×0	
Access	RWH	
Name	СОМРО	

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	COMP0	0x0000	RWH	Compare Value 0
	Compare and optiona	ally top value for	LETIMER.	

22.5.6 LETIMERn_COMP1 - Compare Value Register 1 (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset Bit Pos	sition
0x014	2 4 8 7
Reset	0000×0
Access	A ⊗
Name	COMP1

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	COMP1	0x0000	RW	Compare Value 1
	Compare and option	ally buffered top	value for L	ETIMER.

22.5.7 LETIMERn_REP0 - Repeat Counter Register 0 (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset	Bit Position	
0x018	33 34 35 36 37 38 39 30 31 32 33 34 35 36 36 37 38 40 <th>L 0 0 4 0 1 0</th>	L 0 0 4 0 1 0
Reset		00×0
Access		RWH
Name		REP0

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co tions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	REP0	0x00	RWH	Repeat Counter 0
	Optional repeat coun	ter.		

22.5.8 LETIMERn_REP1 - Repeat Counter Register 1 (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset	Bit Position	
0x01C	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	L 0 0 4 0 1 0
Reset		00×0
Access		RWH H
Name		REP1

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	REP1	0x00	RWH	Repeat Counter 1
	Optional repeat coun	ter or buffer for	REP0.	

22.5.9 LETIMERn_IF - Interrupt Flag Register

Offset															Bi	t Pc	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset														•											•		•	0	0	0	0	0
Access																												R	22	22	22	22
Name																												REP1	REP0	UF	COMP1	COMPO

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4	REP1	0	R	Repeat Counter 1 Interrupt Flag
	Set when repeat cour	nter 1 reaches z	ero.	
3	REP0	0	R	Repeat Counter 0 Interrupt Flag
	Set when repeat cour	nter 0 reaches z	ero or whe	n the REP1 interrupt flag is loaded into the REP0 interrupt flag.
2	UF	0	R	Underflow Interrupt Flag
	Set on LETIMER und	lerflow.		
1	COMP1	0	R	Compare Match 1 Interrupt Flag
	Set when LETIMER r	eaches the valu	e of COMF	1.
0	COMP0	0	R	Compare Match 0 Interrupt Flag
	Set when LETIMER r	eaches the valu	e of COMP	20.

22.5.10 LETIMERn_IFS - Interrupt Flag Set Register

Offset															Ві	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset					•		•				•									•	•				•	•		0	0	0	0	0
Access																												W1	W1	W1	W1	W1
Name																												REP1	REP0	UF	COMP1	COMPO

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4	REP1	0	W1	Set REP1 Interrupt Flag
	Write 1 to set the	REP1 interrupt fla	ag	
3	REP0	0	W1	Set REP0 Interrupt Flag
	Write 1 to set the	REP0 interrupt fla	ag	
2	UF	0	W1	Set UF Interrupt Flag
	Write 1 to set the	UF interrupt flag		
1	COMP1	0	W1	Set COMP1 Interrupt Flag
	Write 1 to set the	COMP1 interrupt	flag	
0	COMP0	0	W1	Set COMP0 Interrupt Flag
	Write 1 to set the	COMP0 interrupt	flag	

22.5.11 LETIMERn_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																												0	0	0	0	0
Access																												(R)W1	(R)W1	(R)W1	(R)W1	(R)W1
Name																												REP1	REP0	UF	COMP1	COMPO

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4	REP1	0	(R)W1	Clear REP1 Interrupt Flag
	Write 1 to clear the F (This feature must b			returns the value of the IF and clears the corresponding interrupt flags
3	REP0	0	(R)W1	Clear REP0 Interrupt Flag
	Write 1 to clear the F (This feature must be			returns the value of the IF and clears the corresponding interrupt flags
2	UF	0	(R)W1	Clear UF Interrupt Flag
	Write 1 to clear the l feature must be ena			turns the value of the IF and clears the corresponding interrupt flags (This
1	COMP1	0	(R)W1	Clear COMP1 Interrupt Flag
	Write 1 to clear the (This feature must be			ng returns the value of the IF and clears the corresponding interrupt flags
0	COMP0	0	(R)W1	Clear COMP0 Interrupt Flag
	Write 1 to clear the (This feature must be			ng returns the value of the IF and clears the corresponding interrupt flags

22.5.12 LETIMERn_IEN - Interrupt Enable Register

Offset															Ві	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	တ	8	7	9	5	4	က	2	_	0
Reset		•											•					•							•	•	•	0	0	0	0	0
Access																												RW	₩ M	RW	₩ M	₩ M
Name																												REP1	REP0	UF	COMP1	COMPO

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure cortions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4	REP1	0	RW	REP1 Interrupt Enable
	Enable/disable the RI	EP1 interrupt		
3	REP0	0	RW	REP0 Interrupt Enable
	Enable/disable the RI	EP0 interrupt		
2	UF	0	RW	UF Interrupt Enable
	Enable/disable the Uf	= interrupt		
1	COMP1	0	RW	COMP1 Interrupt Enable
	Enable/disable the Co	OMP1 interrupt		
0	COMP0	0	RW	COMP0 Interrupt Enable
	Enable/disable the Co	OMP0 interrupt		

22.5.13 LETIMERn_SYNCBUSY - Synchronization Busy Register

Offset	Bit Position	
0x034	2 3 4 5 6 7 8 8 7 9 8 8 7 9 8 8 7 9 8 8 7 9 8 8 8 8	- 0
Reset		0
Access		<u>~</u>
Name		CMD

Bit	Name	Reset	Access	Description						
31:2	Reserved	To ensure cortions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-						
1	CMD	0	R	CMD Register Busy						
	Set when the value w	ritten to CMD is	being synd	chronized.						
0	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions								

22.5.14 LETIMERn_ROUTEPEN - I/O Routing Pin Enable Register

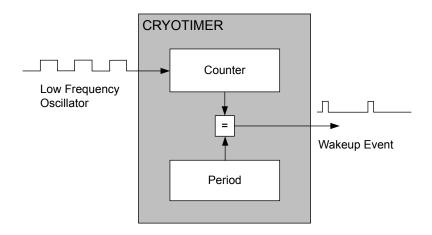
Offset															Bi	t Po	siti	on														
0x040	31	30	59	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	2	4	က	2	~	0
Reset																															0	0
Access																															₩ M	RW
Name																															OUT1PEN	OUTOPEN

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
1	OUT1PEN	0	RW	Output 1 Pin Enable
	When set, output 1	of the LETIMER	R is enabled.	
	Value			Description
	0			The LETn_O1 pin is disabled
	1			The LETn_O1 pin is enabled
0	OUT0PEN	0	RW	Output 0 Pin Enable
	When set, output 0	of the LETIMER	R is enabled.	
	Value			Description
	0			The LETn_O0 pin is disabled
	1			The LETn_O0 pin is enabled

22.5.15 LETIMERn_ROUTELOC0 - I/O Routing Location Register

Offset				Bit Position		
0x044	31 30 29 28 27 27	25 24 23 23 22	20	8	13 17 19 8	r 9 & 4 & 2 t 0
Reset					0×00	0000
Access					RW 0	RW .
Name					OUT1LOC	OUTOLOC
					no	70
Bit	Name	Reset	Access	Description		
31:14	Reserved	To ensure cor tions	mpatibility v	with future devices, al	ways write bits to 0. Mo	re information in 1.2 Conven-
13:8	OUT1LOC	0x00	RW	I/O Location		
	Decides the location of	of the LETIMER	OUT1 pin.			
	Value	Mode		Description		
	0	LOC0		Location 0		
	1	LOC1		Location 1		
	2	LOC2		Location 2		
	3	LOC3		Location 3		
	4	LOC4		Location 4		
	5	LOC5		Location 5		
	6	LOC6		Location 6		
7:6	Reserved	To ensure contions	mpatibility v	with future devices, al	ways write bits to 0. Mo	re information in 1.2 Conven-
5:0	OUT0LOC	0x00	RW	I/O Location		
	Decides the location of	of the LETIMER	OUT0 pin.			
	Value	Mode		Description		
	0	LOC0		Location 0		
	1	LOC1		Location 1		
	2	LOC2		Location 2		
	3	LOC3		Location 3		
	4	LOC4		Location 4		
	5	LOC5		Location 5		
	6	LOC6		Location 6		

22.5.16 LETIMERn_PRSSEL - PRS Input Select Register


Offset											Bi	t Posit	ion												
0x050	30	29	28	27	25	23	22	21	20	19 19	17	16	4	13	7 5	=	10	6	8	7	9	5	4	3	0 7 0
Reset				0x0			OXO			000				0×0						0X0					0X0
Access				RW		i	≷			RW				RW						ΑW					RW
Name				PRSCLEARMODE			PRSSTOPMODE			PRSSTARTMODE				PRSCLEARSEL						PRSSTOPSEL					PRSSTARTSEL
Bit	Name)			Rese			Ac	ces	s Des	crip	tion													
31:28	Rese	ved			To en	sure	con	npat	ibilit	y with fu	ıture	device	s, al	ways I	vrite	e bi	its to	0.	Мо	re i	infori	nati	on i	n 1.2	? Conven-
27:26	PRSC	LEAF	RMC	DDE	0x0			RV	V	PRS Clear Mode															
	Deter	mines	mo	de for	PRS in	S input clear.																			
	Value				Mode					Description															
	0				NONE	ONE					PRS cannot clear the LETIMER														
	1				RISIN					Rising edge of selected PRS input can clear the LETIMER															
	2				FALL	NG				Falling edge of selected PRS input can clear the LETIMER Both the rising or falling edge of the selected PRS input can clear the															
	3				BOTH	1					Both the rising or falling edge of the selected PRS input can clear the LETIMER														
25:24	Rese	ved			To en	sure	con	npat	ibilit	y with fu	with future devices, always write bits to 0. More information in 1.2 Conven-														? Conven-
23:22	PRSS	TOP	MOI	DE	0x0			RV	V	PRS	PRS Stop Mode														
	Deter	mines	mo	de for	PRS in	out s	top.																		
	Value				Mode					Des	cript	ion													
	0				NONE	Ξ				PRS	car	not sto	p th	e LET	IME	R									
	1				RISIN	G				Risi	ng e	dge of	sele	cted P	RS i	np	ut ca	an s	stop	the	e LE	TIM	ER		
	2				FALL	NG				Falli	ng e	dge of	sele	cted P	RS	inp	out c	an :	stop	o th	e LE	TIM	IER		
	3				BOTH	вотн					the IME	rising R	or fa	lling e	dge	of	the	sele	ecte	ed F	PRS	inpu	ıt ca	an sto	p the
21:20	Rese	rved			To ensure compatibility v					y with fu	ıture	device	s, al	ways	vrite	e bi	its to	0.	Мо	re i	inforr	nati	on i	in 1.2	? Conven-
19:18	PRSS	START	ГМС	DDE	0x0			RV	V	PRS	Sta	rt Mod	le												
	Deter	mines	mo	de for	PRS in	out s	tart.																		
	Value				Mode					Des	cript	ion													
	0				NONE					PRS cannot start the LETIMER															
	1 RISING							Risi	ng e	dge of	sele	cted P	RS i	np	ut ca	an s	star	t th	e LE	TIM	ER				

Bit	Name	Reset Access	s Description
-	2	FALLING	Falling edge of selected PRS input can start the LETIMER
	3	вотн	Both the rising or falling edge of the selected PRS input can start the LETIMER
17:15	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
14:12	PRSCLEARSEL	0x0 RW	PRS Clear Select
	Determines which F	PRS input can clear the LE	ΓΙΜΕR.
	Value	Mode	Description
	0	PRSCH0	PRS Channel 0 selected as input
	1	PRSCH1	PRS Channel 1 selected as input
	2	PRSCH2	PRS Channel 2 selected as input
	3	PRSCH3	PRS Channel 3 selected as input
	4	PRSCH4	PRS Channel 4 selected as input
	5	PRSCH5	PRS Channel 5 selected as input
	6	PRSCH6	PRS Channel 6 selected as input
	7	PRSCH7	PRS Channel 7 selected as input
11:9	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
8:6	PRSSTOPSEL	0x0 RW	PRS Stop Select
	Determines which F	PRS input can stop the LET	IMER.
	Value	Mode	Description
	0	PRSCH0	PRS Channel 0 selected as input
	1	PRSCH1	PRS Channel 1 selected as input
	2	PRSCH2	PRS Channel 2 selected as input
	3	PRSCH3	PRS Channel 3 selected as input
	4	PRSCH4	PRS Channel 4 selected as input
	5	PRSCH5	PRS Channel 5 selected as input
	6	PRSCH6	PRS Channel 6 selected as input
	7	PRSCH7	PRS Channel 7 selected as input
5:3	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	PRSSTARTSEL	0x0 RW	PRS Start Select
	Determines which F	PRS input can start the LET	TIMER.
	Value	Mode	Description
	0	PRSCH0	PRS Channel 0 selected as input
	1	PRSCH1	PRS Channel 1 selected as input
	2	PRSCH2	PRS Channel 2 selected as input

Bit	Name	Reset	Access	Description
	3	PRSCH3		PRS Channel 3 selected as input
	4	PRSCH4		PRS Channel 4 selected as input
	5	PRSCH5		PRS Channel 5 selected as input
	6	PRSCH6		PRS Channel 6 selected as input
	7	PRSCH7		PRS Channel 7 selected as input

23. CRYOTIMER - Ultra Low Energy Timer/Counter

Quick Facts

What?

The CRYOTIMER is a timer capable of providing wakeup events/interrupts after deterministic intervals in all energy modes, including EM4.

Why?

The CRYOTIMER enables the chip to remain in the lowest energy modes for long durations, while keeping track of time and being able to wake up at regular intervals, all with an absolute minimum current consumption.

How?

Using a counter running on a prescaled Low Frequency Oscillator, the CRYOTIMER can provide periodic wakeup events with a very wide period range.

23.1 Introduction

The CRYOTIMER is a 32 bit counter which operates on a low frequency oscillator, and is capable of running in all energy modes. It can provide periodic wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a very wide range of periods for the interrupts facilitating flexible ultra-low energy operation.

Because of its simplicity, the CRYOTIMER is a lower energy solution for periodically waking up the MCU compared to the RTCC.

23.2 Features

- · 32 bit Counter
- · Works in all the energy modes
- · Only External and Power-On resets reset the CRYOTIMER
- · Interrupt/wake up event after deterministic intervals
- PRS Output
- · Debug mode
 - · Configurable to either run or stop when processor is stopped (break)

23.3 Functional Description

23.3.1 Block Diagram

An overview of the CRYOTIMER is shown in Figure 23.1 CRYOTIMER Block Overview on page 812.

Figure 23.1. CRYOTIMER Block Overview

23.3.2 Operation

The desired low frequency oscillator for the CRYOTIMER operation can be selected by using OSCSEL in CRYOTIMER_CTRL. The selection must be made before enabling the CRYOTIMER, and it must be ensured that the selected oscillator is ready. This can be checked by observing LFXORDY or LFRCORDY (depending upon the oscillator selection) in CMU_STATUS. Note that the ULFRCO is always ready.

By default the CRYOTIMER is held in reset. It can be started by setting EN in CRYOTIMER_CTRL. The CRYOTIMER, when running, is reset by clearing EN.

The timer counts at a frequency determined by PRESC in CRYOTIMER_CTRL. This value should be set before the CRYOTIMER is enabled. Setting PRESC to 0 gives the maximum resolution, while higher values allow longer periods, see Table 23.1 CRYOTIMER Resolution vs Maximum Wakeup Event/Interrupt Period, F_{CRYOCLK} = 32768 Hz on page 813.

The 32-bit Counter provides 32 different options for selecting the duration between the Wakeup events. The selected duration is specified by CRYOTIMER PERIODSEL. It should be configured before the CRYOTIMER is enabled.

$$T_{WU} = (2^{PRESC} \times 2^{PERIODSEL})/f_{CRYOCLK}$$

Figure 23.2. Duration Between the CRYOTIMER Wakeup Events in Seconds

Table 23.1. CRYOTIMER Resolution vs Maximum Wakeup Event/Interrupt Period, FCRYOCLK = 32768 Hz

CRYOTIMER_CTRL_PRESC	Resolution, 2 ^{PRESC} /f _{CRYOCLK}	Maximum Wakeup event/Interrupt Period
DIV1	30.5 µs	36.4 hours
DIV2	61 µs	72.8 hours
DIV4	122 μs	145.6 hours
DIV8	244 μs	12 days
DIV16	488 μs	24 days
DIV32	977 μs	48 days
DIV64	1.95 ms	97 days
DIV128	3.91 ms	194 days

The 32-bit counter value of the CRYOTIMER can be read using the CRYOTIMER_CNT register.

The PRS output pulses of the CRYOTIMER are 1 CRYOCLK clock cycle wide. However, if the PRESC and PERIODSEL are both set to 0, the width of these pulses will be half CRYOCLK time period.

The CRYOTIMER wakeup events set the flag in the CRYOTIMER_IF. Interrupt on this event can be enabled by using the CRYOTIM-ER_IEN register.

The CRYOTIMER is always reset by the External Pin and Power-On resets. Additionally, by using EMU_CTRL, it can also be configured to reset by Watchdog, lockup, and system request resets.

Note: The CRYOTIMER configuration bits/registers should only be changed when EN in CRYOTIMER_CTRL is cleared.

23.3.3 Debug Mode

When the CPU is halted in debug mode, the CRYOTIMER can be configured to either continue to run or to be frozen. This is configured using DEBUGRUN in CRYOTIMER CTRL.

23.3.4 Energy Mode Availability

The CRYOTIMER is available in all energy modes. Wakeup from EM2 DeepSleep and EM3 Stop to EM0 Active can be performed using the regular interrupt as discussed in 23.3.2 Operation. To generate wakeup events during EM4 Hibernate/Shutoff, EM4WU in CRYOTIMER_EM4WUEN must be set to 1. Since the interrupt flag serves as the wakeup source, it must be cleared by software after exiting a low energy mode. Refer to 9. EMU - Energy Management Unit for details on how to configure the EMU.

23.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	CRYOTIMER_CTRL	RW	Control Register
0x004	CRYOTIMER_PERIODSEL	RW	Interrupt Duration
0x008	CRYOTIMER_CNT	R	Counter Value
0x00C	CRYOTIMER_EM4WUEN	RW	Wake Up Enable
0x010	CRYOTIMER_IF	R	Interrupt Flag Register
0x014	CRYOTIMER_IFS	W1	Interrupt Flag Set Register
0x018	CRYOTIMER_IFC	(R)W1	Interrupt Flag Clear Register
0x01C	CRYOTIMER_IEN	RW	Interrupt Enable Register

23.5 Register Description

23.5.1 CRYOTIMER_CTRL - Control Register

Offset														В	it F	Posi	tion															
0x000	33	30	28	27	26	25	24	23	22	21	20	6	5 6	17	9	5 7	4	,	13	12	7	10	6	8	7	9	5	4	CC.	2	_	(
Reset		•	'		•				,	'				'	•	,			'							0×0	•			0×0	0	,
Access																										¥ N				X X	\ N	
Name																										PRESC				OSCSEL	DEBUGRUN	
Bit	Nam	ie				Re	eset			Ac	ces	S	De	scri	ptic	on																
31:8	Rese	erved					o ens	sure	con	npat	ibilit	'y v	vith :	futur	e d	levic	es, a	lw	ays	wri	te b	its t	o 0.	Мо	re in	forn	natio	on ir	n 1.	.2 Co	nve	n-
7:5	PRE	SC				0x	κ0			RV	V		Pro	esca	ler	Set	ing															
	Thes	se bits	sele	ect tl	he p	res	calir	ng fa	cto	•																						
	Valu	е				М	ode						De	scrip	tio	n																
	0					DI	IV1						LF	Osc	illa	tor fr	eque	end	cy u	ındi	vide	ed										
	1					DI	IV2						LF	Osc	illa	tor fr	eque	enc	cy d	livid	ed	by 2	2									
	2					DI	IV4						LF	Osc	illa	tor fr	eque	end	cy d	livid	ed	by 4										
	3					DI	IV8						LF	Osc	illa	tor fr	eque	end	cy d	livid	ed	by 8	3									
	4					DI	IV16						LF	Osc	illa	tor fr	eque	enc	cy d	livid	ed	by 1	6									
	5					DI	IV32						LF	Osc	illa	tor fr	eque	enc	cy d	livid	ed	by 3	2									
	6					DI	IV64						LF	Osc	illa	tor fr	eque	enc	cy d	livid	ed	by 6	4									
	7					DI	IV12	8					LF	Osc	illa	tor fr	eque	enc	cy d	livid	ed	by 1	28									
4	Rese	erved					o ens	sure	con	npat	ibilit	'y v	vith :	futur	e d	levic	es, a	lw	ays	wri	te b	its t	o 0.	Мо	re in	forn	natio	on ir	n 1.	.2 Co	nve	n-
3:2	osc	SEL				0x	κ0			RV	V		Se	lect	Lo	w Fr	eque	en	су	Osc	illa	tor										
		se bits				ow '	frequ	uenc	y os	scilla	tor ·	for	the	CRY	′01	TIME	R op	er	ratio	on.	This	fiel	d sl	noul	d be	set	afte	er th	e c	scilla	ator	tc

be selected is ready.

	Value	Mode		Description
	0	DISABLED		Output is driven low
	1	LFRCO		Select Low Frequency RC Oscillator
	2	LFXO		Select Low Frequency Crystal Oscillator
	3	ULFRCO		Select Ultra Low Frequency RC Oscillator
1	DEBUGRUN	0	RW	Debug Mode Run Enable
	Set this bit to enal	ble CRYOTIMER to	o run in de	ebug mode.

Bit	Name	Reset	Access	Description
0	EN	0	RW	Enable CRYOTIMER
	Set this bit to start the selected is ready.	CRYOTIMER.	Clear this b	bit to reset the CRYOTIMER. This bit should be set after the oscillator to be

23.5.2 CRYOTIMER_PERIODSEL - Interrupt Duration

	_													
Offset				В	it Position									
0x004	31 28 29 31 26 27 28 29 26 29	23 24 25 25	2 2 5	18 7	0 5 4	13	7 2	9	တ ထ	 	2	4 დ	0 4	- 0
Reset												č	OXZO	
Access												Š	Š Ž	
Name													PERIODSEL	
Bit	Name	Reset	Access	Descrip	otion									
31:6	Reserved	To ensure cortions	npatibility v	vith future	e devices, a	always	write l	bits to	0. Mc	ore infor	matio	n in 1.2	? Conv	/en-
5:0	PERIODSEL	0x20	RW	Interrup	ots/Wakeu	p Eve	nts Pe	riod (Settin	g				
	Defines the duration b	etween the Inte	rrupts/Wak	keup ever	nts based o	n the ¡	pre-sca	aled c	lock.					
	Value			Descrip	tion									
	0			Wakeup	event afte	r ever	y Pre-s	scaled	d clock	cycle.				
	1			Wakeup	event afte	r 2 Pre	e-scale	ed clo	ck cyc	les.				
	2			Wakeup	event afte	r 4 Pre	e-scale	ed clo	ck cyc	les.				
	3			Wakeup	event afte	r 8 Pre	e-scale	ed clo	ck cyc	les.				
	4			Wakeup	event afte	r 16 P	re-sca	led cl	ock cy	cles.				
	5			Wakeup	event afte	r 32 P	re-sca	led cl	ock cy	cles.				
	6			Wakeup	event afte	r 64 P	re-sca	led cl	ock cy	cles.				
	7			Wakeup	event afte	r 128	Pre-sc	aled o	clock c	ycles.				
	8			Wakeup	event afte	r 256	Pre-sc	aled o	clock c	ycles.				
	9			Wakeup	event afte	r 512	Pre-sc	aled o	clock c	ycles.				
	10			Wakeup	event afte	r 1k P	re-scal	led cl	ock cy	cles.				
	11			Wakeup	event afte	r 2k P	re-scal	led cl	ock cy	cles.				
	12			Wakeup	event afte	r 4k P	re-scal	led cl	ock cy	cles.				
	13			Wakeup	event afte	r 8k P	re-scal	led cl	ock cy	cles.				
	14			Wakeup	event afte	r 16k l	Pre-sc	aled o	clock c	ycles.				
	15			Wakeup	event afte	r 32k l	Pre-sc	aled o	clock c	ycles.				
	16			Wakeup	event afte	r 64k l	Pre-sc	aled o	clock c	ycles.				
	17			Wakeup	event afte	r 128k	Pre-s	caled	clock	cycles.				
	18			Wakeup	event afte	r 256k	Pre-s	caled	clock	cycles.				
	19			Wakeup	event afte	r 512k	Pre-s	caled	clock	cycles.				
	20			Wakeup	event afte	r 1M F	Pre-sca	aled c	lock c	ycles.				
	21			Wakeup	event afte	r 2M F	Pre-sca	aled c	lock c	ycles.				
	22			Wakeup	event afte	r 4M F	Pre-sca	aled c	lock c	ycles.				

Bit	Name	Reset	Access	Description
	23			Wakeup event after 8M Pre-scaled clock cycles.
	24			Wakeup event after 16M Pre-scaled clock cycles.
	25			Wakeup event after 32M Pre-scaled clock cycles.
	26			Wakeup event after 64M Pre-scaled clock cycles.
	27			Wakeup event after 128M Pre-scaled clock cycles.
	28			Wakeup event after 256M Pre-scaled clock cycles.
	29			Wakeup event after 512M Pre-scaled clock cycles.
	30			Wakeup event after 1024M Pre-scaled clock cycles.
	31			Wakeup event after 2048M Pre-scaled clock cycles.
	32			Wakeup event after 4096M Pre-scaled clock cycles.

23.5.3 CRYOTIMER_CNT - Counter Value

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset																000000000000000000000000000000000000000	0000000000															
Access																۵	۲															
Name																Ę	<u>-</u>															

Bit	Name	Reset	Access	Description
31:0	CNT	0x00000000	R	Counter Value
	These bits hold the Co	ounter value.		

23.5.4 CRYOTIMER_EM4WUEN - Wake Up Enable

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																																0
Access																																R ⊗
Name																																EM4WU

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	EM4WU	0	RW	EM4 Wake-up Enable
	Write 1 to enable wa	ike-up request,	write 0 to di	sable wake-up request.

23.5.5 CRYOTIMER_IF - Interrupt Flag Register

Offset															Ві	t Pc	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	11	10	တ	8	7	9	5	4	က	2	_	0
Reset			•		•			•																		•	•	•				0
Access																																~
Name																																PERIOD

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	PERIOD	0	R	Wakeup Event/Interrupt
	Set when the Wakeu	ıp event/Interru	ot occurs.	

23.5.6 CRYOTIMER_IFS - Interrupt Flag Set Register

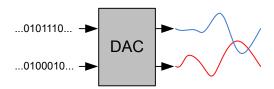
Offset	Bit Position	
0x014	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	- 0
Reset		0
Access		W
Name		PERIOD

Bit	Name	Reset	Access	Description						
31:1	Reserved	To ensure co tions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-						
0	PERIOD	0	0 W1 Set PERIOD Interrupt Flag							
	Write 1 to set the PERIOD interrupt flag									

23.5.7 CRYOTIMER_IFC - Interrupt Flag Clear Register

Offset	Bit Position																															
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																•									•							0
Access																																(R)W1
Name																																PERIOD

Bit	Name	Reset	Access	Description									
31:1	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-									
0	PERIOD	0	(R)W1	Clear PERIOD Interrupt Flag									
		Write 1 to clear the PERIOD interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.)											


23.5.8 CRYOTIMER_IEN - Interrupt Enable Register

Offset	Bit Position																															
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	11	10	6	œ	7	9	5	4	က	2	_	0
Reset					•																											0
Access																																ΑW
Name																																PERIOD

Bit	Name	Reset	Access	Description						
31:1	Reserved	To ensure co	To ensure compatibility with future devices, always write bits to 0. More informations							
0	PERIOD	0 RW PERIOD Interrupt Enable								
	Enable/disable the PERIOD interrupt									

24. VDAC - Digital to Analog Converter

Quick Facts

What?

The VDAC is designed for low energy consumption, but can also provide very good performance. It can convert digital values to analog signals at up to 500 kilo samples/second with 12-bit accuracy.

Why?

The VDAC can be used to generate accurate analog signals for sound, sensors and other applications, using only a limited amount of energy.

How?

The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available down to Energy Mode 3.

24.1 Introduction

The Voltage Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The VDAC may be used for a number of different applications such as sensor interfaces or sound output.

24.2 Features

- · 500 ksamples/s operation
- · Two single ended output channels
 - · Can be combined into one differential output
- Integrated prescaler with division factor selectable between 1-128
- · Selectable voltage reference
 - · Internal low noise 2.5 V
 - Internal low noise 1.25 V
 - · Internal low power 2.5 V
 - Internal low power 1.25 V
 - AVDD
 - · External Pin Reference
- · Conversion triggers
 - · Data write
 - · PRS input
 - · Refresh timer
 - LESENSE
- · Automatic refresh timer
 - · Selection from 16-64 DAC_CLK cycles
 - · Individual refresh enable for each channel
- · Interrupt generation on buffer empty or finished conversion
 - · Separate interrupt flags for each channel
- · PRS output pulse on finished conversion
 - · Separate line for each channel
- · DMA request on buffer empty
 - · Separate request for each channel
- · Support for offset and gain calibration
- · Output to dedicated pins or APORT bus
- · Internal connections to ADC and ACMP
- · Sine generation mode
- · Asynchronous clocking mode

24.3 Functional Description

An overview of the VDAC module is shown in the figure below.

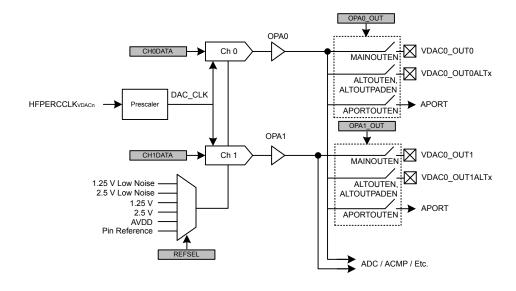


Figure 24.1. VDAC Overview

24.3.1 Power Supply

The VDAC module power (V_{OPA}) is derived from the AVDD supply pin.

24.3.2 I/O Pin Considerations

The maximum usable analog signal that can be seen on external VDAC outputs depends on several factors: whether the signal is routed through the APORT, whether overvoltage is enabled, and on the IOVDD/AVDD supply voltages, as shown in the Table 24.1 Maximum Usable IO Voltage on page 823 table.

VDAC Pin Maximum IO Voltage (APORT Maximum IO Voltage (APORT Maximum IO Voltage (APORT UN-**USED** and **OVT** Enabled/ **UNUSED, OVT Enabled) USED**, OVT Disabled) Disabled) VDAC External VREF In-MIN(AVDD, IOVDD) MIN(AVDD, IOVDD) N/A puts **VDAC Outputs** MIN(AVDD, IOVDD) MIN(AVDD, IOVDD + 2 V) MIN(AVDD, IOVDD)

Table 24.1. Maximum Usable IO Voltage

24.3.3 Enabling and Disabling a Channel

A VDAC channel is enabled by writing 1 to the CHxEN and disabled by writing 1 to CHxDIS in VDACn_CMD. The channel enabled status can be read by polling the CHxENS bit in VDACn_STATUS. This bit will go high immediately following a write to CHxEN. After disabling a channel the CHxENS bit will stay high until the VDAC channel is completely disabled.

Software should configure the VDAC before enabling a channel. Software *must not* write to any of the following registers while *either* CH0ENS or CH1ENS are set:

- VDACn CTRL
- VDACn_CHxCTRL
- VDACn OPAxTIMER

A VDAC channel will not begin driving its output before it is enabled *and* has received a conversion trigger, see 24.3.4.3 Conversion Trigger. After a channel is enabled it will listen for trigger sources specified in TRIGMODE in VDACn_CHxCTRL. If TRIGMODE is set to SW, SWPRS or SWREFRESH and a value was written to CHxDATA or COMBDATA before enabling the channel a conversion will start immediately when the channel is enabled. When disabling a channel any pending triggers are flushed.

The VDAC consists of two channels (channel 0 and 1) with separate 12-bit data registers (VDACn_CH0DATA and VDACn_CH1DATA). These can be used to produce two independent single ended outputs or the channel 0 register can be used to drive both outputs in differential mode. The VDAC supports two conversion modes: continuous and sample/off.

24.3.4.1 Continuous Mode

In continuous mode the VDAC channels will drive their outputs continuously with the data in the VDACn_CHxDATA registers. A channel is configured in continuous mode by programming the CONVMODE bitfield in VDACn_CHxCTRL to CONTINUOUS. This mode will maintain the output voltage and no manual refresh is needed.

In continuous mode the SETTLETIME field in VDACn OPAxTIMER should be programmed to zero to achive the maximum update rate.

24.3.4.2 Sample/Off Mode

In sample/off mode the VDAC will only drive the output for a limited time per conversion. A channel is configured in sample/off mode by programming the CONVMODE bitfield in VDACn_CHxCTRL to SAMPLEOFF. How long the channel should drive the output can be controlled by programming the SETTLETIME field in the VDACn_OPAxTIMER register. The VDAC will drive the output for SETTLE-TIME f_{DAC_CLK} cycles before tristating the output again (and therefore if SETTLETIME is set to zero, the output will never be driven when using sample/off mode).

24.3.4.3 Conversion Trigger

Conversions can only be done while a channel is enabled, see 24.3.3 Enabling and Disabling a Channel.

If TRIGMODE is programmed to SW, SWPRS or SWREFRESH a conversion can be started by writing to the VDACn_CHxDATA register. The data registers are also mapped to a combined data register, VDACn_COMBDATA, where the data values for both channels can be written simultaneously. Writing to this register will trigger all enabled channels.

If TRIGMODE is programmed to PRS or SWPRS, a conversion can be started by an incoming pulse on the PRS channel selected in PRSSEL in VDACn_CHxCTRL. The PRSASYNC bit in VDACn_CHxCTRL determines if the VDAC expects a PRS pulse coming from a synchronous or asynchronous PRS producer.

If TRIGMODE is programmed to REFRESH or SWREFRESH a conversion will start on an overflow of the internal refresh timer. See 24.3.10 Refresh Timer.

If TRIGMODE is programmed to LESENSE a conversion will start when the LESENSE block sends a request. This setting needs to be selected whenever the channel is under LESENE control.

24.3.4.4 PRS Triggers

PRS triggers can be used to set a constant sample frequency, for instance by using a TIMER. In order to get a jitter-free sample rate, set DACCLKMODE to SYNC, set the CH0PRESCRST bit and clear the PRSASYNC bit. Note that this is only possible for channel 0.

The PRSASYNC bit tells whether the VDAC expects a synchronous PRS producer or not. When this bit is cleared, the PRS pulse must come from a synchronous producer and HFPERCLK must be running (this clock is turned off in EM2 and below). When PRSASYNC is set, the corresponding PRS channels should also bet configued as asynchronous (see the PRS chapter).

When either DACCLKMODE is set to ASYNC or the PRSASYNC bit is set, the sample frequency cannot be guaranteed to be jitter-free with respect to the PRS pulses.

The PRS frequency should never be higher than 0.5 MHz (the fastest possible sample rate). In addition the PRS frequency should not be higher than f_{HFPERCLK}/12 (in synchronous mode). If the PRS frequency is set too high, some PRS pulses will be dropped and the output can jitter.

24.3.5 Reference Selection

These voltage references are available and are selected by programming the REFSEL field in VDACn CTRL.

- Internal 1.25 V Low Noise Bandgap Reference
- · Internal 2.5 V Low Noise Bandgap Reference
- Internal 1.25 V Low Power Bandgap Reference
- · Internal 2.5 V Low Power Bandgap Reference
- AVDD

· External Pin

24.3.6 Warmup Time and Initial Conversion

When a channel is first enabled it needs to warm up. This is performed automatically during the first conversion. The time required to warm up depends on the programmed DRIVESTRENGTH field in VDACn_OPAx_CTRL. In Table 24.2 VDAC Warmup Time on page 825 the minimum WARMUPTIME field for each drive strength is specified. Software is responsible for programming the correct value to WARMUPTIME before enabling a channel. If the time is programmed too short, an undefined voltage may be output until the VDAC settles.

The CHxWARM bits in VDACn STATUS are set when the warmup period has completed.

A consequence of the warmup period is that in continuous mode, the first conversion might take longer than the following conversions. In order to make sure all samples have the same timing, perform a dummy conversion to make the VDAC settle to a known voltage first.

Table 24.2. VDAC Warmup Time

DRIVESTRENGTH	WARMUPTIME
0	100 μs
1	85 μs
2	8 µs
3	8 µs

24.3.7 Analog Output

The output selection for each VDAC channel is configured in the VDACn_OPAx_OUT registers. Each VDAC channel has its own main output pin, VDACn_OUTx, that can be enabled with MAINOUTEN. In addition, several alternate outputs can be selected. These are enabled by first setting ALTOUTEN and then setting the corresponding bit(s) in ALTOUTPADEN. The VDAC output can also be routed to APORT by setting APORTOUTEN and configuring the APORTOUTSEL field to select the desired APORT.

The VDAC outputs also have direct internal connections to ADCs and ACMPs. These outputs are always enabled and can be selected by configuring the input selection for the ADC/ACMP.

In sample/off mode the VDAC will only drive the output for the duration programmed in SETTLETIME (in VDACn_OPAx_TIMER register) for each incoming conversion trigger. In continuous mode the VDAC will continue to drive the output until the channel is disabled. However, note that also in this mode a conversion trigger is needed before the output is enabled. See 24.3.3 Enabling and Disabling a Channel and 24.3.4.3 Conversion Trigger.

24.3.8 Output Mode

The two VDAC channels can act as two separate single ended channels or be combined into one differential channel. This is selected through the DIFF bit in VDACn_CTRL.

24.3.8.1 Single Ended Output

When operating in single ended mode, the channel 0 output is on VDACn_OUT0 and the channel 1 output is on VDACn_OUT1. The output voltage can be calculated using Figure 24.2 VDAC Single Ended Output Voltage on page 825

V_{OUT} = V_{VDACn OUTx} - V_{SS}= V_{ref} x CHxDATA/4095

Figure 24.2. VDAC Single Ended Output Voltage

where CHxDATA is a 12-bit unsigned integer.

24.3.8.2 Differential Output

When operating in differential mode, both VDAC outputs are used. The differential conversion uses VDACn_CH0DATA as source. The positive output is on VDACn_OUT1 and the negative output is on VDACn_OUT0. Since the output can be negative, it is expected that

the data is written in 2's complement form with the MSB of the 12-bit value being the signed bit. The output voltage can be calculated using Figure 24.3 VDAC Differential Output Voltage on page 826:

Figure 24.3. VDAC Differential Output Voltage

where CH0DATA is a 12-bit signed integer. The common mode voltage is $V_{ref}/2$.

When using differential mode, the user must make sure that both channels are set up identically. I.e. VDACn_CH0CTRL and VDACn_CH1CTRL must be programmed to identical values (with the exception that the PRSSEL bitfield is allowed to be programmed differently for usage together with the OUTENPRS feature). Similarly the user must program VDACn_OPA0TIMER and VDACn_OPA1TIMER to identical values.

24.3.9 Async Mode

The VDAC is default clocked from HFPERCCLK, which is automatically turned off in EM2/3. In order to allow VDAC operation in EM2/3 an internal oscillator can be selected for the VDAC by setting the DACCLKMODE bitfield in VDACn_CTRL to ASYNC. Before entering EM2/3 software must make sure the channel is enabled first by polling CHxENS in VDACn_STATUS. Entering EM2/3 with an enabled VDAC channel while DACCLKMODE is set to SYNC is a programming error and will lead to EM23ERRIF getting set to 1.

In asynchronous mode both VDAC channels are not necessarily triggered synchronous to each other and therefore the user should not assume that e.g. PRS, refresh or VDACn_COMBDATA based conversion triggers are observed by both channels at the same time. In differential mode both channels will operate in lock step, even while using the asynchronous clocking mode.

24.3.10 Refresh Timer

The VDAC includes an internal refresh timer. The refresh timer is automatically started if a channel selects either REFRESH or SWRE-FRESH for TRIGMODE and the channel is enabled. The refresh timer will count the number of f_{DAC_CLK} cycles programmed in RE-FRESHPERIOD before wrapping and generating a conversion trigger.

24.3.11 Clock Prescaling

The VDAC has an internal clock prescaler, which can divide the input clock by any factor between 1 and 128, by setting the PRESC field in VDACn_CTRL. The resulting DAC_CLK is used by the converter core and the frequency is given by Figure 24.4 VDAC Clock Prescaling on page 826:

Figure 24.4. VDAC Clock Prescaling

where f_{IN_CLK} is the input clock frequency. The f_{DAC_CLK} must be programmed to be at most 1 MHz. When the DACCLKMODE is set to SYNC, the input clock frequency is $f_{HFPERCCLK}$. When DACCLKMODE is set to ASYNC, an internal 12Mhz oscillator is used. In this mode it is required that the PRESC field be program to 11 or higher.

The prescaler runs continuously when either of the channels are enabled. When running with a prescaler setting higher than 0, there will be an unpredictable delay from the time the conversion was triggered to the time the actual conversion takes place. This is because the conversions are controlled by the prescaled clock and the conversion can arrive at any time during a prescaled clock (DAC_CLK) period. A second reason for unpredictable delay between a trigger and the associated conversion is that the activity on one channel can impact whether the VDAC reference is warm or not and therefore it can impact whether warmup is required when using the other channel. The uncertainty related to the clock prescaler can be addressed by using CH0PRESCRST. If the CH0PRESCRST bit in VDACn_CTRL is set, the prescaler will be reset every time a conversion is triggered on channel 0. This leads to a predictable latency between channel 0 trigger and conversion (assuming the warmup sequence is deterministic as well). If channel 0 is used in continuous mode, the warmup sequence will only apply to its first conversion and software can use the CH0WARM status bit to determine if the VDAC has warmed up.

24.3.12 High Speed

The VDAC is able to do conversions up to 400 ksamples/s. In order to reach the maximum conversion rate it is recommended to configure the VDAC in the following way:

- 1. Make f_{DAC CLK} 1 Mhz
- 2. Set TRIGMODE to SW
- 3. Program SETTLETIME in OPAx_TIMER to 0

- Set up a DMA transfer from a buffer in RAM to CHxDATA
- 5. Set CONVMODE to CONTINUOUS

24.3.13 Sine Generation Mode

The VDAC contains an automatic sine-generation mode, which is enabled by setting the SINEMODE bit in VDACn_CTRL. In this mode, the VDAC data is overridden with a conversion data taken from a sine lookup table. The sine signal is controlled by the PRS line selected by CH0PRSSEL in VDACn_CH0CTRL. When the line is high, a sine wave will be produced. Each period, starting at 0 degrees, is made up of 16 samples and the frequency is given by Figure 24.5 VDAC Sine Generation on page 827. In case OUTENPRS equals 1, lowering the PRS line selected by CH0PRSSEL will reset the sine output to 0 degrees resulting in a voltage of Vref/2 on the output channel. In case OUTENPRS equals 0, lowering the PRS line selected by CH0PRSSEL will stop progress of the sine wave at the sample currently being output (and the sine will therefore not be reset to 0 degrees when raising the PRS line again).

$$f_{sine} = f_{HFPERCCLK} / 32 x (PRESC + 1)$$

Figure 24.5. VDAC Sine Generation

Sine mode is supported only for the fastest configuration of the VDAC in continuous mode. Therefore the CONVMODE bitfield needs to be set to CONTINUOUS and the SETTLETIME bitfield in VDACn_OPAxTIMER need to be programmed to zero for the used channel(s) in order to use sine generation mode. The TRIGMODE bitfield needs to be programmed to PRS for any channel used for sine generation mode. The other trigger modes are not supported.

The SINE wave will be output on channel 0 and therefore requires that this channel is enabled by writing 1 to CH0EN in the VDACn_CMD register. If DIFF is set in VDACn_CTRL, the sine wave will be output on both channels, but inverted. Note that when OUTENPRS in VDACn_CTRL is set, the sine output will be reset to 0 degrees when the PRS line selected by CH1PRSSEL is low.

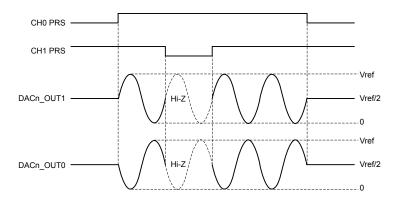


Figure 24.6. VDAC Sine Mode

24.3.14 Interrupt Flags

The VDAC has several interrupt flags, indicating state transitions and error conditions.

In addition to the VDAC interrupt flags the VDAC registers contain interrupt flags for the OPAMP modules. See The OPAMP chapter for more information on these flags.

24.3.14.1 Conversion Done

The Conversion Done (CHxCD) interrupt flags are set when a conversion is complete. The flags are set after a channel has driven the output with the new code for the time programmed in SETTLETIME in VDACn_OPAxTIMER.

24.3.14.2 Buffer Level

The Buffer Level (CHxBL) interrupt flags are set when there is space available in CHxDATA. These flags are initially set, get cleared when CHxDATA is written and set again when the value is used for a conversion.

If CHxDATA is written to while CHxBL is cleared, the channel overflow flag (CHxOF) will be set. If a new conversion is triggered (e.g. via PRS) before data is written to CHxDATA (CHxDATA is empty) the channel underflow flag (CHxUF) will be set.

24.3.14.4 EM2/3 Sleep Error

The VDAC can only operate in EM2/3 when DACCLKMODE is set to ASYNC. If EM2 or EM3 is entered while a channel is enabled and DACCLKMODE is set to SYNC the EM23ERRIF flag will be set.

24.3.15 PRS Outputs

The VDAC has two PRS outputs which will carry a one cycle (HFPERCCLK) high pulse when the corresponding channel has finished a conversion. Only available when DACCLKMODE is set to SYNC.

24.3.16 DMA Request

Each channel sends a DMA request when there is space in the channel's data register (VDACn_CHxDATA). These registers are initially empty and also become empty every time a conversion is triggered. The request is cleared when VDACn_CHxDATA is written.

24.3.17 LESENSE Trigger Mode

The VDAC can be controlled by LESENSE by programming the TRIGMODE field in VDACn_CHxCTRL to LESENSE. In LESENSE mode the conversion data can come from either VDACn_CHxDATA registers or LESENSE registers, depending on the LESENSE configuration. The trigger events are also controlled by the LESENSE state machine. See the LESENSE chapter for more information.

24.3.18 Opamps

The VDAC includes a set of highly configurable opamps that can be accessed with the VDAC registers. OPA0 and OPA1 is used for the output stages of the two VDAC channels, but can be used as standalone opamps if the VDAC channels are not in use. Opamps with higher numbers are completely standalone. For a detailed description see the OPAMP chapter.

24.3.19 Calibration

The VDAC contains a calibration register, VDACn_CAL, where calibration values for both offset and gain correction can be written. The required (gain) calibration values depend on the chosen reference and on whether the main or alternative VDAC output is used. The Device Information page provides the required trim values depending on reference choice and output selection in the DEVINFO_VDACnMAINCAL, DEVINFO_VDACnALTCAL, and DEVINFO_VDACnCH1CAL locations.

The OPAMPs contain a calibration register, VDACn_OPAx_CAL, where calibration values for both offset and gain correction can be written. The required calibration settings depend on the chosen DRIVESTRENGTH. The required calibration values can be found in the Device Information pages. For a given OPAMP x, the calibration settings for DRIVESTRENGTH n can be found in DEVINFO_OPAx-CALn.

24.3.19.1 Channel 1 Calibration

For channel 1, the factory calibration values are only accurate for the main output. When using the alternative outputs or APORT, the error on the output may be larger than the data sheet values (even when loading values from DEVINFO_VDACn_ALTCAL). To get accurate output from channel 1, either use the main output or perform manual calibration.

24.3.19.2 Manual Calibration

To manually calibrate the VDAC:

- 1. Enable CH0 and CH1 in their desired modes
- 2. Set both channel outputs to 80% of full-scale by setting VDACn CHxDATA = 0xCCC
- 3. Measure CH0 output and sweep VDACn_CAL.GAINERRTRIM until the smallest calibration error is found
- 4. Measure CH1 output and sweep VDACn CAL.GAINERRTRIMCH1 until the smallest calibration error is found

The calibration error is given by

$$e = abs(V_{out}/(V_{REF} * 0.8) - 1)$$

Figure 24.7. Calibration Error

where V_{out} is the measured voltage at the pin and V_{REF} is the reference voltage.

Note that even if only CH1 is going to be used, the full calibration procedure should be followed. It is permissible to skip CH1 calibration if only CH0 is used. The following parameters influence the calibration. A change in any of these might require a re-calibration:

- VDACn CTRL.REFSEL
- VDACn OPAx OUT.MAINOUTEN
- VDACn_OPAx_OUT.ALTOUTEN
- VDACn_OPAx_CTRL.DRIVESTRENGTH

24.3.20 Warmup Mode

If the WARMUPMODE field in VDACn_CTRL is set to KEEPINSTANDBY, the VDAC keeps internal bias currents running between conversions. It does not reduce the startup time, but it can help reduce noise from the VDAC to other analog peripherals, like the ADC or ACMP.

24.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	VDACn_CTRL	RW	Control Register
0x004	VDACn_STATUS	R	Status Register
0x008	VDACn_CH0CTRL	RW	Channel 0 Control Register
0x00C	VDACn_CH1CTRL	RW	Channel 1 Control Register
0x010	VDACn_CMD	W1	Command Register
0x014	VDACn_IF	R	Interrupt Flag Register
0x018	VDACn_IFS	W1	Interrupt Flag Set Register
0x01C	VDACn_IFC	(R)W1	Interrupt Flag Clear Register
0x020	VDACn_IEN	RW	Interrupt Enable Register
0x024	VDACn_CH0DATA	RWH	Channel 0 Data Register
0x028	VDACn_CH1DATA	RWH	Channel 1 Data Register
0x02C	VDACn_COMBDATA	W	Combined Data Register
0x030	VDACn_CAL	RW	Calibration Register
0x0A0	VDACn_OPA0_APORTREQ	R	Operational Amplifier APORT Request Status Register
0x0A4	VDACn_OPA0_APORTCON- FLICT	R	Operational Amplifier APORT Conflict Status Register
0x0A8	VDACn_OPA0_CTRL	RW	Operational Amplifier Control Register
0x0AC	VDACn_OPA0_TIMER	RW	Operational Amplifier Timer Control Register
0x0B0	VDACn_OPA0_MUX	RW	Operational Amplifier Mux Configuration Register
0x0B4	VDACn_OPA0_OUT	RW	Operational Amplifier Output Configuration Register
0x0B8	VDACn_OPA0_CAL	RW	Operational Amplifier Calibration Register
	VDACn_OPAx_APORTREQ	R	Operational Amplifier APORT Request Status Register
	VDACn_OPAx_APORTCON- FLICT	R	Operational Amplifier APORT Conflict Status Register
	VDACn_OPAx_CTRL	RW	Operational Amplifier Control Register
	VDACn_OPAx_TIMER	RW	Operational Amplifier Timer Control Register
	VDACn_OPAx_MUX	RW	Operational Amplifier Mux Configuration Register
	VDACn_OPAx_OUT	RW	Operational Amplifier Output Configuration Register
	VDACn_OPAx_CAL	RW	Operational Amplifier Calibration Register
0x100	VDACn_OPA3_APORTREQ	R	Operational Amplifier APORT Request Status Register
0x104	VDACn_OPA3_APORTCON- FLICT	R	Operational Amplifier APORT Conflict Status Register
0x108	VDACn_OPA3_CTRL	RW	Operational Amplifier Control Register
0x10C	VDACn_OPA3_TIMER	RW	Operational Amplifier Timer Control Register
0x110	VDACn_OPA3_MUX	RW	Operational Amplifier Mux Configuration Register
0x114	VDACn_OPA3_OUT	RW	Operational Amplifier Output Configuration Register
	1	1	

Offset	Name	Туре	Description
0x118	VDACn_OPA3_CAL	RW	Operational Amplifier Calibration Register

24.5 Register Description

24.5.1 VDACn_CTRL - Control Register

Offset															В	it Po	siti	on														
0x000	31	30	29	78	27	26	25	24	23	22	21	20	19	8	17	16	15	41	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	0			0			Š	OXO				•	00X0	•									0x0			0	0	0				0
Access	R W			₩ M			2	≥ Y					ΑW										₩			Z.	₹	₩ M				RW
Name	DACCLKMODE			WARMUPMODE			200	KETKEVHYEKIOU					PRESC										REFSEL			CHOPRESCRST	OUTENPRS	SINEMODE				DIFF

Bit	Name	Reset	Access	Description
31	DACCLKMODE	0	RW	Clock Mode
	Selects DAC clock so	ource from sync	hronous or	asynchronous - with respect to Peripheral Clock - clock source
	Value	Mode		Description
	0	SYNC		Uses HFPERCCLK to generate DAC_CLK, DAC will run with static settings in EM2 in this mode
	1	ASYNC		Uses internal VDAC oscillator to generate DAC_CLK. DAC will be available in EM2
30:29	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
28	WARMUPMODE	0	RW	Warm-up Mode
	Select Warm-up Mod	e for DAC		
	Value	Mode		Description
	0	NORMAL		DAC is shut off after each sample off conversion
	1	KEEPINSTAI	NDBY	DAC is kept in standby mode between sample off conversions
27:26	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
25:24	REFRESHPERIOD	0x0	RW	Refresh Period

Select refresh counter period. A channel x will be refreshed with the period set in REFRESHPERIOD if the channel in VDACn_CHxCTRL has its TRIGMODE set to REFRESH or SWREFRESH.

Value	Mode	Description
0	8CYCLES	All channels with enabled refresh are refreshed every 8 DAC_CLK cycles
1	16CYCLES	All channels with enabled refresh are refreshed every 16 DAC_CLK cycles
2	32CYCLES	All channels with enabled refresh are refreshed every 32 DAC_CLK cycles

Bit	Name	Reset	Access	Description
	3	64CYCLES		All channels with enabled refresh are refreshed every 64 DAC_CLK cycles
23	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
22:16	PRESC	0x00	RW	Prescaler Setting for DAC Clock
	Selected DAC clock (DAC_CLK)	source (as selec	eted by DAC	CCLKMODE) is prescaled by PRESC+1 to generated DAC clock
	Value	Description		
	PRESC	Clock divisior PRESC+1.	n factor of	
15:11	Reserved	To ensure co	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
10:8	REFSEL	0x0	RW	Reference Selection
	Select reference			
	Value	Mode		Description
	0	1V25LN		Internal low noise 1.25 V bandgap reference
	1	2V5LN		Internal low noise 2.5 V bandgap reference
	2	1V25		Internal 1.25 V bandgap reference
	3	2V5		Internal 2.5 V bandgap reference
	4	VDD		AVDD reference
	6	EXT		External pin reference
7	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
6	CH0PRESCRST	0	RW	Channel 0 Start Reset Prescaler
	Select if prescaler (determining DAC	_CLK rate)	is reset on channel 0 start.
	Value			Description
	0			Prescaler not reset on channel 0 start
	1			Prescaler reset on channel 0 start
5	OUTENPRS	0	RW	PRS Controlled Output Enable
	Enable PRS Contro	l of DAC output e	nable.	
	Value			Description
	0			DAC output enable always on
	1			DAC output enable controlled by PRS signal selected for CH1
4	SINEMODE	0	RW	Sine Mode
	Enable/disable sine	mode.		
	Value			Description

Bit	Name	Reset	Access	Description
	0			Sine mode disabled. Sine reset to 0 degrees
	1			Sine mode enabled
3:1	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	DIFF	0	RW	Differential Mode
	Select single end	led or differential r	mode.	
	Value			Description
	0			Single ended output
	1			Differential output

24.5.2 VDACn_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			•		•	•				•	0	0	_	_	0	0
Access	2	2	2	22	22	22	~	2	2	~	22	~	2	2	22	22											~	2	22	2	22	2
Name	OPA3OUTVALID	OPA2OUTVALID	OPA10UTVALID	OPA0OUTVALID	OPA3WARM	OPA2WARM	OPA1WARM	OPA0WARM	OPA3ENS	OPA2ENS	OPA1ENS	OPA0ENS	OPA3APORTCONFLICT	OPA2APORTCONFLICT	OPA1APORTCONFLICT	OPA0APORTCONFLICT											CH1WARM	CHOWARM	CH1BL	CH0BL	CH1ENS	CH0ENS

-				
Bit	Name	Reset	Access	Description
31	OPA3OUTVALID	0	R	OPA3 Output Valid Status
	OPA3 output is settle	ed externally at t	he load. In	PRS triggered mode this status flag is not used (and remains 0).
30	OPA2OUTVALID	0	R	OPA2 Output Valid Status
	OPA2 output is settle	ed externally at t	he load. In	PRS triggered mode this status flag is not used (and remains 0).
29	OPA1OUTVALID	0	R	OPA1 Output Valid Status
	OPA1 output is settle	ed externally at t	he load. In	PRS triggered mode this status flag is not used (and remains 0).
28	OPA0OUTVALID	0	R	OPA0 Output Valid Status
	OPA0 output is settle	ed externally at t	he load. In	PRS triggered mode this status flag is not used (and remains 0).
27	OPA3WARM	0	R	OPA3 Warm Status
	OPA3 is warm and o	utput is enabled	. In PRS tri	ggered mode this status flag is not used (and remains 0).
26	OPA2WARM	0	R	OPA2 Warm Status
	OPA2 is warm and o	utput is enabled	. In PRS tri	ggered mode this status flag is not used (and remains 0).
25	OPA1WARM	0	R	OPA1 Warm Status
	OPA1 is warm and o	utput is enabled	. In PRS tri	ggered mode this status flag is not used (and remains 0).
24	OPA0WARM	0	R	OPA0 Warm Status
	OPA0 is warm and o	utput is enabled	. In PRS tri	ggered mode this status flag is not used (and remains 0).
23	OPA3ENS	0	R	OPA3 Enabled Status
	This bit is set when 0	OPA3 is enabled		
22	OPA2ENS	0	R	OPA2 Enabled Status
	This bit is set when 0	OPA2 is enabled		
21	OPA1ENS	0	R	OPA1 Enabled Status
	This bit is set when 0	OPA1 is enabled		
20	OPA0ENS	0	R	OPA0 Enabled Status
	This bit is set when 0	OPA0 is enabled		

Bit	Name	Reset	Access	Description
19	OPA3APORTCON- FLICT	0	R	OPA3 Bus Conflict Output
	1 if any of the APORT	Γs being request	ed by the	OPA3 are also being requested by another peripheral.
18	OPA2APORTCON- FLICT	0	R	OPA2 Bus Conflict Output
	1 if any of the APORT	Γs being request	ed by the	OPA2 are also being requested by another peripheral.
17	OPA1APORTCON- FLICT	0	R	OPA1 Bus Conflict Output
	1 if any of the APORT	Γs being request	ed by the	OPA1 are also being requested by another peripheral.
16	OPA0APORTCON- FLICT	0	R	OPA0 Bus Conflict Output
	1 if any of the APORT	Γs being request	ed by the	OPA0 are also being requested by another peripheral.
15:6	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
5	CH1WARM	0	R	Channel 1 Warm
	This bit is set when cl	hannel 1 is warm	۱.	
4	CH0WARM	0	R	Channel 0 Warm
	This bit is set when cl	hannel 0 is warm	۱.	
3	CH1BL	1	R	Channel 1 Buffer Level
	This bit is set when the	nere is space for	new data	in CH1DATA.
2	CH0BL	1	R	Channel 0 Buffer Level
	This bit is set when the	nere is space for	new data	in CH0DATA.
1	CH1ENS	0	R	Channel 1 Enabled Status
	This bit is set when cl	hannel 1 is enab	led.	
0	CH0ENS	0	R	Channel 0 Enabled Status
	This bit is set when cl	hannel 0 is enab	led.	

24.5.3 VDACn_CH0CTRL - Channel 0 Control Register

Offset										Bi	t Po	sition													
0x008	30 29 29	28	26	2 P	23	72	20 2.	19	9	17	16	7 7 7	13	12	11	10	6	∞	7	9	2	4	г 7	_	0
Reset													000	1				0			0×0				0
Access													Z N					Z.			Z.				W.
																									_
Name													PRSSEL					PRSASYNC			TRIGMODE				CONVMODE
Bit	Name		F	Reset		Á	Acces	ss	Des	crip	tion														
31:15	Reserved			To ens ions	ure c	отр	atibilit	ty wi	ith fu	ture	devi	ices, a	lway	's wr	ite b	its to	0. 1	Mor	e in	form	ation	in	1.2 C	onve	en-
14:12	PRSSEL		0)x0		F	RW		Cha	nne	I 0 P	RS Tr	igge	r Se	lect										
	Select Char	nnel 0 P	PRS in	nput ch	nanne	el.																			
	Value		N	Лode					Des	cript	ion														
	0		F	PRSCI	H0				PRS	ch	0 triç	ggers a	a cor	vers	ion.										
	1		F	PRSCI	1 1				PRS	ch	1 triç	ggers a	a cor	ivers	ion.										
	2		F	PRSCI	1 2				PRS	ch	2 triç	ggers a	a cor	ivers	ion.										
	3		F	PRSCI	1 3				PRS	ch	3 triç	ggers a	a cor	ivers	ion.										
	4		F	PRSCI	1 4				PRS	ch	4 triç	ggers a	a cor	ivers	ion.										
	5		F	PRSCI	1 5				PRS	ch	5 trig	ggers a	a cor	ivers	ion.										
	6		F	PRSCI	H6				PRS	ch	6 trig	ggers a	a cor	ivers	ion.										
	7		F	PRSCI	1 7				PRS	ch	7 triç	ggers a	cor	ivers	ion.										_
11:9	Reserved			To ens ions	ure c	отр	atibilit	ty wi	ith fu	ture	devi	ices, a	lway	's wr	ite b	its to	0. 1	Mor	e in	form	ation	in	1.2 C	onve	en-
8	PRSASYNO	С	0)		F	RW		Cha	nne	I 0 P	RS As	sync	hror	ous	En	able	•							
	Set this bit	to 1 to t	reat P	PRS ch	nanne	el as	asyno	chro	nous	3															
7	Reserved			To ens ions	ure c	отр	atibilit	ty wi	ith fu	ture	devi	ices, a	lway	's wr	ite b	its to	0. 1	Mor	e in	form	ation	in	1.2 C	onve	en-
6:4	TRIGMODE	≣	0	0x0		F	RW		Cha	nne	I 0 T	riggeı	Mo	de											
	Select Char	nnel 0 c	onver	rsion ti	rigger	•																			
	Value		N	Лode					Des	cript	ion														_
	0		S	SW					Cha	nnel	0 is	trigge	red b	y Cl	H0D	ATA	or (CON	ИВС	ATA	\ write	е			_
	1		F	PRS					Cha	nnel	0 is	trigge	red b	y Pl	RS ir	nput									
	2		F	REFRE	ESH				Cha	nnel	0 is	trigge	red b	y Re	efres	h tir	ner								
	3		S	SWPR	S				Cha	nnel	0 is	trigge	red b	y Cl	H0D	ATA	/CO	MB	DAT	ΓA w	rite o	r P	RS in	put	
	4		S	SWRE	FRES	SH			Cha er	nnel	0 is	trigge	red b	y Cl	H0D	АТА	/CO	MB	DAT	ΓA w	rite o	r R	efresh	n tim	-
	5		L	ESEN	ISE				Cha	nnel	0 is	trigge	red b	y LE	SEN	NSE									

Bit	Name	Reset	Access	Description
3:1	Reserved	To ensure tions	compatibility \	with future devices, always write bits to 0. More information in 1.2 Conven-
0	CONVMODE	0	RW	Conversion Mode
	Configure convers	ion mode.		
	Value	Mode		Description
	0	CONTINUO	ous	DAC channel 0 is set in continuous mode
	1	SAMPLEO)FF	DAC channel 0 is set in sample/off mode

24.5.4 VDACn_CH1CTRL - Channel 1 Control Register

Offset									Bit Po	osition												
0x00C	30 30 29	28 27	25 25	23 24	22	20 21	19	2 4	19	15	. 5	12	11	10	6	1 0		9 2	4	е c	1 —	0
Reset											0X0					0		000	1			0
Access											Z Š					≥		Z Š				X N
Name											PRSSEL					PRSASYNC		TRIGMODE				CONVMODE
Bit	Name		Res	et		Acces	s D	escri	iptior	1												
31:15	Reserved		To e tions		сот	oatibilit	y with	futui	re de	vices, a	alway	/S WI	rite b	its to	O. N	⁄lore	inf	ormati	ion in	1.2 C	onve	en-
14:12	PRSSEL		0x0			RW	С	hann	el 1 l	PRS T	rigge	er Se	lect									
	Select Char	nnel 1 P	RS input	chanr	nel.																	
	Value		Mod	е			D	escri	ption													
	0		PRS	CH0			Р	RS c	h 0 tri	iggers	a cor	nvers	sion.									
	1		PRS	CH1			Р	RS c	h 1 tri	iggers	a cor	nvers	sion.									
	2		PRS	CH2			Р	RS c	h 2 tri	iggers	a cor	nvers	sion.									
	3		PRS	СНЗ			Р	RS c	h 3 tri	iggers	a cor	nvers	sion.									
	4		PRS	CH4			Р	RS c	h 4 tri	iggers	a cor	nvers	sion.									
	5		PRS	CH5			Р	RS c	h 5 tri	iggers	a cor	nvers	sion.									
	6		PRS	CH6			Р	RS c	h 6 tri	iggers	a cor	nvers	sion.									
	7		PRS	CH7			Р	RS c	h 7 tri	iggers	a cor	nvers	sion.									
11:9	Reserved		To e		сот	patibilit	y with	futui	re de	vices, a	alway	/s wr	rite b	its to	O. N	⁄lore	inf	ormati	ion in	1.2 C	onve	en-
8	PRSASYNO	С	0			RW	С	hann	el 1 l	PRS A	sync	hroi	nous	En	able							
	Set this bit	to 1 to tı	reat PRS	chann	nel as	async	hron	ous														
7	Reserved		To e tions		com	patibilit	y with	futui	re de	vices, a	alway	/s wr	ite b	its to	O. N	Логе	inf	ormati	on in	1.2 C	onve	en-
6:4	TRIGMODE	Ξ	0x0			RW	С	hann	el 1	Trigge	r Mo	de										
	Select Char	nnel 1 c	onversio	n trigge	er.																	
	Value		Mod	е			D	escri	ption													
	0		SW				С	hann	el 1 is	s trigge	red l	by C	H1D	ATA	or C	OM	BD	ATA w	rite			_
	1		PRS				С	hann	el 1 is	s trigge	red I	by Pl	RS ir	nput								
	2		REF	RESH			С	hann	el 1 is	s trigge	red I	by R	efres	sh tir	ner							
	3		SWF	PRS			С	hann	el 1 is	s trigge	red I	by C	H1D	ATA	/COI	MBD)AT	A write	e or F	PRS in	put	
	4		SWF	REFRE	SH		C e		el 1 is	s trigge	red I	by C	H1D	ATA	/COI	MBD	AT.	A write	e or F	Refres	h tim	-
	5		LES	ENSE			С	hann	el 1 is	s trigge	red I	by LE	ESE	NSE								

Bit	Name	Reset	Access	Description
3:1	Reserved	To ensure tions	compatibility \	with future devices, always write bits to 0. More information in 1.2 Conven-
0	CONVMODE	0	RW	Conversion Mode
	Configure convers	ion mode.		
	Value	Mode		Description
	0	CONTINUO	OUS	DAC channel 1 is set in continuous mode
	1	SAMPLEO	FF	DAC channel 1 is set in sample/off mode

24.5.5 VDACn_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	5	4	3	2	_	0
Reset	,			•				•	0	0	0	0	0	0	0	0					•	•					•		0	0	0	0
Access									W1	W1	W1	W1	W	W	W1	W1													W1	W1	W1	W
Name									OPA3DIS	OPA3EN	OPA2DIS	OPA2EN	OPA1DIS	OPA1EN	OPA0DIS	OPA0EN													CH1DIS	CH1EN	CHODIS	CHOEN

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
23	OPA3DIS	0	W1	OPA3 Disable
	Disables OPA3.			
22	OPA3EN	0	W1	OPA3 Enable
	Enables OPA3			
21	OPA2DIS	0	W1	OPA2 Disable
	Disables OPA2.			
20	OPA2EN	0	W1	OPA2 Enable
	Enables OPA2			
19	OPA1DIS	0	W1	OPA1 Disable
	Disables OPA1.			
18	OPA1EN	0	W1	OPA1 Enable
	Enables OPA1			
17	OPA0DIS	0	W1	OPA0 Disable
	Disables OPA0.			
16	OPA0EN	0	W1	OPA0 Enable
	Enables OPA0			
15:4	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
3	CH1DIS	0	W1	DAC Channel 1 Disable
	Disables DAC Char	nnel 1		
2	CH1EN	0	W1	DAC Channel 1 Enable
	Enables DAC Chan	nel 1.		
1	CH0DIS	0	W1	DAC Channel 0 Disable
	Disables DAC Char	nnel 0.		
0	CH0EN	0	W1	DAC Channel 0 Enable
	Enables DAC Chan	nel 0		

24.5.6 VDACn_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	0	0	0	0			•		0	0	0	0	0	0	0	0	0			•				•	-	_	0	0	0	0	0	0
Access	2	2	2	~					2	2	2	2	2	2	2	22	2								2	2	2	2	2	2	22	2
Name	OPA3OUTVALID	OPA2OUTVALID	OPA10UTVALID	OPA00UTVALID					OPA3PRSTIMEDERR	OPA2PRSTIMEDERR	OPA1PRSTIMEDERR	OPA0PRSTIMEDERR	OPA3APORTCONFLICT	OPA2APORTCONFLICT	OPA1APORTCONFLICT	OPA0APORTCONFLICT	EM23ERR								CH1BL	CH0BL	CH1UF	CHOUF	CH10F	CHOOF	CH1CD	СНОСД

		5 5	9 9 5	
Bit	Name	Reset	Access	Description
31	OPA3OUTVALID	0	R	OPA3 Output Valid Interrupt Flag
	OPA3 output is settle	d externally at th	ne load	
30	OPA2OUTVALID	0	R	OPA3 Output Valid Interrupt Flag
	OPA2 output is settle	d externally at th	ne load	
29	OPA1OUTVALID	0	R	OPA1 Output Valid Interrupt Flag
	OPA1 output is settle	d externally at th	ne load	
28	OPA0OUTVALID	0	R	OPA0 Output Valid Interrupt Flag
	OPA0 output is settle	d externally at th	ne load	
27:24	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
23	OPA3PRSTIME- DERR	0	R	OPA3 PRS Trigger Mode Error Interrupt Flag
	Indicates that in TIME	D PRS triggere	d mode, the	e negative edge of the PRS pulse came before the OPA output was valid.
22	OPA2PRSTIME- DERR	0	R	OPA2 PRS Trigger Mode Error Interrupt Flag
	Indicates that in TIME	D PRS triggere	d mode, the	e negative edge of the PRS pulse came before the OPA output was valid.
21	OPA1PRSTIME- DERR	0	R	OPA1 PRS Trigger Mode Error Interrupt Flag
	Indicates that in TIME	D PRS triggere	d mode, the	e negative edge of the PRS pulse came before the OPA output was valid.
20	OPA0PRSTIME- DERR	0	R	OPA0 PRS Trigger Mode Error Interrupt Flag
	Indicates that in TIME	D PRS triggere	d mode, the	e negative edge of the PRS pulse came before the OPA output was valid.
19	OPA3APORTCON- FLICT	0	R	OPA3 Bus Conflict Output Interrupt Flag
	1 if any of the APORT	s being request	ted by the C	OPA3 are also being requested by another peripheral.
18	OPA2APORTCON- FLICT	0	R	OPA2 Bus Conflict Output Interrupt Flag
	1 if any of the APORT	s being request	ted by the C	OPA0 are also being requested by another peripheral.

Bit	Name	Reset	Access	Description
17	OPA1APORTCON- FLICT	0	R	OPA1 Bus Conflict Output Interrupt Flag
	1 if any of the APORT	rs being reques	ted by the	OPA1 are also being requested by another peripheral.
16	OPA0APORTCON- FLICT	0	R	OPA0 Bus Conflict Output Interrupt Flag
	1 if any of the APORT	rs being reques	ted by the	OPA0 are also being requested by another peripheral.
15	EM23ERR	0	R	EM2/3 Entry Error Flag
	Set when going to EM	12/3 while DAC	CLKMODE	equals SYNC and a channel is enabled
14:8	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7	CH1BL	1	R	Channel 1 Buffer Level Interrupt Flag
	Indicates space availa	able in CH1DAT	A.	
6	CH0BL	1	R	Channel 0 Buffer Level Interrupt Flag
	Indicates space availa	able in CH0DAT	A.	
5	CH1UF	0	R	Channel 1 Data Underflow Interrupt Flag
	Indicates channel 1 d	ata underflow.		
4	CH0UF	0	R	Channel 0 Data Underflow Interrupt Flag
	Indicates channel 0 d	ata underflow.		
3	CH1OF	0	R	Channel 1 Data Overflow Interrupt Flag
	Indicates channel 1 d	ata overflow.		
2	CH0OF	0	R	Channel 0 Data Overflow Interrupt Flag
	Indicates channel 0 d	ata overflow.		
1	CH1CD	0	R	Channel 1 Conversion Done Interrupt Flag
	Indicates channel 1 c	onversion comp	lete.	
0	CH0CD	0	R	Channel 0 Conversion Done Interrupt Flag
	Indicates channel 0 c	onversion comp	lete.	

24.5.7 VDACn_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset	0	0	0	0					0	0	0	0	0	0	0	0	0					•					0	0	0	0	0	0
Access	W1	W	W M	W					X	W	W	W	W	W	W1	W1	W1										X	W1	W	W	W1	M
Name	OPA3OUTVALID	OPA2OUTVALID	OPA10UTVALID	OPA0OUTVALID					OPA3PRSTIMEDERR	OPA2PRSTIMEDERR	OPA1PRSTIMEDERR	OPA0PRSTIMEDERR	OPA3APORTCONFLICT	OPA2APORTCONFLICT	OPA1APORTCONFLICT	OPA0APORTCONFLICT	EM23ERR										CH1UF	CH0UF	CH10F	CHOOF	СН1СD	СНОСБ

Bit	Name	Reset	Access	Description
31	OPA3OUTVALID	0	W1	Set OPA3OUTVALID Interrupt Flag
	Write 1 to set the OP	A3OUTVALID i	nterrupt flag	3
30	OPA2OUTVALID	0	W1	Set OPA2OUTVALID Interrupt Flag
	Write 1 to set the OP	A2OUTVALID i	nterrupt flag	3
29	OPA1OUTVALID	0	W1	Set OPA1OUTVALID Interrupt Flag
	Write 1 to set the OP	A10UTVALID i	nterrupt flag	3
28	OPA0OUTVALID	0	W1	Set OPA0OUTVALID Interrupt Flag
	Write 1 to set the OP	A0OUTVALID i	nterrupt flag	3
27:24	Reserved	To ensure co	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
23	OPA3PRSTIME- DERR	0	W1	Set OPA3PRSTIMEDERR Interrupt Flag
	Write 1 to set the OP	A3PRSTIMEDE	RR interrup	ot flag
22	OPA2PRSTIME- DERR	0	W1	Set OPA2PRSTIMEDERR Interrupt Flag
	Write 1 to set the OP	A2PRSTIMEDE	RR interrup	ot flag
21	OPA1PRSTIME- DERR	0	W1	Set OPA1PRSTIMEDERR Interrupt Flag
	Write 1 to set the OP	A1PRSTIMEDE	RR interrup	ot flag
20	OPA0PRSTIME- DERR	0	W1	Set OPA0PRSTIMEDERR Interrupt Flag
	Write 1 to set the OP	A0PRSTIMEDE	RR interrup	ot flag
19	OPA3APORTCON- FLICT	0	W1	Set OPA3APORTCONFLICT Interrupt Flag
	Write 1 to set the OP	A3APORTCON	FLICT inter	rupt flag
18	OPA2APORTCON- FLICT	0	W1	Set OPA2APORTCONFLICT Interrupt Flag
	Write 1 to set the OP	A2APORTCON	FLICT inter	rupt flag

Bit	Name	Reset	Access	Description
17	OPA1APORTCON- FLICT	0	W1	Set OPA1APORTCONFLICT Interrupt Flag
	Write 1 to set the OP	A1APORTCONF	LICT inter	rupt flag
16	OPA0APORTCON- FLICT	0	W1	Set OPA0APORTCONFLICT Interrupt Flag
	Write 1 to set the OP	A0APORTCONF	LICT inter	rupt flag
15	EM23ERR	0	W1	Set EM23ERR Interrupt Flag
	Write 1 to set the EM	23ERR interrupt	flag	
14:6	Reserved	To ensure cortions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
5	CH1UF	0	W1	Set CH1UF Interrupt Flag
	Write 1 to set the CH	1UF interrupt fla	g	
4	CH0UF	0	W1	Set CH0UF Interrupt Flag
	Write 1 to set the CH	OUF interrupt fla	g	
3	CH1OF	0	W1	Set CH1OF Interrupt Flag
	Write 1 to set the CH	1OF interrupt fla	g	
2	CH0OF	0	W1	Set CH0OF Interrupt Flag
	Write 1 to set the CH	OOF interrupt fla	g	
1	CH1CD	0	W1	Set CH1CD Interrupt Flag
	Write 1 to set the CH	1CD interrupt fla	g	
0	CH0CD	0	W1	Set CH0CD Interrupt Flag
	Write 1 to set the CH	OCD interrupt fla	g	

24.5.8 VDACn_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	sitio	on														
0x01C	31	30	53	78	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	3	2	_	0
Reset	0	0	0	0					0	0	0	0	0	0	0	0	0										0	0	0	0	0	0
Access	(R)W1	(R)W1	(R)W1	(R)W1					(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1										(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1
Name	OPA3OUTVALID	OPA2OUTVALID	OPA10UTVALID	OPA00UTVALID					OPA3PRSTIMEDERR	OPA2PRSTIMEDERR	OPA1PRSTIMEDERR	OPA0PRSTIMEDERR	OPA3APORTCONFLICT	OPA2APORTCONFLICT	OPA1APORTCONFLICT	OPA0APORTCONFLICT	EM23ERR										CH1UF	CHOUF	CH10F			СНОСБ
Bit	Nai	me					Re	set			Ac	ces	s I	Des	crip	tion																
31			DUT				0					W1		Clea								-	_									
							PA3C mu										eturr	ns th	ne v	alue	of t	he II	F an	d cl	ears	the	cor	resp	ono	ling	inte	r-
30	OP	A20	DUT	VAL	.ID		0				(R)	W1		Clea	ır O	PA2	OU.	TVA	LID	Int	erru	pt F	lag									
							PA20 e mu										eturr	ns th	ne v	alue	of t	he II	F an	d cle	ears	the	cor	resp	ond	ling	inte	r-
29	OP	A10	DUT	VAL	.ID		0				(R)	W1		Clea	ır O	PA1	OU.	TVA	LID	Int	erru	pt F	lag									
							PA10 e mu										eturr	ns th	ne v	alue	of t	he II	F an	d cle	ears	the	cor	resp	onc	ling	inte	r-
28	OP	A0C	DUT	VAL	.ID		0				(R)	W1		Clea	ır O	PA0	OU.	TVA	LID	Int	erru	pt F	lag									
							PA00 mu										eturr	ns th	ne v	alue	of t	he II	F an	d cle	ears	the	cor	resp	onc	ling	inte	r-
27:24	Re	serv	red				To tion		ure	con	pati	bilit	y wi	th fu	ture	dev	vices	s, alı	way	s wr	ite b	its t	o 0.	Mor	e in	forn	natic	n in	1.2	Coi	nver	7-
23	OP DE	-	PRS	TIM	E-		0				(R)	W1		Clea	ır O	PA3	PRS	STIN	ИED	ER	R In	terrı	upt l	Flag	J							
							PA3F ature											retu	rns	the	valu	e of	the	IF a	nd c	lea	rs th	e co	orres	spon	ding)
22	OP DE		PRS	TIM	E-		0				(R)	W1		Clea	ar O	PA2	PRS	STIN	MED	ER	R In	terr	upt l	Flag	I							
							PA2F ature											retu	rns	the	valu	e of	the	IF a	nd c	lea	rs th	e co	orres	spon	ding)
21	OP DE		PRS	TIM	E-		0				(R)	W1		Clea	ar O	PA1	PRS	STIN	ИED	ER	R In	terri	upt l	Flag	I							
							PA1F ature											retu	rns	the	valu	e of	the	IF a	nd c	lea	rs th	e co	orres	spon	ding]
20	OP DE		PRS	TIM	E-		0				(R)	W1		Clea	ar O	PA0	PRS	STIN	ИED	ERI	R In	terri	upt l	Flag	I							
							PA0F ature											retu	rns	the	valu	e of	the	IF a	nd c	lea	rs th	e co	orres	spon	ding	9

				VDAC - Digital to Alialog Converter
Bit	Name	Reset	Access	Description
19	OPA3APORTCON- FLICT	0	(R)W1	Clear OPA3APORTCONFLICT Interrupt Flag
	Write 1 to clear the Cing interrupt flags (The			errupt flag. Reading returns the value of the IF and clears the correspond-globally in MSC.).
18	OPA2APORTCON- FLICT	0	(R)W1	Clear OPA2APORTCONFLICT Interrupt Flag
	Write 1 to clear the Cing interrupt flags (The			errupt flag. Reading returns the value of the IF and clears the correspond-globally in MSC.).
17	OPA1APORTCON- FLICT	0	(R)W1	Clear OPA1APORTCONFLICT Interrupt Flag
	Write 1 to clear the Cing interrupt flags (The			errupt flag. Reading returns the value of the IF and clears the correspond-globally in MSC.).
16	OPA0APORTCON- FLICT	0	(R)W1	Clear OPA0APORTCONFLICT Interrupt Flag
	Write 1 to clear the Cing interrupt flags (The			errupt flag. Reading returns the value of the IF and clears the correspond-globally in MSC.).
15	EM23ERR	0	(R)W1	Clear EM23ERR Interrupt Flag
	Write 1 to clear the E flags (This feature m			ading returns the value of the IF and clears the corresponding interrupt MSC.).
14:6	Reserved	To ensure co	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
5	CH1UF	0	(R)W1	Clear CH1UF Interrupt Flag
	Write 1 to clear the C (This feature must be			ng returns the value of the IF and clears the corresponding interrupt flags .
4	CH0UF	0	(R)W1	Clear CH0UF Interrupt Flag
	Write 1 to clear the C (This feature must be			ng returns the value of the IF and clears the corresponding interrupt flags .
3	CH1OF	0	(R)W1	Clear CH1OF Interrupt Flag
	Write 1 to clear the C (This feature must be			ng returns the value of the IF and clears the corresponding interrupt flags .
2	CH0OF	0	(R)W1	Clear CH0OF Interrupt Flag
	Write 1 to clear the C (This feature must be			ng returns the value of the IF and clears the corresponding interrupt flags .
1	CH1CD	0	(R)W1	Clear CH1CD Interrupt Flag
	Write 1 to clear the C (This feature must be			ng returns the value of the IF and clears the corresponding interrupt flags .
0	CH0CD	0	(R)W1	Clear CH0CD Interrupt Flag
	Write 1 to clear the C (This feature must be			ng returns the value of the IF and clears the corresponding interrupt flags

24.5.9 VDACn_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on															
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	. 4	5 5	7	,	2 (ာ ၀) h	_ (9	2	4	က	2	_	0
Reset	0	0	0	0		•			0	0	0	0	0	0	0	0	0			•	•	•	•	•	c	,	0	0	0	0	0	0	0
Access	RW	₽	RW	RW					₽	RW	S.	R	₽	S.	R M	₩ M	RW								740	2	R M	ΑX	RW	W.	R M	₩ M	RW
Name	OPA3OUTVALID	OPA2OUTVALID	OPA10UTVALID	OPA00UTVALID					OPA3PRSTIMEDERR	OPA2PRSTIMEDERR	OPA1PRSTIMEDERR	OPA0PRSTIMEDERR	OPA3APORTCONFLICT	OPA2APORTCONFLICT	OPA1APORTCONFLICT	OPA0APORTCONFLICT	EM23ERR								CU101		CHOBL	CH10F	CH0UF	CH10F	CH00F	CH1CD	СНОСБ

	00000	0 0	0 0 0 0	
Bit	Name	Reset	Access	Description
31	OPA3OUTVALID	0	RW	OPA3OUTVALID Interrupt Enable
	Enable/disable the O	PA3OUTVALIE) interrupt	
30	OPA2OUTVALID	0	RW	OPA2OUTVALID Interrupt Enable
	Enable/disable the O	PA2OUTVALIE) interrupt	
29	OPA1OUTVALID	0	RW	OPA1OUTVALID Interrupt Enable
	Enable/disable the O	PA1OUTVALIE) interrupt	
28	OPA0OUTVALID	0	RW	OPA0OUTVALID Interrupt Enable
	Enable/disable the O	PA0OUTVALIE) interrupt	
27:24	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
23	OPA3PRSTIME- DERR	0	RW	OPA3PRSTIMEDERR Interrupt Enable
	Enable/disable the O	PA3PRSTIMEI	DERR interr	upt
22	OPA2PRSTIME- DERR	0	RW	OPA2PRSTIMEDERR Interrupt Enable
	Enable/disable the O	PA2PRSTIMEI	DERR interr	upt
21	OPA1PRSTIME- DERR	0	RW	OPA1PRSTIMEDERR Interrupt Enable
	Enable/disable the O	PA1PRSTIMEI	DERR interr	upt
20	OPA0PRSTIME- DERR	0	RW	OPA0PRSTIMEDERR Interrupt Enable
	Enable/disable the O	PA0PRSTIMEI	DERR interre	rupt
19	OPA3APORTCON- FLICT	0	RW	OPA3APORTCONFLICT Interrupt Enable
	Enable/disable the O	PA3APORTCC	NFLICT inte	errupt
18	OPA2APORTCON- FLICT	0	RW	OPA2APORTCONFLICT Interrupt Enable
	Enable/disable the O	PA2APORTCC	NFLICT inte	errupt

Bit	Name	Reset	Access	Description
17	OPA1APORTCON- FLICT	0	RW	OPA1APORTCONFLICT Interrupt Enable
	Enable/disable the Ol	PA1APORTCON	NFLICT inte	errupt
16	OPA0APORTCON- FLICT	0	RW	OPA0APORTCONFLICT Interrupt Enable
	Enable/disable the Ol	PA0APORTCON	NFLICT inte	errupt
15	EM23ERR	0	RW	EM23ERR Interrupt Enable
	Enable/disable the El	M23ERR interru	ot	
14:8	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7	CH1BL	0	RW	CH1BL Interrupt Enable
	Enable/disable the Cl	H1BL interrupt		
6	CH0BL	0	RW	CH0BL Interrupt Enable
	Enable/disable the Cl	H0BL interrupt		
5	CH1UF	0	RW	CH1UF Interrupt Enable
	Enable/disable the Cl	H1UF interrupt		
4	CH0UF	0	RW	CH0UF Interrupt Enable
	Enable/disable the Cl	H0UF interrupt		
3	CH1OF	0	RW	CH1OF Interrupt Enable
	Enable/disable the Cl	H10F interrupt		
2	CH0OF	0	RW	CH0OF Interrupt Enable
	Enable/disable the Cl	H0OF interrupt		
1	CH1CD	0	RW	CH1CD Interrupt Enable
	Enable/disable the Cl	H1CD interrupt		
0	CH0CD	0	RW	CH0CD Interrupt Enable
	Enable/disable the Cl	H0CD interrupt		

24.5.10 VDACn_CH0DATA - Channel 0 Data Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	8	7	9	2	4	က	2	_	0
Reset				1			•		•		•	1		•	•			•					1			0,0	noxo		•			
Access																											[}					
Name																										\ \ \	A A					

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
11:0	DATA	0x800	RWH	Channel 0 Data
	This register contains	the value which	n will be co	nverted by DAC channel 0.

24.5.11 VDACn_CH1DATA - Channel 1 Data Register

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		•	•	•		•						•			•	•	•	•	•	•						000	0000	•				
Access																											2					
Name																										\ F	5					

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
11:0	DATA	0x800	RWH	Channel 1 Data
	This register contains	the value which	will be co	nverted by DAC channel 1.

24.5.12 VDACn_COMBDATA - Combined Data Register

Offset															Ві	t Po	siti	on														
0x02C	31	30														16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	00800																															
Access										}	>															}	>					
Name		CH1DATA V																							V L V L O L O	_						

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
27:16	CH1DATA	0x800	W	Channel 1 Data
	Data written to th	is register will be v	written to DA	TA in VDACn_CH1DATA.
15:12	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
11:0	CH0DATA	0x800	W	Channel 0 Data
	Data written to the	is register will be v	written to DA	TA in VDACn_CH0DATA.

24.5.13 VDACn_CAL - Calibration Register

24.0.10	• •	· · · · · ·	.076		uiik	, atı	011	iveg	1310	•																						
Offset															В	it Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	3	2	_	0
Reset										•				0	o X			•			Ç	OXZO				•	•	•	•		0x4	
Access														2	<u>}</u>						Š	<u>}</u>									₽	
Name														Chidtadalnik								GAINERRIKIN									OFFSETTRIM	
Bit	Na	me					Re	set			Ac	ces	s	Des	crip	tion																
31:20	Re	serv	/ed				To tio		ure	con	npati	ibility	y wi	th fu	ture	dev	vices	s, alı	way	/S WI	rite l	oits	to 0.	Мо	re i	nforr	nati	on i	n 1.2	2 Co	nver	7-
19:16	GA	AINE	RRT	RIN	/ICH	11	0x8	3			RV	V		Gair	ı Er	ror ·	Trim	ı Va	lue	for	CH	1										
			giste DACr													gran	n wi	th D	evi	ce In	ıforn	natio	on v	alue	fou	und i	n Dl	ΞVII	N-			

15:14	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
13.8	GAINERRTRIM	0x20	RW	Gain Error Trim Value

This register contains the fine gain error trim for CH0 and coarse gain error trim for CH1. Program with Device Information value found in DEVINFO_VDACnMAINCAL or DEVINFO_VDACnALTCAL depending on chosen reference and choice of main versus alternative output usage.

7:3	Reserved	To ensure tions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	OFFSETTRIM	0x4	RW	Input Buffer Offset Calibration Value

This register contains the DAC input buffer offset calibration value. Program with Device Information value found in DDE-VINFO_VDACnCH1CAL.

24.5.14 VDACn_OPAx_APORTREQ - Operational Amplifier APORT Request Status Register

Offset															Bi	t Po	siti	on														
0x0A0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset				•							•						•			•			0	0	0	0	0	0	0	0		
Access																							~	2	2	Ж	22	22	22	2		
Name																							APORT4YREQ	APORT4XREQ	APORT3YREQ	APORT3XREQ	APORT2YREQ	APORT2XREQ	APORT1YREQ	APORT1XREQ		

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
9	APORT4YREQ	0	R	1 If the Bus Connected to APORT4Y is Requested
	Reports if the bus con	nnected to APOI	RT4Y is be	ing requested from the APORT
8	APORT4XREQ	0	R	1 If the Bus Connected to APORT4X is Requested
	Reports if the bus con	nnected to APOI	RT4X is be	ing requested from the APORT
7	APORT3YREQ	0	R	1 If the Bus Connected to APORT3Y is Requested
	Reports if the bus con	nnected to APOI	RT3Y is be	ing requested from the APORT
6	APORT3XREQ	0	R	1 If the Bus Connected to APORT3X is Requested
	Reports if the bus con	nnected to APOI	RT3X is be	ing requested from the APORT
5	APORT2YREQ	0	R	1 If the Bus Connected to APORT2Y is Requested
	Reports if the bus con	nnected to APOI	RT2Y is be	ing requested from the APORT
4	APORT2XREQ	0	R	1 If the Bus Connected to APORT2X is Requested
	Reports if the bus con	nnected to APOI	RT2X is be	ing requested from the APORT
3	APORT1YREQ	0	R	1 If the Bus Connected to APORT1X is Requested
	Reports if the bus con	nnected to APOI	RT1X is be	ing requested from the APORT
2	APORT1XREQ	0	R	1 If the Bus Connected to APORT2X is Requested
	Reports if the bus con	nnected to APOI	RT2X is be	ing requested from the APORT
1:0	Reserved	To ensure contions	mpatibility \	with future devices, always write bits to 0. More information in 1.2 Conven-

24.5.15 VDACn_OPAx_APORTCONFLICT - Operational Amplifier APORT Conflict Status Register

Offset															Ві	it Po	siti	on														
0x0A4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset			•		•		•		•		•		•	•	•	•			•				0	0	0	0	0	0	0	0		
Access																							<u>~</u>	2	22	2	2	22	22	2		
Name																							APORT4YCONFLICT	APORT4XCONFLICT	APORT3YCONFLICT	APORT3XCONFLICT	APORT2YCONFLICT	APORT2XCONFLICT	APORT1YCONFLICT	APORT1XCONFLICT		

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
9	APORT4YCONFLICT	0	R	1 If the Bus Connected to APORT4Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT4Y is is	also being requested by another peripheral
8	APORT4XCONFLICT	0	R	1 If the Bus Connected to APORT4X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT4X is is a	also being requested by another peripheral
7	APORT3YCONFLICT	0	R	1 If the Bus Connected to APORT3Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT3Y is is	also being requested by another peripheral
6	APORT3XCONFLICT	0	R	1 If the Bus Connected to APORT3X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT3X is is	also being requested by another peripheral
5	APORT2YCONFLICT	0	R	1 If the Bus Connected to APORT2Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT2Y is is a	also being requested by another peripheral
4	APORT2XCONFLICT	0	R	1 If the Bus Connected to APORT2X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT2X is is	also being requested by another peripheral
3	APORT1YCONFLICT	0	R	1 If the Bus Connected to APORT1X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT1X is is	also being requested by another peripheral
2	APORT1XCONFLICT	0	R	1 If the Bus Connected to APORT1X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT1X is is a	also being requested by another peripheral
1:0	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

24.5.16 VDACn_OPAx_CTRL - Operational Amplifier Control Register

Offset						Bit	Po	sitio	n													
0x0A8	330 29 29 27 27 27 27	22 24 25 25 23 24 23	21	20	19 19	17	16	15	4 (2	12	-	10	6	_∞	7	9	2	4	က	2	- 0
Reset			0	0			0					 8 8		0	0				0	_	_	0x2
Access			\ N	¥ M			RW					 }		ΚW	% W				₩ W	X ≷	Z.	ZW.
Name			APORTYMASTERDIS	APORTXMASTERDIS			PRSOUTMODE				1	PRSSEL		PRSMODE	PRSEN				OUTSCALE	HCMDIS	INCBW	DRIVESTRENGTH
Bit	Name	Reset	Ac	ces	s Desc	cript	ion															
31:22	Reserved	To ensure contions	npat	ibilit	with fu	ture (dev	ices,	, alwa	ays	writ	e bii	ts to	0.	Мо	re in	forn	natio	on in	1.2	? Co	nven-
21	APORTYMASTER- DIS	0	RV	V	APO	RT E	Bus	Ma	ster l	Dis	able	<u> </u>										
	Determines if the OPAx will request the APORT bus Y with POSSEL, NEGSEL or APORTOUTSEL. This bit allows multiple APORT connected devices to monitor the same APORT bus simultaneously by allowing the OPAx to not master the selected bus. When 1, the determination is expected to be from another peripheral, and the OPAx only passively looks at the bus. When 1, the selection of channel for a selected bus is ignored (the bus is not), and is whatever selection the external device mastering the bus has configured for the APORT bus. Value Description															selec- at the						
										_												
	0								nable													
	1				bus	ması	terii	ig di	sable	·u												
20	APORTXMASTER- DIS Determines if the OPA APORT connected do ted bus. When 1, the bus. When 1, the seld device mastering the	evices to monito determination i ection of channe	r the s ex l for	POR san pect	T bus X ne APOI ed to be	with RT be from	PC us : m a s ig	DSSI simu anoth	ltane ner pe	IEC ous	SSEI sly b	L or y al	lowi nd	ing the	the OP	OP/ Ax	Ax to	no pas	t ma	aste ely l	r the	s selec-
	Value				Desc	cription	on															
	0				Bus	mast	terii	ng er	nable	d												
	1				Bus	mast	terii	ng di	sable	d												
19:17	Reserved	To ensure cor	npat	ibilit	with fu	ture (dev	ices,	, alwa	ays	writ	e bii	ts to	0.	Мо	re in	forn	natio	on in	1.2	? Co	nven-
16	PRSOUTMODE	0	RV	٧	ОРА	x PF	RS	Outp	out S	ele	ct											
	Selects OPAx Output	to PRS.																				
	Value	Mode			Desc	cription	on															
	0	WARM			Warr				ilable is er			S. V	Varı	m s	tatu	s in	dica	tes t	that	opa	mp	is

Bit	Name	Reset	Access	Description
	1	OUTVALID		Outvalid status available on PRS. Outvalid status indicates that opamp output is settled externally at the load.
15:13	Reserved	To ensure con tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
12:10	PRSSEL	0x0	RW	OPAx PRS Trigger Select
	Select Channel 0	PRS input channel.		
	Value	Mode		Description
	0	PRSCH0		PRS ch 0 triggers OPA.
	1	PRSCH1		PRS ch 1 triggers OPA.
	2	PRSCH2		PRS ch 2 triggers OPA.
	3	PRSCH3		PRS ch 3 triggers OPA.
	4	PRSCH4		PRS ch 4 triggers OPA.
	5	PRSCH5		PRS ch 5 triggers OPA.
	6	PRSCH6		PRS ch 6 triggers OPA.
	7	PRSCH7		PRS ch 7 triggers OPA.
9	PRSMODE	0	RW	OPAx PRS Trigger Mode
	PRS trigger mode	e of OPA.		
	Value	Mode		Description
	0	PULSED		PULSED trigger is considered a regular asynchronous pulse that starts OPA warmup sequence. The end of warmup sequence is controlled by timeout settings in OPAxTIMER.
	1	TIMED		TIMED trigger is considered a pulse long enough to provide OPA warmup sequence. The end of warmup sequence is controlled by negative edge of the pulse.
8	1 PRSEN	TIMED 0	RW	warmup sequence. The end of warmup sequence is controlled by neg-
8		0	RW	warmup sequence. The end of warmup sequence is controlled by negative edge of the pulse.
8	PRSEN	0	RW	warmup sequence. The end of warmup sequence is controlled by negative edge of the pulse.
8	PRSEN Select OPAx con	0	RW	warmup sequence. The end of warmup sequence is controlled by negative edge of the pulse. OPAx PRS Trigger Enable
8	PRSEN Select OPAx con	0	RW	warmup sequence. The end of warmup sequence is controlled by negative edge of the pulse. OPAx PRS Trigger Enable Description
7:5	PRSEN Select OPAx cont Value 0	0 version trigger.		warmup sequence. The end of warmup sequence is controlled by negative edge of the pulse. OPAx PRS Trigger Enable Description OPAx is triggered by OPAxEN OPAx is triggered by PRS input
	PRSEN Select OPAx cont Value 0 1	0 version trigger.		warmup sequence. The end of warmup sequence is controlled by negative edge of the pulse. OPAx PRS Trigger Enable Description OPAx is triggered by OPAxEN
	PRSEN Select OPAx cont Value 0 1	0 version trigger. To ensure con		warmup sequence. The end of warmup sequence is controlled by negative edge of the pulse. OPAx PRS Trigger Enable Description OPAx is triggered by OPAxEN OPAx is triggered by PRS input
7:5	PRSEN Select OPAx cond Value 0 1 Reserved OUTSCALE	0 version trigger. To ensure contions	npatibility v	warmup sequence. The end of warmup sequence is controlled by negative edge of the pulse. OPAx PRS Trigger Enable Description OPAx is triggered by OPAxEN OPAx is triggered by PRS input with future devices, always write bits to 0. More information in 1.2 Conven-
7:5	PRSEN Select OPAx cond Value 0 1 Reserved OUTSCALE	0 version trigger. To ensure contions 0	npatibility v	warmup sequence. The end of warmup sequence is controlled by negative edge of the pulse. OPAx PRS Trigger Enable Description OPAx is triggered by OPAxEN OPAx is triggered by PRS input with future devices, always write bits to 0. More information in 1.2 Conven-
7:5	PRSEN Select OPAx contours Value 0 1 Reserved OUTSCALE Use this to scale	0 version trigger. To ensure contions 0 OPAx output driving	npatibility v	warmup sequence. The end of warmup sequence is controlled by negative edge of the pulse. OPAx PRS Trigger Enable Description OPAx is triggered by OPAxEN OPAx is triggered by PRS input with future devices, always write bits to 0. More information in 1.2 Convensale Conven

		_		
Bit	Name	Reset	Access	Description
3	HCMDIS	1	RW	High Common Mode Disable
				il-to-rail on input, while output still remains rail-to-rail. The input voltage to etween VSS and VDD-1.2V. Setting this bit improves output linearity when
2	INCBW	1	RW	OPAx Unity Gain Bandwidth Scale
	Unity gain bandwidth	scale.		
	Value			Description
	0			No scaling
	1			When set the unity gain bandwidth will be scaled by factor of 2.5. useful to make OPA operate faster for closed-loop gain setting greater than 3x.
1:0	DRIVESTRENGTH	0x2	RW	OPAx Operation Mode
	Selects OPAx operat	ion mode.		
	Value			Description
	0			Lower accuracy with Low drive strength.
	1			Low accuracy with Low drive strength.
	2			High accuracy with High drive strength.
	3			Higher accuracy with High drive strength.

24.5.17 VDACn_OPAx_TIMER - Operational Amplifier Timer Control Register

		_	_	•		•				•							•														
Offset														В	it Po	siti	on														
0x0AC	31	29	28	27	26	25	44	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	3	2	-	0
Reset										0000	0000									0x07									0x00		
Access										Š	2									RW									Z ≷		
Name										AMITA ITTAS										WARMUPTIME									STARTUPDLY		
Bit	Name)				Res	et			Acc	ces	s	Des	crip	tion																
31:26	Rese	rved				To e		re c	om	oati	bilit	y w	ith fu	ıture	e de	vices	s, al	way	's w	rite	bits	to 0	. Мо	re ii	nforr	natio	on ir	1 1	2 C	onve	en-
25:16	SETT	LET	IME			0x00	1			RW	/		OP	Ax C	Outp	ut S	ettl	ing	Tin	neo	ut V	alue)								
	Numb	er of	fclo	ck cy	ycles	s to d	ive	the	out	put																					
15	Rese	rved				To e		re c	om	oati	bilit	y w	ith fu	ıture	e de	vices	s, al	way	's w	rite	bits	to 0	. Мо	re ii	nforr	natio	on ir	1 1	2 C	onve	en-
14:8	WAR	MUP	TIMI	E		0x07	,			RW	/		OP	Ax V	Varn	nup	Tim	ne C	ou	nt V	/alu	Э									
	OPAx	war	mup	tim	eout	value	•																								
7:6	Rese	rved				To e		re c	om	oati	bilit	y w	ith fu	iture	de	vices	s, al	way	's w	rite	bits	to 0	. Mo	re ii	nforr	natio	on ir	1	2 C	onve	en-
5:0	STAF	RTUP	DLY	,		0x00				RW	/		OP	Ax S	tart	up [Dela	у С	our	nt V	alue)									

OPAx startup delay in us. Used only in PRS sample of mode of stand alone opamp.

24.5.18 VDACn_OPAx_MUX - Operational Amplifier Mux Configuration Register

Offset			Bit Position
0x0B0	31 30 29 28 27	22 23 24 25 26 27 27 20 20 20 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reset		0×0	0xF2
Access		RW W	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Name		RESSEL	NEGSEL POSSEL
Bit	Name	Reset Acces	s Description
31:27	Reserved	To ensure compatibilit	y with future devices, always write bits to 0. More information in 1.2 Conven-
26:24	RESSEL	0x0 RW	OPAx Resistor Ladder Select
	Configures the resi	stor ladder tap for OPAx.	
	Value	Mode	Resistor Value
	0	RES0	R2 = 1/3 x R1
	1	RES1	R2 = R1
	2	RES2	R2 = 1 2/3 x R1
	3	RES3	R2 = 2 1/5 x R1
	4	RES4	R2 = 3 x R1
	5	RES5	R2 = 4 1/3 x R1
	6	RES6	R2 = 7 x R1
	7	RES7	R2 = 15 x R1
23:21	Reserved	To ensure compatibilit	y with future devices, always write bits to 0. More information in 1.2 Conven-
20	GAIN3X	1 RW	OPAx Dedicated 3x Gain Resistor Ladder
	Selects gain of 3x.		
	Value		Description
	0		Disables 3x gain ladder.
	1		Enables and sets the gain to 3x. If this is set to 1, RESSEL will only be used externally by other opamps. By default this is set to 1 for dac to work properly. For stand alone opamp and to configure gain based on RESSEL value, users need to configure this to 0.
19	Reserved	To ensure compatibilit	y with future devices, always write bits to 0. More information in 1.2 Conven-
18:16	RESINMUX	0x6 RW	OPAx Resistor Ladder Input Mux
	These bits selects	the source for the input mu	x to the resistor ladder
	Value	Mode	Description
	0	DISABLE	Set for Unity Gain

Bit	Name	Reset	Access	Description
	1	OPANEXT		Set for NEXTOUT(x-1) input
	2	NEGPAD		NEG pad connected
	3	POSPAD		POS pad connected
	4	COMPAD		Neg pad of OPA0 connected. Direct input to support common reference.
	5	CENTER		OPA0 and OPA1 Resmux connected to form fully differential instrumentation amplifier.
	6	VSS		VSS connected
5:8	NEGSEL	0xF2	RW	OPAx Inverting Input Mux
	These bits selects the	he source for the i	inverting in	put on OPAx
	Mode	Value		Description
	APORT1YCH1	48		Select APORT1YCH1
	APORT1YCH3	49		Select APORT1YCH3
	APORT1YCH5	50		Select APORT1YCH5
	APORT1YCH31	63		Select APORT1YCH31
	APORT2YCH0	80		Select APORT2YCH0
	APORT2YCH2	81		Select APORT2YCH2
	APORT2YCH4	82		Select APORT2YCH3
	APORT2YCH30	95		Select APORT2YCH30
	APORT3YCH1	112		Select APORT3YCH1
	APORT3YCH3	113		Select APORT3YCH3
	APORT3YCH5	114		Select APORT3YCH5
	APORT3YCH31	127		Select APORT3YCH31
	APORT4YCH0	144		Select APORT4YCH0
	APORT4YCH2	145		Select APORT4YCH2
	APORT4YCH4	146		Select APORT4YCH4
	APORT4YCH30	159		Select APORT4YCH30
	DISABLE	240		Input disabled
	UG	241		Unity Gain feedback path
	OPATAP	242		OPAxTAP as input
	NEGPAD	243		Input from NEG PAD
7:0	POSSEL	0xF1	RW	OPAx Non-inverting Input Mux

Bit	Name	Reset Access	Description
	Mode	Value	Description
	APORT1XCH0	32	Select APORT1XCH0
	APORT1XCH2	33	Select APORT1XCH2
	APORT1XCH4	34	Select APORT1XCH4
	APORT1XCH30	47	Select APORT1XCH30
	APORT2XCH1	64	Select APORT2XCH1
	APORT2XCH3	65	Select APORT2XCH3
	APORT2XCH5	66	Select APORT2XCH5
	APORT2XCH31	79	Select APORT2XCH30
	APORT3XCH0	96	Select APORT3XCH0
	APORT3XCH2	97	Select APORT3XCH2
	APORT3XCH4	98	Select APORT3XCH4
	APORT3XCH30	111	Select APORT3XCH30
	APORT4XCH1	128	Select APORT4XCH1
	APORT4XCH3	129	Select APORT4XCH3
	APORT4XCH5	130	Select APORT4XCH5
	APORT4XCH31	143	Select APORT4XCH31
	DISABLE	240	Input disabled
	DAC	241	DAC as input
	POSPAD	242	POS PAD as input
	OPANEXT	243	NEXTOUT(x-1) as input. For OPA0 not applicable.
	OPATAP	244	OPAxTAP as input. For OPA2 OPA0TAP.

24.5.19 VDACn_OPAx_OUT - Operational Amplifier Output Configuration Register

Offset				Bit Po	sition								
0x0B4	31 30 29 27 27 26	25 24	22 22 23	1 1 1 1 1 2	5 4	12 13	9 19	8 / 4	ο ro 4	က	2	_	0
Reset			00×0					2		0	0	0	_
Access			- S					\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\ N N	₩ W	& ⊗	₩ M
										<u> </u>		<u>~</u>	<u>«</u>
Name			APORTOUTSEL							SHORT	APORTOUTEN	ALTOUTEN	MAINOUTEN
Bit	Name	Reset	Access	Description	ı								
31:24	Reserved	To ens	ure compatibility v	vith future dev	rices, al	ways write	bits to 0.	More info	rmation i	n 1.2	? Coi	nver	7-
23:16	APORTOUTSEL	0x00	RW	OPAx APOI	RT Outp	out							
	Select APORT output												
	Mode	Value		Description									_
	APORT1YCH1	48		Select APO	RT1YCH	11							_
	APORT1YCH3	49		Select APO	RT1YCH	13							
	APORT1YCH5	50		Select APO	RT1YCH	15							
	APORT1YCH31	63		Select APO	RT1YCH	1 31							
	APORT2YCH0	80		Select APO	RT2YCH	10							
	APORT2YCH2	81		Select APO	RT2YCH	12							
	APORT2YCH4	82		Select APO	RT2YCH	13							
	APORT2YCH30	95		Select APO	RT2YCH	130							
	APORT3YCH1	112		Select APO	RT3YCH	11							
	APORT3YCH3	113		Select APO	RT3YCH	13							
	APORT3YCH5	114		Select APO	RT3YCH	15							
	APORT3YCH31	127		Select APO	RT3YCH	1 31							
	APORT4YCH0	144		Select APO	RT4YCH	10							
	APORT4YCH2	145		Select APO	RT4YCH	12							
	APORT4YCH4	146		Select APO	RT4YCH	14							
	APORT4YCH30	159		Select APO	RT4YCH	130							_
15:9	Reserved	To ensi	ure compatibility v	vith future dev	rices, al	ways write	bits to 0.	More info	rmation i	n 1.2	? Coi	nver	7-

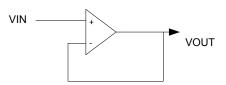
Bit	Name	Reset	Access	Description								
8:4	ALTOUTPADEN	0x00	RW	OPAx Output Enable Value								
	Set to enable output,											
	OUT ENABLE	VALUE		Description								
	OUT0	xxxx1		Alternate Output 0								
	OUT1	xxx1x		Alternate Output 1								
	OUT2	xx1xx		Alternate Output 2								
	OUT3	x1xxx		Alternate Output 3								
	OUT4	1xxxx		Alternate Output 4								
3	SHORT	0	RW	OPAx Main and Alternative Output Short								
	Set this to short circu	outs. This will keep the outputs shorted even when the VDAC is disabled.										
2	APORTOUTEN	0	RW	OPAx Aport Output Enable								
	Set this to enable aport output of OPAx.											
1	ALTOUTEN	0	RW	OPAx Alternative Output Enable								
	Set this to enable alternative output of OPAx.											
0	MAINOUTEN	1	RW	OPAx Main Output Enable								
	Set this to enable ma	in output of OPA	۸x.									

24.5.20 VDACn_OPAx_CAL - Operational Amplifier Calibration Register

Offset		Bit Position Columbia Columb																										
0x0B8	31	30 30 29 28 27 27 26						24	23	22	23	19	18	17	16	5 4	13	12	7	19	ာ	∞	7	2	4	8	. 2	- 0
Reset		00×00											0x0			0x4			0x0				0x7					
Access		RW.								₩ M		RW			RW W				S		RW.				RW			
Name		OFFSETN					OFFSETP					GM3	SINIS		Σ U	ВМ		CM3				CM2						
Bit	Na	me					Reset Access Description																					
31	Reserved						To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Convetions												ven-									
30:26	OFFSETN						0x00 RW OPAx Inverting Input Offset Configuration Value										ue											
		This register contains the offset calibration value for inverting input. Program with value obtained from Device Information page (DEVINFO_OPAxCALn) depending on OPAMP number and chosen DRIVESTRENGTH.															tion											
25	Reserved							To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions																				
24:20	20 OFFSETP 0x00 RW OPAx Non-Inverting I n											put	put Offset Configuration Value															
	This register contains the offset calibration value for Non-inverting input offset. Program with value obtained from Device Information page (DEVINFO_OPAxCALn) depending on OPAMP number and chosen DRIVESTRENGTH.															ice												
19	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 0 tions													2 Con	ven-													
18:17	GM3 0x0 RW Gm3 Trim Value																											
																tage 3 and cl								from	Dev	/ice	Inform	nation
16	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Convitions														ven-													
15:13	G۱	Л					0x4 RW Gm Trim Value																					
	Gm trim value common to all OPAMP stages to keep the bandwidth insensitive to process variation. Program with value obtained from Device Information page (DEVINFO_OPAxCALn) depending on OPAMP number and chosen DRIVES-TRENGTH.																											
12	Reserved To ensure compatibility with future devices, al tions													alway	ways write bits to 0. More information in 1.2 Conven-													
11:10	10 CM3 0x0 F										₹W	W Compensation Cap Cm3 Trim Value																
					value ESTF			ined from Device Information page (DEVINFO_OPAxCALn) depending on OPAMP number and TH.																				
9	Re	serv	ed				To tio		sure	comp	atibilit	ty wi	ith futi	ure	dev	ices, a	alway	s wr	ite bi	ts to	0. I	Mor	e info	rmati	on i	n 1.	2 Con	ven-
8:5	CN	/12					0x7	7			₹W		Com	pen	sat	ion Ca	p Cr	n2 T	rim '	/alu	е							
					value ESTF				rom	Devi	ce Info	rma	ition p	age	e (D	EVINF	0_0	PAx	CAL	n) de	epei	ndin	g on	OPA	MP	nun	nber aı	nd

To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-

tions


Reserved

4

Bit	Name	Reset	Access	Description
3:0	CM1	0x7	RW	Compensation Cap Cm1 Trim Value
	Program with value obtained from Device Information page (DEVINFO_OPAxCALn) depending on OPAMP number and chosen DRIVESTRENGTH.			

25. OPAMP - Operational Amplifier

Quick Facts

What?

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas. With flexible gain and interconnection built-in, they can be configured to support multiple common opamp functions. All pins are available externally for filter configurations. Each opamp has a rail-to-rail input and a rail-to-rail output.

Why?

The opamps are included not only to save energy on a PCB compared to standalone opamps but also to reduce system cost by replacing external opamps.

How?

Two of the opamps are made available as part of the VDAC, while the other opamps are standalone. In addition to popular differential-to-single ended and differential-to-differential driver modes, an ADC unity gain buffer mode configuration makes it possible to isolate kickback noise. The opamps can also be configured as a multi-step cascaded PGA, and for all of the built-in modes no external components are necessary.

25.1 Introduction

The opamps are highly configurable general purpose opamps, suitable for simple filters and buffer applications. The 4 opamps can be configured to support various operational amplifier functions through a network of muxes with possibilities of selecting ranges of on-chip non-inverting and inverting gain configurations and selecting between outputs to various destinations. The opamps can also be configured with external feedback in addition to supporting cascade connections between two or three opamps. The opamps are rail-to-rail in and out. A user selectable mode has been added to optimize linearity, in which case the input voltage to the opamp is restricted to a range between VSS and AVDD-1.2V.

25.2 Features

- · 4 individually configurable opamps
- · Opamps support rail-to-rail inputs and outputs
- · Supports the following functions
 - · General opamp mode
 - · Voltage follower unity gain
 - · Inverting input PGA
 - · Non-inverting PGA
 - · Cascaded inverting PGA
 - · Cascaded non-inverting PGA
 - · Two opamp differential amplifier
 - Three opamp differential amplifier
 - · Dual buffer ADC driver
- · Programmable gain
- · Programmable drive strength
- · Programmable start delay, warmup and settle time
- · Connection to APORT
- · Enable / Disable via PRS

· Output status to PRS

25.3 Functional Description

The 4 opamps can be configured to perform various opamp functions through a network of muxes. An overview of the opamps are shown in Figure 25.1 OPAMP System Overview on page 867. Two of the 4 opamps are part of the VDAC, while the others are standalone. The outputs of the opamps can be routed to the ADC and ACMP. All 4 opamps can also take input from pins. Since OPA0 and OPA1 are part of the VDAC, special considerations needs to be taken when both VDAC channel 0/channel 1 and OPA0/OPA1 are used. For detailed explanation, refer to 25.3.5 Opamp VDAC Combination.

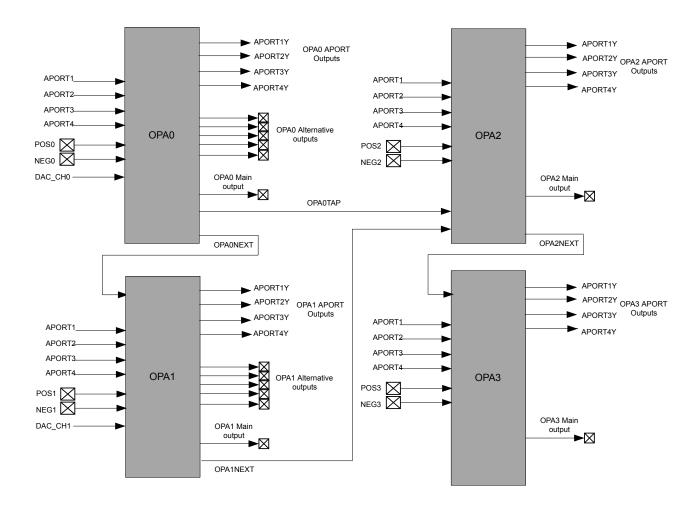


Figure 25.1. OPAMP System Overview

There is a set of input muxes for each opamp, making it possible to select various input sources. A more detailed view of the 4 opamps, including the mux network is shown in Figure 25.2 OPAMP Overview on page 868. The POSSEL mux connected to the positive input makes it possible to select a pin, another opamp output, or tap from the resistor network. Similarly, the NEGSEL mux on the negative input makes it possible to select a pin or a feedback path as its source. The feedback path can be unity gain, 3x gain, or selected from the resistor network for programmable gain. Each opamp has several outputs, a main output, an alternative output network, APORT output and a next output. These outputs make it possible to route the output to a pin, another opamp input, the ADC, the ACMP, or into the feedback path. For details regarding configuring the outputs, see 25.3.1.8 Output Configuration. In addition, there is also a mux to configure the resistor ladder for connection to VSS, a pin, or another opamp output.

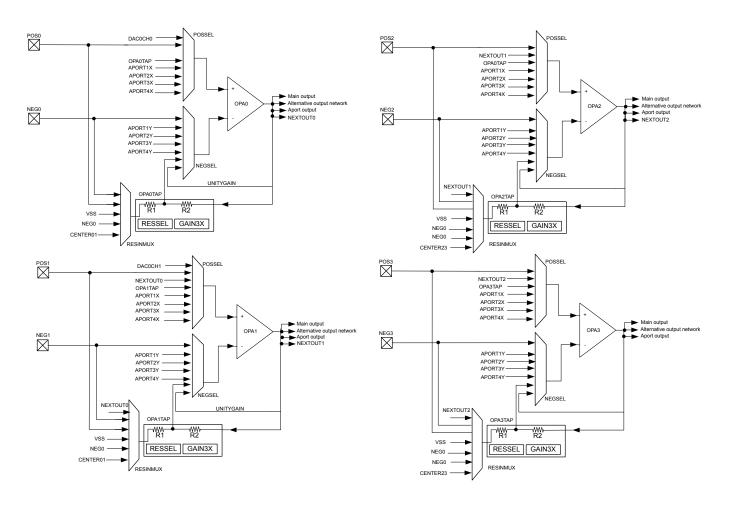


Figure 25.2. OPAMP Overview

25.3.1 Opamp Configuration

Since two of the 4 OPAMPs (OPA0, OPA1) are part of the VDAC, the opamp configuration registers are located in the VDAC.

Each OPAMP can be enabled by setting OPAxEN in VDACn_CMD and can be disabled by setting OPAxDIS in VDACn_CMD. The enabled status of each OPAMP can be read by polling the OPAxENS bit in VDACn_STATUS. OPAxENS goes high immediately after an OPAxEN is written and goes low when OPAxDIS is written and after OPAMP is completely disabled.

Software must not write to the following registers while OPAxENS set.

- VDACn OPAx CTRL
- VDACn_OPAx_TIMER
- VDACn_OPAx_MUX

25.3.1.1 Enable Sources

Opamp can be enabled either with software or PRS. The default source is software. Setting PRSEN to 1 in VDACn_OPAx_CTRL enables PRS mode. In PRS mode, opamp has two options, which are selectable with PRSMODE in VDACn_OPAx_CTRL. If PRSMODE is configured to TIMED, opamp is turned on the positive edge of PRS and stays on until PRS goes low. If PRSMODE is configured to PULSED, opamp is turned on the positive edge of PRS and stays on based on the timer configurations in VDACn_OPAxTIMER. The PRS channel is selected by PRSSEL in VDACn_OPAx_CTRL.

25.3.1.2 Warmup Time

When an opamp is enabled some initialization time is required. The warm up period is programmable with WARMUPTIME in VDACn OPAx TIME. The OPAxWARM bit in VDACn STATUS are set when the warmup period has completed.

The warm up period depends on the selected DRIVESTRENGTH in VDACn_OPAx_CTRL.

Table 25.1. OPAMP Warmup Time

DRIVESTRENGTH	WARMUPTIME (μs)
0	100
1	85
2	8
3	6

25.3.1.3 Settle Time

After an opamp is enabled and the warmed-up time has elapsed the output settles externally. The settle period is programmable with SETTLETIME in VDACn_OPAx_TIME. The OPAxOUTVALID bit in VDACn_STATUS is set when the settle period has completed. When in use by the VDAC the default settling time is used.

The settling period depends on the load at opamp output and DRIVESTRENGTH of the opamp. Table 25.2 OPAMP Settling Time on page 869 specifies SETTLETIME settings for a load of 1KOhm and 75pF.

Table 25.2. OPAMP Settling Time

DRIVESTRENGTH	SETTLETIME (µs)
0	60
1	25
2	3
3	1

25.3.1.4 Startup Delay

Each opamp has an option to delay the warm up period. The startup delay is programmable with STARTDLY in VDACn_OPAx_TIME. If STARTDLY is programmed to a non-zero value, the opamp is warmed up after STARTDLY+WARMUPTIME, and the output settles after STARTDLY+WARMUPTIME+SETTLETIME.

25.3.1.5 Power Supply

The opamp module power (V_{OPA}) is derived from the AVDD supply pin.

25.3.1.6 I/O Pin Considerations

The maximum usable analog signal that can be applied to external opamp inputs (or seen on external opamp outputs) depends on several factors: whether the signal is routed through the APORT, whether High Linearity mode is used, whether overvoltage is enabled, and on the IOVDD/AVDD supply voltages, as shown in the Table 25.3 Maximum Usable IO Voltage on page 869 table.

Table 25.3. Maximum Usable IO Voltage

Opamp Pin	Maximum IO Voltage (APORT USED and OVT Enabled/ Disabled)	Maximum IO Voltage (APORT UNUSED, OVT Enabled)	Maximum IO Voltage (APORT UN- USED, OVT Disabled)
Opamp Inputs - Normal Mode	MIN(AVDD, IOVDD)	MIN(AVDD, IOVDD)	MIN(AVDD, IOVDD)
Opamp Inputs - High Linearity Mode	MIN(AVDD - 1.2 V, IOVDD)	MIN(AVDD - 1.2 V, IOVDD)	MIN(AVDD - 1.2 V, IOVDD)
Opamp Outputs	MIN(AVDD, IOVDD)	MIN(AVDD, IOVDD + 2 V)	MIN(AVDD, IOVDD)

25.3.1.7 Input Configuration

The inputs to the opamps are controlled through a set of input muxes. The mux connected to the positive input is configured by the POSSEL bit-field in the VDACn_OPAx_MUX register. Similarly, the mux connected to the negative input is configured by setting the NEGSEL bit-field in VDACn_OPAx_MUX. The input into the resistor ladder can be configured by setting the RESINMUX bit-field in VDACn_OPAx_MUX.

25.3.1.8 Output Configuration

Each opamp has three outputs: the main output, an alternative output network with lower drive strength, and an APORT output with low drive strength. These three outputs can be configured as shown in Figure 25.3 Opamp Output Stage Overview on page 870. The main output can be used to drive the main output by setting MAINOUTEN in VDACn_OPAx_OUT. The alternative output can drive the alternative output network by setting ALTOUTEN in VDACn_OPAx_OUT. The APORT output can drive the APORT selection mux by setting APORTOUTEN in VDACn_OPAx_OUT.

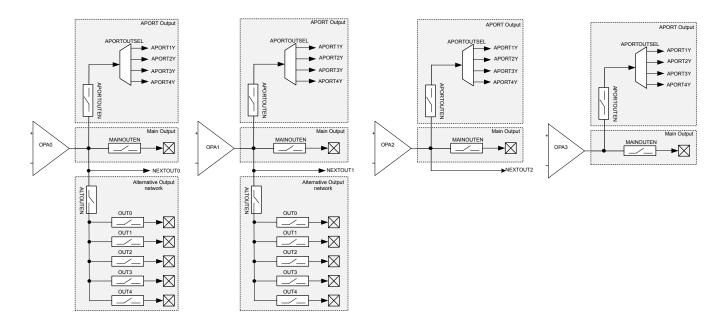


Figure 25.3. Opamp Output Stage Overview

The alternative output network consists of connections to pins and a connection to the next opamp. The connections to pins can be individually enabled by configuring ALTOUTPADEN in te VDACn_OPAx_OUT register. For cascaded opamp configurations, each opamp has a NEXTOUT connection.

The opamp outputs can also be routed to APORT1Y, APORT2Y, APORT3Y, and APORT4Y. The APORT channel can be selected by configuring APORTOUTSEL in VDACn_OPAx_OUT.

The opamps are also routed internally to the ADC. OPA0 and OPA1 are routed through the POSMUX of the ADC, and OPA2 and OPA3 are routed through the NEGMUX of the ADC. See 27.3.7 Input Selection in the ADC chapter for information on how to configure the ADC input mux.

In addition, OPA0 and OPA1 are internally routed to both the POSMUX and NEGMUX of ACMP. See 26.3.6 Input Selection in the ACMP chapter for information on how to configure the ACMP input mux.

The main and alternate outputs of each opamp can be shorted together by setting the SHORT bit-field in VDACn_OPAx_OUT.

25.3.1.9 Gain Programming

The feedback path of each mux includes a resistor ladder that can be used to select a set of gain values. Gain is configured by the RESSEL bit-field located in the VDACn_OPAx_MUX register. Gain values are determined by the resistor ladder based on ratio of R2/R1. It is also possible to bypass the resistor ladder in unity gain mode. In addition, there is also a preconfigured resistor ladder with 3X gain. The 3x gain resistor ladder is enabled by setting GAIN3X in VDACn_OPAx_MUX. By default all opamps are configured in 3x gain mode. When using RESSEL, GAIN3X should be set to zero.

25.3.1.10 Offset Calibration

Each opamp has a calibration register, VDACn_OPAx_CAL, where calibration values for both offset and gain correction can be written. The required calibration settings depend on the chosen DRIVESTRENGTH. The default calibration settings stored in VDACn_OPAx_CAL are for DRIVESTRENGTH=2. If an opamp is being reconfigured, the required calibration settings for DRIVESTRENGTH=n can be found in DEVINFO_OPAxCALn. Offsets can be programmed through the OFFSETP and OFFSETN bitfields of VDACn_OPAx_CAL.

25.3.1.11 Disabling of Rail-to-Rail Operation

Each opamp can have its input rail-to-rail stage disabled by setting the HCMDIS in VDACn_OPAx_CTRL. Disabling the rail-to-rail input stage improves linearity of the opamp, thus improving the total harmonic distortion (THD) at the cost of reduced input signal swing.

25.3.1.12 Unity Gain Bandwidth Scaling

Unity gain bandwidth of an opamp can be scaled setting the INCBW bit in VDACn_OPAx_CTRL. Note that this setting is used only when closed loop gain is greater than 3X. With this setting is enabled, the opamp is not unity gain stable.

25.3.1.13 Opamp Output Scaling

Opamp output drive strength is scaled by one half when the OUTSCALE bit in VDACn OPAx CTRL is set.

25.3.2 Interrupts and PRS Output

Each opamp has an interrupt flag OPAxOUTVALID in VDACn_IF that is set when the output is settled externally at the load. An interrupt will be requested if the OPAxOUTVALID interrupt flag in VDACn_IF is set and enabled by the OPAxOUTVALID bit in VDACn_IEN.

The OPAxERRPRSMODE interrupt flag in VDACn_IF indicates a protocol error when the opamp is triggered in PRS TIMED mode. This flag is set if the negative edge of the PRS pulse came before the output to opamp is valid. The interrupt flag is enabled by the OPAxERPRSMODE bit in VDACn_IEN.

An interrupt can also be requested when an APORT bus conflict occurs if the OPAxAPORTCONFLICT interrupt flag in VDACn_IF is set and enabled through by the OPAxAPORTCONFLICT bit in VDACn_IEN.

One of two aynchronous PRS outputs can be enabled for each opamp by setting PRSOUTMODE in VDACn_OPAx_CTRL. If PRSOUTMODE is WARM, opamp warm-up status is available. If PRSOUTMODE is OUTVALID, opamp output valid status is available.

25.3.3 APORT Request and Conflict Status

The opamps are connected to pins through the APORT system. To help debug over-utilization of APORT resources, the opamps provide request and conflict status information. The request status of APORT buses is visible through the DACn_OPAx_APORTREQ register.

If an APORT bus conflict occurs, it is reported in the DACn_OPAx_APORTCONFLICT register. An APORT conflict occurs if an opamp requests the same bus at the same time as another analog peripheral. In addition an APORT conflict is reported if any two of NEGSEL, POSSEL or APORTOUTSEL are configured to request the same APORT bus.

It is possible for the opamps to passively monitor APORT buses without controlling the switches and creating bus conflicts. This can be done by setting APORTXMASTERDIS or APORTYMASTERDIS in the DACH OPAX CTRL register.

25.3.4 Opamp Modes

The opamps can perform several different functions by configuring the internal signal routing between the opamps. The modes available are described in the following sections.

25.3.4.1 General Opamp Mode

In this mode, the resistor ladder is isolated from the feedback path, and the input signal routing is defined by POSSEL and NEGSEL in VDACn OPAx MUX. The output signal routing is defined by the setting of VDACn OPAx OUT.

Table 25.4. General Opamp Mode Configuration

OPA Bitfields	OPA Configuration
OPAx POSSEL	POSPADx, APORT[1-4]X
OPAx NEGSEL	OPATAP, UG, NEGPADx, APORT[1-4]Y
OPAx RESINMUX	NEXTOUT, POSPADx, NEGPADx, VSS

25.3.4.2 Voltage Follower Unity Gain

In this mode, the unity gain feedback path is selected for the negative input by setting the NEGSEL bit-field to UG in the VDACn_OPAx_MUX register as shown in Figure 25.4 Voltage Follower Unity Gain Overview on page 872. The positive input is selected by the POSSEL bit-field in VDACn_OPAx_MUX, and the output is configured by VDACn_OPAx_OUT register.

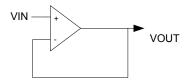


Figure 25.4. Voltage Follower Unity Gain Overview

Table 25.5. Voltage Follower Unity Gain Configuration

OPA Bitfields	OPA Configuration
OPAx POSSEL	OPATAP, NEXTOUT, POSPADx, APORT[1-4]X
OPAx NEGSEL	UG
OPAx RESINMUX	DISABLE

25.3.4.3 Inverting Input PGA

Figure 25.5 Inverting Input PGA Overview on page 872 shows the inverting input PGA configuration. In this mode, the negative input is connected to the resistor ladder by setting the NEGSEL bit-field to OPATAP in the VDACn_OPAx_MUX register. This setting provides a programmable gain on the negative input, which is set by the RESSEL bit-field in VDACn_OPAx_MUX. Signal ground for the positive input can come from off-chip by setting the POSSEL bit-field to PAD or APORT in VDACn_OPAx_MUX. In addition, the output is configured by VDACn_OPAx_OUT register.

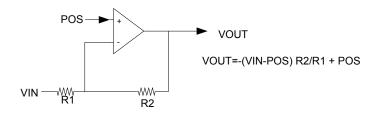


Figure 25.5. Inverting Input PGA Overview

Table 25.6. Inverting Input PGA Configuration

OPA Bitfields	OPA Configuration
OPAx POSSEL	POSPADx, APORT[1-4]X
OPAx NEGSEL	ОРАТАР
OPAx RESINMUX	NEXTOUT, NEGPADx, POSPADx

25.3.4.4 Non-inverting PGA

Figure 25.6 Non-inverting PGA Overview on page 873 shows the non-inverting input configuration. In this mode, the negative input is connected to the resistor ladder by setting the NEGSEL bit-field to OPATAP in VDACn_OPAx_MUX. This setting provides a programmable gain on the negative input, which is set by the RESSEL bit-field in VDACn_OPAx_MUX. In addition, the RESINMUX bit-field must be set to VSS or NEGPAD in VDACn_OPAx_MUX. The positive input is selected by the POSSEL bit-field, and the output is configured by VDACn_OPAx_OUT register.

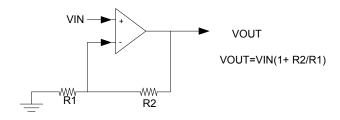


Figure 25.6. Non-inverting PGA Overview

Table 25.7. Non-inverting PGA Configuration

OPA Bitfields	OPA Configuration
OPAx POSSEL	NEXTOUT, POSPADx, APORT[1-4]X
OPAx NEGSEL	OPATAP
OPAx RESINMUX	VSS, NEGPAD

25.3.4.5 Cascaded Inverting PGA

This mode enables the opamp signals to be internally configured to cascade two or more opamps in inverting mode as shown in Figure 25.7 Cascaded Inverting PGA Overview on page 874. In both cases, the positive input is connected to signal ground by setting the POSSEL bit-field to PAD or APORT in VDACn_OPAx_MUX. When cascaded, the negative input is connected to the resistor ladder by setting the NEGSEL bit-field to OPATAP in VDACn_OPAx_MUX. The input to the resistor ladder is configured by the RESINMUX bit-field in VDACn_OPAx_MUX.

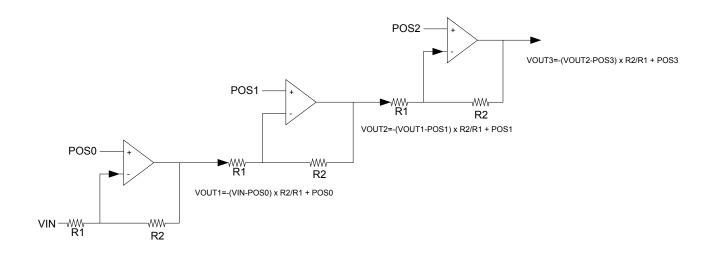


Figure 25.7. Cascaded Inverting PGA Overview

Table 25.8 Cascaded Inverting PGA Configuration on page 874 shows cascaded non-inverting PGA with OPA0,OPA1 and OPA2. The output from OPA0 is connected to OPA1 to create the second stage by setting the RESINMUX field to OPANEXT in VDACn OPA1 MUX. The last stage is created by setting the RESINMUX bit-field to OPANEXT in VDACn OPA2MUX.

Table 25.8. Cascaded Inverting PGA Configuration

OPA	OPA Bitfields	OPA Configuration
OPA0	POSSEL	POSPAD0, APORT[1-4]X
OPA0	NEGSEL	ОРАТАР
OPA0	RESINMUX	NEGPAD0
OPA1	POSSEL	POSPAD1, APORT[1-4]X
OPA1	NEGSEL	ОРАТАР
OPA1	RESINMUX	OPANEXT
OPA2	POSSEL	POSPAD2,APORT[1-4]X
OPA2	NEGSEL	ОРАТАР
OPA2	RESINMUX	OPANEXT

25.3.4.6 Cascaded Non-inverting PGA

This mode enables the opamp signals to be internally configured to cascade two or more opamps in non-inverting mode as shown in Figure 25.8 Cascaded Non-inverting PGA Overview on page 875. The negative input for all opamps will be connected to the resistor ladder by setting the NEGSEL bit-field to OPATAP. In addition the resistor ladder input must be set to VSS or NEGPADx by configuring the RESINMUX bit-field in VDACn_OPAx_MUX.

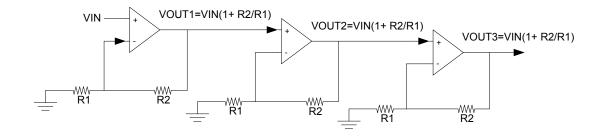


Figure 25.8. Cascaded Non-inverting PGA Overview

Table 25.9 Cascaded Non-inverting PGA Configuration on page 875 shows cascaded non-inverting PGA with OPA0,OPA1 and OPA2. When cascaded, the positive input on OPA0 is configured by the OPA0 POSSEL bit-field in VDACn_OPA0_MUX. The output from OPA0 is connected to OPA1 to create the second stage by setting the POSSEL field to OPANEXT in VDACn_OPA1_MUX. The last stage is created by setting the POSSEL bit-field to OPANEXT in VDACn_OPA2_MUX.

ОРА	OPA Bitfields	OPA Configuration
OPA0	POSSEL	POSPAD0,APORT[1-4]X
OPA0	NEGSEL	ОРАТАР
OPA0	RESINMUX	VSS, NEGPAD0
OPA1	POSSEL	OPANEXT
OPA1	NEGSEL	ОРАТАР
OPA1	RESINMUX	VSS, NEGPAD1
OPA2	POSSEL	OPANEXT
OPA2	NEGSEL	ОРАТАР
OPA2	RESINMUX	VSS, NEGPAD2

Table 25.9. Cascaded Non-inverting PGA Configuration

25.3.4.7 Two Opamp Differential Amplifier

This mode allows OPA0 and OPA1 or OPA1 and OPA2 to be internally connected to form a two opamp differential amplifier as shown in Figure 25.9 Two Op-amp Differential Amplifier Overview on page 876. When using OPA0 and OPA1, the positive input of OPA0 can be connected to any input by setting the POSSEL bit-field in VDACn_OPA0_MUX. The OPA0 feedback path must be configured for unity gain by setting the NEGSEL bit-field to UG in VDACn_OPA0_MUX. In addition, the OPA0 RESINMUX bit-field must be set to DISABLED. The OPA0 NEXTOUT output must be connected to OPA1 by setting the RESINMUX bit-field to OPANEXT in VDAC_n_OPA1_MUX. The positive input onof OPA1 is selected by the POSSELbit-field in VDACn_OPA1_MUX. The OPA1 output is configured by DACn_OPA1_OUT.

When using OPA1 and OPA2, the positive input of OPA1 can be connected to any input by setting the POSSEL bit-field in VDACn_OPA1_MUX. The OPA1 feedback path must be configured for unity gain by setting the NEGSEL bit-field to UG in VDACn_OPA1_MUX. In addition, the OPA1 RESINMUX bit-field must be set to DISABLED. The OPA1 NEXTOUT output must be connected to OPA2 by setting the RESINMUX bit-field to OPANEXT in VDACn_OPA2_MUX. The positive input of OPA2 is selected by the POSSEL bit-field in VDACn_OPA2_MUX. The OPA2 output is configured by DACn_OPA2_OUT.

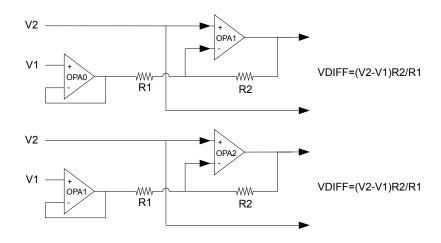


Figure 25.9. Two Op-amp Differential Amplifier Overview

Table 25.10. OPA0/OPA1 Differential Amplifier Configuration

OPA	OPA Bitfields	OPA Configuration
OPA0	POSSEL	POSPAD0, APORT[1-4]X
OPA0	NEGSEL	UG
OPA0	RESINMUX	DISABLE
OPA1	POSSEL	POSPAD1, APORT[1-4]X
OPA1	NEGSEL	ОРАТАР
OPA1	RESINMUX	OPANEXT

Table 25.11. OPA1/OPA2 Differential Amplifier Configuration

OPA	OPA Bitfields	OPA Configuration
OPA1	POSSEL	POSPAD1, APORT[1-4]X
OPA1	NEGSEL	UG
OPA1	RESINMUX	DISABLE
OPA2	POSSEL	POSPAD2, APORT[1-4]X
OPA2	NEGSEL	ОРАТАР
OPA2	RESINMUX	OPANEXT

25.3.4.8 Three Opamp Differential Amplifier

This mode allows the three opamps to be internally configured to form a three opamp differential amplifier as shown in Figure 25.10 Three Op-amp Differential Amplifier Overview on page 877. For both OPA0 and OPA1, the positive input can be connected to any input by configuring the OPA0 POSSEL and OPA1 POSSEL bitfields in VDACn_OPA0_MUX and VDACn_OPA1_MUX, respectivley. The OPA0 and OPA1 feedback paths must be configured for unity gain by setting the OPA0 NEGSEL and OPA1 NEGSEL bitfields to UG in VDACn_OPA0_MUX and VDACn_OPA1_MUX respectivley. In addition the OPA0 RESINMUX and OPA1 RESINMUX bitfields must be set to DISABLED. The OPA1 output must be connected to OPA2 by setting RESINMUX to OPANEXT in VDACn_OPA2_MUX and the OPA2 POSSEL must be set to OPATAP. The OPA2 output is configured by the DACn_OPA2_OUT register.

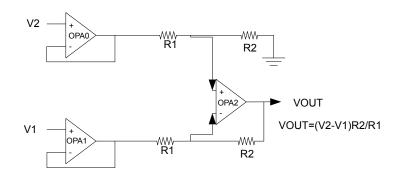


Figure 25.10. Three Op-amp Differential Amplifier Overview

The gain for the Three Opamp Differential Amplifier is determined by the combination of the gain settings of OPA0 and OPA2. Gain values of 1/3, 1 and 3, are available and programmed as shown in the table below.

Table 25.12. Three Opamp Differential Amplifier Gain Programming

Gain	OPA0 RESSEL	OPA2 RESSEL
1/3	4	0
1	1	1
3	0	4

Table 25.13. Three Opamp Differential Amplifier Configuration

OPA	OPA Bitfields	OPA Configuration
OPA0	POSSEL	POSPAD0, APORT[1-4]X
OPA0	NEGSEL	UG
OPA0	RESINMUX	DISABLE
OPA1	POSSEL	POSPAD1, APORT[1-4]X
OPA1	NEGSEL	UG
OPA1	RESINMUX	DISABLE
OPA2	POSSEL	ОРАТАР
OPA2	NEGSEL	ОРАТАР
OPA2	RESINMUX	OPANEXT

25.3.4.9 Instrumentation Amplifier

OPA0 and OPA1 can form a fully differential instrumentation amplifier by setting RESINMUX to CENTER for both opamps in VDACn_OPA0_MUX and VDACn_OPA1_MUX. Configuring RESINMUX to CENTER makes a connection between resistor ladder of the opamps as shown in Figure 25.11 Instrumentation Amplifier Overview on page 878.

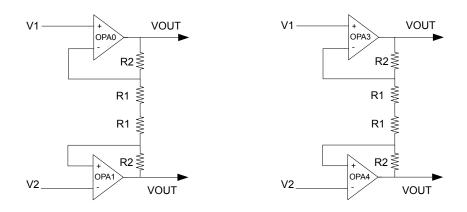


Figure 25.11. Instrumentation Amplifier Overview

25.3.4.10 Common Reference

It is possible to configure all opamps to have a common reference by setting the RESINMUX to COMPAD in VDACn_OPAx_MUX. When RESINMUX of all opamps is set to COMPAD mode, the NEGPAD input of OPA0 is used.

25.3.4.11 Dual Buffer ADC Driver

It is possible to use any two of the opamps to form a Dual Buffer ADC driver as shown in Figure 25.12 Dual Buffer ADC Driver Overview on page 878. Both opamps used must be configured in the same way. The positive input is configured by setting the 0PAx POSSEL to PAD, and the negative input is connected to the resistor ladder by setting NEGSEL to OPATAP in VDACn_OPAx_MUX. The output from the opamps can be configure to drive pins through the alternative output network or the APORT. The ADC can sample pins that the opamps are driving through the APORT.

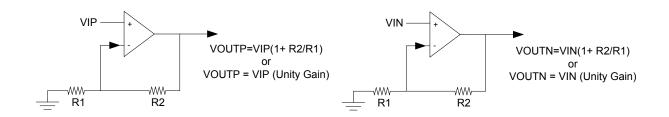


Figure 25.12. Dual Buffer ADC Driver Overview

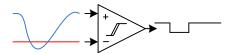
Table 25.14. Dual Buffer ADC Driver Configuration

OPA	OPA Bitfields	OPA Configuration
OPAx	POSSEL	POSPADx, APORT[1-4]X
OPAx	NEGSEL	ОРАТАР
OPAx	RESINMUX	VSS

25.3.5 Opamp VDAC Combination

Since two of the OPAMPs are part of the VDAC, it is not possible to use both VDAC channels and all 4 OPAMPs at the same time. If both VDAC channels are used, OPA0 and OPA1 can not be used as stand-alone opamp. However, it is possible to use one of the VDAC channels in combination with OPA0 or OPA1. OPA1 is available when VDAC channel 0 is in use, and OPA0 is available when VDAC channel 1 is used.

25.4 Register Map


The register map of the opamp can be found in 24.4 Register Map in the VDAC chapter.

25.5 Register Description

The register description of the opamp can be found in 24.5 Register Description in the VDAC chapter.

26. ACMP - Analog Comparator

Quick Facts

What?

The Analog Comparator (ACMP) compares two analog signals and returns a digital value telling which is greater.

Why?

Applications often do not need to know the exact value of an analog signal, only if it has passed a certain threshold. Often the voltage must be monitored continuously, which requires extremely low power consumption.

How?

Available down to Energy Mode 3 and using as little as 100 nA, the ACMP can wake up the system when input signals pass the threshold. The analog comparator can compare two analog signals or one analog signal and a highly configurable internal reference.

26.1 Introduction

The Analog Comparator compares the voltage of two analog inputs and outputs a digital signal indicating which input voltage is higher. Inputs can either be from internal references or from external pins. Response time, and thereby the current consumption, can be configured by altering the current supply to the comparator.

26.2 Features

- Up to 160 selectable external I/O inputs for both positive and negative inputs
 - Up to 48 I/O can be used as a dividable reference
- · 5 selectable internal inputs
 - · VDAC channel 0 voltage as a reference
 - VDAC channel 1 voltage as a reference
 - Dividable Internal 1.25 V bandgap reference voltage
 - · Dividable Internal 2.5 V bandgap reference voltage
 - Dividable V_{ACMPVDD} reference voltage
- · Voltage supply monitoring
- Low power mode for internal V DD and bandgap references
- · Selectable hysteresis
 - · 8 values
 - · Values can be positive or negative
 - · Dividable references have scale for both both output values, allowing for even larger hysteresis
- · Selectable response time
- · Asynchronous interrupt generation on selectable edges
 - · Rising edge
 - · Falling edge
 - · Both edges
- · Operational in EM0 Active down to EM3 Stop
- · Dedicated capacitive sense mode with up to 8 inputs
 - · Adjustable internal resistor
- · Configurable output when inactive
- · Comparator output direct on PRS
- · Comparator output on GPIO through alternate functionality
 - · Output inversion available

26.3 Functional Description

An overview of the ACMP is shown in Figure 26.1 ACMP Overview on page 882.

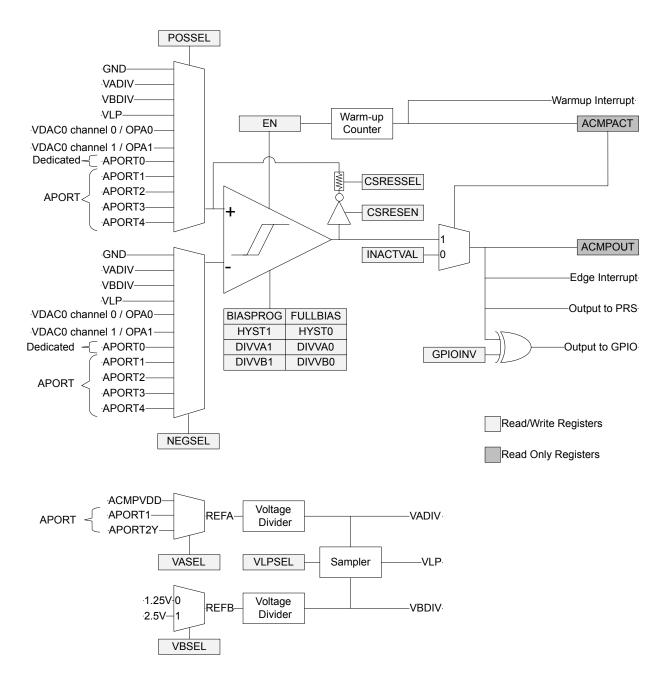


Figure 26.1. ACMP Overview

The comparator has two analog inputs: one positive and one negative. When the comparator is active, the output indicates which of the two input voltages is higher. When the voltage on the positive input is higher than the voltage on the negative input, the digital output is high and vice versa.

The output of the comparator can be read in the ACMPOUT bit in ACMPn_STATUS. It is possible to switch inputs while the comparator is enabled, but all other configuration should only be changed while the comparator is disabled.

26.3.1 Power Supply

The comparator power supply $(V_{ACMPVDD})$ can be configured to be AVDD, DVDD, or IOVDD using the PWRSEL bitfield in ACMPn_CTRL. By default, $V_{ACMPVDD}$ is set to AVDD.

26.3.2 Warm-up Time

The analog comparator is enabled by setting the EN bit in ACMPn_CTRL. The comparator requires some time to stabilize after it is enabled. This time period is called the warm-up time. The warm-up period is self-timed and will complete within 5µs after EN is set.

During warm-up and when the comparator is disabled, the output level of the comparator is set to the value of the INACTVAL bit in ACMPn_CTRL. When the warm-up time is over, the ACMPACT bit in ACMPn_STATUS is set to 1 to indicate that the comparator is active.

An edge interrupt will be generated if the edge interrupt is enabled and the value set in INACTVAL differs from ACMPOUT when the comparator transitions from warm-up to active.

Software should wait until the warm-up period is over before entering EM2 or EM3, otherwise no comparator interrupts will be detected. EM1 can still be entered during warm-up. After the warm-up period is completed, interrupts will be detected in EM2 and EM3.

26.3.3 Response Time

There is a delay from when the input voltage changes polarity to when the output toggles. This delay is called the response time and can be altered by increasing or decreasing the bias current to the comparator through the BIASPROG and FULLBIAS fields in the ACMPn_CTRL register. The current and speed of the circuit increase as the values of FULLBIAS and BIASPROG are increased from their minimum setting of FULLBIAS=0 BIASPROG=0b000000 to the maximum setting FULLBIAS=1 BIASPROG=0b11111 (maximum). The setting of FULLBIAS has a greater affect on current and speed than the setting of BIASPROG. See the part data sheet for specific current and response times related to the setting of these fields.

If FULLBIAS is set, to avoid glitches the highest hysteresis level should be used.

26.3.4 Hysteresis

When the hysteresis level is set to a non-zero value, the digital output will not toggle until the positive input voltage is at a voltage equal to the hysteresis level above or below the negative input voltage (see Figure 26.3 Hysteresis on page 884). This feature can be used to avoid continual comparator output changes due to noise when the positive and negative inputs are nearly equal by requiring the input difference to exceed the hysteresis threshold.

In the analog comparator, hysteresis can be configured to 8 different levels. Level 0 is no hysteresis. Hysteresis is configured through the HYST field in ACMPn_HYSTERESIS0 and ACMPn_HYSTERESIS1 registers. The hysteresis value can be positive or negative. The comparator will output a 1 if:

POSSEL - NEGSEL > HYST

There are two hysteresis registers, ACMPn_HYSTERESISO and ACMPn_HYSTERESIS1, as the ACMP supports asymmetric hysteresis. ACMPn_HYSTERESISO are the hysteresis values used when the comparator output is 0; ACMPn_HYSTERESIS1 are the values used when the comparator output is 1. The user must set both registers to the same values if symmetric hysteresis is desired.

Along with the HYST field, the ACMPn_HYSTERESIS0/1 registers include the DIVVA and DIVVB fields. This allows the user to implement even larger hysteresis when comparing against VADIV or VBDIV, as the reference voltage can vary with the comparator output, also.

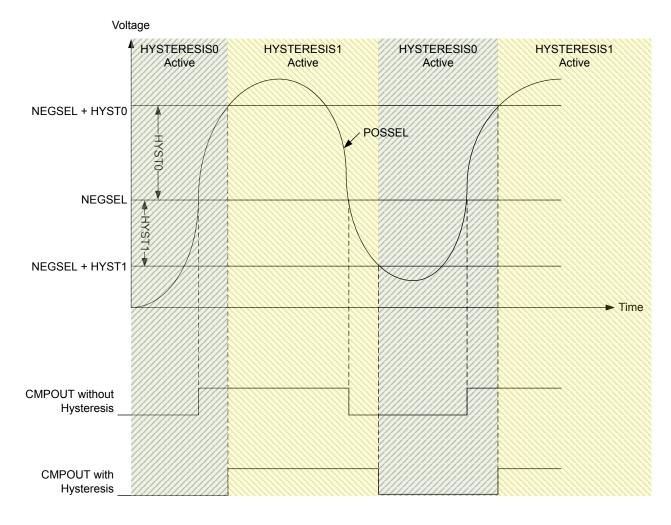


Figure 26.3. Hysteresis

26.3.5 Input Pin Considerations

For external ACMP inputs routed through the APORT, the maximum supported analog input voltage will be limited to the $MIN(V_{ACMPVDD}, IOVDD)$ (where $V_{ACMPVDD}$ is selected by the PWRSEL bitfield in ACMPn_CTRL). Note that pins configured as ACMP inputs should disable OVT (by setting the corresponding GPIO_Px_OVTDIS bit) to reduce any potential distortion introduced by the OVT circuitry.

26.3.6 Input Selection

The POSSEL and NEGSEL fields in ACMPn_INPUTSEL control the input connections to the positive and negative inputs of the comparator. The user can select external GPIO pins on the chip, or select a number of internal chip voltages. Pins are selected by configuring channels on APORT buses. Not all selectable channels are available on a given device, as different devices within a family may not implement or bring out all of the I/O defined for that family. Refer to the data sheet for channel availability and pin mapping.

There are limitations on the POSSEL and NEGSEL connections that can be made. The user cannot select an X-bus for both POSSEL and NEGSEL simultaneously, nor a Y-bus for both POSSEL and NEGSEL simultaneously. The second limitation is that when using the feedback resistor only X-bus selections can be made for POSSEL. (The resistor only physically exists on the positive input of the comparator).

The user may also select from a number of internal voltages. VADIV and VBDIV are two dividable voltages. VADIV can be $V_{ACMPVDD}$ divided, or the user can choose to select inputs from a number of APORT buses. VBDIV consists of two dividable band-gap references of either 1.25V or 2.5V. Each of these voltages have dividers in the ACMPn_HYSTERESIS0/1 registers. The formula for the division of these voltages is:

 $VADIV = VA \times ((DIVVA+1)/64)$

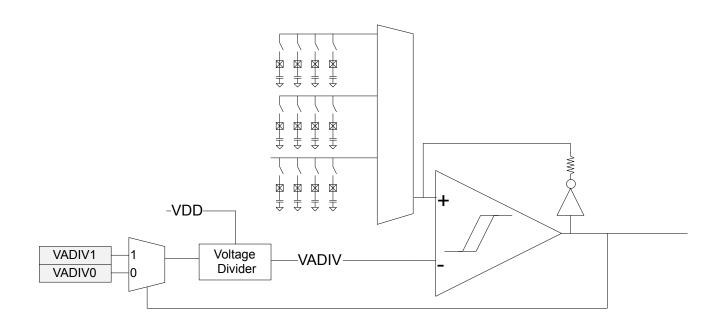
Figure 26.3. VA Voltage Division

 $VBDIV = VB \times ((DIVVB+1)/64)$

Figure 26.4. VB Voltage Division

Either VADIV and VBDIV can also be used as an input to a lower power reference: VLP. Which of the two is used is configured via the VLPSEL field in ACMPn_INPUTSEL. If the user selects VLP as an input source, then VADIV or VBDIV cannot be used as the source for the other input.

Note: The VLP should not be selected as an input source when the external override interface is enabled.


The POSSEL and NEGSEL fields also allow input from the on-chip VDAC channel 0 or VDAC channel 1.

ACMP can be configured to operate with a selected level of accuracy depending on the setting of ACCURACY in ACMPn_CTRL. The default is low-accuracy mode where ACMP operates with lower accuracy but consumes less current. When higher accuracy is needed the user can set ACCURACY=1 at the cost of higher current consumption.

26.3.7 Capacitive Sense Mode

The analog comparator includes specialized hardware for capacitive sensing of passive push buttons. Such buttons are traces on the PCB laid out in a way that creates a parasitic capacitor between the button and the ground node. Because a human finger will have a small intrinsic capacitance to ground, the capacitance of the button will increase when the button is touched. The capacitance is measured by including the capacitor in a free-running RC oscillator (see Figure 26.5 Capacitive Sensing Setup on page 887). The frequency produced will decrease when the button is touched compared to when it is not touched. By measuring the output frequency with a timer (via the PRS), the change in capacitance can be detected.

The analog comparator contains a feedback loop including an optional internal resistor. This resistor is enabled by setting the CSRE-SEN bit in ACMPn_INPUTSEL. The resistance can be set to any of 8 values by configuring the CSRESSEL bits in ACMPn_INPUTSEL. The source for VADIV is set to V_{ACMPVDD} by setting field VASEL=0 in ACMPn_INPUTSEL. The oscillation rails are defined by the VADIV fields in registers ACMPn_HYSTERESISO/1. The user should select VADIV as the source for NEGSEL, and APORTXCHc for POSSEL in ACMPn_INPUTSEL. When enabled, the comparator output will oscillate between the rails defined by VADIV in ACMPn_HYSTERESISO/1.

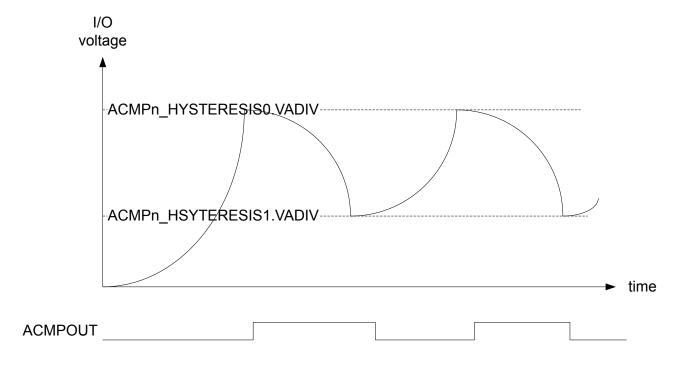


Figure 26.5. Capacitive Sensing Setup

26.3.8 Interrupts and PRS Output

The analog comparator includes an edge triggered interrupt flag (EDGE in ACMPn_IF). If either IRISE and/or IFALL in ACMPn_CTRL is set, the EDGE interrupt flag will be set on rising and/or falling edge of the comparator output respectively. An interrupt request will be sent if the EDGE interrupt flag in ACMPn_IF is set and enabled through the EDGE bit in ACMPn_IEN. The edge interrupt can also be used to wake up the device from EM3 Stop-EM1 Sleep.

The analog comparator includes the interrupt flag WARMUP in ACMPn_IF which is set when a warm-up sequence has finished. An interrupt request will be sent if the WARMUP interrupt flag in ACMPn_IF is set and enabled through the WARMUP bit in ACMPn_IEN.

The analog comparator can also generate an interrupt if a bus conflict occurs. An interrupt request will be sent if the APORTCONFLICT interrupt flag in ACMPn IF is set and enabled through the APORTCONFLICT bit in ACMPn IEN.

The synchronized comparator output is also available as a PRS output signal.

26.3.9 Output to GPIO

The output from the comparator and the capacitive sense output are available as alternate functions to the GPIO pins. Set the ACMP-PEN bit in ACMPn_ROUTE to enable the output to a pin and the LOCATION bits to select the output location. The GPIO-pin must also be set as output. The output to the GPIO can be inverted by setting the GPIOINV bit in ACMPn_CTRL.

26.3.10 APORT Conflicts

The analog comparator connects to chip pins through APORT buses. It is possible that another APORT client is using a given APORT bus. To help debugging over-utilization of APORT resources the ACMP provides a number of status registers. The ACMPn_APORTREQ gives the user visibility into what APORT buses the ACMP is requesting given the setting of registers ACMPn_INPUTSEL and ACMPn_CTRL. ACMPn_APORTCONFLICT indicates if any of the selections are in conflict, internally or externally.

For example, if the user selects APORT1XCH0 for POSSEL and APORT3XCH1 for NEGSEL, then bits APORT1XCONFLICT and APORT3XCONFLICT would be 1 in register ACMPn_APORTCONFLICT, as it is illegal for POSSEL and NEGSEL to both select an X-bus simultaneously.

If the user wishes the ACMP to monitor the same pin as another APORT client within the system, the ACMP can be configured to not attempt to control the switches on an APORT bus via the fields APORTXMASTERDIS, APORTYMASTERDIS, and APORTVMASTERDIS and APORTYMASTERDIS control if the X or Y bus selected via POSSEL or NEGESEL is mastered or not. APORTVMASTERDIS controls if either the X or Y bus selection of VASEL is mastered or not. When bus mastering is disabled, it is the other APORT client that determines which pin is connected to the APORT bus.

26.3.11 Supply Voltage Monitoring

The ACMP can be used to monitor supply voltages. The ACMP can select which voltage it uses via PWRSEL in ACMPn_CTRL. This voltage can be selected for VADIV using VASEL=0 in ACMPn_INPUTSEL and divided to a voltage with the band-gap reference range using DIVVA in registers ACMPn_HYSTERESIS0/1. The band-gap reference voltage can also be scaled via DIVVB in registers ACMPn_HYSTERESIS0/1 to provide a voltage higher or lower than the scaled VA voltage for comparison.

26.3.12 External Override Interface

The ACMP can be controlled by an external module, for instance LESENSE. In this mode, the external module will take control of the positive input mux control signal, which is normally controlled by ACMP_INPUTSEL_POSSEL. Only the APORTs are selectable for the positive input mux in this mode. Which APORT(s) used is configured in ACMP_EXTIFCTRL_APORTSEL. Additionally, the VLP should not be selected for the negative input mux in this mode.

Note: When the ACMP is controlled by the external interace, the ACMP warmup time may take up to 30 µs.

ACMP_EXTIFCTRL_APORTSEL also controls the base value for the positive input mux control signal. The external module will be able to add an offset to this base. The resulting mux configuration can be calculated using Figure 26.6 POSSEL in External Override Mode on page 889. The external module controls EXT_OFFSET, while EXT_BASE is controlled by ACMP. See register description of ACMP_EXTIFCTRL_APORTSEL to see values of EXT_BASE.

POSSEL = EXT_BASE + EXT_OFFSET

Figure 26.6. POSSEL in External Override Mode

Note: If only one APORT in a pair is used, the external module needs to be programmed to only use the channels that the ACMP has control of.

The external module is also able to override DIVVA and DIVVB in ACMP_HYSTERESIS0/HYSTERESIS1. This needs to be enabled in the external module. If the external module does not override DIVVA/DIVVB, the configuration in ACMP_HYSTERESIS0/HYSTERESIS1 will be used.

To enable the external override interface these steps must be performed:

- Configure the parts of the ACMP that will not be overridden, i.e. everything except ACMP_INPUTSEL_POSSEL and possibly ACMP_HYSTERESIS0/HYSTERESIS1. Make sure ACMP_CTRL_EN is set.
- Configure and enable the external override interface in ACMP_EXTIFCTRL.
- Check for APORT conflicts in ACMP APORTCONFLICT.
- Wait for ACMP_STATUS_EXTIFACT to go high, indicating that the interface is ready to use.

26.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	ACMPn_CTRL	RW	Control Register
0x004	ACMPn_INPUTSEL	RW	Input Selection Register
0x008	ACMPn_STATUS	R	Status Register
0x00C	ACMPn_IF	R	Interrupt Flag Register
0x010	ACMPn_IFS	W1	Interrupt Flag Set Register
0x014	ACMPn_IFC	(R)W1	Interrupt Flag Clear Register
0x018	ACMPn_IEN	RW	Interrupt Enable Register
0x020	ACMPn_APORTREQ	R	APORT Request Status Register
0x024	ACMPn_APORTCONFLICT	R	APORT Conflict Status Register
0x028	ACMPn_HYSTERESIS0	RW	Hysteresis 0 Register
0x02C	ACMPn_HYSTERESIS1	RW	Hysteresis 1 Register
0x040	ACMPn_ROUTEPEN	RW	I/O Routing Pine Enable Register
0x044	ACMPn_ROUTELOC0	RW	I/O Routing Location Register
0x048	ACMPn_EXTIFCTRL	RW	External Override Interface Control

26.5 Register Description

26.5.1 ACMPn_CTRL - Control Register

Offset															Bit	t Po	sitio	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	တ	∞	7	9	2	4	က	2	_	0
Reset	0				7020) OXO	•				0	0	0	OXO	,		0		0x0			0	0	0				•	0	0		0
Access	R W				2	} Ƴ					Z.	₩	2	<u>}</u>			RW		¥			ZW W	ΑW	₩					₩	RW		S.
Name	FULLBIAS				SOGGSVIA	BIASPROG					IFALL	IRISE	INDITEANCE				ACCURACY		PWRSEL			APORTVMASTERDIS	APORTYMASTERDIS	APORTXMASTERDIS					GPIOINV	INACTVAL		Z
Bit	Na	me					Re	set			Ac	ces	s I	Des	crip	tion																

	Щ	ш		=		L	<u>п</u>		٩	<u> </u>		0 =	Ш
Bit	Name	Reset	Access	Des	cription								
31	FULLBIAS	0	RW	Full	Bias Curi	rent							
	Set this bit to 1 for	full bias current.	See the dat	a shee	t for detail	S.							
30	Reserved	To ensure c	ompatibility	with fu	ıture devic	es, al	ways w	rite bi	its to	0. Mo	re information i	n 1.2 Cor	าven-
29:24	BIASPROG	0x07	RW	Bias	s Configu	ration	1						
	These bits control	the bias current le	evel. See th	e data	sheet for o	details	S.						
23:22	Reserved	To ensure c tions	ompatibility	with fu	ıture devic	es, al	ways w	rite bi	its to	0. Mo	re information i	n 1.2 Cor	nven-
21	IFALL	0	RW	Fall	ing Edge	Interr	upt Sei	nse					
	Set this bit to 1 to	set the EDGE inte	errupt flag o	n fallin	g edges of	f com	parator	outpu	ut.				
	Value	Mode		Des	cription								
	0	DISABLED		Inte	rrupt flag is	s not s	set on fa	alling	edge	es			
	1	ENABLED		Inte	rrupt flag is	s set o	on fallin	g edg	ges				
20	IRISE	0	RW	Risi	ng Edge I	nterr	upt Ser	ıse					
	Set this bit to 1 to	set the EDGE into	errupt flag o	n risin	g edges of	comp	oarator o	outpu	ıt.				
	Value	Mode		Des	cription								
	0	DISABLED		Inte	rrupt flag is	s not s	set on ri	ising	edge	es			
	1	ENABLED		Inte	rrupt flag is	s set o	on rising	g edg	es				
19:18	INPUTRANGE	0x0	RW	Inpu	ut Range								
	Adjust performand	ce of the compara	tor for a give	en inpu	ıt voltage r	ange							
	Value	Mode		Des	cription								
	0	FULL		Sett	ing when t	he inp	out can	be fro	om 0	to AC	MPVDD.		
	1	GTVDDDIV	2	Sett	ing when t	he inp	out will a	alway	/s be	greate	er than ACMPV	'DD/2.	

	Name	Reset	Access	Description
	2	LTVDDDIV2		Setting when the input will always be less than ACMPVDD/2.
17:16	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
15	ACCURACY	0	RW	ACMP Accuracy Mode
		For such uses,	such as qu	the comparator. Note, high frequency changes can cause the ACMP per- uickly scanning through multiple channels or setting the ACMP to oscillate
	Value	Mode		Description
	0	LOW		ACMP operates in low-accuracy mode but consumes less current.
	1	HIGH		ACMP operates in high-accuracy mode but consumes more current.
14:12	PWRSEL	0x0	RW	Power Select
	Selects the power so (EN=0).	urce for the ACN	∕IP(ACMP\	/DD). NOTE, this field should only be changed when the block is disabled
	Value	Mode		Description
	0	AVDD		AVDD supply
	1	DVDD		DVDD supply
	2	IOVDD0		IOVDD/IOVDD0 supply
	4	IOVDD1		IOVDD1 supply (if part has two I/O voltages)
11	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
11	Reserved APORTVMASTER-DIS		mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven- APORT Bus Master Disable for Bus Selected By VASEL
	APORTVMASTER- DIS Determines if the ACI devices to monitor the determination is expected.	0 MP will request to e same APORT expected to be to or a selected by	RW the X or Y in bus simulation anothers is ignore	
	APORTVMASTER- DIS Determines if the ACI devices to monitor the determination is explication of channel for the determination of	0 MP will request to e same APORT expected to be to or a selected by	RW the X or Y in bus simulation anothers is ignore	APORT Bus Master Disable for Bus Selected By VASEL APORT bus selected by VASEL. This bit allows multiple APORT connected taneously by allowing the ACMP to not master the selected bus. When 1, ter peripheral, and the ACMP only passively looks at the bus. When 1, the ed (the bus is not), and is whatever selection the external device mastering
	APORTVMASTER-DIS Determines if the ACI devices to monitor the the determination is espection of channel of the bus has configure	0 MP will request to e same APORT expected to be to or a selected by	RW the X or Y in bus simulation anothers is ignore	APORT Bus Master Disable for Bus Selected By VASEL APORT bus selected by VASEL. This bit allows multiple APORT connected taneously by allowing the ACMP to not master the selected bus. When 1, er peripheral, and the ACMP only passively looks at the bus. When 1, the
	APORTVMASTER-DIS Determines if the ACI devices to monitor the the determination is eselection of channel of the bus has configure Value	0 MP will request to e same APORT expected to be to or a selected by	RW the X or Y in bus simulation anothers is ignore	APORT Bus Master Disable for Bus Selected By VASEL APORT bus selected by VASEL. This bit allows multiple APORT connected taneously by allowing the ACMP to not master the selected bus. When 1, er peripheral, and the ACMP only passively looks at the bus. When 1, the ed (the bus is not), and is whatever selection the external device mastering Description
	APORTVMASTER-DIS Determines if the ACI devices to monitor the determination is eselection of channel of the bus has configure Value	0 MP will request to e same APORT expected to be to or a selected by	RW the X or Y in bus simulation anothers is ignore	APORT Bus Master Disable for Bus Selected By VASEL APORT bus selected by VASEL. This bit allows multiple APORT connected taneously by allowing the ACMP to not master the selected bus. When 1, er peripheral, and the ACMP only passively looks at the bus. When 1, the ded (the bus is not), and is whatever selection the external device mastering Description Bus mastering enabled
10	APORTVMASTER-DIS Determines if the ACI devices to monitor the the determination is eselection of channel of the bus has configured. Value 0 1 APORTYMASTER-DIS Determines if the ACI connected devices to When 1, the determines.	o MP will request to see same APORT expected to be to or a selected but of or the APOR O MP will request monitor the sar ation is expected annel for a selected annel for a selected annel for a selected to the annel for a se	RW the X or Y A bus simul from anoth us is ignore T bus. RW the APORT and to be from the detection is is	APORT Bus Master Disable for Bus Selected By VASEL APORT bus selected by VASEL. This bit allows multiple APORT connected taneously by allowing the ACMP to not master the selected bus. When 1, er peripheral, and the ACMP only passively looks at the bus. When 1, the ed (the bus is not), and is whatever selection the external device mastering Description Bus mastering enabled Bus mastering disabled T Y bus selected by POSSEL or NEGSEL. This bit allows multiple APORT bus simultaneously by allowing the ACMP to not master the selected bus. In another peripheral, and the ACMP only passively looks at the bus. When ignored (the bus is not), and is whatever selection the external device mas-
10	APORTVMASTER-DIS Determines if the ACI devices to monitor the the determination is eselection of channel of the bus has configured. Value 0 1 APORTYMASTER-DIS Determines if the ACI connected devices to When 1, the determination is eselection of channel of the selection of cha	o MP will request to see same APORT expected to be to or a selected but of or the APOR O MP will request monitor the sar ation is expected annel for a selected annel for a selected annel for a selected to the annel for a se	RW the X or Y A bus simul from anoth us is ignore T bus. RW the APORT and to be from the detection is is	APORT Bus Master Disable for Bus Selected By VASEL APORT bus selected by VASEL. This bit allows multiple APORT connected taneously by allowing the ACMP to not master the selected bus. When 1, er peripheral, and the ACMP only passively looks at the bus. When 1, the ed (the bus is not), and is whatever selection the external device mastering Description Bus mastering enabled Bus mastering disabled T Y bus selected by POSSEL or NEGSEL. This bit allows multiple APORT bus simultaneously by allowing the ACMP to not master the selected bus. In another peripheral, and the ACMP only passively looks at the bus. When ignored (the bus is not), and is whatever selection the external device mas-
10	APORTVMASTER-DIS Determines if the ACI devices to monitor the the determination is eselection of channel of the bus has configure Value 0 1 APORTYMASTER-DIS Determines if the ACI connected devices to When 1, the determinant, the selection of charactering the bus has continued the selection of charactering the selection of charac	o MP will request to see same APORT expected to be to or a selected but of or the APOR O MP will request monitor the sar ation is expected annel for a selected annel for a selected annel for a selected to the annel for a se	RW the X or Y A bus simul from anoth us is ignore T bus. RW the APORT and to be from the detection is is	APORT Bus Master Disable for Bus Selected By VASEL APORT bus selected by VASEL. This bit allows multiple APORT connected taneously by allowing the ACMP to not master the selected bus. When 1, the peripheral, and the ACMP only passively looks at the bus. When 1, the ed (the bus is not), and is whatever selection the external device mastering Description Bus mastering enabled Bus mastering disabled APORT Bus Y Master Disable T Y bus selected by POSSEL or NEGSEL. This bit allows multiple APORT bus simultaneously by allowing the ACMP to not master the selected bus. In another peripheral, and the ACMP only passively looks at the bus. When ignored (the bus is not), and is whatever selection the external device massis.

Bit	Name	Reset	Access	Description
8	APORTXMASTER- DIS	0	RW	APORT Bus X Master Disable
	connected devices to When 1, the determine	monitor the sa nation is expect annel for a sele	ame APORT ed to be fro cted bus is	T X bus selected by POSSEL or NEGSEL. This bit allows multiple APORT bus simultaneously by allowing the ACMP to not master the selected bus. m another peripheral, and the ACMP only passively looks at the bus. When ignored (the bus is not), and is whatever selection the external device masse.
	Value			Description
	0			Bus mastering enabled
	1			Bus mastering disabled
7:4	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
3	GPIOINV	0	RW	Comparator GPIO Output Invert
	Set this bit to 1 to inv	ert the compara	ator alternat	e function output to GPIO.
	Value	Mode		Description
	0	NOTINV		The comparator output to GPIO is not inverted
	1	INV		The comparator output to GPIO is inverted
2	INACTVAL	0	RW	Inactive Value
	The value of this bit i	s used as the c	omparator o	output when the comparator is inactive.
	Value	Mode		Description
	0	LOW		The inactive value is 0
	1	HIGH		The inactive state is 1
1	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	EN	0	RW	Analog Comparator Enable
	Enable/disable analo	g comparator.		

26.5.2 ACMPn_INPUTSEL - Input Selection Register

Offset															Bi	t Po	siti	ion															
0x004	31	30	29	78	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	5	7 -	- (2	တ ထ	,	_	9	2	4	က	2		
Reset			0x0			0		0		0				0x00							00×0			'					5	nxn			
Access			S			W.		RW		W.				<u>~</u> }							W.												
								Ľ		IL.				<u>IĽ</u>							IĽ.						α						
Name			CSRESSEL			CSRESEN		VLPSEL		VBSEL			İ	VASEL							NEGSEL									POSSEL TOSSEL			
Bit	Na	me	ı				Re	set			Acc	ces	s	Des	crip	tion																	
31	Re	ser	ved				To tior		ure	com	pati	bility	y w	ith fu	ıture	dev	/ice	s, al	way	/S I	vrite	bit	s to	0. M	ore	inf	orma	atio	n in	1.	2 C	onve	∍n-
30:28	CS	RE	SSE	L			0x0)			RW	,		Сар	acit	ive	Ser	ise l	Mod	de	Inte	rna	l Re	esist	or	Sele	ct						
			bits					anc	e va	alue	for t	he i	nte	rnal	capa	acitiv	/e s	ense	e re:	sis	tor.	Res	sulti	ng a	ctu	al re	sist	or v	⁄alu	es	are	give	en ir
	Va	lue					Мо	de						Des	cript	ion																	
	0						RES0						Internal capacitive sense resistor value 0																				
	1						RE	S1						Internal capacitive sense resistor value 1																			
	2						RE	S2						Internal capacitive sense resistor value 2																			
	3						RE																	ue 3									
	4						RE																	ue 4									
	5						RE									-								ue 5									
	7						RE RE									-								ue 6 ue 7									
27	Re	ser	ved				To tior		ure	com	pati	bility												0. M	ore	e inf	orma	atio	n in	1.	2 C	onve	<u> </u>
26	CS	RE	SEN	l			0				RW	,		Сар	acit	ive	Ser	ıse l	Mod	de	Inte	rna	l Re	esist	or	Ena	ble						
	En	abl	e/dis	able	the	inte	ernal	cap	acit	ive	sens	e re	esis	stor.																			
25	Re	ser	ved				To tion		ure	com	pati	bility	y w	ith fu	ıture	dev	/ice	s, al	way	/S I	vrite	bit	s to	0. M	ore	e inf	orma	atio	n in	1.	2 C	onve	∍n-
24	VL	.PSI	EL				0				RW	1		Low	/-Po	wer	Sa	mpl	ed \	Vo	ltage	e S	ele	ction									
	Se	lect	the	inpu	it to	the	sam	pled	ov b	ltage	e VL	Р																					
	Va	lue					Мо	de						Des	cript	ion																	
	0			VADIV					VADIV																								

VBDIV

To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-

VBDIV

tions

1

Reserved

23

Bit	Name	Reset	Access	Description
22	VBSEL	0	RW	VB Selection
	Select the input for th	e VB Divider		
	Value	Mode		Description
	0	1V25		1.25V
	1	2V5		2.50V
21:16	VASEL	0x00	RW	VA Selection
	Select the input for th	e VA Divider		
	Mode	Value		Description
	VDD	0x0		ACMPVDD
	APORT2YCH0	0x1		APORT2Y Channel 0
	APORT2YCH2	0x3		APORT2Y Channel 2
	APORT2YCH4	0x5		APORT2Y Channel 4
	APORT2YCH30	0x1f		APORT2Y Channel 30
	APORT1XCH0	0x20		APORT1X Channel 0
	APORT1YCH1	0x21		APORT1Y Channel 1
	APORT1XCH2	0x22		APORT1X Channel 2
	APORT1YCH3	0x23		APORT1Y Channel 3
	APORT1XCH4	0x24		APORT1X Channel 4
	APORT1YCH5	0x25		APORT1Y Channel 5
	APORT1XCH30	0x3e		APORT1X Channel 30
	APORT1YCH31	0x3f		APORT1Y Channel 31
15:8	NEGSEL	0x00	RW	Negative Input Select
	Select negative input			
	APORT0XCH0	0x00		Dedicated APORT0X Channel 0
	APORT0XCH1	0x01		Dedicated APORT0X Channel 1
	APORT0XCH2	0x02		Dedicated APORT0X Channel 2
	APORT0XCH15	0x0f		Dedicated APORT0X Channel 15
	APORT0YCH0	0x10		Dedicated APORT0Y Channel 0
	APORT0YCH1	0x11		Dedicated APORT0Y Channel 1
	APORT0YCH2	0x12		Dedicated APORT0Y Channel 2
	APORT0YCH15	0x1f		Dedicated APORT0Y Channel 15

Bit	Name	Reset Access	Description
	APORT1XCH0	0x20	APORT1X Channel 0
	APORT1YCH1	0x21	APORT1Y Channel 1
	APORT1XCH2	0x22	APORT1X Channel 2
	APORT1YCH3	0x23	APORT1Y Channel 3
	APORT1XCH4	0x24	APORT1X Channel 4
	APORT1YCH5	0x25	APORT1Y Channel 5
	APORT1XCH30	0x3e	APORT1X Channel 30
	APORT1YCH31	0x3f	APORT1Y Channel 31
	APORT2YCH0	0x40	APORT2Y Channel 0
	APORT2XCH1	0x41	APORT2X Channel 1
	APORT2YCH2	0x42	APORT2Y Channel 2
	APORT2XCH3	0x43	APORT2X Channel 3
	APORT2YCH4	0x44	APORT2Y Channel 4
	APORT2XCH5	0x45	APORT2X Channel 5
	APORT2YCH30	0x5e	APORT2Y Channel 30
	APORT2XCH31	0x5f	APORT2X Channel 31
	APORT3XCH0	0x60	APORT3X Channel 0
	APORT3YCH1	0x61	APORT3Y Channel 1
	APORT3XCH2	0x62	APORT3X Channel 2
	APORT3YCH3	0x63	APORT3Y Channel 3
	APORT3XCH4	0x64	APORT3X Channel 4
	APORT3YCH5	0x65	APORT3Y Channel 5
	APORT3XCH30	0x7e	APORT3X Channel 30
	APORT3YCH31	0x7f	APORT3Y Channel 31
	APORT4YCH0	0x80	APORT4Y Channel 0
	APORT4XCH1	0x81	APORT4X Channel 1
	APORT4YCH2	0x82	APORT4Y Channel 2
	APORT4XCH3	0x83	APORT4X Channel 3
	APORT4YCH4	0x84	APORT4Y Channel 4
	APORT4XCH5	0x85	APORT4X Channel 5
	APORT4YCH30	0x9e	APORT4Y Channel 30
	APORT4XCH31	0x9f	APORT4X Channel 31
	DACOUT0	0xf2	DAC Channel 0 Output

Bit	Name	Reset	Access	Description
	DACOUT1	0xf3		DAC Channel 1 Output
	VLP	0xfb		Low-Power Sampled Voltage
	VBDIV	0xfc		Divided VB Voltage
	VADIV	0xfd		Divided VA Voltage
	VDD	0xfe		ACMPVDD as selected via PWRSEL
	VSS	0xff		VSS
7:0	POSSEL	0x00	RW	Positive Input Select
	Select positive input.			
	APORT0XCH0	0x00		Dedicated APORT0X Channel 0
	APORT0XCH1	0x01		Dedicated APORT0X Channel 1
	APORT0XCH2	0x02		Dedicated APORT0X Channel 2
	APORT0XCH15	0x0f		Dedicated APORT0X Channel 15
	APORT0YCH0	0x10		Dedicated APORT0Y Channel 0
	APORT0YCH1	0x11		Dedicated APORT0Y Channel 1
	APORT0YCH2	0x12		Dedicated APORT0Y Channel 2
	APORT0YCH15	0x1f		Dedicated APORT0Y Channel 15
	APORT1XCH0	0x20		APORT1X Channel 0
	APORT1YCH1	0x21		APORT1Y Channel 1
	APORT1XCH2	0x22		APORT1X Channel 2
	APORT1YCH3	0x23		APORT1Y Channel 3
	APORT1XCH4	0x24		APORT1X Channel 4
	APORT1YCH5	0x25		APORT1Y Channel 5
	APORT1XCH30	0x3e		APORT1X Channel 30
	APORT1YCH31	0x3f		APORT1Y Channel 31
	APORT2YCH0	0x40		APORT2Y Channel 0
	APORT2XCH1	0x41		APORT2X Channel 1
	APORT2YCH2	0x42		APORT2Y Channel 2
	APORT2XCH3	0x43		APORT2X Channel 3
	APORT2YCH4	0x44		APORT2Y Channel 4
	APORT2XCH5	0x45		APORT2X Channel 5
	APORT2YCH30	0x5e		APORT2Y Channel 30
	APORT2XCH31	0x5f		APORT2X Channel 31

Bit	Name	Reset Acce	ss Description
	APORT3XCH0	0x60	APORT3X Channel 0
	APORT3YCH1	0x61	APORT3Y Channel 1
	APORT3XCH2	0x62	APORT3X Channel 2
	APORT3YCH3	0x63	APORT3Y Channel 3
	APORT3XCH4	0x64	APORT3X Channel 4
	APORT3YCH5	0x65	APORT3Y Channel 5
	APORT3XCH30	0x7e	APORT3X Channel 30
	APORT3YCH31	0x7f	APORT3Y Channel 31
	APORT4YCH0	0x80	APORT4Y Channel 0
	APORT4XCH1	0x81	APORT4X Channel 1
	APORT4YCH2	0x82	APORT4Y Channel 2
	APORT4XCH3	0x83	APORT4X Channel 3
	APORT4YCH4	0x84	APORT4Y Channel 4
	APORT4XCH5	0x85	APORT4X Channel 5
	APORT4YCH30	0x9e	APORT4Y Channel 30
	APORT4XCH31	0x9f	APORT4X Channel 31
	DACOUT0	0xf2	DAC Channel 0 Output
	DACOUT1	0xf3	DAC Channel 1 Output
	VLP	0xfb	Low-Power Sampled Voltage
	VBDIV	0xfc	Divided VB Voltage
	VADIV	0xfd	Divided VA Voltage
	VDD	0xfe	ACMPVDD as selected via PWRSEL
	VSS	0xff	VSS

26.5.3 ACMPn_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	19	6	8	7	9	5	4	က	2	_	0
Reset			'		'											'											'		0	0	0	0
Access																													22	~	R	<u>~</u>
Name																													EXTIFACT	APORTCONFLICT	ACMPOUT	ACMPACT

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure con tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
3	EXTIFACT	0	R	External Override Interface Active
	This bit is set when the	ne external overri	ide interfac	ce is ready to use.
2	APORTCONFLICT	0	R	APORT Conflict Output
	1 if any of the APOR	Γ BUSes being re	equested b	by the ACMPn are also being requested by another peripheral
1	ACMPOUT	0	R	Analog Comparator Output
	Analog comparator of	utput value.		
0	ACMPACT	0	R	Analog Comparator Active
	Analog comparator a	ctive status.		

26.5.4 ACMPn_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		'		•	'	•										'										'	'	•		0	0	0
Access																														22	22	~
Name																														APORTCONFLICT	WARMUP	EDGE

Bit	Name	Reset	Access	Description										
31:3	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-										
2	APORTCONFLICT	0	R	APORT Conflict Interrupt Flag										
	1 if any of the APOR	Γ BUSes being r	equested l	by the ACMPn are also being requested by another peripheral										
1	WARMUP	0	R	Warm-up Interrupt Flag										
	Indicates that the ana	alog comparator	warm-up p	period is finished.										
0	EDGE	0	R	Edge Triggered Interrupt Flag										
	Indicates that there h	Indicates that there has been a rising or falling edge on the analog comparator output.												

26.5.5 ACMPn_IFS - Interrupt Flag Set Register

Offset															Bi	it Po	ositi	on														
0x010	31	30	29	78	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset			•		•	•								•				•		•							•		•	0	0	0
Access																														W	×	W
Name																														APORTCONFLICT	WARMUP	EDGE

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
2	APORTCONFLICT	0	W1	Set APORTCONFLICT Interrupt Flag
	Write 1 to set the AP	ORTCONFLICT	interrupt fla	ag
1	WARMUP	0	W1	Set WARMUP Interrupt Flag
	Write 1 to set the WA	RMUP interrupt	flag	
0	EDGE	0	W1	Set EDGE Interrupt Flag
	Write 1 to set the ED	GE interrupt flag		

26.5.6 ACMPn_IFC - Interrupt Flag Clear Register

Offset	Bit Position			
0x014	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2	_	0
Reset		0	0	0
Access		(R)W1	(R)W1	(R)W1
Name		APORTCONFLICT	WARMUP	EDGE

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2	APORTCONFLICT	0	(R)W1	Clear APORTCONFLICT Interrupt Flag
	Write 1 to clear the Al rupt flags (This featur			flag. Reading returns the value of the IF and clears the corresponding interion MSC.).
1	WARMUP	0	(R)W1	Clear WARMUP Interrupt Flag
	Write 1 to clear the W (This feature must be			ading returns the value of the IF and clears the corresponding interrupt flags .
0	EDGE	0	(R)W1	Clear EDGE Interrupt Flag
	Write 1 to clear the El (This feature must be	•	•	g returns the value of the IF and clears the corresponding interrupt flags .

26.5.7 ACMPn_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset				•										'		'									'		'	•		0	0	0
Access																														₽	Z.	₩ W
Name																														APORTCONFLICT	WARMUP	EDGE

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2	APORTCONFLICT	0	RW	APORTCONFLICT Interrupt Enable
	Enable/disable the Al	PORTCONFLIC	T interrupt	
1	WARMUP	0	RW	WARMUP Interrupt Enable
	Enable/disable the W	ARMUP interrup	ot	
0	EDGE	0	RW	EDGE Interrupt Enable
	Enable/disable the El	DGE interrupt		

26.5.8 ACMPn_APORTREQ - APORT Request Status Register

Offset	Bit Position							
0x020	1 1 <th>ာ ထ</th> <th>7</th> <th>9 4</th> <th>) 4</th> <th>က</th> <th>2</th> <th>- 0</th>	ာ ထ	7	9 4) 4	က	2	- 0
Reset		0	0	0	0	0	0	0 0
Access		x x	<u>~</u>	<u>م</u> م	2 2	2	~	<u>س</u> س
Name		APOR 14 YREQ APORT4 XREQ	APORT3YREQ	APORT3XREQ APORT2YREO	2 2	APORT1YREQ	ORT1XRE	APORT0YREQ APORT0XREQ

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
9	APORT4YREQ	0	R	1 If the Bus Connected to APORT4Y is Requested
	Reports if the bus con	nected to APOF	RT4Y is be	ing requested from the APORT
8	APORT4XREQ	0	R	1 If the Bus Connected to APORT4X is Requested
	Reports if the bus con	nected to APOF	RT4X is be	ing requested from the APORT
7	APORT3YREQ	0	R	1 If the Bus Connected to APORT3Y is Requested
	Reports if the bus con	nected to APOF	RT3Y is be	ing requested from the APORT
6	APORT3XREQ	0	R	1 If the Bus Connected to APORT3X is Requested
	Reports if the bus con	nected to APOF	RT3X is be	ing requested from the APORT
5	APORT2YREQ	0	R	1 If the Bus Connected to APORT2Y is Requested
	Reports if the bus con	nected to APOF	RT2Y is be	ing requested from the APORT
4	APORT2XREQ	0	R	1 If the Bus Connected to APORT2X is Requested
	Reports if the bus con	nected to APOF	RT2X is be	ing requested from the APORT
3	APORT1YREQ	0	R	1 If the Bus Connected to APORT1X is Requested
	Reports if the bus con	nected to APOF	RT1X is be	ing requested from the APORT
2	APORT1XREQ	0	R	1 If the Bus Connected to APORT2X is Requested
	Reports if the bus con	nected to APOF	RT2X is be	ing requested from the APORT
1	APORT0YREQ	0	R	1 If the Bus Connected to APORT0Y is Requested
	Reports if the bus con	nected to APOF	RT0Y is be	ing requested from the APORT
0	APORT0XREQ	0	R	1 If the Bus Connected to APORT0X is Requested
	Reports if the bus con	nected to APOF	RT0X is be	ing requested from the APORT

26.5.9 ACMPn_APORTCONFLICT - APORT Conflict Status Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset			'	•	'						•		•	'									0	0	0	0	0	0	0	0	0	0
Access																							22	2	~	22	22	22	2	2	22	<u>~</u>
Name																							APORT4YCONFLICT	APORT4XCONFLICT	APORT3YCONFLICT	APORT3XCONFLICT	APORT2YCONFLICT	APORT2XCONFLICT	APORT1YCONFLICT	APORT1XCONFLICT	APORT0YCONFLICT	APORT0XCONFLICT

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure con tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
9	APORT4YCONFLICT	0	R	1 If the Bus Connected to APORT4Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT4Y is is a	also being requested by another peripheral
8	APORT4XCONFLICT	0	R	1 If the Bus Connected to APORT4X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT4X is is a	also being requested by another peripheral
7	APORT3YCONFLICT	0	R	1 If the Bus Connected to APORT3Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT3Y is is	also being requested by another peripheral
6	APORT3XCONFLICT	0	R	1 If the Bus Connected to APORT3X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT3X is is	also being requested by another peripheral
5	APORT2YCONFLICT	0	R	1 If the Bus Connected to APORT2Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT2Y is is	also being requested by another peripheral
4	APORT2XCONFLICT	0	R	1 If the Bus Connected to APORT2X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT2X is is	also being requested by another peripheral
3	APORT1YCONFLICT	0	R	1 If the Bus Connected to APORT1X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT1X is is	also being requested by another peripheral
2	APORT1XCONFLICT	0	R	1 If the Bus Connected to APORT1X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT1X is is	also being requested by another peripheral
1	APORT0YCONFLICT	0	R	1 If the Bus Connected to APORT0Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT0Y is is	also being requested by another peripheral

Bit	Name	Reset	Access	Description
0	APORT0XCONFLICT	0	R	1 If the Bus Connected to APORT0X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOR	RT0X is is a	also being requested by another peripheral

26.5.10 ACMPn_HYSTERESIS0 - Hysteresis 0 Register

Offset															Ві	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset					0	noxo								0000											•	•		•		2	3	
Access					2	<u>}</u>							2	<u>}</u>																2	2	
Name					מיאוני	۵ ۱							V V V V	۲ ۲ ۲																FoXI		

Bit	Name	Reset	Access	Description
31:30	Reserved	To ensure cortions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
29:24	DIVVB	0x00	RW	Divider for VB Voltage When ACMPOUT=0
	Divider to scale VB w	hen ACMPOUT	=0. VBDIV	= VB * (DIVVB+1)/64.
23:22	Reserved	To ensure cortions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
21:16	DIVVA	0x00	RW	Divider for VA Voltage When ACMPOUT=0
	Divider to scale VA w	hen ACMPOUT	=0. VADIV	= VA * (DIVVA+1)/64.
15:4	Reserved	To ensure cor tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
3:0	HYST	0x0	RW	Hysteresis Select When ACMPOUT=0

Select hysteresis level when comparator output is 0. The hysteresis levels can vary, please see the electrical characteristics for the device for more information.

Value	Mode	Description
0	HYST0	No hysteresis
1	HYST1	14 mV hysteresis
2	HYST2	25 mV hysteresis
3	HYST3	30 mV hysteresis
4	HYST4	35 mV hysteresis
5	HYST5	39 mV hysteresis
6	HYST6	42 mV hysteresis
7	HYST7	45 mV hysteresis
8	HYST8	No hysteresis
9	HYST9	-14 mV hysteresis
10	HYST10	-25 mV hysteresis
11	HYST11	-30 mV hysteresis
12	HYST12	-35 mV hysteresis
13	HYST13	-39 mV hysteresis
14	HYST14	-42 mV hysteresis
15	HYST15	-45 mV hysteresis

26.5.11 ACMPn_HYSTERESIS1 - Hysteresis 1 Register

Offset															Ві	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		•			0	OXO								0000		•		•							•	•				>	3	
Access					20	<u>}</u>							2	≥ Ľ																2	2	
Name					0/2/20	۵ <u>۸</u>							2	¥ ^ ^																HVCT	- 2 -	

Bit	Name	Reset	Access	Description
31:30	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
29:24	DIVVB	0x00	RW	Divider for VB Voltage When ACMPOUT=1
	Divider to scale V	B when ACMPOU	IT=1. VBDIV	= VB * (DIVVB+1)/64.
23:22	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
21:16	DIVVA	0x00	RW	Divider for VA Voltage When ACMPOUT=1
	Divider to scale V	'A when ACMPOU	JT=1. VADIV	= VA * (DIVVA+1)/64.
15:4	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
3:0	HYST	0x0	RW	Hysteresis Select When ACMPOUT=1

Select hysteresis level when comparator output is 1. The hysteresis levels can vary, please see the electrical characteristics for the device for more information.

Value	Mode	Description
0	HYST0	No hysteresis
1	HYST1	14 mV hysteresis
2	HYST2	25 mV hysteresis
3	HYST3	30 mV hysteresis
4	HYST4	35 mV hysteresis
5	HYST5	39 mV hysteresis
6	HYST6	42 mV hysteresis
7	HYST7	45 mV hysteresis
8	HYST8	No hysteresis
9	HYST9	-14 mV hysteresis
10	HYST10	-25 mV hysteresis
11	HYST11	-30 mV hysteresis
12	HYST12	-35 mV hysteresis
13	HYST13	-39 mV hysteresis
14	HYST14	-42 mV hysteresis
15	HYST15	-45 mV hysteresis

26.5.12 ACMPn_ROUTEPEN - I/O Routing Pine Enable Register

Offset		Bit Position
0x040	30 30 29 29 27 27 27	0 1 2 3 4 6 9 9 1 1 1 2 1 3 1 4 8 8 8 7 9 9 1 1 1 1 2 1 3 1 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Reset		0
Access		R See 1 and
Name		OUTPEN
Bit	Name	Reset Access Description
31:1	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions

OUTPEN 0 RW ACMP Output Pin Enable
Enable/disable analog comparator output to pin.

26.5.13 ACMPn_ROUTELOC0 - I/O Routing Location Register

0

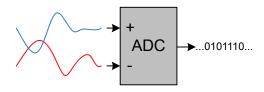
Offset															Bi	t Po	siti	on													
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	က	7 7	- 0
Reset																													00X0		
Access																													Σ		
Name																													OUTLOC		

					O
Bit	Name	Reset	Access	Description	
31:6	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More inforn	nation in 1.2 Conven-
5:0	OUTLOC	0x00	RW	I/O Location	
	Decides the loca	ation of the OUT pi	n.		
	Value	Mode	-	Description	
	0	LOC0		Location 0	
	1	LOC1		Location 1	
	2	LOC2		Location 2	
	3	LOC3		Location 3	
	4	LOC4		Location 4	
	5	LOC5		Location 5	
	6	LOC6		Location 6	
	7	LOC7		Location 7	

26.5.14 ACMPn_EXTIFCTRL - External Override Interface Control

Offset															Bi	t Po	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•								•		•		•	•			•				•		Š	e e					0
Access																										2	<u>}</u>					RW
Name																											APORISEL					N EN

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:4	APORTSEL	0x0	RW	APORT Selection for External Interface


Decides which APORT(s) the ACMP will use when controlled by an external module.

Value	Mode	Description
0	APORT0X	APORT0X used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT0XCH0.
1	APORT0Y	APORT0Y used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT0YCH0.
2	APORT1X	APORT1X used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT1XCH0.
3	APORT1Y	APORT1Y used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT1XCH0.
4	APORT1XY	APORT1X/Y used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT1XCH0.
5	APORT2X	APORT2X used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT2YCH0.
6	APORT2Y	APORT2Y used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT2YCH0.
7	APORT2YX	APORT2Y/X used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT2YCH0.
8	APORT3X	APORT3X used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT3XCH0.
9	APORT3Y	APORT3Y used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT3XCH0.
10	APORT3XY	APORT3X/Y used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT3XCH0.
11	APORT4X	APORT4X used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT4YCH0.
12	APORT4Y	APORT4Y used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT4YCH0.
13	APORT4YX	APORT4Y/X used. EXT_BASE = ACMP_INPUTSEL_POS- SEL_APORT4YCH0.

Bit	Name	Reset	Access	Description
3:1	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	EN	0	RW	Enable External Interface
	Set to enable an	external module	, like LESENS	E, to control the ACMP

27. ADC - Analog to Digital Converter

Quick Facts

What?

The ADC is used to convert analog signals into a digital representation and features low-power, autonomous operation.

Why?

In many applications there is a need to measure analog signals and record them in a digital representation, without exhausting the energy source.

How?

A low power ADC samples up to 32 input channels in a programmable sequence. With the help of PRS and DMA, the ADC can operate without CPU intervention in EM2 DeepSleep and EM3 Stop, minimizing the number of powered up resources. The ADC can further be duty-cycled to reduce the energy consumption.

27.1 Introduction

The ADC uses a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second (1 Msps). The integrated input multiplexer can select from external I/Os and several internal signals.

27.2 Features

- Programmable resolution (6/8/12-bit)
 - 13 conversion clock cycles for a 12-bit conversion
 - Maximum 1 Msps @ 12-bit
 - Maximum 1.6 Msps @ 6-bit
- · Configurable acquisition time
- · Externally controllable conversion start time using PRS in TIMED mode
- · Integrated prescaler for conversion clock generation
 - · Selectable clock division factor from 1 to 128
- · Wide conversion clock range: 32 kHz to 16 MHz
- · Can be run during EM2 DeepSleep and EM3 Stop, waking up the system upon various enabled interrupts
- Can be run during EM2 DeepSleep and EM3 Stop with DMA enabled to pull data from the FIFOs without waking up the system
- Supports up to 144 external input channels and several internal inputs
 - Includes temperature sensor and random number generator function
- · Left or right adjusted results
 - · Results in 2's complement representation
 - · Differential results sign extended to 32-bits results
- · Programmable scan sequence
 - · Up to 32 configurable samples in scan sequence
 - · Mask to select which pins are included in the sequence
 - · Triggered by software or PRS input
 - · One shot or repetitive mode
 - · Oversampling available
 - · Four deep FIFO to store conversion data along with channel ID and option to overwrite old data when full
 - · Programmable watermark (DVL) to generate SCAN interrupt
 - · Supports overflow and underflow interrupt generation
 - · Supports window compare function
 - · Conversion tailgating support for predictable periodic scans
- · Programmable single channel conversion
 - · Triggered by software or PRS input
 - · Can be interleaved between two scan sequences
 - · One shot or repetitive mode
 - · Oversampling available
 - · Four deep FIFO to store conversion data with option to overwrite old data when full
 - programmable watermark (DVL) to generate SINGLE interrupt
 - · Supports overflow and underflow interrupt generation
 - · Supports window compare function
- · Hardware oversampling support
 - · 1st order accumulate and dump filter
 - From 2 to 4096 oversampling ratio (OSR)
 - · Results in 16-bit representation
 - · Enabled individually for scan sequence and single channel mode
 - · Common OSR select
- Programmable and preset input full scale (peak-to-peak) range (VFS) with selectable reference sources
 - VFS=1.25 V using internal VBGR reference
 - · VFS=2.5 V using internal VBGR reference
 - · VFS=AVDD with AVDD as reference source
 - VFS=5 V with internal VBGR reference
 - · Single ended external reference
 - · Differential external reference
 - VFS=2xAVDD with AVDD as reference source
 - · User-programmable dividers for flexible VFS options from internal, external or supply voltage reference sources

- · Support for offset and gain calibration
- · Interrupt generation and/or DMA request when
 - · Programmable number of converted data available in the single FIFO (also generates DMA request)
 - · Programmable number of converted data available in the scan FIFO (also generates DMA request)
 - · Single FIFO overflow or underflow
 - · Scan FIFO overflow or underflow
 - · Latest Single conversion tripped compare logic
 - · Latest Scan conversion tripped compare logic
 - · Analog over-voltage interrupt
 - Programming Error interrupt due to APORT Bus Request conflict or NEGSEL programming error

27.3 Functional Description

An overview of the ADC is shown in Figure 27.1 ADC Overview on page 912.

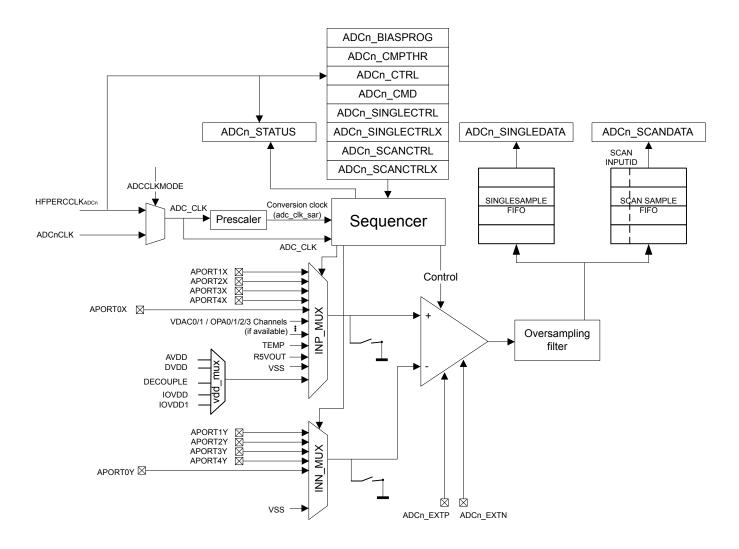


Figure 27.1. ADC Overview

27.3.1 Clock Selection

The ADC logic is partitioned into two clock domains: HFPERCCLK and ADC_CLK. The HFPERCCLK domain contains the register interface logic, APORT request logic and portions of FIFO read logic. The HFPERCCLK is the default clock for the ADC peripheral. The rest of the ADC is clocked by the ADC CLK domain. The ADC CLK is chosen by ADCCLKMODE bit in the ADCn CTRL register.

The ADC_CLK is the main clock for the ADC engine. If the ADCCLKMODE is set to SYNC, the ADC_CLK is equal to the HFPERCCLK and the ADC operates in synchronous mode. If the ADCCLKMODE is set to ASYNC, the ADC_CLK is ASYNCCLK and the ADC operates in asynchronous mode. This distinction is important to understand as there are additional system restrictions and benefits to running the ADC in asynchronous mode detailed in 27.3.15 ASYNC ADC_CLK Usage Restrictions and Benefits.

Note: Whenever ADC is being used in asynchronous mode, then HFPERCLK must be at least 1.5 times higher than the ADC_CLK.

The ADC has an internal clock prescaler, controlled by PRESC bits in ADCn_CTRL, which can divide the ADC_CLK by any factor between 1 and 128 to generate the conversion clock (adc_clk_sar) for the ADC. This adc_clk_sar is also used to generate acquisition timing. Note that the maximum clock frequency for adc_clk_sar is 16 MHz. The ADC warmup time is determined by ADC_CLK and not by adc_clk_sar.

ASYNCCLK is a clock source from the CMU which is considered asynchronous to HFPERCCLK. The CMU_ADCCTRL register can be programmed to request and use ASYNCCLK. It has multiple choices for its source, including AUXHFRCO, HFXO and HFSRCCLK, and can optionally be inverted. If the chosen source for ASYNCCLK is not active at the time of request, the CMU enables the source oscillator upon receiving the request, and shuts down the oscillator when the ADC stops requesting the clock. Consult the CMU chapter for details of how to program the clock sources for the ASYNCCLK and oscillator start-up time details.

Software may choose a clock request generation scheme by programming the ASYNCCLKEN and WARMMODE of the ADCn_CTRL register. If the ASYNCCLKEN is set to ASNEEDED with WARMMODE set to NORMAL, the ADC requests ASYNCCLK only when a conversion trigger is activated. The ASYNCCLK request is withdrawn after the conversion is complete. All other options keep the ASYNCCLK request "ON" until software programs these fields otherwise or changes the ADCCLKMODE to SYNC.

For EM2 DeepSleep or EM3 Stop operation of the ADC, the ADC_CLK must be configured for AUXHFRCO as this is the only available option during EM2 DeepSleep or EM3 Stop. The ADC_CLK source should not be changed as the system enters or exits various energy modes, otherwise measurement inaccuracies will result.

27.3.2 Conversions

A conversion consists of two phases: acquisition and approximation. The input is sampled in the acquisition phase before it is converted to digital representation during the approximation phase. The acquisition time can be configured independently for scan sequence and single channel conversions (see 27.3.3 ADC Modes) by setting AT in ADCn_SINGLECTRL/ADCn_SCANCTRL. The acquisition times can be set to 1, 2, 3 or any integer power of 2 from 4 to 256 adc clk sar cycles.

Note: For high impedance sources the acquisition time should be adjusted to allow enough time for the internal sample capacitor to fully charge. The minimum acquisition time for sampling at 1 Msps and typical input loading is 187.5 ns.

The ADC uses one adc clk sar cycle per output bit in the approximation phase plus 1 extra adc clk sar cycle.

Where T_{acq} is the acquisition time set by the AT bit field, N is the resolution (in bits), and OVSRSEL is the oversampling ratio according to the OVSRSEL field in ADCn_CTRL when oversampling is enabled (see 27.3.10.6 Oversampling).

Figure 27.2. ADC Total Conversion Time Per Output

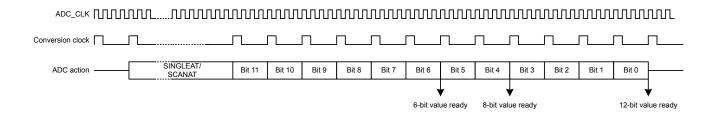


Figure 27.3. ADC Conversion Timing

27.3.3 ADC Modes

The ADC contains two programmable modes: single channel mode and scan mode. Both modes have separate configuration registers and a four-deep FIFO for conversion results. Both modes may be set up to run only once per trigger or to automatically repeat after each operation. The scan mode has priority over the single channel mode. However by default, if scan sequence is running, a triggered single channel conversion will be interleaved between two scan samples.

27.3.3.1 Single Channel Mode

Single channel mode can be used to convert a single channel either once per trigger or repetitively. The configuration of single channel mode is done using the ADCn_SINGLECTRL and ADCn_SINGLECTRLX registers and the result FIFO can be read through the ADCn_SINGLEDATA register. The DVL field of the ADCn_SINGLECTRLX controls the FIFO watermark crossing which sets the SINGLEDV bit in ADCn_STATUS high and is cleared when the data is read and the number of unread data samples falls below the DVL threshold. The user can choose to throw out new samples or overwrite the old samples when the FIFO becomes full by programming the FIFOOFACT field of the ADCn_SINGLECTRLX register. Single channel results can also be read through ADCn_SINGLEDATAP without popping the FIFO, returning its latest element. The DIFF field in ADCn_SINGLECTRL selects whether differential or single ended inputs are used and POSSEL and NEGSEL selects the input signal(s). The CMPEN bit in the ADCn_SINGLECTRL register enables the window compare function, and the latest converted data is compared against values programmed into the ADGT and ADLT fields of the ADCn_CMPTHR register and generates SINGLECMP interrupts if enabled. The window compare function allows for compare triggering both within (if ADGT less than ADLT) or out of (if ADGT greater than ADLT) window.

27.3.3.2 Scan Mode

Scan mode is used to perform conversions across multiple channels, sweeping a set of selected inputs in a sequence. The configuration of scan mode is done in the ADCn_SCANCTRL and ADCn_SCANCTRLX registers. It has similar controls and data read mechanisms to single channel mode. There are two key differences between single channel mode and scan mode: the input sequence is programmed differently, and it has additional information in the result to indicate the channel on which the conversion was acquired. 27.3.7 Input Selection explains how the input sequence is chosen. When the scan sequence is triggered, the ADC samples all inputs that are included in the mask (ADCn_SCANMASK), starting at the lowest pin number. DIFF in ADCn_SCANCTRL selects whether single ended or differential inputs are used. The FIFO data is tagged with SCANINPUTID and can be read along with the scan data using ADCn_SCANDATAX register. The ADCn_SCANDATAXP can be used to read the latest valid entry from the scan FIFO without popping it. There is also a ADCn_SCANDATA register that contains results without the SCANINPUTID appended.

Note: If using scan mode with ADCn_SCANCTRL_REP = 1 and ADCn_SCANCTRLX_REPDELAY = NODELAY, the last channel in the scan will report a SCANINPUTID of 0. Using ADCn_SCANCTRLX_REPDELAY with any value other than NODELAY will report the correct SCANINPUTID.

27.3.4 Warm-up Time

After power-on, the ADC requires some time for internal bias currents and references to settle prior to starting a conversion. This time period is called the warm-up time. Warm-up timing is performed by hardware. Software must program the number of ADC_CLK cycles required to count at least 1 μ s in the TIMEBASE field of the ADCn_CTRL register. TIMEBASE only affects the timing of the warm-up sequence and is not dependent on adc_clk_sar. When enabling the ADC or changing references between samples, the ADC is automatically warmed up for 5 μ s (5 times the period indicated by TIMEBASE).

Normally, the ADC will be warmed up only when samples are requested and is shut off when there are no more samples waiting. However, if lower latency is needed, configuring the WARMUPMODE field in ADCn_CTRL allows the ADC and/or reference to stay warm between samples, reducing the warm-up time or eliminating it altogether. Figure 27.4 ADC Analog Power Consumption With Different WARMUPMODE Settings on page 916 shows the effects on analog power consumption in scenarios using different WARMUPMODE settings.

The user can program which reference should be kept warm in the CHCONREFWARMIDLE bitfield in the ADCn_CTRL register. By default the scan mode reference is kept warm. The user can also choose to keep the single channel mode reference warm or to keep the last used reference warm. If the default setting is kept (scan mode reference is to be kept warm) and if the single-mode reference setting is different than scan-mode, then single mode conversions will first warmup its reference for 5 µs before a conversion can begin.

Various warmup modes are described here:

- NORMAL: This is the lowest power option for general-purpose use and low sampling rates (below 35 ksps). The ADC and references are shut off when there are no samples waiting. The ADC does not consume any power when it is shut down. A 5 µs warmup time will be initiated prior to every conversion. Figure a in Figure 27.4 ADC Analog Power Consumption With Different WARMUP-MODE Settings on page 916 shows this mode.
- KEEPINSTANDBY: This mode is suitable for infrequent sampling of lower impedance inputs, and is the lowest power option for sampling rates between about 35 and 125 ksps. It may also be useful for lower sampling rates where latency is important. The reference selected for scan mode is kept warm, but the ADC is powered down. The ADC will initiate a 1 µs warmup period before a conversion begins. Because the reference is kept warm, the ADC will consume a small amount of standby current when it is not converting. Figure b in Figure 27.4 ADC Analog Power Consumption With Different WARMUPMODE Settings on page 916 shows this mode.
- KEEPINSLOWACC: This mode is useful for high-impedance inputs which are sampled infrequently. It is similar to KEEPINSTAND-BY, but continuously tracks the input, keeping the input multiplexer connected to the APORT bus. This mode consumes little more power than KEEPINSTANDBY mode (about 2 µA extra) when a conversion is not in progress. This allows the user to avoid programming long acquisition time that would otherwise be necessary for high-impedance inputs when ADC wakes up to full power mode, thereby reducing the total current consumption per conversion.
- KEEPADCWARM: This mode provides the lowest latency and allows for maximum sampling rates. The ADC and reference circuitry
 remain powered on even when conversions are not in progress. Figure c in Figure 27.4 ADC Analog Power Consumption With Different WARMUPMODE Settings on page 916 shows this mode. This mode consumes the most power, but as soon as a trigger
 event occurs, the acquisition and conversion begin with no warm-up time. Note that if KEEPADCWARM mode is set and HFXO is
 selected as the ADC clock source, the HFXO will remain on in EM2.

When KEEPADCWARM is chosen, ADC is termed as being in continuous operation. When any other warmup mode is chosen, ADC is termed to be in duty-cycled operation.

When entering EM2 DeepSleep or EM3 Stop, if the ADC is not going to be used, it should be returned to an idle state and WARMUP-MODE in ADCn_CTRL written to 0. Refer to 27.3.17 ADC Programming Model for more information on placing the ADC in an idle state. If the ADC is going to be used in these low energy modes, the user can use any of the WARMUPMODE settings, but should be mindful of the power consumption that comes along with the different mode settings. For EM2 DeepSleep or EM3 Stop operation, the ADC clock source must be configured to use AUXHFRCO.

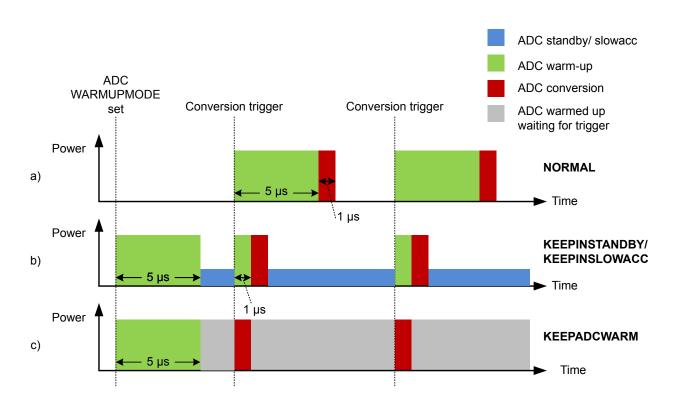


Figure 27.4. ADC Analog Power Consumption With Different WARMUPMODE Settings

Note: When using any warm-up mode other than NORMAL, always switch back to the NORMAL mode before switching to another warm-up mode.

27.3.5 Power Supply

The ADC block power (V_{ADC}) is derived from the VDDX_ANA supply rail. VDDX_ANA can be selected from the AVDD or DVDD supply pins using the EMU_PWRCTRL_ANASW bit field.

27.3.6 Input Pin Considerations

For external ADC inputs routed through the APORT, the maximum supported analog input voltage will be limited to the MIN(V_{ADC} , IOVDD) (where V_{ADC} is VDDX_ANA, as described in 27.3.5 Power Supply). Note that pins configured as ADC inputs should disable OVT (by setting the corresponding GPIO_Px_OVTDIS bit) to reduce any potential distortion introduced by the OVT circuitry.

ADC external reference inputs are not routed through the APORT, and the maximum supported analog input voltage for an external reference will also be limited to the $MIN(V_{ADC}, IOVDD)$.

27.3.7 Input Selection

The ADC samples and converts the analog voltage differential at its positive and negative voltage inputs. The input multiplexers of the ADC can connect these inputs to one of several internal nodes (e.g., temperature sensor) or to external signals via analog ports (APORT0, APORT1, APORT2, APORT3 or APORT4).

The analog ports APORT1, APORT2, APORT3, and APORT4 connect to external pins via analog buses (BUSAX, BUSAY, BUSAY, etc.) which are shared among other analog peripherals on the device. APORT1 through APORT4 are each 32 channels wide with connections to two sub-buses: a 16-channel X bus and a 16-channel Y bus. In the ADC module, all X buses connect to the INP_MUX and all Y buses connect to the INN_MUX as shown in Figure 27.5 APORT Connection to the ADC on page 917. Connections to the X and Y sub-buses alternate channels on the APORT. On APORT1 and APORT3, even-numbered channels connect to the X bus, and odd-numbered channels connect to the Y bus. On APORT2 and APORT4, even-numbered channels connect to the Y bus and odd-numbered channels connect to the X bus. The APORT to BUS mappings may vary from device to device, Refer to the APORT Client Map in the device data sheet for exact mappings.

Unlike APORT1 through APORT4, APORT0 is not a shared resource. It consists of a 16-channel X bus and a 16-channel Y bus, each with dedicated I/O pin connections. Note that APORT0 is not available on all device families.

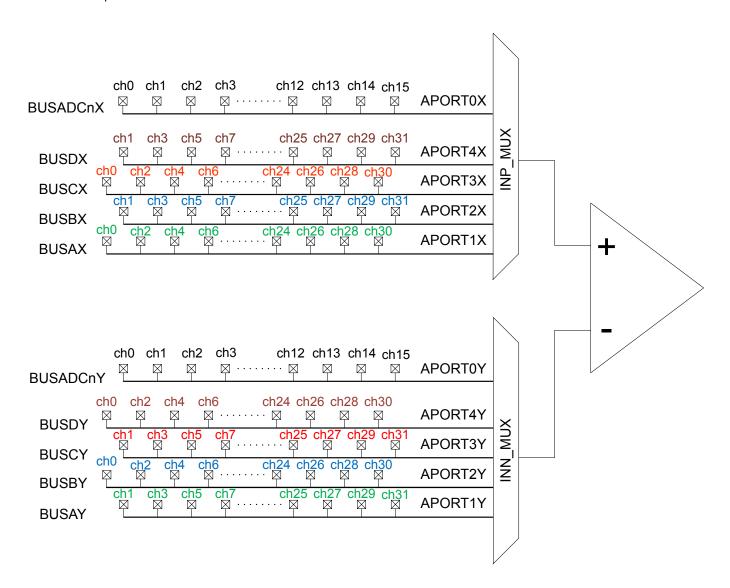


Figure 27.5. APORT Connection to the ADC

For differential measurements, one input must be chosen from an X bus and the other from a Y bus. Choosing both inputs from an X bus or both from a Y bus will generate a PROGERR interrupt (if enabled) of NEGSELCONF type. The PROGERR type can be checked in the ADCn_STATUS register.

The mapping and availability for external I/O connections to ADC0 inputs is shown in device data sheet.

Multiple peripherals may request the same shared system bus (BUSAX, BUSAY, BUSBX, etc.). When this happens, a conflict status is generated and that bus is kept floating. If this happens with the ADC, the PROGERR field in ADCn_STATUS is set to BUSCONF, and an interrupt may be generated (if enabled). When connecting dedicated I/Os through APORT0, all inputs are available to APORT0X and APORT0Y and no bus conflict is possible. Refer to 27.3.7.3 APORT Conflicts for more information on identifying and resolving bus conflicts.

Note: The internal inputs can only be sampled in single channel, single-ended mode. NEGSEL should be fixed to VSS for these conversions

27.3.7.1 Configuring ADC Inputs in Single Channel Mode

In single channel mode, the ADCn_SINGLECTRL register provides the POSSEL and NEGSEL selection for positive and negative channel selection of the ADC. The APORT Client Map provides external pin to internal bus channel mapping enumeration for a particular device. Software can also choose internal nodes for POSSEL.

For single-ended conversions on external (APORT-connected) signals, POSSEL and NEGSEL are fully configurable. However, when performing conversions on internal signals, NEGSEL must be set to VSS. This NEGSEL reconfigurability feature in single-ended mode may not be available in all devices. If compatibility with devices that do not support this feature is desired, NEGSEL should be set to VSS for all single channel single-ended conversions.

Note that in both the POSSEL and NEGSEL fields, it is possible to choose inputs from both X and Y buses, even though X channels are physically connected to the positive mux (INP_MUX) and Y channels are physically connected to the negative mux (INN_MUX). For single-ended operation (DIFF = 0), if the positive input is chosen from a Y channel the ADC performs a negative single ended conversion and automatically inverts the result at the end, producing a positive result. For differential conversions (DIFF = 1), if a Y channel is chosen for the positive input and an X channel is chosen for the negative input, the ADC result will be inverted to produce the correct polarity.

Refer to device-specific data sheet for specific pin connection options. Note that the same I/O pin may appear in multiple locations.

27.3.7.2 Configuring ADC Inputs in Scan Mode

In scan mode, the ADC can sample and convert up to 32 external channels on each conversion trigger. Internal channels are not available in scan mode. The ADC's scanner logic automatically changes the input mux settings between conversions, eliminating the need for firmware intervention.

The ADC scanner logic is controlled by a set of 32 logical channels called SCANINPUTIDs. The 32 SCANINPUTIDs are arranged in four groups of 8 channels each. Each channel group can point to a predefined series of 8 sequential channels on any of the available APORTs. The ADCn_SCANINPUTSEL register is used to configure which group of physical APORT channels each of the SCANINPUTID channel groups map to. For example, selecting APORT1CH16TOCH23 in the INPUT7TO0SEL field selects APORT1CH16 for SCANINPUTID0, APORT1CH17 for SCANINPUTID1, APORT1CH18 for SCANINPUTID2, and so on.

The four SCANINPUTID groups are fully independent and may be selected from any APORT in any combination. It is possible also to repeat the same selection in multiple groups. For example, the user may select APORT2CH0TOCH7 for all four of the SCANINPUTID groups.

In many cases, the user application will not require all 32 channels of the scanner to be converted. Each of the scanner channels may be individually enabled according to the needs of the system. The ADCn_SCANMASK register is used to enable and disable individual SCANINPUTIDs. The bits in the ADCnSCANMASK register correspond one-to-one with the SCANINPUTID channel numbers. During a scan operation, the ADC scanner logic will convert only the enabled SCANINPUTIDs, in order from lowest to highest.

In single-ended mode, all conversions performed by the ADC will be relative to VSS. For any enabled SCANINPUTID, the selected APORT channel will be connected to the ADC with the opposite ADC input terminal connected to VSS. Note that the channel groups selected in ADCn_SCANINPUTSEL point to a block of 8 channels on an APORT, which includes both X and Y channels. Depending on the channels enabled by ADCn_SCANMASK, the ADC may perform conversions on the X or the Y bus associated with that APORT.

Figure 27.6 ADC Single-ended Scan Mode Example on page 919 shows an example of a single-ended scan configuration. In this example, ADCn_SCANINPUTSEL has been configured to place APORT1CH16TO23 in the first, third, and fourth channel groups. APORT4CH8TO15 has been placed in the second channel group. ADCn_SCANMASK selects six of these channels for inclusion in the scan. When an ADC scan is initiated with this configuration, the ADC begins at SCANINPUTID0 and converts each enabled channel in turn. This scan configuration results in a set of six single-ended ADC conversions: PF0, PF3, PA5, PA5, PF7, and PF4.

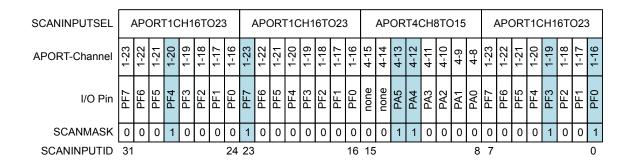


Figure 27.6. ADC Single-ended Scan Mode Example

In differential mode, the default operation of the ADC scanner is to perform a differential measurement between the selected APORT channel and the next channel on that APORT. For example, if the enabled SCANINPUTID points to APORT1CH6, the ADC will perform a differential conversion between APORT1CH6 and APORT1CH7.

There are two exceptions to this rule, listed in order of precedence:

- 1. When converting SCANINPUTID15, the differential conversion will be performed between the channel selected by SCANINPUTID15 and the channel selected by SCANINPUTID8.
- 2. When APORTnCH31 is the selected input, the differential conversion will be performed between APORTnCH31 and APORTnCH0.

Figure 27.7 ADC Differential Scan Mode Example on page 920 shows an example of a differential scan configuration. In this example, ADCn_SCANINPUTSEL has been configured to place APORT1CH16TO23 in the first, third, and fourth channel groups. APORT4CH8TO15 has been placed in the second channel group. ADCn_SCANMASK selects three channels pairs for inclusion in the scan. When an ADC scan is initiated with this configuration, the ADC begins at SCANINPUTID0 and converts each enabled channel in turn. This scan configuration results in a set of three differential ADC conversions: PF0-PF1, PF2-PF3, and PA4-PA5.

SCANINPUTSEL	,	AP(ORT	Г1С	H1	6T(D23	3	,	AP()R	Г1С	H1	6T(D23	;		ΑP	OR	T40	CH8	зтс	15		,	AP()R	Г1С	H1	6T(D23	;
APORT-Channel (Positive)	1-23	1-22	1-21	1-20	1-19	1-18	1-17	1-16	1-23	1-22	1-21	1-20	1-19	1-18	1-17	1-16	4-15	4-14	4-13	4-12	4-11	4-10	4-9	4-8	1-23	1-22	1-21	1-20	1-19	1-18	1-17	1-16
APORT-Channel (Negative)	1-24	1-23	1-22	1-21	1-20	1-19	1-18	1-12	1-24	1-23	1-22	1-21	1-20	1-19	1-18	1-17	4-8	4-15	4-14	4-13	4-12	4-11	4-10	4-9	1-24	1-23	1-22	1-21	1-20	1-19	1-18	1-17
I/O Differential	PF7-none	PF6-FP7	PF5-PF6	PF4-PF5	PF3-PF4	2-PF	PF1-PF2	PF0-PF1	PF7-none	PF6-FP7	PF5-PF6	PF4-PF5	PF3-PF4	PF2-PF3	PF1-PF2	PF0-PF1	none	none	PA5-none	PA4-PA5	PA3-PA4	PA2-PA3	PA1-PA2	PA0-PA1	PF7-none	PF6-FP7		PF4-PF5	က်	PF2-PF3	1-PF	PF0-PF1
SCANMASK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1
SCANINPUTID	31							24	23							16	15							8	7							0

Figure 27.7. ADC Differential Scan Mode Example

In certain applications it may be desirable to perform differential conversions on several channels against a common voltage. The ADCn_SCANNEGSEL register allows eight of the SCANINPUTIDs to re-map the negative terminal of a differential conversion to a common channel. In the first ADCn_SCANINPUTSEL group, the negative input for SCANINPUT 0, 2, 4, and 6 may be re-mapped to any of the odd-numbered channels in that group (SCANINPUT 1, 3, 5, or 7). Likewise, in the second ADCn_SCANINPUTSEL group, the negative input for SCANINPUT 9, 11, 13, and 15 may be re-mapped to any of the even-numbered channels in that group (SCANINPUT 8, 10, 12, or 14).

Figure 27.8 ADC Differential Scan Mode Re-mapping Negative Input Selections on page 920 shows the effects of the ADCn_SCAN-NEGSEL register on the re-mappable inputs. The left side of the figure shows the default channel mapping, and the right side of the figure shows how ADCn_SCANNEGSEL can be programmed to map the same negative input on up to four channels.

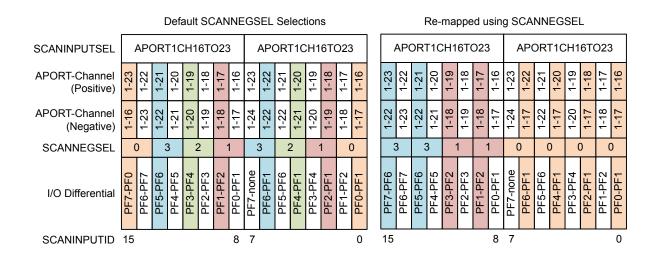


Figure 27.8. ADC Differential Scan Mode Re-mapping Negative Input Selections

27.3.7.3 APORT Conflicts

The ADC shares common analog buses connected to its APORTs (1-4) with other analog peripherals (see device-specific data sheet). As the ADC performs single or scan conversions, it requests the shared buses and sends selections for the control switches to connect the desired I/O pins. If another analog peripheral requests the same shared bus at the same time, there will be a collision and none of the peripherals will be granted control of that bus.

To help debug over-utilization of APORT resources, the ADC hardware provides status information in local registers. The ADCn_APORTREQ register gives the user visibility into which APORT(s) the ADC is requesting given the setting of the input selection registers. ADCn_APORTCONFLICT reports any conflicts that occur. If PROGERR in ADCn_IEN is set, any conflict generates an interrupt. The PROGERR field in the ADCn_STATUS register indicates whether the programming error happened as a result of an APORT bus conflict (BUSCONF) or from a negative-input selection conflict (NEGSELCONF). If the PROGERR interrupt occurred due to a negative selection conflict, then the interrupt can be cleared by software only after correcting the conflict. If a software clear is attempted without correcting the configuration, the interrupt will be cleared for one clock cycle but then it will trigger again as the invalid configuration still persists.

Note: The ADC requests shared bus connections as soon as that bus is selected in the input select registers, even if the ADC is not performing any conversions. This means that by using the APORT request, the ADC will acquire the associated shared analog bus, preventing other peripherals from using it. The bus will be released only when the input select registers are changed.

It is possible for the ADC to passively monitor shared bus signals without controlling the switches and creating bus conflicts. This can be done by setting the ADCn_APORTMASTERDIS register. When ADCn_APORTMASTERDIS is used, channel selection defers to the peripheral acting as the bus master for that shared bus, and no bus conflict will occur. The ADC will connect its input to the shared bus, but the specific channel will be controlled by the peripheral designated as the bus master.

27.3.8 Reference Selection and Input Range Definition

The full scale voltage (VFS) of the ADC is defined as the full input range, from the lowest possible input voltage to the highest. For single-ended conversions, the input range on the selected positive input is from 0 to VFS. For differential conversions, the input to the converter is the difference between the positive and negative input selections. This can range from -VFS/2 to +VFS/2.

VFS for the converter is determined by a combination of the selected voltage reference (VREF) and programmable divider circuits on the ADC input and voltage reference paths. Users have full control over the VREF and divider selections, offering a very flexible and wide selection of VFS values. In most applications however, it is not necessary to adjust VFS beyond a set of common pre-defined choices. For the simplest VFS configuration, refer to 27.3.8.1 Basic Full-Scale Voltage Configuration. If the application requires a VFS configuration not available in the pre-defined choices, 27.3.8.2 Advanced Full-Scale Voltage Configuration covers additional configuration options.

27.3.8.1 Basic Full-Scale Voltage Configuration

Basic configuration of the VFS (full scale voltage) for the converter is done by programming the REF bitfield in ADCn_SINGLECTRL (for single channel mode) or ADCn_SCANCTRL (for scan mode) to any of the pre-defined options. The list of available pre-defined VFS options is:

- VFS = 1.25 V using internal VBGR as the reference source
- VFS = 2.5 V using internal VBGR as the reference source
- VFS = AVDD using AVDD as the reference source (AVDD ≤ 3.6 V)
- VFS = 5 V using internal VBGR as the reference source
- VFS = ADCn EXTP external pin as a single-ended reference source (1.2 V 3.6 V)
- VFS = ADCn EXTP ADCn EXTN external pins as a differential reference source. (1.2 V 3.6 V difference)
- VFS = 2 x AVDD using AVDD as the reference source (AVDD ≤ 3.6 V)

The maximum and minimum input voltage which the ADC can recognize at any external pin is limited to the minimum of the V_{ADC} and IOVDD supply voltages (where V_{ADC} is VDDX_ANA, as described in 27.3.5 Power Supply). If VFS is configured to be larger than the supply range, the full ADC range will not be available. For example, with a 3.3 V supply and VFS configured to 5 V, the input voltage for single-ended conversions will be limited to 0 to 3.3 V, though the effective VFS is still 5 V.

The ADC uses a chip-level bias circuit to provide bias current for its operation. For highest accuracy when using a VBGR-derived internal bandgap reference source, GPBIASACC in ADCn_BIASPROG should be cleared to 0 (HIGHACC). This will allow the ADC to enable high-accuracy mode from the bias circuitry during conversions. When AVDD or an external pin reference option is used, software may set GPBIASACC in ADCn_BIASPROG to 1 (LOWACC) to conserve energy. Note that VDAC and dc-dc usage may also switch the chip-level bias to high- accuracy mode (even if GPBIASACC is set to LOWACC), potentially impacting ADC results. For example, if ADC is doing a conversion with GPBIASACC set to LOWACC and VDAC also starts a conversion using the internal low noise reference, then the chip-level bias circuit will be automatically switched to high-accuracy mode (potentially corrupting results of the on-going ADC conversion). Similarly, dc-dc startup automatically switches the chip-level bias circuit to high-accuracy mode for a short time, i.e., if dc-dc startup happens when ADC is doing a conversion (with GPBIASACC set to LOWACC), ADC results may get corrupted. DC-DC startup automatically switches the bias circuit to high-accuracy mode for 25 µs. It is during this time that ADC conversions with the GPBIASACC set to LOWACC should be avoided.

If the pre-defined VFS options do not suit the particular application, refer to 27.3.8.2 Advanced Full-Scale Voltage Configuration for more advanced VFS options.

27.3.8.2 Advanced Full-Scale Voltage Configuration

For most applications, the pre-defined VFS options described in 27.3.8.1 Basic Full-Scale Voltage Configuration are suitable. Advanced VFS configurations are also possible by programming the REF bitfield in ADCn_SINGLECTRL or ADCn_SCANCTRL to the CONF option. Programming the REF bitfield to CONF allows the user to select the specific VREF source and adjust the programmable input and reference divider options directly.

The general procedure for programming an advanced VFS configuration is as follows:

- 1. Select the voltage reference source using VREFSEL.
- 2. Configure VREFATTFIX and VREFATT so that the reference voltage at the ADC is between 0.7 and 1.05 V.
- 3. Configure VINATT to achieve the desired full-scale voltage.

The VREFSEL field in ADCn_SINGLECTRLX or ADCn_SCANCTRLX selects the voltage reference source. The ADC can choose from the following voltage reference (VREF) sources:

- VBGR: An internal 0.83 V bandgap reference voltage. This is the most precise internal reference source available.
- VDDXWATT: An attenuated version of the AVDD supply voltage. The attenuation factor is determined by the VREFATTFIX and/or VREFATT bit fields.
- VREFPWATT: An external reference source applied to the ADCn_EXTP pin, and attenuated by the attenuation factor (determined by the VREFATTFIX and/or VREFATT bit fields). This is the appropriate choice for external reference inputs greater than 1.05 V.
- VREFP: An external reference source applied to the ADCn_EXTP pin, without any attenuation. This is the appropriate choice for external reference inputs between 0.7 V and 1.05 V.
- VENTROPY: A very low internal reference voltage (approx. 0.1 V). This option is intended to be used only with the ADC inputs tied internally to VSS, for generating random noise at the ADC output.
- VREFPNWATT: A differential version of VREFPWATT, with the reference source applied to the ADCn_EXTP and ADCn_EXTN pins and attenuated. This is the appropriate choice where a differential reference of greater than 1.05 V is required.
- VREFPN: A differential version of VREFP, with the reference source applied to the ADCn_EXTP and ADCn_EXTN pins and no attenuation. This is the appropriate choice where a differential reference of between 0.7 V and 1.05 V is required.
- VBGRLOW: An internal 0.78 V bandgap reference voltage.

The ADC reference voltage should be attenuated to a lower voltage when using AVDD or the external reference source. A simple method for a wide range of reference sources is to set VREFATTFIX to 1. The VREF attenuation factor (ATT_{VREF}) can then be selected between 1/3 (when VREFATT is greater than 0), and 1/4 (when VREFATT is equal to 0). For reference sources between 1.2 V and 3.6 V, ATT_{VREF} = 1/3 is the best choice. ATT_{VREF} = 1/4 can be used with references from 1.6 V to 3.8 V, with slight performance degradation.

Finer granularity on ATT_{VREF} is possible as well, by clearing VREFATTFIX to 0, and setting the VREFATT field. For optimal performance with VREFATTFIX = 0, the attenuated ADC reference input should be limited to between 0.7 V and 1.05 V. When VREFATTFIX is cleared to 0, ATT_{VREF} is set according to the equation:

ATT_{VREF} = (VREFATT + 6) / 24 for VREFATT < 13, and (VREFATT - 3) / 12 for VREFATT ≥ 13

Figure 27.9. ATT_{VREF}: VREF Attenuation Factor

The ADC input also includes a programmable attenuator. The VIN attenuator is used to widen the available input range of the ADC beyond the reference source. The VIN attenuation factor (ATT_{VIN}) is determined by the VINATT field according to the equation:

ATT_{VIN} = VINATT / 12 for VINATT ≥ 3 (settings 0, 1, and 2 are not allowable values for VINATT)

Figure 27.10. ATT_{VIN}: VIN Attenuation Factor

VFS can be calculated by the formula given below for any given VREF source, VREF attenuation, and VIN attenuation:

VFS = 2 × VREF × ATT_{VREF} / ATT_{VIN}

VREF is selected in the VREFSEL bitfield, and

ATT_{VREF} is the VREF attenuation factor, determined by VREFATT or VREFATTFIX

ATT_{VIN} is the VIN attenuation factor, determined by VINATT

Figure 27.11. VFS: Full-Scale Input Range

The maximum and minimum input voltage which the ADC can recognize at any external pin is limited to the minimum of the V_{ADC} and IOVDD supply voltages (where V_{ADC} is VDDX_ANA, as described in 27.3.5 Power Supply). If VFS is configured to be larger than the supply range, the full ADC range will not be available. For example, with a 3.3 V supply and VFS configured to 5 V, the input voltage for single-ended conversions will be limited to 0 to 3.3 V, though the effective VFS is still 5 V.

The ADC uses a chip-level bias circuit to provide bias current for its operation. For highest accuracy when using a VBGR-derived internal bandgap reference source, GPBIASACC in ADCn_BIASPROG should be cleared to 0 (HIGHACC). This will allow the ADC to enable high-accuracy mode from the bias circuitry during conversions. When AVDD or an external pin reference option is used, software may set GPBIASACC in ADCn_BIASPROG to 1 (LOWACC) to conserve energy. Note that VDAC and dc-dc usage may also switch the chip-level bias to high- accuracy mode (even if GPBIASACC is set to LOWACC), potentially impacting ADC results. For example, if ADC is doing a conversion with GPBIASACC set to LOWACC and VDAC also starts a conversion using the internal low noise reference, then the chip-level bias circuit will be automatically switched to high-accuracy mode (potentially corrupting results of the on-going ADC conversion). Similarly, dc-dc startup automatically switches the chip-level bias circuit to high-accuracy mode for a short time, i.e., if dc-dc startup happens when ADC is doing a conversion (with GPBIASACC set to LOWACC), ADC results may get corrupted. DC-DC startup automatically switches the bias circuit to high-accuracy mode for 25 µs. It is during this time that ADC conversions with the GPBIASACC set to LOWACC should be avoided.

The combination of VREF, ATT_{VREF} and ATT_{VIN} can produce a wide range of full-scale voltage options for the converter. Table 27.1 Advanced VFS Configuration: VREF = AVDD on page 924 shows some example VFS configurations using AVDD as a reference source.

Table 27.1. Advanced VFS Configuration: VREF = AVDD

AVDD Voltage	VREF Attenuation Settings	Reference Voltage at ADC	VIN Attenuation Set- tings	VFS
1.85 V	VREFATTFIX = 0	0.925 V	VINATT = 12	1.85 V
	VREFATT = 6		ATT _{VIN} = 1	(+/-0.925 V differential)
	ATT _{VREF} = 1/2			
3.0 V	VREFATTFIX = 0	1.0 V	VINATT = 8	3.0 V
	VREFATT = 2		ATT _{VIN} = 2/3	(+/-1.5 V differential)
	ATT _{VREF} = 1/3			
3.0 V	VREFATTFIX = 0	1.0 V	VINATT = 4	6.0 V
	VREFATT = 2		ATT_{VIN} = 1/3	(+/-3.0 V differential)
	ATT _{VREF} = 1/3			
3.6 V	VREFATTFIX = 1	0.9 V	VINATT = 6	3.6 V
	VREFATT = 0		ATT_{VIN} = 1/2	(+/-1.8 V differential)
	ATT _{VREF} = 1/4			

27.3.9 Programming of Bias Current

The ADC uses a chip-level bias generator to provide bias current for its operation. The ADC's internal bias can be scaled by ADCBIA-SPROG field of the ADCn_BIASPROG register. At lower conversion speeds, the ADCBIASPROG can be used to lower active power. Some commonly used settings are given in the ADCBIASPROG register description. For proper operation, the ADC conversion speed must be scaled accordingly. The scale factor is calculated as:

Bias scale factor = (1- ADCBIASPROG[2:0]/8) / (1+3×ADCBIASPROG[3])

Figure 27.12. Bias Scale Factor

The bias programming register also includes the VFAULTCLR bit field. If VREFOF interrupt is enabled and it is triggered, then the user needs to set this bit in the ISR before clearing the interrupt flag. This bit then needs to be reset after the interrupt flag is cleared in order to enable the VREFOV flag to trigger on the next VREFOV condition.

The bias current settings should only be changed while the ADC is disabled (i.e. in NORMAL warm-up mode and no conversion in progress).

27.3.10 Feature Set

The following sections explain different ADC features.

27.3.10.1 Conversion Tailgating

Scan conversions have priority over single channel conversions. This means that if scan and single triggers are received simultaneously, or even if the scan is received later when ADC is being warmed up for performing a single conversion, the scan conversion will have priority and will be done before the single conversion. However, a scan trigger will not interrupt in the middle of a single conversion, i.e., if the single conversion is in the acquisition or approximation phase, then the scan will have to wait for the single conversion to complete. If a scan sequence is triggered by a timer on a periodic basis, single channel conversion that started just before a scan trigger can delay the start of the scan sequence, thus causing jitter in sample rate. To solve this, conversion tailgating can be chosen by setting TAILGATE in ADCn_CTRL. When this bit is set, any triggered single channels will wait for the next scan sequence to finish before activating (see Figure 27.13 ADC Conversion Tailgating on page 925). The single channel will then follow immediately after the scan sequence. In this way, the scan sequence will always start immediately when triggered, provided that the period between the scan triggers is big enough to allow the single sample conversion that was triggered to finish before the next scan trigger arrives. Note that if tailgating is set and a single channel conversion is triggered, it will indefinitely wait for a scan conversion before starting the single channel conversion.

Figure 27.13. ADC Conversion Tailgating

27.3.10.2 Repetitive Mode

Both single channel and scan mode can be run as a one shot conversion or in repetitive mode. The REP bitfield in ADCn_SIN-GLECTRL/ADCn_SCANCTRL registers can be used to activate the repetitive mode for single and scan respectively. In order to achieve the maximum sampling rate of 1 Msps, repetitive mode should be used.

It is also possible to have a programmable delay between these repetitive conversions. The REPDELAY bitfield in the ADCn SIN-GLECTRLX and ADCn SCANCTRLX registers can be used to set the delay between two repeated conversions in single channel and scan mode respectively. For single channel mode when a single conversion in repetitive mode ends, the user programmed REPDELAY is inserted and then the next single conversion is re triggered after the delay period is over. For scan mode the REPDELAY is inserted after the entire scan sequence ends. Once the delay period is over, scan mode is internally re-triggered. Note that when the ADC is in SYNC mode and REPDELAY is set to generate a delay, it takes an additional 5 HFPERCLK cycles after the trigger before the next conversion begins. If REPDELAY is set to NODELAY, the next conversion begins immediately, without any delay or additional HFPERCLKs. The 27.3.10.1 Conversion Tailgating explains how the single channel and scan mode conversions can push each other out of phase. Conversion tailgating can be chosen in repetitive mode as well in order to ensure that the scan sequence will always start immediately when triggered, provided the scan REPDELAY chosen is big enough for the single conversion to finish. The status flags SINGLEACT and SCANACT stay high throughout the repeat mode, i.e., even during the delay period. The flags show that the conversions are either active or pending. Whether the ADC turns off or stays warmed up between these repeated conversions depends on the WARMUPMODE chosen in the ADCn CTRL register. When using single channel mode with repeat mode and REPDELAY enabled, then once the ADC has started operation (i.e., singleact status flag has gone high) then no new single conversion triggers (software START/ PRS triggers) should be sent to the ADC until the ADC has stopped converting (i.e., singleact status flag has gone low). The same applies to scan sequence conversions.

27.3.10.3 Conversion Trigger

The conversion modes can be activated by writing a 1 to the SINGLESTART or SCANSTART bit in the ADCn_CMD register. The conversions can be stopped by writing a 1 to the SINGLESTOP or SCANSTOP bit in the ADCn_CMD register. A START command will have priority over a STOP command. When the ADC is stopped in the middle of a conversion, the result buffer is cleared (the FIFO contents for any prior conversions are still intact). Every time a STOP command is issued, the user should wait for the corresponding status flag (SINGLEACT/SCANACT) to go low and then either read all the data in the FIFO or send the corresponding FIFOCLEAR command. The SINGLEACT and SCANACT bits in ADCn_STATUS are set high when the modes are actively converting or have pending conversions.

It is also possible to trigger conversions from PRS signals. The PRS is treated as an asynchronous trigger. Setting PRSEN in ADCn_SINGLECTRL/ADCn_SCANCTRL enables triggering from PRS input. Which PRS channel to listen to is defined by PRSSEL in ADCn_SINGLECTRLX/ADCn_SCANCTRLX. When PRS trigger is selected, it is still possible to trigger a conversion from software. Refer to the PRS chapter for more information on how to set up the PRS channels. When the conversions are triggered using the ADCn_CMD register, then the SINGLEACT and SCANACT bits in the ADCn_STATUS are set as soon as the START command is written to the register. When the conversion is triggered using PRS, it takes some cycles from the time PRS trigger is received until the SINGLEACT and SCANACT bits are set due to the synchronization requirement. If SINGLEACT is already high then sending a new START command or a new PRS trigger for a single conversion will not have any impact as ADC already has a single conversion ongoing or a single conversion pending (single conversion can be pending if ADC is busy running a scan sequence). The same rules apply for SCANACT and SCAN START and PRS triggers. When software issues a SINGLE/SCAN STOP command, it must wait until SINGLEACT/ SCANACT flag goes low before issuing a new START.

The PRS may trigger the ADC in two possible ways, configured by PRSMODE in ADCn_SINGLECTRLX/ADCn_SCANCTRLX. In PULSED mode, a PRS pulse triggers the ADC to start the ADC_CLK (if not already enabled), warm up (if not already warm), start the acquisition period, and perform the conversion. This is identical to issuing a START command from software. In this mode, the input sampling finishes at the end of the acquisition period (AT).

If the ADC_CLK and the source of the trigger (START command or PRS pulse) are not synchronous, the frequency of the input sampling (FS), will experience a 1_{1/2} to 2_{1/2} ADC CLK cycle jitter due to synchronization requirements.

To precisely control the sample frequency, the PRSMODE can be set to TIMED mode. In this mode, a long PRS pulse is expected to trigger the ADC and its negative edge directly finishes input sampling and starts the approximation phase, giving precise sampling frequency management. The restriction is that the PRS pulse has to be long enough to start the ADC_CLK (if not already enabled), and finish the acquisition period based on the AT field in ADCn_SINGLECTRL/ADCn_SCANCTRL. The PRS pulse needs to be high when AT event finishes. If it is not high when AT finishes, then it is ignored and input sampling finishes after AT event has ended (a two cycle latency is added to the conversion in this scenario). In this case, the ADC sets the PRSTIMEDERR interrupt flag.

If the PRS pulse is too long (e.g., FS = 32kHz), the analog ADC start can be delayed to save power. The CONVSTARTDELAY along with its EN in the ADCn_SINGLECTRLX or ADCn_SCANCTRLx can be programmed to implement a 0 to 8 microseconds delay. The microsecond tick is counted by TIMEBASE with ADC_CLK similar to warmup case. This saves power as the ADC is not enabled until the last possible microsecond before the fall edge of the PRS arrives to open the sampling switch and to start the approximation phase. Figure 27.14 ADC PRS Timed Mode with ASNEEDED ADC_CLK Request on page 927) shows PRS Timed mode triggering with CONVSTARTDELAY and ASNEEDED ADC_CLK request. See that power is saved by both delaying the ADC EN and by requesting the ADC_CLK only during ADC operation. This is especially useful in saving power when running the ADC in EM2 DeepSleep or EM3 Stop power mode with low sampling frequency.

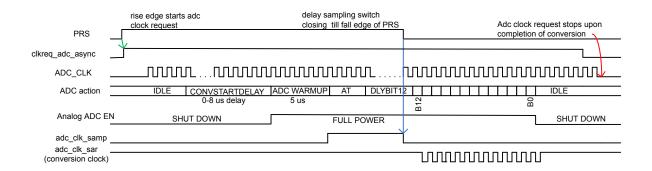


Figure 27.14. ADC PRS Timed Mode with ASNEEDED ADC CLK Request

When a PRS pulse is received, if the ADC_CLK is not running (ASNEEDED mode), then the ADC requests the clock by setting clkreq_adc_async high. If the chosen clock source (HFXO/ HFSRCCLK/ AUXHFRCO) is already running, then it takes 5 ADC_CLK cycles after the clock request is asserted for the ADC_CLK to start. HFXO and HFSRCCLK (if chosen as ADC clock source) need to be already running before ADC sends out the clock request. If AUXHFRCO is chosen as the ADC clock source, and it is not already

running, then the CMU automatically turns it on when the ADC sends a clock request. In such a case, it takes (7 ADC_CLK cycles + the oscillator startup time) for the ADC_CLK to start. The oscillator startup time can be found in the device data sheet.

When triggering repeat mode using PRS and then stopping the triggered mode using STOP command, ensure that the PRS pulse used to generate the repeat mode has gone low by the time the STOP command is issued. If the PRS pulse continues to stay high after ADC has stopped the ongoing conversion, then it will be picked as a new trigger to start a new conversion.

Note:

- The conversion settings should not be changed while the ADC is running. Doing so may lead to unpredictable behavior.
- The adc_clk_sar phase is always reset by a conversion trigger as long as a conversion is not in progress. This gives predictable latency from the time of the trigger to the time the conversion starts, regardless of when in the trigger occurs.
- Software and LESENSE should not trigger conversions if PRS Timed mode is selected and PRSEN is set to 1 in the ADCn_SIN-GLECTRL/ADCn_SCANCTRL register.
- If the PRS Timed mode is being used, the acquisition time (AT) must be set greater than 0.

Scan conversions can be triggered using LESENSE as well. LESENSE only triggers one input conversion at a time (not the whole sequence of 32 possible inputs). The input to be converted using LESENSE must be configured by the user in the ADCn_SCANINPUT-SEL register before triggering the conversion, i.e., one of the 32 inputs chosen in the ADCn_SCANINPUTSEL register must be the one that is to be converted using LESENSE. The ADCn_SCANMASK is not used for LESENSE triggered conversions. Instead, the user can select which input should be converted through LESENSE inside the LESENSE settings (LESENSE_CHX). The results of LESENSE triggered conversions are not loaded in the FIFO/ DATA registers but are instead available in the LESENSE register. Similarly, the SCAN interrupt flag is not set on completion of a LESENSE triggered conversion (because that flag is set only when the data is written to the Scan FIFO). When there is a LESENSE triggered conversion going on or pending, the SCANACT status flag is set. The SCAN-PEND interrupt flag is set when a software/PRS triggered scan goes pending because a LESENSE triggered scan is running (software/PRS triggered scan will start after the currently running LESENSE scan conversion completes). Similarly, SCANEXTPEND interrupt flag is set when the LESENSE triggered scan conversion goes pending because a software/PRS triggered scan is running. LESENSE triggered conversions can be stopped at any time using the SCANSTOP command in the ADCn_CMD register. Note that the LESENSE triggered conversion cannot trigger the Scan repeat mode.

The DBGHALT bit-field in the ADCn_CTRL register can be used to choose the ADC behavior in debug mode. If this bit is set to 1, then in debug mode ADC completes the current conversions and then halts. This means that all conversion triggers that were received before the debug halt occurred will be serviced before the ADC halts. All conversion triggers received after the ADC was halted, will be serviced when the debug mode is not halted any more. If the repetitive mode is running (in repetitive mode ADC keeps doing conversions until the user sends a software STOP) and a debug mode halt occurs, then the ADC will gracefully complete the current on-going conversion and then halt. The repetitive mode conversions will restart as soon as the debug mode is not halted any more.

27.3.10.4 Output Results

ADC output results are presented in 2's complement form and the format for single ended and differential conversions are given in Table 27.2 ADC Single Ended Conversion on page 929 and Table 27.3 ADC Differential Conversion on page 929, respectively. If differential mode is selected, the results are sign extended up to 32-bits (shown in Table 27.5 ADC Results Representation on page 930).

Table 27.2. ADC Single Ended Conversion

Input Voltage	Output	Results
input voltage	Binary	Hex value
4095/4096 × VFS	11111111111	FFF
0.5 × VFS	10000000000	800
1/4096 × VFS	00000000001	001
0	00000000000	000

Table 27.3. ADC Differential Conversion

Innut	Output	Results
Input	Binary	Hex value
2047/4096 × VFS	01111111111	7FF
0.25 × VFS	01000000000	400
1/4096 × VFS	00000000001	001
0	00000000000	000
-1/4096 × VFS	11111111111	FFF
-0.25 × VFS	11000000000	C00
-0.5 × VFS	10000000000	800

27.3.10.5 Resolution

The ADC performs 12-bit conversions by default. However, if full 12-bit resolution is not needed, it is possible to speed up the conversion by selecting a lower resolution (6 or 8 bits). For more information on the accuracy of the ADC, the reader is referred to the electrical characteristics section for the device.

27.3.10.6 Oversampling

To achieve higher accuracy, hardware oversampling can be enabled individually for each mode (Set RES in ADCn_SINGLECTRL/ADCn_SCANCTRL to 0x3). The oversampling rate (OVSRSEL in ADCn_CTRL) can be set to any integer power of 2 from 2 to 4096 and the configuration is shared between the scan and single channel mode (OVSRSEL field in ADCn_CTRL).

With oversampling, each input is sampled at 12-bits of resolution a number of times (given by OVSRSEL), and the results are filtered by a first order accumulate and dump filter to form the end result. The data presented in the ADCn_SINGLEDATA and ADCn_SCANDATA registers are the direct contents of the accumulation register (sum of samples). However, if the oversampling ratio is set higher than 16x, the accumulated results are shifted to fit the MSB in bit 15 as shown in Table 27.4 Oversampling Result Shifting and Resolution on page 930.

Table 27.4. Oversampling Result Shifting and Resolution

Oversampling setting	# right shifts	Result Resolution # bits						
2x	0	13						
4x	0	14						
8x	0	15						
16x	0	16						
32x	1	16						
64x	2	16						
128x	3	16						
256x	4	16						
512x	5	16						
1024x	6	16						
2048x	7	16						
4096x	8	16						

27.3.10.7 Adjustment

By default, all results are right adjusted, with the LSB of the result in bit position 0 (zero). In differential mode the signed bit is extended up to bit 31, but in single ended mode the bits above the result are read as 0. By setting ADJ in ADCn_SINGLECTRL/ADCn_SCANCTRL, the results are left adjusted as shown in Table 27.5 ADC Results Representation on page 930. When left adjusted, the MSB is always placed on bit 15 and sign extended to bit 31. All bits below the conversion result are read as 0 (zero).

Table 27.5. ADC Results Representation

Adjustment	Resolution	Bits																
		31 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Right	12	11 11	11	11	11	11	11	10	9	8	7	6	5	4	3	2	1	0
	8	7 7	7	7	7	7	7	7	7	7	7	6	5	4	3	2	1	0
	6	5 5	5	5	5	5	5	5	5	5	5	5	5	4	3	2	1	0
	OVS	15 15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Left	12	11 11	11	10	9	8	7	6	5	4	3	2	1	0	-	-	-	-
	8	7 7	7	6	5	4	3	2	1	0	-	-	-	-	-	-	-	-
	6	5 5	5	4	3	2	1	0	-	-	-	-	-	-	-	-	-	-
	ovs	15 15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

27.3.10.8 Channel Connection

The inputs are connected to the analog ADC at the beginning of the acquisition phase and are disconnected at the end of the acquisition phase. The time when the APORT switches are closed (for the next input to be converted) can be controlled by the CHCONMODE bitfield in the ADCn_CTRL register. By default, this field is set to the MAXSETTLE option. For MAXSETTLE, APORT switches are closed on the next input as soon as the acquisition phase for the current conversion is complete. This means that the APORT switches are closed approximately 12 adc_clk_sar cycles (assuming 12 bit resolution) before the acquisition phase of the current conversion starts, giving APORT switches maximum time to settle. The time for which APORT switches should be closed before the acquisition phase starts, should be the same for all inputs in order to get consistent results. This means that if the ADC is warmed up with CHCON-REFWARMIDLE set to 0 (scan reference warmed up and the APORT switches for the first scan channel closed) and a single trigger comes in, the single conversion will have to wait 12 adc_clk_sar cycles before it can start (even if single is using the same reference as scan). In this case, it might be more suitable to switch to the MAXRESP option in the CHCONMODE bitfield. In MAXRESP, the APORT switches for the upcoming conversion are closed just before the acquisition phase starts. This gives less settling time to the APORT switches but removes the extra waiting time before a conversion can start (which could be the case with MAXSETTLE as discussed above).

27.3.10.9 Temperature Measurement

The ADC includes an internal temperature sensor. This sensor is measured during production test and the temperature readout from the ADC at production temperature, ADC0CAL3_TEMPREAD1V25, is given in the Device Information (DI) page. The production temperature, CAL_TEMP, is also given in this page. The temperature sensor slope, V_TS_SLOPE (mV/degree Celsius), for the sensor is found in the data sheet for the device. Using the 1.25 V VFS option and 12-bit resolution, the temperature can be calculated according to the following formula (VFS in the formula is 1250 mV):

T_{CELSIUS} = CAL_TEMP - (ADC0CAL3_TEMPREAD1V25 - ADC_result) × VFS / (4096× V_TS_SLOPE)

Figure 27.15. ADC Temperature Measurement

Note:

- The minimum acquisition time for the temperature reference is found in the electrical characteristics for the device. If using the 1.25 V reference, extra acquisition time is required. In this case the AT field of ADCn_SINGLECTRL or ADCn_SCANCTRL should be set to a value of 9 or higher.
- For the most accurate temperature sensor results, GPBIASACC in ADCn_BIASPROG should be set to 0 to keep the bias in HIGH-ACC mode.
- If the device has more than one ADC, all ADCs may not be equipped with the temperature sensor. See the device data sheet.

27.3.10.10 ADC as a Random Number Generator

The ADC can be used as a random number generator. This is done by:

- 1. Choose the REF in the ADCn_SINGLECTRL as CONF, setting the VREFSEL in the ADCn_SINGLECTRLX as VENTROPY and VINATT in the same register to its maximum value of 15.
- 2. Set DIFF to 1 and RES to 0 in the ADCn SINGLECTRL register.
- 3. Trigger a single channel conversion and then read ADCn_SINGLEDATA register when the conversion finishes.

The LSB[2:0] of each sample will be a random number. In this mode, the POSSEL or NEGSEL in ADCn_SINGLECTRL can be connected to VSS or any other noisy input.

27.3.11 Interrupts, PRS Output

The single and scan modes have separate SINGLE and SCAN interrupt flags indicating whether corresponding FIFO contains DVL # of valid conversion data. Corresponding interrupt enable bit has to be set in ADCn_IEN in order to generate interrupts. For these interrupts, there is no software clear mechanism by writing to ADCn_IFC. The user needs to read enough data from the interrupted FIFO to ensure it contains less than DVL # of elements. The ADCn_SINGLEFIFOCOUNT/ADCn_SCANFIFOCOUNT can provide number of valid elements remaining in corresponding FIFO. The FIFO can also be cleared by ADCn_SINGLEFIFOCLEAR/ADCn_SCANFIFOCLEAR, but any existing data will be lost by this operation.

In addition to the SINGLE and SCAN interrupt flags, there is separate scan and single channel result overflow interrupt flag which signals that a result from a scan or single channel FIFO has been overwritten before being read. There is also separate scan and single channel result underflow interrupt flag which signals that a FIFO read was issued when the FIFO was empty.

There is separate scan and single compare interrupt flag which signals a compare match with latest sample if the CMPEN in ADCn_SINGLECTRL/ADCn_SCANCTRL is enabled.

ADC has two separate PRS outputs, one for single channel and one for scan sequence. A finished conversion results in a one ADC_CLK cycle pulse, which is output to the Peripheral Reflex System (PRS). Note that the PRS pulse for scan is generated once after every channel conversion in the scan sequence.

27.3.12 DMA Request

The ADC has two DMA request lines, SINGLEREQ and SCANREQ, which are set when a single or scan FIFO receives DVL# of samples. The requests are cleared when the corresponding single or scan result register is read and corresponding FIFO count reaches lower than DVL. It also has two additional DMA Single request lines, SINGLESREQ and SCANSREQ, that are set when the corresponding FIFO is not empty.

27.3.13 Calibration

The ADC supports offset and gain calibration to correct errors due to process and temperature variations. This must be done individually for each reference used. For each reference, it needs to be repeated for single-ended, negative single-ended (see 27.3.7 Input Selection for details) and differential measurement. The ADC calibration (ADCn_CAL) register contains register fields for calibrating offset and gain for both single and scan mode. The gain and offset calibration are done in single channel mode, but the resulting calibration values can be used for both single and scan mode.

Gain and offset for various references and modes are calibrated during production and the calibration values for these can be found in the Device Information page. During reset, the gain and offset calibration registers are loaded with the production calibration values for the 1V25 reference. Others can be loaded as needed or the user can perform calibration on the fly using the particular reference and mode to be used and write the result in the ADCn CAL before starting the ADC conversion with them.

27.3.13.1 Offset Calibration

Offset calibration must be performed prior to gain calibration. Follow these steps for the offset calibration in single mode:

- 1. Select the desired full scale configuration by setting the REF bit field of the ADCn SINGLECTRL register.
- 2. Set the AT bit field of the ADCn SINGLECTRL register to 16CYCLES.
- 3. Set the POSSEL and NEGSEL of the ADCn_SINGLECTRL register to VSS, and set the DIFF to 1 for enabling differential input if calibrating for DIFF measurement. During calibration, the ADC samples represent the code coming out of the analog. Thus, since the input voltage is 0, the expected ADC output is 0b100000000000 in differential mode, 0b000000000000 in single-ended mode and 0b11111111111 in negative single-ended mode.
- 4. A binary search is used to find the offset calibration value. Set the CALEN to 1, and OFFSETINVMODE to 1 (if calibrating for negative single-ended conversion) in the ADCn_CAL register. If user is performing negative single-ended calibration, the SINGLEOFFSETINV provides the offset else SINGLEOFFSET bit provides the offset (for both single-ended and differential offset calibration). Start with 0b0000 (or 0b1111 if doing calibration for differential mode) in SINGLEOFFSET or with 0b1000 in SINGLEOFFSETINV (if calibrating for negative single-ended conversion). Set the SINGLESTART bit in the ADCn_CMD register to perform a 12-bit conversion and read the ADCn_SINGLEDATA register. The offset is (ADCn_SINGLEDATA expected ADC output). Calculate this and write [3:0] of the result into SINGLEOFFSET or SCANOFFSETINV (if doing negative single-ended conversion). The user repeats till ADCn_SINGLEDATA matches expected ADC output. The ADC has a 8LSB built in negative offset to allow for negative offset correction. So, with default offset value, which corrects for the negative offset, the converted ADCn_SINGLEDATA would match expected ADC output if there were no offset. To get better noise immunity, the sampling phase can be repeated with Oversampling enabled. The result of the binary search is written to the SINGLEOFFSET (or SINGLEOFFSETINV) field of the ADCn_CAL register.

27.3.13.2 Gain Calibration

Offset calibration must be performed prior to gain calibration. The Gain Calibration is done in the following manner:

- 1. Select an external ADC channel for single channel conversion (a differential channel can also be used).
- Apply an external voltage on the selected ADC input channel. This voltage should correspond to the top of the ADC input range for the selected reference.
- 3. Set SINGLEGAIN[6:0] to 64 in the ADCn_CAL and measure gain, repeat gain calibration walking the 1 in SINGLEGAIN[6] to SIN-GLEGAIN[0] till sampled ADCn_SINGLEDATA matches expected value. This is done by setting CALEN in ADCn_CAL set to 1 and performing single channel, reading in the raw ADC code from the ADCn_SINGLEDATA and comparing it with expected code, i.e. 0b11111111111 for single-ended or differential conversion, and 0b00000000000 for negative single-ended conversion. The target value is ideally the top of the ADC input range, but it is recommended to use a value a couple of LSBs below in order to avoid overshooting. The result of the binary search is written to the SINGLEGAIN field of the ADCn_CAL register.

For the VDD reference and external reference, there is no hardware gain calibration. Calibration can be done by software after taking a sample.

27.3.14 EM2 DeepSleep or EM3 Stop Operation

The ADC can operate in EM2 DeepSleep or EM3 Stop mode. For EM2 DeepSleep or EM3 Stop operation the ADC_CLK must be selected as AUXHFRCO. The section 27.3.1 Clock Selection describes how to choose AUXHFRCO as the ADC_CLK. The AUXHFRCO can be kept on for as long as sample conversion is needed or it can be requested by trigger event and after the conversion is done, the AUXHFRCO can be shut down. The second option saves power at the expense of the delay to start the AUXHFRCO oscillator. All the trigger modes are available in EM2 DeepSleep or EM3 Stop as well.

While in EM2 DeepSleep or EM3 Stop, the ADC can wake the system to EM0 Active on enabled interrupts. Following interrupts can wake up the system to EM0 Active:

- SINGLE or SCAN interrupt indicating that the corresponding FIFO has reached the DVL watermark.
- · Overflow interrupt (SINGLEOF or SCANOF)
- Underflow interrupt (SINGLEUF or SCANUF), triggered if DMA pops more data than present in the FIFO while the system is asleep
- · Compare interrupt (SINGLECMP or SCANCMP)
- Over voltage interrupt (VREFOV)

The ADC can also work with the DMA so that the system does not have to wake up to consume data. This can happen if the SCAN or SINGLE interrupt is disabled and the SINGLEDMAWU or SCANDMAWU in the ADCn_CTRL is set. The DMA will be triggered by the ADC when DVL samples become available in the corresponding FIFO. The DMA will then pop all the elements of the corresponding FIFO and put the system back into the low power state. A system-level wake up will occur upon the DMA done interrupt. Note that other enabled ADC interrupts can still wake up the system when operating with the DMA. For example, the user can configure the window compare function to trip when the result reaches a certain threshold while gathering ADC data in EM2 DeepSleep or EM3 Stop.

The ADC works with the EMU to wake up the system or the DMA. It takes 2 µs from the time the ADC request a wakeup to start of the peripheral clocks. In this ASYNC mode of ADC_CLK, it takes 6 HFPERCCLK cycles to read a single entry from the single or scan FIFO. So, with a 20MHz HFPERCCLK, it takes about 4 µs per DMA wakeup to empty a full FIFO (4 entries). This restricts the sampling rate in EM2 DeepSleep or EM3 Stop in order to avoid FIFO overflows.

The AUXHFRCO power can be reduced by reducing the clock speed, and the user may adjust the ADCBIASPROG field in the ADCn_BIASPROG register to reduce active power of the ADC during the conversions, thus reducing power even more in EM2 Deep-Sleep/EM3 Stop. Refer to the data sheet for relevant power consumption numbers.

If the ADC is not to be used in EM2 DeepSleep or EM3 Stop, then the user should ensure that the ADC is not busy before going to the low power mode. 27.3.17 ADC Programming Model explains how to ensure the ADC is not busy. If the chip enters EM2 DeepSleep or EM3 Stop when ADC is busy without using AUXHFRCO, then the ADC clock will stop but the ADC will stay on, resulting in higher supply current. If this occurs, the EM23ERR interrupt flag will be set. Software will see this interrupt flag only when the chip wakes up.

27.3.15 ASYNC ADC_CLK Usage Restrictions and Benefits

When the ADC_CLK is chosen to come from ASYNCCLK, (ADCCLKMODE is set to ASYNC), the ADC_CLK and the ADC peripheral clock are considered asynchronous and this adds some restrictions:

- Due to a synchronization delay, accessing the following registers takes extra time (up to additional 7 HFPERCCLK cycles):
 ADCn_SINGLEDATA, ADCn_SCANDATA, ADCn_SINGLEDATAP, ADCn_SCANDATAP, ADCn_SCANDATAX, ADCn_SCANDATAXP, ADCn_SINGLEFIFOCOUNT, ADCn_SCANFIFOCOUNT, ADCn_SINGLEFIFOCLEAR, ADCn_SCANFIFOCLEAR.
- The safe time to change the ADCn_SINGLECTRL, ADCn_SINGLECTRLX, ADCn_SCANCTRL, ADCn_SCANCTRLX, ADCN_SCANCTRLX, ADCN_SCANCTRLX, ADCN_SCANCTRLX, ADC
- When the ADC needs to run in EM2 DeepSleep or EM3 Stop, only AUXHFRCO can provide the ADC_CLK to the ADC. Thus the user needs to set ASYNC mode of ADCCLKMODE and setup the CMU to provide the AUXHFRCO clock as ASYNCCLK.
- If the ADC needs to run on a particular adc_clk_sar frequency to achieve a sample rate and the HFPERCCLK is not a proper multiple for such clock frequency, a higher frequency system clock, HFRCO, can be chosen to be ADC_CLK using ASYNC mode. This allows HFPERCCLK to be set to an optimum value from a system view point.
- ASYNC mode can also help with digital noise mitigation as this clock is asynchronous (not balanced) with the system clock. Moreover, the user can use the invert option to invert the source of ASYNCCLK helping in noise mitigation further.
- Whenever ADC is being used in asynchronous mode, then HFPERCLK must be at least 1.5 times higher than the ADC_CLK.
- With ASNEEDED setting for ASYNCCLK request, the ADC_CLK power can be reduced.

27.3.16 Window Compare Function

The ADC supports a window compare function on both the latest single and scan outputs. The compare thresholds, ADGT and ADLT, are defined in the ADCn_CMPTHR register. These are 16-bit values and their format must match the type of conversion (single-ended or differential) the user is trying to compare with. For example, a 12-bit differential conversion is sign extended to 16 bits while a 12-bit single-ended conversion result would get zero padded to 16-bit result before comparing with ADGT and ADLT. If over-sampling is enabled, the conversion result could grow to 16-bits. There is a single set of ADLT and ADGT threshold for both single and scan compare. The user can however enable single or scan compare logic individually by enabling CMPEN in ADCn_SINGLECTRL or ADCn_SCANCTRL register.

The user can perform comparison both within or outside of the window defined by the ADGT and ADLT. If the ADLT is greater than ADGT, the ADC compares if the current sample is within the window. Otherwise, the ADC compares if the current sample is outside of the window.

27.3.17 ADC Programming Model

The ADC configuration registers are considered static and can only be updated when (1) ADC is in SYNC mode and (2) ADC is idle. ADC is considered busy when it is doing conversions (either the SINGLEACT or SCANACT status flag is high) or when it is warmed up (one of the following status flags is high: WARM, SINGLEREFWARM, SCANREFWARM). The following registers are considered ADC configuration registers: CMU_ADCCTRL, ADCn_CTRL, ADCn_SINGLECTRL, ADCn_SINGLECTRLX, ADCn_SCANCTRL, ADCn_SCANCTRL, ADCn_SCANCTRLX, ADCn_SCANINPUTSEL, ADCn_SCANNEGSEL, ADCn_IEN, ADCn_BIASPROG, ADCn_SCANMASK, ADCn_CAL and ADCn_CMPTHR.

From reset, the ADC is in SYNC mode by default. The user can program the configuration registers as needed. If PRS is to be used, PRSEN in ADCn_SINGLECTRL/ADCn_SCANCTRL should be set after all other configuration is complete. Once configuration is complete, the ADC is ready to receive triggers. The user must ensure that no LESENSE triggers come in during the time the ADC configuration registers are being updated.

After the ADC has been used to perform conversions, the user must ensure that the ADC is idle before updating the configuration registers. The first step is to ensure that no new triggers (PRS, LESENSE) are being issued. It can take a few cycles from when a trigger is received to when SINGELACT/SCANACT flags go high due to synchronization requirement. If it is unclear when the triggers were issued and if those are under synchronization or not, the user should add a small delay before checking the status flags. If the SINGLE-ACT/SCANACT status flags are high, the corresponding STOP command should be issued and the user should wait until the SINGLE-ACT/SCANACT flags go low. If the ADC was warmed up, then the WARMUPMODE should be changed to NORMAL and then the user should wait on WARM, SINGLEREFWARM and SCANREFWARM flags until those go low. Now the ADC is idle.

If both LESENSE scan and PRS/software scan conversions are taking place, then since there are two scans occurring, the SCAN STOP command needs to be issued twice. The user can check the SCANPENDING status flag. If the flag is set then the user needs to send out 2 SCAN STOP commands. After sending out the first SCAN STOP, the user needs to wait until the SCANPENDING flag goes low. Then the second SCAN STOP command should be issued and the user should wait on the SCANACT status flag to go low.

Note:

When switching ADCCLKMODE in the ADCn_CTRL register, use the appropriate sequence below:

- · SYNC to ASYNC:
 - 1. Disable ADC interrupts
 - 2. Clear the FIFOs
 - 3. Switch the ADCCLKMODE

If the ADC is to be used in ASYNC clock mode with WARMUPMODE set to KEEPADCWARM, then both ADCCLKMODE and WARMUPMODE fields in the ADCn_CTRL register should be set to the desired values in the same register write. This will ensure that the ADC power-on sequence is valid.

- ASYNC TO SYNC:
 - 1. Disable ADC interrupts
 - 2. Switch the ADCCLKMODE
 - 3. Clear the FIFOs

The FIFOs are cleared by writing 1 to the ADCn_SCANFIFOCLEAR and ADCn_SINGLEFIFOCLEAR registers.

When switching from ASYNC to SYNC, ensure that the ASYNC clock is turned off before doing the switch.

27.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	ADCn_CTRL	RW	Control Register
0x008	ADCn_CMD	W1	Command Register
0x00C	ADCn_STATUS	R	Status Register
0x010	ADCn_SINGLECTRL	RW	Single Channel Control Register
0x014	ADCn_SINGLECTRLX	RW	Single Channel Control Register Continued
0x018	ADCn_SCANCTRL	RW	Scan Control Register
0x01C	ADCn_SCANCTRLX	RW	Scan Control Register Continued
0x020	ADCn_SCANMASK	RW	Scan Sequence Input Mask Register
0x024	ADCn_SCANINPUTSEL	RW	Input Selection Register for Scan Mode
0x028	ADCn_SCANNEGSEL	RW	Negative Input Select Register for Scan
0x02C	ADCn_CMPTHR	RW	Compare Threshold Register
0x030	ADCn_BIASPROG	RW	Bias Programming Register for Various Analog Blocks Used in ADC Operation
0x034	ADCn_CAL	RW	Calibration Register
0x038	ADCn_IF	R	Interrupt Flag Register
0x03C	ADCn_IFS	W1	Interrupt Flag Set Register
0x040	ADCn_IFC	(R)W1	Interrupt Flag Clear Register
0x044	ADCn_IEN	RW	Interrupt Enable Register
0x048	ADCn_SINGLEDATA	R(a)	Single Conversion Result Data
0x04C	ADCn_SCANDATA	R(a)	Scan Conversion Result Data
0x050	ADCn_SINGLEDATAP	R	Single Conversion Result Data Peek Register
0x054	ADCn_SCANDATAP	R	Scan Sequence Result Data Peek Register
0x068	ADCn_SCANDATAX	R(a)	Scan Sequence Result Data + Data Source Register
0x06C	ADCn_SCANDATAXP	R	Scan Sequence Result Data + Data Source Peek Register
0x07C	ADCn_APORTREQ	R	APORT Request Status Register
0x080	ADCn_APORTCONFLICT	R	APORT Conflict Status Register
0x084	ADCn_SINGLEFIFOCOUNT	R	Single FIFO Count Register
0x088	ADCn_SCANFIFOCOUNT	R	Scan FIFO Count Register
0x08C	ADCn_SINGLEFIFOCLEAR	W1	Single FIFO Clear Register
0x090	ADCn_SCANFIFOCLEAR	W1	Scan FIFO Clear Register
0x094	ADCn_APORTMASTERDIS	RW	APORT Bus Master Disable Register

27.5 Register Description

27.5.1 ADCn_CTRL - Control Register

Offset															Bi	t Po	siti	on													
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	- 0
Reset	Ċ	0X0	0	0		,	OXO						0x1F								0x00				0	0		0	0	0	0×0
Access	Š	≥ Y	X ≪	RW		2	≥ Y						X ≪								X ≪				R W M	RW W		RW	R ⊗	X W	RW
Name		CHCOINKELWAKINIULE	CHCONMODE	DBGHALT		1	OVSKSEL						TIMEBASE								PRESC				ADCCLKMODE	ASYNCCLKEN		TAILGATE	SCANDMAWU	SINGLEDMAWU	WARMUPMODE

Bit	Name	Reset	Access	Description
31:30	CHCONREFWARMI- DLE	0x0	RW	Channel Connect and Reference Warm Sel When ADC is IDLE
	Channel connect and	reference warm	preference	е
	Value	Mode		Description
	0	PREFSCAN		Keep scan reference warm and APORT switches for first scan channel closed if WARMUPMODE is not NORMAL
	1	PREFSINGLE		Keep single reference warm and keep APORT switches for single channel closed if WARMUPMODE is not NORMAL
	2	KEEPPREV		Keep last used reference warm and keep APORT switches for corresponding channel closed if WARMUPMODE is not NORMAL
29	CHCONMODE	0	RW	Channel Connect
	Selects Channel Conr	nect Mode		
	Value	Mode		Description
	0	MAXSETTLE		Connect APORT switches for the next input as soon as possible. This optimizes settling time.
	1	MAXRESP		Connect APORT switches for the next input at the end of the conversion.
28	DBGHALT	0	RW	Debug Mode Halt Enable
	Selects ADC behavior	during debug m	node.	
	Value			Description
	0			Continue operation as normal during debug mode.
	1			Complete the current conversion and then halt during debug mode.
27:24	OVSRSEL	0x0	RW	Oversample Rate Select
	Select oversampling ra	ate. Oversampli	ng must be	e enabled for this setting to take effect.

	Name	Reset	Access	Description
	Value	Mode		Description
	0	X2		2 samples for each conversion result
	1	X4		4 samples for each conversion result
	2	X8		8 samples for each conversion result
	3	X16		16 samples for each conversion result
	4	X32		32 samples for each conversion result
	5	X64		64 samples for each conversion result
	6	X128		128 samples for each conversion result
	7	X256		256 samples for each conversion result
	8	X512		512 samples for each conversion result
	9	X1024		1024 samples for each conversion result
	10	X2048		2048 samples for each conversion result
	11	X4096		4096 samples for each conversion result
23	Reserved	To ensure o	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
22:16	TIMEBASE	0x1F	RW	1us Time Base
	produce timing of 1		C warm up s	equence based on ADC_CLK. The TIMEBASE field should be set equal to
	Value			Description
	Value			Description (TIMEDAGE)
	Value TIMEBASE			Description ADC STANDBY/SLOWACC mode warm-up is set to 1 x (TIMEBASE + 1) ADC_CLK cycles and NORMAL mode warm-up is set to 5 x (TIMEBASE + 1) ADC_CLK cycles.
15		To ensure o	ompatibility v	ADC STANDBY/SLOWACC mode warm-up is set to 1 x (TIMEBASE + 1) ADC_CLK cycles and NORMAL mode warm-up is set to 5 x (TIME-
	TIMEBASE		ompatibility v	ADC STANDBY/SLOWACC mode warm-up is set to 1 x (TIMEBASE + 1) ADC_CLK cycles and NORMAL mode warm-up is set to 5 x (TIME-BASE + 1) ADC_CLK cycles.
	TIMEBASE Reserved PRESC	0x00	RW	ADC STANDBY/SLOWACC mode warm-up is set to 1 x (TIMEBASE + 1) ADC_CLK cycles and NORMAL mode warm-up is set to 5 x (TIMEBASE + 1) ADC_CLK cycles. with future devices, always write bits to 0. More information in 1.2 Conven-
	TIMEBASE Reserved PRESC	0x00	RW	ADC STANDBY/SLOWACC mode warm-up is set to 1 x (TIMEBASE + 1) ADC_CLK cycles and NORMAL mode warm-up is set to 5 x (TIMEBASE + 1) ADC_CLK cycles. with future devices, always write bits to 0. More information in 1.2 Conventional Conversion Clock
	Reserved PRESC Sets the prescale fa	0x00	RW	ADC STANDBY/SLOWACC mode warm-up is set to 1 x (TIMEBASE + 1) ADC_CLK cycles and NORMAL mode warm-up is set to 5 x (TIMEBASE + 1) ADC_CLK cycles. with future devices, always write bits to 0. More information in 1.2 Conventional Conversion Clock (adc_sar_clk) from ADC_CLK.
15 14:8 7	Reserved PRESC Sets the prescale fa	0x00	RW	ADC STANDBY/SLOWACC mode warm-up is set to 1 x (TIMEBASE + 1) ADC_CLK cycles and NORMAL mode warm-up is set to 5 x (TIMEBASE + 1) ADC_CLK cycles. with future devices, always write bits to 0. More information in 1.2 Conventional Conversion Clock (adc_sar_clk) from ADC_CLK. Description Clock prescale factor. ADC_CLK is divided by (PRESC+1) to produce
14:8	Reserved PRESC Sets the prescale factorists Value PRESC ADCCLKMODE	0x00 actor to generate	RW e the ADC co	ADC STANDBY/SLOWACC mode warm-up is set to 1 x (TIMEBASE + 1) ADC_CLK cycles and NORMAL mode warm-up is set to 5 x (TIMEBASE + 1) ADC_CLK cycles. with future devices, always write bits to 0. More information in 1.2 Conventional Conversion Clock (adc_sar_clk) from ADC_CLK. Description Clock prescale factor. ADC_CLK is divided by (PRESC+1) to produce adc_clk_sar.
14:8	Reserved PRESC Sets the prescale factorists Value PRESC ADCCLKMODE	0x00 actor to generate	RW e the ADC co	ADC STANDBY/SLOWACC mode warm-up is set to 1 x (TIMEBASE + 1) ADC_CLK cycles and NORMAL mode warm-up is set to 5 x (TIMEBASE + 1) ADC_CLK cycles. with future devices, always write bits to 0. More information in 1.2 Conventional Conversion Clock (adc_sar_clk) from ADC_CLK. Description Clock prescale factor. ADC_CLK is divided by (PRESC+1) to produce adc_clk_sar. ADC Clock Mode
14:8	Reserved PRESC Sets the prescale favorable PRESC ADCCLKMODE Selects ADC_CLK	0 source as synch	RW e the ADC co	ADC STANDBY/SLOWACC mode warm-up is set to 1 x (TIMEBASE + 1) ADC_CLK cycles and NORMAL mode warm-up is set to 5 x (TIMEBASE + 1) ADC_CLK cycles. with future devices, always write bits to 0. More information in 1.2 Conventional Conversion Clock (adc_sar_clk) from ADC_CLK. Description Clock prescale factor. ADC_CLK is divided by (PRESC+1) to produce adc_clk_sar. ADC Clock Mode Synchronous - with respect to the Peripheral Clock (HFPERCCLK).

Bit	Name	Reset	Access	Description
6	ASYNCCLKEN	0	RW	Selects ASYNC CLK Enable Mode When ADCCLKMODE=1
	Write a 1 to keep ASY	YNC CLK alway	s enabled.	
	Value	Mode		Description
	0	ASNEEDED		ASYNC CLK is enabled only during ADC Conversion.
	1	ALWAYSON		ASYNC CLK is always enabled.
5	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4	TAILGATE	0	RW	Conversion Tailgating
	Enable/disable conve	rsion tailgating.	Single cha	nnel conversions wait for a scan sequence to finish before starting.
	Value			Description
	0			Scan sequence has priority, but can be delayed by ongoing single channels.
	1			Scan sequence has priority and single channels will only start immediately after completion of a scan sequence.
3	SCANDMAWU	0	RW	SCANFIFO DMA Wakeup
	Selects whether to wa	akeup the DMA	controller v	when in EM2 and DVL is reached in SCANFIFO
	Value			Description
	0			While in EM2, the DMA controller will not get requests about DVL reached in SCANFIFO
	1			DMA is available in EM2 for processing SCANFIFO DVL request
2	SINGLEDMAWU	0	RW	SINGLEFIFO DMA Wakeup
	Selects whether to wa	akeup the DMA	controller v	when in EM2 and DVL is reached in SINGLEFIFO
	Value			Description
	0			While in EM2, the DMA controller will not get requests about Data Valid Level (DVL) reached in SINGLEFIFO
	1			DMA is available in EM2 for processing SINGLEFIFO DVL request
1:0	WARMUPMODE	0x0	RW	Warm-up Mode
	Select Warm-up Mode	e for ADC		
	Value	Mode		Description
	0	NORMAL		ADC is shut down after each conversion. 5us warmup time is used before each conversion.
	1	KEEPINSTAN	NDBY	ADC is kept in standby mode between conversions. 1us warmup time is used before each conversion.
	2	KEEPINSLOV	VACC	ADC is kept in slow acquisition mode between conversions. 1us warm-up time is used before each conversion.
	3	KEEPADCWA	ARM	ADC is kept on after conversions, allowing for continuous conversion.

27.5.2 ADCn_CMD - Command Register

Offset															Ві	it Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	0	8	7	9	5	4	က	7	_	0
Reset		'			'	•					•	•		•	'											'	'	•	0	0	0	0
Access																													W M	W	W1	M
Name																													SCANSTOP	SCANSTART	SINGLESTOP	SINGLESTART

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
3	SCANSTOP	0	W1	Scan Sequence Stop
	Write a 1 to stop scar	n sequence.		
2	SCANSTART	0	W1	Scan Sequence Start
	Write a 1 to start sca	n sequence.		
1	SINGLESTOP	0	W1	Single Channel Conversion Stop
	Write a 1 to stop sing	le channel conv	ersions.	
0	SINGLESTART	0	W1	Single Channel Conversion Start
	Write to 1 to start cor	verting in single	channel m	node.

27.5.3 ADCn_STATUS - Status Register

Offset											Bi	it Po	siti	on														
0x00C	30 30	28	56	25	22 23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset											0	0				0	2	2	0	0						0	0	0
Access											2	2				2			2	2						2	2	2
												-				_	_	_								_	_	_
Name											SCANDV	SINGLEDV				WARM	9900	A VIOLENTIA	SCANREFWARM	SINGLEREFWARM						SCANPENDING	SCANACT	SINGLEACT
Bit	Name			Res	et		Ac	ces	s I	Des	crip	tior																
31:18	Reserved			To e	ensure	cor	npati	ibility	y wit	th fu	ture	de	vice:	s, al	way.	s wr	ite b	its t	o 0.	Мо	re in	form	natic	n in	1.2	Col	nvei	7-
17	SCANDV			0			R		;	Sca	n Da	ata \	/ali	d														
	SCANCTRL	X_DVI	L# c	of sca	ın con	vers	sion o	data	res	ults	are	avai	labl	e in	Sca	n Fl	FO.											
16	SINGLEDV			0			R		;	Sing	gle C	Cha	nne	l Da	ta V	alid												
	SINGLECT	RLX_D	VL #	# of si	ingle (char	nel d	conv	/ersi	on r	esul	lts a	re a	vaila	able	in S	Singl	e FI	FO.									
15:13	Reserved			To e	ensure S	cor	npati	ibility	y wit	th fu	ture	de	vice:	s, al	way.	s wr	rite b	its t	o 0.	Мо	re in	form	natic	n in	1.2	Col	nvei	1-
12	WARM			0			R			ADC	: Wa	arm	ed l	Jp														
	ADC is warn	ned up).																									
11:10	PROGERR			0x0			R		ı	Prog	gran	nmi	ng l	Erro	r St	atus	5											
	Programmin	g Erro	r Sta	atus																								
	Mode			Valu	ie					Des	cript	ion																_
	BUSCONF			x1					-	APC	RT	rep	orte	d a E	BUS	Со	nflic	t.										_
	NEGSELCO	NF		1x																	with Y c							
9	SCANREFW	VARM		0			R		;	Sca	n Re	efer	enc	e W	arm	ed l	Jp											
	Reference s	electe	d for	scan	n mod	e is	warn	ned	up.																			
8	SINGLEREF	WAR	М	0			R		;	Sing	gle (Cha	nne	l Re	fere	nce	Wa	rme	ed U	lp								
	Reference s	electe	d for	singl	le cha	nne	l mo	de is	s wa	rme	d up) .																
7:3	Reserved			To e	ensure	cor	npati	ibility	y wit	th fu	ture	de	vice	s, al	way.	s wr	rite b	its t	o 0.	Мо	re in	form	natic	n in	1.2	Col	nvei	7-
2	SCANPEND	ING		0			R		;	Sca	n Co	onv	ersi	on F	Pend	gnib	ı											
	Indicates that PENDIF and															oftw	are	trigg	jere	d sc	an h	as g	gone	e pe	ndin	g. S	CAI	N -
1	SCANACT			0			R		;	Sca	n Co	onv	ersi	on A	Activ	/e												

Scan sequence is active or has pending conversions.

Bit	Name	Reset	Access	Description
0	SINGLEACT	0	R	Single Channel Conversion Active
	Single channel conve	rsion is active o	r has pendi	ng conversions.

27.5.4 ADCn_SINGLECTRL - Single Channel Control Register

Offset														Ві	it Po	sitio	on														
0x010	31	30	53	78	27	25	24	23	22	21	20	19	8	17	16	15	14	5	72	Ξ	9	6	∞	7	9	5	4	က	2	_	
Reset	0		0			0x0				ı	L	OXFF							0xFF		ı				0×0		٥) NXO	0	0	
A 00000	>		W.																												:
Access	R W		<u></u>			N N						¥ -							- RW						¥ ≷		Ć	≩ Y	RW	R W	ļ
Name	CMPEN		PRSEN			ΑT					[([NEGSEL							POSSEL						REF		C	X N	ADJ	DIFF	
Bit	Na	me				Re	set			Ac	ces	s	Des	crip	tion																
31	CN	1PEI	N			0				RV	/		Con	npa	re L	ogic	En	able	for S	Sin	gle	Cha	nn	el							
	En	able	/disa	able	Comp	are L	ogic																								
	Va	lue											Des	cript	tion																
	0												Disa	able	Con	npar	e Lo	gic.													
	1												Ena	ble (Com	pare	e Lo	gic.													
30	Re	Reserved To ensure compatitions PRSEN 0 RV									bilit	ty w	rith fu	ıture	e dev	rices	, alı	vays	write	e b	its to	0.	Мо	re in	forn	natio	on ir	1.2	2 Co	nve	n-
29	PR	SEN	٧			0 RW								gle (Chai	nnel	PR	S Tr	igge	r E	nab	le									
	En	able	d/di	sabl	e PRS	trigg	er o	f sin	gle	cha	nne	l.																			
	Va	lue											Des	cript	tion																
	0												Sing	gle c	hanı	nel is	s no	t trig	gere	d b	y PF	RS i	npu	ıt.							
	1												Sing	gle c	hanı	nel is	s triç	ggere	ed by	PI	RS i	npu	se	lecte	ed b	уΡ	RSS	SEL			
28	Re	serv	/ed			To		ure	con	pati	bilit	ty w	rith fu	ıture	e dev	rices	, alı	vays	write	e b	its to	0.	Мо	re in	forn	natio	on ir	1.2	2 Co	nve	n-
27:24	AT					0x)			RV	/		Sing	gle (Chai	nnel	Ac	quis	ition	Ti	me										
	Se	lect	the	acqı	uisition	time	for	sing	le c	nanı	nel.																				
	Va	lue				Мс	de						Des	cript	tion																
	0					1C	YCL	E.					1 cc	nve	rsior	ı clo	ck c	ycle	acqı	ıisi	tion	time	fo	r sin	gle	cha	nnel				
	1					20	2CYCLES							nve	rsior	ı clo	ck c	ycle	s acc	uis	itior	tim	e fo	or si	ngle	cha	anne	el			
	2					3C	3CYCLES							nve	rsior	ı clo	ck c	ycle	s acc	uis	ition	tim	e fo	or si	ngle	cha	anne	el			
	3					4C	YCL	ES					4 cc	nve	rsior	ı clo	ck c	ycle	s acc	uis	itior	tim	e fo	or si	ngle	cha	anne	el			
	4					8C	YCL	ES					8 cc	nve	rsior	ı clo	ck c	ycle	s acc	uis	itior	tim	e fo	or si	ngle	cha	anne	el			
	5					16	CYC	LES	3				16 c	onv	ersio	on cl	ock	cycl	es ac	qu	isitic	n ti	me	for s	ing	le cl	nanr	nel			
							~ · · ~	LES	_				32 c											_							

64 conversion clock cycles acquisition time for single channel

128 conversion clock cycles acquisition time for single channel

256 conversion clock cycles acquisition time for single channel

64CYCLES

128CYCLES

256CYCLES

7

8

9

Bit	Name	Reset	Access	Description
23:16	NEGSEL	0xFF	RW	Single Channel Negative Input Selection

Selects the negative input to the ADC for Single Channel Differential mode (in case of singled ended mode, the negative input is grounded). The user can choose any of the 32 channels of any of the 5 BUSes but must ensure that POSSEL and NEGSEL are chosen from different resources (X or Y) BUS. In case of an invalid configuration, the ADC will perform a single-ended sampling and issue a BUSCONFLICT IRQ.

Mode	Value		Description
APORT0XCH0	0		Select APORT0XCH0
APORT0XCH1	1		Select APORT0XCH1
APORT0XCH15	15		Select APORT0XCH15
APORT0YCH0	16		Select APORT0YCH0
APORT0YCH1	17		Select APORT0YCH1
APORT0YCH15	31		Select APORT0YCH15
APORT1XCH0	32		Select APORT1XCH0
APORT1YCH1	33		Select APORT1YCH1
APORT1YCH31	63		Select APORT1YCH31
APORT2YCH0	64		Select APORT2YCH0
APORT2XCH1	65		Select APORT2XCH1
APORT2XCH31	95		Select APORT2XCH31
APORT3XCH0	96		Select APORT3XCH0
APORT3YCH1	97		Select APORT3YCH1
APORT3YCH31	127		Select APORT3YCH31
APORT4YCH0	128		Select APORT4YCH0
APORT4XCH1	129		Select APORT4XCH1
APORT4XCH31	159		Select APORT4XCH31
TESTN	245		Reserved for future expansion
VSS	255		VSS
POSSEL	0xFF	RW	Single Channel Positive Input Selection

Selects the positive input to the ADC for single channel operation. Software can choose any of the 32 channels of any BUS as positive input. In DIFF mode POSSEL and NEGSEL need to be chosen from different resources (X or Y). If an X BUS is connected to POSSEL, only a Y BUS can connect to NEGSEL, and vice-versa. The user can also select some internal nodes as positive input for single-ended sampling. These internal nodes cannot be sampled differentially.

Mode	Value	Description
APORT0XCH0	0	Select APORT0XCH0
APORT0XCH1	1	Select APORT0XCH1

15:8

Name	Reset	Access	Description
APORT0XCH15	15		Select APORT0XCH15
APORT0YCH0	16		Select APORT0YCH0
APORT0YCH1	17		Select APORT0YCH1
APORT0YCH15	31		Select APORT0YCH15
APORT1XCH0	32		Select APORT1XCH0
APORT1YCH1	33		Select APORT1YCH1
APORT1YCH31	63		Select APORT1YCH31
APORT2YCH0	64		Select APORT2YCH0
APORT2XCH1	65		Select APORT2XCH1
APORT2XCH31	95		Select APORT2XCH31
APORT3XCH0	96		Select APORT3XCH0
APORT3YCH1	97		Select APORT3YCH1
APORT3YCH31	127		Select APORT3YCH31
APORT4YCH0	128		Select APORT4YCH0
APORT4XCH1	129		Select APORT4XCH1
APORT4XCH31	159		Select APORT4XCH31
AVDD	224		Select AVDD
BUVDD	225		Select BUVDD
DVDD	226		Select DVDD
PAVDD	227		Reserved for future use
DECOUPLE	228		Select DECOUPLE
IOVDD	229		Select IOVDD
IOVDD1	230		Select IOVDD1. Not Applicable if no IOVDD1 is available.
VSP	231		Reserved for future expansion
OPA2	242		OPA2 output. Not Applicable if no OPA is available.
TEMP	243		Temperature sensor
DAC0OUT0	244		DAC0 output 0. Not Applicable if no DAC is available.
R5VOUT	245		5V sub-system ADC mux output. Not Applicable if no 5V sub-system available.
SP1	246		Reserved for future expansion
SP2	247		Reserved for future expansion
DAC0OUT1	248		DAC0 output 1. Not Applicable if no DAC is available.

Bit	Name	Reset	Access	Description
	SUBLSB	249		SUBLSB measurement enabled.
	OPA3	250		OPA3 output. Not Applicable if no OPA is available.
	VSS	255		VSS
7:5	REF	0x0	RW	Single Channel Reference Selection
	Select reference to	o ADC single chann	el mode.	
	Value	Mode		Description
	0	1V25		VFS = 1.25V with internal VBGR reference
	1	2V5		VFS = 2.5V with internal VBGR reference
	2	VDD		VFS = AVDD with AVDD as reference source
	3	5V		VFS = 5V with internal VBGR reference
	4	EXTSINGLE		Single ended external reference
	5	2XEXTDIFF		Differential external reference, 2x
	6	2XVDD		VFS = 2xAVDD with AVDD as the reference source
	7	CONF		Use SINGLECTRLX to configure reference
4:3	RES	0x0	RW	Single Channel Resolution Select
	Select single chan	nnel conversion reso	olution.	
	Value	Mode		Description
	0	12BIT		12-bit resolution.
	1	8BIT		8-bit resolution.
	2	6BIT		6-bit resolution.
	3	OVS		Oversampling enabled. Oversampling rate is set in OVSRSEL.
2	ADJ	0	RW	Single Channel Result Adjustment
	Select single chan	nnel result adjustme	nt.	
	Value	Mode		Description
	0	RIGHT		Results are right adjusted.
	1	LEFT		Results are left adjusted.
1	DIFF	0	RW	Single Channel Differential Mode
	Select single ende	ed or differential inpo	ut.	
	Value			Description
	0			Single ended input.
	1			Differential input.
0	REP	0	RW	Single Channel Repetitive Mode
	Enable/disable rep	petitive single chanr	nel convers	sions.
	Value			Description
				· · · · · · · · · · · · · · · · · · ·

3it	Name	Reset	Access	Description
	0			ADC will perform one conversion per trigger in single channel mode.
	1			ADC will repeat conversions in single channel mode continuously until SINGLESTOP is written.

27.5.5 ADCn_SINGLECTRLX - Single Channel Control Register Continued

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	3	2	_	0
Reset		0×0	•		0		•	0x00						000		0		0	5	2		2	2			2	S S		0		0x0	
Access		R M			₹			₩ M						₩ M		₩		₩	2	2		2	<u>}</u>			2	<u>}</u>		₽		ĕ	
Name		REPDELAY			CONVSTARTDELAYEN			CONVSTARTDELAY						PRSSEL		PRSMODE		FIFOOFACT	70	7		FFANIX				\\DEE^1T	VRETATI		VREFATTFIX		VREFSEL	

	REPD	CON		PRSS		VINA	VREF	VREF	VREF
Bit	Name	Reset	Access	Description					
31:29	REPDELAY	0x0	RW	REPDELAY Selec	ct for SIN	GLE REP Mode)		
	Delay value between t	two repeated con	nversions.						
	Value	Mode		Description					
	0	NODELAY		No delay					
	1	4CYCLES		4 conversion clock	cycles				
	2	8CYCLES		8 conversion clock	cycles				
	3	16CYCLES		16 conversion cloc	ck cycles				
	4	32CYCLES		32 conversion cloc	ck cycles				
	5	64CYCLES		64 conversion cloc	ck cycles				
	6	128CYCLES		128 conversion clo	ock cycles	3			
	7	256CYCLES		256 conversion clo	ock cycles	3			
28	Reserved	To ensure comptions	patibility v	ith future devices, a	always wi	rite bits to 0. Moi	re information	n in 1.2 C	conven-
27	CONVSTARTDE- LAYEN	0	RW	Enable Delaying	Next Cor	version Start			
	Delay value for next of	onversion start e	vent.						
	Delay value for next or Value	onversion start e	vent.	Description					
	· 	onversion start e	vent.	Description CONVSTARTDEL	AY is disa	abled.			
	Value	onversion start e	vent.	<u> </u>					
26:22	Value 0		vent.	CONVSTARTDEL	AY is ena	abled.	CONVSTAR	TDELAY	EN is
26:22	Value 0 1	0x00	RW	CONVSTARTDEL CONVSTARTDEL Delay Value for N Set	AY is ena	abled. version Start If	CONVSTAR	TDELAY	EN is
26:22	Value 0 1 CONVSTARTDELAY	0x00	RW	CONVSTARTDEL CONVSTARTDEL Delay Value for N Set	AY is ena	abled. version Start If	CONVSTAR	TDELAY	EN is

Bit	Name	Reset Acc	cess Description
21:20	Reserved	To ensure compati	bility with future devices, always write bits to 0. More information in 1.2 Conven-
19:17	PRSSEL	0x0 RW	Single Channel PRS Trigger Select
	Select PRS trigge	r for single channel.	
	Value	Mode	Description
	0	PRSCH0	PRS ch 0 triggers single channel
	1	PRSCH1	PRS ch 1 triggers single channel
	2	PRSCH2	PRS ch 2 triggers single channel
	3	PRSCH3	PRS ch 3 triggers single channel
	4	PRSCH4	PRS ch 4 triggers single channel
	5	PRSCH5	PRS ch 5 triggers single channel
	6	PRSCH6	PRS ch 6 triggers single channel
	7	PRSCH7	PRS ch 7 triggers single channel
16	PRSMODE	0 RW	Single Channel PRS Trigger Mode
	PRS trigger mode	of single channel.	
	Value	Mode	Description
	0	PULSED	Single channel trigger is considered a regular asynchronous pulse that
		T GEGED	starts ADC warm-up, then acquisition/conversion sequence. The ADC_CLK controls the warmup-time.
	1	TIMED	Single channel trigger should be a pulse long enough to provide the required warm-up time for the selected ADC warmup mode. The negative edge requests sample acquisition. DELAY can be used to delay the warm-up request if the pulse is too long.
15	Reserved	To ensure compati	bility with future devices, always write bits to 0. More information in 1.2 Conven-
14	FIFOOFACT	0 RW	Single Channel FIFO Overflow Action
	Select how FIFO	behaves when full	
	 Value	Mode	Description
	0	DISCARD	FIFO stops accepting new data if full, triggers SINGLEOF IRQ.
	1	OVERWRITE	FIFO overwrites old data when full, triggers SINGLEOF IRQ.
13:12	DVL	0x0 RW	Single Channel DV Level Select
	_	nnel Data Valid level. SIN re available in the Single	GLE IRQ is set when (DVL+1) number of single channels have been converted
11:8	VINATT	0x0 RW	Code for VIN Attenuation Factor
	Used to set the VI	IN attenuation factor.	
7:4	VREFATT	0x0 RW	Code for VREF Attenuation Factor When VREFSEL is 1, 2 or 5
	Used to set VREF	attenuation factor.	

Bit	Name	Reset A	Access	Description
3	VREFATTFIX	0 R	RW	Enable Fixed Scaling on VREF
	Enables fixed scal	ing on VREF		
	Value			Description
	0			VREFATT setting is used to scale VREF when VREFSEL is 1, 2 or 5.
	1			A fixed VREF attenuation is used to cover a large reference source range. When VREFATT = 0, the scaling factor is 1/4. For non-zero values of VREFATT, the scaling factor is 1/3.
2:0	VREFSEL	0x0 R	RW	Single Channel Reference Selection
	Select reference V	REF to ADC single ch	nannel m	node.
	Value	Mode		Description
	0	VBGR		Internal 0.83V Bandgap reference
	1	VDDXWATT		Scaled AVDD: AVDD*(the VREF attenuation factor)
	2	VREFPWATT		Scaled singled ended external Vref: ADCn_EXTP*(the VREF attenuation factor)
	3	VREFP		Raw single ended external Vref: ADCn_EXTP
	4	VENTROPY		Special mode used to generate ENTROPY.
	5	VREFPNWATT		Scaled differential external Vref from : (ADCn_EXTP-ADCn_EXTN)*(the VREF attenuation factor)
				Raw differential external Vref from : (ADCn EXTP-ADCn EXTN)
	6	VREFPN		Naw differential external vier from . (ADOII_EXTI -ADOII_EXTIV)

27.5.6 ADCn_SCANCTRL - Scan Control Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset	0		0			2	Š						'	'	•		•					'		'		000		2	3	0	0	0
Access	Z.		W.			2	<u>}</u>																			ΑW		Š	2	W M	W.	RW
Name	CMPEN		PRSEN			۲	_																			REF		O H O	2	ADJ	DIFF	REP

		٨			2	<u> </u>	A D B
Bit	Name	Reset A	ccess	Description			
31	CMPEN	0 R	2W	Compare Logic Enable for Scan			
	Enable/disable Cor	mpare Logic					
	Value			Description			
	0			Disable Compare Logic.			
	1			Enable Compare Logic.			
30	Reserved	To ensure compa	atibility v	vith future devices, always write bits to 0. Mon	re informati	ion in 1.	2 Conven-
29	PRSEN	0 R	2W	Scan Sequence PRS Trigger Enable			
	Enabled/disable PF	RS trigger of scan seq	uence.				
	Value			Description			
	0			Scan sequence is not triggered by PRS input	ut		
	1			Scan sequence is triggered by PRS input se	elected by	PRSSE	L
28	Reserved	To ensure compa	atibility v	with future devices, always write bits to 0. Mon	re informati	ion in 1.	2 Conven-
27:24	AT	0x0 R	2W	Scan Acquisition Time			
	Select the acquisition	on time for scan.					
	Value	Mode		Description			
	0	1CYCLE		1 conversion clock cycle acquisition time for	rscan		
	1	2CYCLES		2 conversion clock cycles acquisition time for	or scan		
	2	3CYCLES		3 conversion clock cycles acquisition time for	or scan		
	3	4CYCLES		4 conversion clock cycles acquisition time for	or scan		
	4	8CYCLES		8 conversion clock cycles acquisition time for	or scan		
	5	16CYCLES		16 conversion clock cycles acquisition time	for scan		
	6	32CYCLES		32 conversion clock cycles acquisition time	for scan		
	7	64CYCLES		64 conversion clock cycles acquisition time	for scan		
	8	128CYCLES		128 conversion clock cycles acquisition time	e for scan		
	9	256CYCLES		256 conversion clock cycles acquisition time	e for scan		

Bit	Name	Reset	Access	Description
23:8	Reserved	To ensure co tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:5	REF	0x0	RW	Scan Sequence Reference Selection
	Select reference	to ADC scan seque	nce.	
	Value	Mode		Description
	0	1V25		VFS = 1.25V with internal VBGR reference
	1	2V5		VFS = 2.5V with internal VBGR reference
	2	VDD		VFS = AVDD with AVDD as reference source
	3	5V		VFS = 5V with internal VBGR reference
	4	EXTSINGLE		Single ended external reference
	5	2XEXTDIFF		Differential external reference, 2x
	6	2XVDD		VFS=2xAVDD with AVDD as the reference source
	7	CONF		Use SCANCTRLX to configure reference
4:3	RES	0x0	RW	Scan Sequence Resolution Select
	Select scan sequ	uence conversion re	solution.	
	Value	Mode		Description
	0	12BIT		12-bit resolution
	1	8BIT		8-bit resolution
	2	6BIT		6-bit resolution
	3	OVS		Oversampling enabled. Oversampling rate is set in OVSRSEL
2	ADJ	0	RW	Scan Sequence Result Adjustment
	Select scan sequ	uence result adjustm	ent.	
	Value	Mode		Description
	0	RIGHT		Results are right adjusted
	1	LEFT		Results are left adjusted
1	DIFF	0	RW	Scan Sequence Differential Mode
	Select single end	ded or differential inp	out.	
	Value			Description
	0			Single ended input
	1			Differential input
0	REP	0	RW	Scan Sequence Repetitive Mode
	Enable/disable r	epetitive scan seque	ence.	
	Value			Description
	0			Scan conversion mode is deactivated after one sequence.

Bit	Name	Reset	Access	Description
	1			Scan conversion mode repeats continuously until SCANSTOP is written.

27.5.7 ADCn_SCANCTRLX - Scan Control Register Continued

Offset														Bi	t Po	siti	on														
0x01C	31	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	3	2	_	0
Reset	ç) N		0			0x00						0x0		0		0	2	OXO			0×0			2	OXO		0		0x0	
Access	2	<u>}</u>		₩							₩		RW		₩ M	2	<u>}</u>			X ≷			2	<u>}</u>		R W		RW			
Name	24	REPUELAT		CONVSTARTDELAYEN			CONVSTARTDELAY						PRSSEL		PRSMODE		FIFOOFACT	70	ار ا			VINATT			V.D.E.A.T.T	VÄETÄ		VREFATTFIX		VREFSEL	
Bit	Nam	е				Re	set			Ac	ces	s [Des	crip	tion																

	H	8	R I VO N
Bit	Name	Reset Acces	s Description
31:29	REPDELAY	0x0 RW	REPDELAY Select for SCAN REP Mode
	Delay value between	two repeated conversion	ns.
	Value	Mode	Description
	0	NODELAY	No delay
	1	4CYCLES	4 conversion clock cycles
	2	8CYCLES	8 conversion clock cycles
	3	16CYCLES	16 conversion clock cycles
	4	32CYCLES	32 conversion clock cycles
	5	64CYCLES	64 conversion clock cycles
	6	128CYCLES	128 conversion clock cycles
	7	256CYCLES	256 conversion clock cycles
28	Reserved	To ensure compatibilit	y with future devices, always write bits to 0. More information in 1.2 Conven-
27	CONVSTARTDE- LAYEN	0 RW	Enable Delaying Next Conversion Start
	Delay value for next of	conversion start event.	
	Value		Description
			CONVOTABLE AV :- disabled
	0		CONVSTARTDELAY is disabled
	1		CONVSTARTDELAY is disabled CONVSTARTDELAY is enabled.
26:22		0x00 RW	
26:22	1 CONVSTARTDELAY		CONVSTARTDELAY is enabled.
26:22	1 CONVSTARTDELAY		CONVSTARTDELAY is enabled. Delay Next Conversion Start If CONVSTARTDELAYEN is Set

Bit	Name	Reset	Access	Description
21:20	Reserved	To ensure co	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
19:17	PRSSEL	0x0	RW	Scan Sequence PRS Trigger Select
	Select PRS trigge	r for scan sequenc	ce.	
	Value	Mode		Description
	0	PRSCH0		PRS ch 0 triggers scan sequence
	1	PRSCH1		PRS ch 1 triggers scan sequence
	2	PRSCH2		PRS ch 2 triggers scan sequence
	3	PRSCH3		PRS ch 3 triggers scan sequence
	4	PRSCH4		PRS ch 4 triggers scan sequence
	5	PRSCH5		PRS ch 5 triggers scan sequence
	6	PRSCH6		PRS ch 6 triggers scan sequence
	7	PRSCH7		PRS ch 7 triggers scan sequence
16	PRSMODE	0	RW	Scan PRS Trigger Mode
	PRS trigger mode	of scan.		
	Value	Mode		Description
	0	PULSED		Scan trigger is considered a regular async pulse that starts ADC warm-up, then acquisition/conversion sequence. The ADC_CLK controls the warmup-time.
	1	TIMED		Scan trigger should be a pulse long enough to provide the required warm-up time for the selected ADC warmup mode. The negative edge requests sample acquisition. DELAY can be used to delay the warm-up request if the pulse is too long.
15	Reserved	To ensure co	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
14	FIFOOFACT	0	RW	Scan FIFO Overflow Action
	Select how FIFO	pehaves when full		
	Value	Mode		Description
	0	DISCARD		FIFO stops accepting new data if full, triggers SCANOF IRQ.
	1	OVERWRIT	E	FIFO overwrites old data when full, triggers SCANOF IRQ.
13:12	DVL	0x0	RW	Scan DV Level Select
	Select Scan Data results are availat			when (DVL+1) number of scan channels have been converted and their
11:8	VINATT	0x0	RW	Code for VIN Attenuation Factor
	Used to set the VI	N attenuation fact	or.	
7:4	VREFATT	0x0	RW	Code for VREF Attenuation Factor When VREFSEL is 1, 2 or 5
	Used to set VREF	attenuation factor	۲.	

Bit	Name	Reset	Access	Description
3	VREFATTFIX	0	RW	Enable Fixed Scaling on VREF
	Enables fixed scal	ing on VREF		
	Value			Description
	0			VREFATT setting is used to scale VREF when VREFSEL is 1, 2 or 5.
	1			A fixed VREF attenuation is used to cover a large reference source range. When VREFATT = 0, the scaling factor is 1/4. For non-zero values of VREFATT, the scaling factor is 1/3.
2:0	VREFSEL	0x0	RW	Scan Channel Reference Selection
	Select reference V	/REF to ADC scan	channel mo	ode.
	Value	Mode		Description
	0	VBGR		Internal 0.83V Bandgap reference
	1	VDDXWATT		Scaled AVDD: AVDD*(the VREF attenuation factor)
	2	VDDXWATT VREFPWATT		Scaled AVDD: AVDD*(the VREF attenuation factor) Scaled singled ended external Vref: ADCn_EXTP*(the VREF attenuation factor)
			-	Scaled singled ended external Vref: ADCn_EXTP*(the VREF attenua-
	2	VREFPWATT		Scaled singled ended external Vref: ADCn_EXTP*(the VREF attenuation factor)
	3	VREFPWATT VREFP		Scaled singled ended external Vref: ADCn_EXTP*(the VREF attenuation factor) Raw single ended external Vref: ADCn_EXTP Scaled differential external Vref from : (ADCn_EXTP-

27.5.8 ADCn_SCANMASK - Scan Sequence Input Mask Register

Offset															Bit	Pos	tio	n													
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	9 4	2 3	4	13	12	7	10	6	8	7	9	2	4	က	2	- 0
Reset																0x0000000x0			·			·									
Access																R W															
Name																SCANINPUTEN															
Bit	Na	me					Re	set			Acc	cess	: D	esc	cript	tion															

Bit	Name	Reset	Access	Description
31:0	SCANINPUTEN	0x00000000	RW	Scan Sequence Input Mask

Set one or more bits in this mask to select which inputs are included in scan sequence in either single ended or differential mode. This works with SCANINPUTSEL register. The SCANINPUTSEL chooses 32 possible channels for single-ended or 32 pairs of possible channels for differential scanning from BUSes. These chosen channels are referred as ADCn_INPUTx in the description. Four even inputs from first group of 8 ADCn_INPUTx and four odd inputs from second group of 8 ADCn_INPUTx have programmable NEGSEL, defined in SCANNEGSEL register. If the SCANMASK is set to 0 and scan conversion is triggered, ADC will do a conversion with garbage results since no inputs were enabled for conversion.

Mode	Value	Description
DIFF = 0		
INPUT0	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	ADCn_INPUT0 included in mask
INPUT1	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	ADCn_INPUT1 included in mask
INPUT2	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	ADCn_INPUT2 included in mask
INPUT3	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	ADCn_INPUT3 included in mask
INPUT4	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	ADCn_INPUT4 included in mask
INPUT5	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	ADCn_INPUT5 included in mask
INPUT6	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	ADCn_INPUT6 included in mask
INPUT7	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	ADCn_INPUT7 included in mask
INPUT31	1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	ADCn_INPUT31 included in mask
DIFF = 1		
INPUT0INPUT0NEG- SEL	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT0 Negative input: chosen by IN-PUT0NEGSEL) included in mask

Namo	Rosot Access	Description
Name	Reset Access	Description (Positive input: ADCs INDUTA Negative input: ADCs INDUTS) incl
INPUT1INPUT2	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT1 Negative input: ADCn_INPUT2) included in mask
INPUT2INPUT2NEG- SEL	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT2 Negative input: chosen by IN-PUT2NEGSEL) included in mask
INPUT3INPUT4	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT3 Negative input: ADCn_INPUT4) inc ded in mask
INPUT4INPUT4NEG- SEL	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT4 Negative input: chosen by IN-PUT4NEGSEL) included in mask
INPUT5INPUT6	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT5 Negative input: ADCn_INPUT6) included in mask
INPUT6INPUT6NEG- SEL	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT6 Negative input: chosen by IN-PUT6NEGSEL) included in mask
INPUT7INPUT0	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT7 Negative input: ADCn_INPUT8) included in mask
INPUT8INPUT9	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT8 Negative input: ADCn_INPUT9) included in mask
INPUT9INPUT9NEG- SEL	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT9 Negative input: chosen by IN-PUT9NEGSEL) included in mask
INPUT10INPUT11	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT10 Negative input: ADCn_INPUT11) cluded in mask
INPUT11IN- PUT11NEGSEL	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT11 Negative input: chosen by IN-PUT11NEGSEL) included in mask
INPUT12INPUT13	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT12 Negative input: ADCn_INPUT13) cluded in mask
INPUT13IN- PUT13NEGSEL	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT13 Negative input: chosen by IN-PUT13NEGSEL) included in mask
INPUT14INPUT15	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT14 Negative input: ADCn_INPUT15) cluded in mask
INPUT15IN- PUT15NEGSEL	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT15 Negative input: chosen by IN-PUT15NEGSEL) included in mask
INPUT16INPUT17	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT16 Negative input: ADCn_INPUT17) cluded in mask
INPUT28INPUT29	xxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT28 Negative input: ADCn_INPUT29) cluded in mask
INPUT29INPUT30	xx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT29 Negative input: ADCn_INPUT30) cluded in mask
INPUT30INPUT31	x1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT30 Negative input: ADCn_INPUT31) cluded in mask
INPUT31INPUT24	1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(Positive input: ADCn_INPUT31 Negative input: ADCn_INPUT24) cluded in mask

27.5.9 ADCn_SCANINPUTSEL - Input Selection Register for Scan Mode

	_		•								an M																		
Offset			T							Bi	it Po	siti	on												_				
0x024	30 37	28 27 26 26		23	22	2	20	19	8	17	16	15	4	13	12	7	7		, α	1 (<u> </u>	ဖ	2	4		က	7		- c
Reset		0000							0x0								0										00x0		
Access		× ×							ΑW								2	2									R ≷		
Name		INPUT24TO31SEL							INPUT16TO23SEL								INDI ITRTO 15CE										INPUT0T07SEL		
Bit	Name		Reset			Ac	ces	s	Des	crip	tion																		
31:29	Reserved		To ens	ure	com	pati	bilit	y wi	th fu	ıture	dev	ices	s, al	way	's w	rite	bits	s to (Э. M	ore	info	orm	atic	on i	in	1.2	? Co	onv	en-
28:24	INPUT24T	O31SEL	0x00			RW	/		Inputs Chosen for ADCn_INPUT24-ADCn_INPUT31 as Referred in SCANMASK																				
	Mode		Value					Des	cript	tion																			
	APORT0C	Н0ТО7	0					Sele	ect A	POI	RT0	's C	H0-	CH:	7 as	Αſ)Cn	INF	רטי	Г24-	AD	Cn	_IN	۱P۱	UT	31			
	APORT0C	H8TO15	1					Sele	ect A	PO	RT0	's C	H8-	CH	15 a	s A	DC	n_IN	PL	JT2	4-Al	DC	n_l	INF	⊃U	ТЗ	1		
	APORT1C	H0TO7	4					Sele	ect A	POI	RT1	's C	H0-	CH.	7 as	Αľ	OCn _.	_INF	רטי	Г24-	AD	Cn	_IN	ΙPΙ	UT	31			
	APORT1C	H8TO15	5						Select APORT1's CH8-CH15 as ADCn_INPUT24-ADCn_INPUT31																				
	APORT1C	H16TO23	6						Select APORT1's CH16-CH23 as ADCn_INPUT24-ADCn_INPUT31																				
	APORT1C	H24TO31	7						Select APORT1's CH24-CH31 as ADCn_INPUT24-ADCn_INPUT31																				
	APORT2C	Н0ТО7	8						Sele	ect A	POI	RT2	's C	H0-	CH.	7 as	Α[)Cn	_INF	רטי	Г24-	AD	Cn	_IN	ΙPΙ	UT	31		
	APORT3C	Н0ТО7	12						Sele	ect A	POI	RT3	's C	H0-	CH.	7 as	Αľ)Cn	_INF	רטי	Г24-	AD	Cn	_IN	۱P۱	UT	31		
	APORT4C	Н0ТО7	16						Sele	ect A	POI	RT4	's C	H0-	CH.	7 as	Αľ	OCn _.	_INF	רטי	Γ24-	AD	Cn	_IN	ΙPΙ	UT	31		
			•																										
23:21	Reserved		To ens	To ensure compatibility w ions			y wi	th fu	uture	dev	ices	s, al	way	's W	rite	bits	s to (). M	ore	info	orm	atio	on i	in	1.2	? Co	onv	en-	
20:16	INPUT16T	O23SEL	0x00	x00 RW			Inputs Chosen for ADCn_INPUT16-ADCn_INPUT23 as Referred in SCANMASK																						
	Mode		Value	′alue				Description																					
	APORT0C	Н0ТО7	0						Select APORT0's CH0-CH7 as ADCn_INPUT16-ADCn_INPUT23																				
	APORT0C	H8TO15	1						Select APORT0's CH8-CH15 as ADCn_INPUT16-ADCn_INPUT23																				
	APORT1C	Н0ТО7	4						Select APORT1's CH0-CH7 as ADCn_INPUT16-ADCn_INPUT23																				

Bit	Name	Reset	Access	Description
	APORT1CH8TO15	5		Select APORT1's CH8-CH15 as ADCn_INPUT16-ADCn_INPUT23
	APORT1CH16TO23	6		Select APORT1's CH16-CH23 as ADCn_INPUT16-ADCn_INPUT23
	APORT1CH24TO31	7		Select APORT1's CH24-CH31 as ADCn_INPUT16-ADCn_INPUT23
	APORT2CH0TO7	8		Select APORT2's CH0-CH7 as ADCn_INPUT16-ADCn_INPUT23
	APORT3CH0TO7	12		Select APORT3's CH0-CH7 as ADCn_INPUT16-ADCn_INPUT23
		•		
	APORT4CH0TO7	16		Select APORT4's CH0-CH7 as ADCn_INPUT16-ADCn_INPUT23
15:13	Reserved	To ensure comp	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
12:8	INPUT8TO15SEL	0x00	RW	Inputs Chosen for ADCn_INPUT8-ADCn_INPUT15 as Referred in SCANMASK
	Mode	Value		Description
	APORT0CH0T07	0		Select APORT0's CH0-CH7 as ADCn_INPUT8-ADCn_INPUT15
	APORT0CH8TO15	1		Select APORT0's CH8-CH15 as ADCn_INPUT8-ADCn_INPUT15
	APORT1CH0TO7	4		Select APORT1's CH0-CH7 as ADCn_INPUT8-ADCn_INPUT15
	APORT1CH8TO15	5		Select APORT1's CH8-CH15 as ADCn_INPUT8-ADCn_INPUT15
	APORT1CH16TO23	6		Select APORT1's CH16-CH23 as ADCn_INPUT8-ADCn_INPUT15
	APORT1CH24TO31	7		Select APORT1's CH24-CH31 as ADCn_INPUT8-ADCn_INPUT15
	APORT2CH0TO7	8		Select APORT2's CH0-CH7 as ADCn_INPUT8-ADCn_INPUT15
	APORT3CH0TO7	12		Select APORT3's CH0-CH7 as ADCn_INPUT8-ADCn_INPUT15
	APORT4CH0TO7	16		Select APORT4's CH0-CH7 as ADCn_INPUT8-ADCn_INPUT15
7:5	Reserved	To ensure comp	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4:0	INPUT0T07SEL	0x00	RW	Inputs Chosen for ADCn_INPUT7-ADCn_INPUT0 as Referred in SCANMASK
	Mode	Value		Description
	APORT0CH0TO7	0		Select APORT0's CH0-CH7 as ADCn_INPUT0-ADCn_INPUT7
	APORT0CH8TO15	1		Select APORT0's CH8-CH15 as ADCn_INPUT0-ADCn_INPUT7
	APORT1CH0TO7	4		Select APORT1's CH0-CH7 as ADCn_INPUT0-ADCn_INPUT7
	APORT1CH8TO15	5		Select APORT1's CH8-CH15 as ADCn_INPUT0-ADCn_INPUT7

Bit	Name	Reset	Access	Description
	APORT1CH24TO31	7		Select APORT1's CH24-CH31 as ADCn_INPUT0-ADCn_INPUT7
	APORT2CH0TO7	8		Select APORT2's CH0-CH7 as ADCn_INPUT0-ADCn_INPUT7
	APORT3CH0TO7	12		Select APORT3's CH0-CH7 as ADCn_INPUT0-ADCn_INPUT7
	APORT4CH0TO7	16		Select APORT4's CH0-CH7 as ADCn_INPUT0-ADCn_INPUT7

27.5.10 ADCn_SCANNEGSEL - Negative Input Select Register for Scan

Second S	Offset				Bit Position													
Name Name Reset Access	0x028	330 330 239 237 27 27	25 24 25 23 23 22	20	16 17 18	15 41	13	1 01	တ ထ	7	5 4	8 2	- 0					
Name Roset Access Description Selects negative channel input Selects ADCn_INPUT12 as negative channel input Selects negative channel Input Selects ADCn_INPUT14 as negative channel input Selects negative channel Input Selects ADCn_INPUT18 as negative channel input Selects negative channel Input Selects ADCn_INPUT19 as negative channel input Selects negative channel Input Selects ADCn_INPUT19 as negative channel input Selects negative channel Input Selects ADCn_INPUT19 as negative channel input Selects ADCn_INPUT19 as negative c	Reset					0x0	0x3	0x2	0×1	0x3	0x2	0X	0x0					
Selects negative channel Name Reset Access Description	Access					A W W	A N	A W W	A W	A N	₩ N	₩ Š	RW					
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions	Name					INPUT15NEGSEL	INPUT13NEGSEL	INPUT11NEGSEL	INPUT9NEGSEL	INPUT6NEGSEL	INPUT4NEGSEL	INPUT2NEGSEL	INPUTONEGSEL					
15:14 INPUT15NEGSEL 0x0 RW Negative Input Select Register for ADCn_INPUT15 in Differential Scan Mode Selects negative channel Value Mode Description 0 INPUT8 Selects ADCn_INPUT8 as negative channel input 1 INPUT10 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT12 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 13:12 INPUT13NEGSEL 0x3 RW Negative Input Select Register for ADCn_INPUT13 in Differential Scan Mode Selects negative channel Value Mode Description 0 INPUT8 Selects ADCn_INPUT8 as negative channel input 1 INPUT10 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT11 as negative channel input 3 INPUT14 Selects ADCn_INPUT12 as negative channel input 1 INPUT14 Selects ADCn_INPUT14 as negative channel input 1 INPUT11NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode Selects negative channel	Bit	Name	Reset	Access	Description													
Scan Mode Selects negative channel	31:16	Reserved		mpatibility v	with future dev	ices, al	ways wr	ite bits t	o 0. Mo	re inforn	nation in	1.2 Co	nven-					
Value Mode Description	15:14	INPUT15NEGSEL	0x0	RW			ect Reg	ister fo	r ADCn	_INPUT	15 in Di	ifferenti	al					
O INPUT8 Selects ADCn_INPUT8 as negative channel input		Selects negative cha	nnel															
1 INPUT10 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT12 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 13:12 INPUT13NEGSEL 0x3 RW Negative Input Select Register for ADCn_INPUT13 in Differential Scan Mode Selects negative channel Value Mode Description 0 INPUT8 Selects ADCn_INPUT8 as negative channel input 1 INPUT10 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT10 as negative channel input 3 INPUT14 Selects ADCn_INPUT12 as negative channel input 1 Selects ADCn_INPUT14 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 11:10 INPUT11NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode		Value	Mode		Description													
2 INPUT12 Selects ADCn_INPUT12 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 13:12 INPUT13NEGSEL 0x3 RW Negative Input Select Register for ADCn_INPUT13 in Differential Scan Mode Selects negative channel Value Mode Description 0 INPUT8 Selects ADCn_INPUT8 as negative channel input 1 INPUT10 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT12 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 11:10 INPUT1NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode		0	INPUT8		Selects ADO	Cn_INPl	JT8 as r	negative	channe	el input								
3 INPUT14 Selects ADCn_INPUT14 as negative channel input 13:12 INPUT13NEGSEL 0x3 RW Negative Input Select Register for ADCn_INPUT13 in Differential Scan Mode Selects negative channel Value Mode Description 0 INPUT8 Selects ADCn_INPUT8 as negative channel input 1 INPUT10 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT12 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 11:10 INPUT11NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode		1	INPUT10		Selects ADO	Cn_INPl	JT10 as	negativ	e chanr	nel input								
13:12 INPUT13NEGSEL 0x3 RW Negative Input Select Register for ADCn_INPUT13 in Differential Scan Mode Selects negative channel Value Mode Description 0 INPUT8 Selects ADCn_INPUT8 as negative channel input 1 INPUT10 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT12 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 11:10 INPUT11NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode		2	INPUT12		Selects ADO	Cn_INPl	JT12 as	negativ	e chanr	el input								
Selects negative channel Value Mode Description 0 INPUT8 Selects ADCn_INPUT8 as negative channel input 1 INPUT10 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT12 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 11:10 INPUT11NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode		3	INPUT14		Selects ADO	Cn_INPl	JT14 as	negativ	e chanr	el input								
Value Mode Description 0 INPUT8 Selects ADCn_INPUT8 as negative channel input 1 INPUT10 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT12 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 11:10 INPUT11NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode	13:12	INPUT13NEGSEL	0x3	RW			ect Reg	ister fo	r ADCn	_INPUT	13 in Di	ifferenti	al					
0 INPUT8 Selects ADCn_INPUT8 as negative channel input 1 INPUT10 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT12 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 11:10 INPUT11NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode Selects negative channel		Selects negative cha	nnel															
1 INPUT10 Selects ADCn_INPUT10 as negative channel input 2 INPUT12 Selects ADCn_INPUT12 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 11:10 INPUT11NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode Selects negative channel		Value	Mode		Description													
2 INPUT12 Selects ADCn_INPUT12 as negative channel input 3 INPUT14 Selects ADCn_INPUT14 as negative channel input 11:10 INPUT11NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode Selects negative channel		0	INPUT8		Selects ADO	Cn_INPl	JT8 as r	negative	channe	el input								
3 INPUT14 Selects ADCn_INPUT14 as negative channel input 11:10 INPUT11NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode Selects negative channel		1	INPUT10		Selects ADO	Cn_INPl	JT10 as	negativ	e chanr	nel input								
11:10 INPUT11NEGSEL 0x2 RW Negative Input Select Register for ADCn_INPUT11 in Differential Scan Mode Selects negative channel		2	INPUT12		Selects ADO	Cn_INPl	JT12 as	negativ	e chanr	nel input								
Scan Mode Selects negative channel		3	INPUT14		Selects ADO	Cn_INPl	JT14 as	negativ	e chanr	nel input								
	11:10	INPUT11NEGSEL	0x2	RW			ect Reg	ister fo	r ADCn	_INPUT	11 in Di	ifferenti	al					
Value Made Description		Selects negative cha	nnel															
value Mode Description		Value	Mode		Description													
0 INPUT8 Selects ADCn_INPUT8 as negative channel input		0	INPUT8		Selects ADO	Cn_INPl	JT8 as r	negative	channe	el input								
1 INPUT10 Selects ADCn_INPUT10 as negative channel input		1	INPUT10		Selects ADO	Cn_INPl	JT10 as	negativ	e chanr	nel input								
2 INPUT12 Selects ADCn_INPUT12 as negative channel input		2	INPUT12		Selects ADCn_INPUT12 as negative channel input													
3 INPUT14 Selects ADCn_INPUT14 as negative channel input		3	INPUT14		Selects ADO	Cn_INPU	JT14 as	negativ	e chanr	nel input								

Bit	Name	Reset	Access	Description
9:8	INPUT9NEGSEL	0x1	RW	Negative Input Select Register for ADCn_INPUT9 in Differential Scan Mode
	Selects negative cha	annel		
	Value	Mode		Description
	0	INPUT8		Selects ADCn_INPUT8 as negative channel input
	1	INPUT10		Selects ADCn_INPUT10 as negative channel input
	2	INPUT12		Selects ADCn_INPUT12 as negative channel input
	3	INPUT14		Selects ADCn_INPUT14 as negative channel input
7:6	INPUT6NEGSEL	0x3	RW	Negative Input Select Register for ADCn_INPUT1 in Differential Scan Mode
	Selects negative cha	annel		
	Value	Mode		Description
	0	INPUT1		Selects ADCn_INPUT1 as negative channel input
	1	INPUT3		Selects ADCn_INPUT3 as negative channel input
	2	INPUT5		Selects ADCn_INPUT5 as negative channel input
	3	INPUT7		Selects ADCn_INPUT7 as negative channel input
5:4	INPUT4NEGSEL	0x2	RW	Negative Input Select Register for ADCn_INPUT4 in Differential Scan Mode
	Selects negative cha	annel		
	Value	Mode		Description
	0	INPUT1		Selects ADCn_INPUT1 as negative channel input
	1	INPUT3		Selects ADCn_INPUT3 as negative channel input
	2	INPUT5		Selects ADCn_INPUT5 as negative channel input
	3	INPUT7		Selects ADCn_INPUT7 as negative channel input
3:2	INPUT2NEGSEL	0x1	RW	Negative Input Select Register for ADCn_INPUT2 in Differential Scan Mode
	Selects negative cha	annel		
	Value	Mode		Description
	0	INPUT1		Selects ADCn_INPUT1 as negative channel input
	1	INPUT3		Selects ADCn_INPUT3 as negative channel input
	2	INPUT5		Selects ADCn_INPUT5 as negative channel input
	3	INPUT7		Selects ADCn_INPUT7 as negative channel input
1:0	INPUT0NEGSEL	0x0	RW	Negative Input Select Register for ADCn_INPUT0 in Differential Scan Mode
1:0	INPUT0NEGSEL Selects negative cha		RW	

C)	INPUT1	Selects ADCn_INPUT1 as negative channel input
1	1	INPUT3	Selects ADCn_INPUT3 as negative channel input
2	2	INPUT5	Selects ADCn_INPUT5 as negative channel input
3	3	INPUT7	Selects ADCn_INPUT7 as negative channel input

27.5.11 ADCn_CMPTHR - Compare Threshold Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	2	4	က	2	_	0
Reset			000000000000000000000000000000000000000																		1			0000	000000		1					-
Access								Š	<u> </u>															2	<u> </u>							
Name								F C	ADG															F	ADL							

Bit	Name	Reset	Access	Description
31:16	ADGT	0x0000	RW	Greater Than Compare Threshold
	Compare threshold v	alue for greater-	than compa	arison. Must match the conversion data representation chosen.
15:0	ADLT	0x0000	RW	Less Than Compare Threshold
	Compare threshold v	alue for less-tha	n comparis	son. Must match the conversion data representation chosen.

27.5.12 ADCn_BIASPROG - Bias Programming Register for Various Analog Blocks Used in ADC Operation

Offset												В	it Po	sitio	n														
0x030	30 29 29	28	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	α	1 0	_ (9	2	4	6	2	- 0
Reset		'	'		<u> </u>		<u> </u>				'		0				0			'	'	-	<u>'</u>			<u>'</u>		Ç	2
Access													§ S				¥ M											2	À Y
Name													GPBIASACC				VFAULTCLR												ADCBIASPROG
Bit	Name			Re	eset			Ac	ces	s	Des	crip	tior																
31:17	Reserved				ens ens	sure	cor	npat	ibilit	ty w	ith fu	ıture	de l	/ices	, al	ways	s wr	ite k	oits	to C	D. M	ore	info	orm	atio	on ii	n 1.	2 Co	nven-
16	GPBIASAC	С		0				RV	٧		Acc	ura	cy S	ettir	ıg f	or ti	ne S	yst	em	Bia	as C	Duri	ng	ΑD	C	Оре	erat	ion	
	Select bias unless all Al														ultip	ole A	\DC:	s, th	ne b	ias	will	us	e th	e h	igh	aco	cura	acy se	etting
	Value			М	ode						Des	crip	tion																
	0			Н	GHA	ACC					-		cura sour	-	ettir	ıg. L	Jse v	whe	n c	onfi	gur	ed 1	or a	an i	ntei	rnal	I VE	BGR r	ef-
	1			LC	AWC	CC								cy se ener		-	an b	e u	sec	l for	all	refe	erer	ice	s ot	her	tha	an VE	BGR
15:13	Reserved				ens ens	sure	cor	npat	tibilit	ty w	ith fu	ıture	de	/ices	, al	ways	s wr	ite k	oits	to C). M	lore	info	orm	atic	on ii	n 1.	2 Co	nven-
12	VFAULTCLI	R		0				RV	٧		Cle	ar V	REF	OF I	Flaç	3													
	Use this bit the ISR to conditions.																												
11:4	Reserved				ens ens	sure	cor	npat	tibilit	ty w	ith fu	ıture	e de	/ices	, al	ways	s wr	ite k	oits	to C	D. M	lore	info	orm	atic	on ii	n 1.	2 Co	nven-
3:0	ADCBIASPI	ROG		0x	:0			RV	٧		Bia	s Pr	ogra	amm	ing	Val	ue d	of A	nal	og	ΑD	C E	loc	k					
	These bits a	are use	ed to	adj	just 1	the I	oias	cur	rent	in A	ADC	ana	log l	olock	ί.														
	Value			М	ode						Des	crip	tion																
	0			NC	ORM	IAL					Nor	mal	pow	er (u	se	for 1	Msp	os o	per	atio	n)								
	4			SC	CALE	Ξ2					Sca	ling	bias	to 1	/2														
	8			SC	CALE	Ξ4					Sca	ling	bias	to 1	/4														
	12			SC	CALE	≣8					Sca	ling	bias	to 1	/8														
	14			SC	CALE	≣16					Sca	ling	bias	to 1	/16														
	15				- A I I	E32					Sca	lina	hioo	4- 4	100														

27.5.13 ADCn_CAL - Calibration Register

Offset															Bit	t Po	sitio	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	0				0x40					7	Š			α >	o X		0				0x40					2	3			ÖXS	2	
Access	Z N				₽					2	<u>}</u>			2	<u>}</u>		RW				X M					2	2			Z N		
Name	CALEN				SCANGAIN					VINITERSECTION				COANOEEGET	SCANOPINE		OFFSETINVMODE				SINGLEGAIN					SINICI EDEESETINIV	2 2			SING! EOFESET		

	SC,		SC,	SC,	OF	SIS	<u>z</u>	S
Bit	Name	Reset	Acces	s Description	n			
31	CALEN	0	RW	Calibration	Мо	de is Enabled		
	When enabled, the a data conversion	idc performs	s conversion a	and sends raw o	data	to the ADC fifos. This can	also be used to o	lebug the adc
30:24	SCANGAIN	0x40	RW	Scan Mode	Gai	n Calibration Value		
		25 internal r	eference durir	ng reset, hence		nversions. This field is set reset value might differ from		
23:20	SCANOFFSETINV	0x7	RW	Scan Mode Mode	Off	set Calibration Value for	Negative Single	e-ended
	set to the production	offset calib	ration value fo	r the 1V25 inte	rnal ı	conversions for negative si reference during reset, her ement number. Higher valu	nce the reset valu	ue might differ
19:16	SCANOFFSET	0x8	RW	Scan Mode gle-ended		set Calibration Value for	Differential or F	Positive Sin-
	This field is set to the	e production	offset calibra	tion value for th	ne 1\	onversions for differential /25 internal reference during de 2's complement number	ng reset, hence t	he reset value
15	OFFSETINVMODE	0	RW	Negative S	ingle	e-ended Offset Calibratio	n is Enabled	
						singled ended conversion sitive single-ended or differ		
14:8	SINGLEGAIN	0x40	RW	Single Mod	le G	ain Calibration Value		
		25 internal ı	eference durir	ng reset, hence		onversions. This field is se reset value might differ fro		
7:4	SINGLEOFFSETINV	′ 0x7	RW	Single Mod Mode	de Of	ffset Calibration Value fo	r Negative Sing	le-ended
	set to the production	offset calib	ration value fo	or the 1V25 inte	rnal	conversions for negative s	nce the reset val	ue might differ

from device to device. The field is encoded as a signed 2's complement number. Higher values lead to lower ADC results.

Bit	Name	Reset	Access	Description
3:0	SINGLEOFFSET	0x8	RW	Single Mode Offset Calibration Value for Differential or Positive Single-ended Mode
	This field is set to the	production offs	et calibration	e used with single conversions for differential or positive single-ended mode. on value for the 1V25 internal reference during reset, hence the reset value encoded as a signed 2's complement number. Higher values lead to lower

27.5.14 ADCn_IF - Interrupt Flag Register

Offset															Ві	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	2	_	0
Reset			0	0	0	0	0	0						•	0	0					0	0	0	0			'				0	0
Access			2	22	22	œ	2	~							22	22					~	22	<u>~</u>	22							œ	<u>~</u>
Name			EM23ERR	PRSTIMEDERR	SCANPEND	SCANEXTPEND	PROGERR	VREFOV							SCANCMP	SINGLECMP					SCANUF	SINGLEUF	SCANOF	SINGLEOF							SCAN	SINGLE

	S B B S	S R S		S S		S S
Bit	Name	Reset	Access	Description		
31:30	Reserved	To ensure tions	compatibility	with future devices, alw	ays write bits to 0. More information	on in 1.2 Conven-
29	EM23ERR	0	R	EM23 Entry Error Fla	ag	
	Indicates that an inc	orrect clock wa	as selected a	s ADC_CLK when going	g into EM23 resulting in an incorre	ect conversion.
28	PRSTIMEDERR	0	R	PRS Timed Mode Er	ror Flag	
	Indicates that in PR	S timed mode,	a PRS nega	tive edge arrived before	the AT event and it was ignored.	
27	SCANPEND	0	R	Scan Trigger Pendir	ng Flag	
	Indicates that an ex	ternal scan (e.ç	g., LESENSE	triggered) is running ar	nd PRS/software triggered scan ha	as gone pending.
26	SCANEXTPEND	0	R	External Scan Trigg	er Pending Flag	
	Indicates that a PRS ing.	S/software trigg	jered scan is	running and the externa	al scan (e.g., LESENSE triggered)	has gone pend-
25	PROGERR	0	R	Programming Error	Interrupt Flag	
	Indicates that a prog	gramming error	has occurre	d. Read the STATUS re	gister for cause.	
24	VREFOV	0	R	VREF Over Voltage	Interrupt Flag	
	Indicates that attenuence when this hap				he ADC stops converting and disc	connects the refer-
23:18	Reserved	To ensure tions	compatibility	with future devices, alw	ays write bits to 0. More information	on in 1.2 Conven-
17	SCANCMP	0	R	Scan Result Compa	re Match Interrupt Flag	
	Indicates scan resul	t compare mat	ched the win	dow conditions when thi	s bit is set.	
16	SINGLECMP	0	R	Single Result Comp	are Match Interrupt Flag	
	Indicates single resu	ult compare ma	atched the wi	ndow conditions when the	nis bit is set.	
15:12	Reserved	To ensure tions	compatibility	with future devices, alw	ays write bits to 0. More information	on in 1.2 Conven-
11	SCANUF	0	R	Scan FIFO Underflo	w Interrupt Flag	
	Indicates scan resul able.	t FIFO underflo	ow when this	bit is set. An underflow	occurs if the FIFO is read and the	re is no data avail-
10	SINGLEUF	0	R	Single FIFO Underflo	ow Interrupt Flag	
	Indicates single resu available.	ult FIFO underf	low when thi	s bit is set. An underflow	occurs if the FIFO is read and th	ere is no data

Bit	Name	Reset	Access	Description
9	SCANOF	0	R	Scan FIFO Overflow Interrupt Flag
	Indicates scan re result.	sult FIFO overflow	w when this b	it is set. An overflow occurs if there is not room in the FIFO to store a new
8	SINGLEOF	0	R	Single FIFO Overflow Interrupt Flag
	Indicates single r result.	esult FIFO overflo	ow when this l	bit is set. An overflow occurs if there is not room in the FIFO to store a new
7:2	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
1	SCAN	0	R	Scan Conversion Complete Interrupt Flag
		•		Coun Conversion Complete interrupt ring
	Indicates (DVL+1	-	channel resu	alts are available in the Scan FIFO.
0	Indicates (DVL+1	-	channel resu	·
0	SINGLE) number of scan	R	ilts are available in the Scan FIFO.

27.5.15 ADCn_IFS - Interrupt Flag Set Register

27.3.13	.50			, u	P. 1	.~y	J-01	٠.٠٠٤	,	-																					
Offset														Ві	it Po	ositi	on														
0x03C	33	59	28	27	26	25	24	23	22	2	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	ဖ	2	4	က	7	_	0
Reset		0	0	0	0	0	0							0	0					0	0	0	0								
Access		>	X	×	×	×	×							Ž	8					×	W K	X	×								
Name		EM23ERR	PRSTIMEDERR	SCANPEND	SCANEXTPEND	PROGERR	VREFOV							SCANCMP	SINGLECMP					SCANUF	SINGLEUF	SCANOF	SINGLEOF								
Bit	Name					Re	set			Ac	ces	s	Des	crip	tior	1															
31:30	Reser	ved				To tio		ure	con	npat	ibilit	y wi	ith fu	ıture	e de	vices	s, al	way	s wr	ite b	its t	o 0.	Мо	re in	forn	natio	on in	1.2	Cor	iven)-
29	EM23E	ERR				0				W1	1		Set	EM2	23E	RR I	Inte	rrup	t Fla	ag											
	Write 1	1 to s	set t	he E	EM2	3EF	RR ir	nterr	upt	flag																					
28	PRSTI	IMED	DER	R		0				W1	1		Set	PRS	STIN	/IED	ERF	R Int	erru	ıpt l	Flag										
	Write '	1 to s	set t	he F	PRS	TIM	EDE	ERR	inte	errup	ot fla	ag																			
27	SCAN	PEN	D			0				W1	1		Set	SCA	ANP	ENI) In	terrı	upt l	Flag											
	Write 1	1 to s	set t	he S	SCA	NPE	END	inte	errup	ot fla	g																				
26	SCAN	EXT	PEN	1D		0				W1	1		Set	SCA	ANE	XTF	PEN	D In	terr	upt	Flag	3									
	Write '	1 to s	set t	he S	SCA	NE	(TP	END) int	erru	pt fla	ag																			
25	PROG					0				W1			Set	PRO	OGE	RR	Inte	erru	pt Fl	lag											
-	Write '		set t	he F	PRO		RR i	nter	rupt																						
24	VREF					0				W1	1		Set	VRE	ΞFO	V In	terr	upt	Flag	3											
	Write '		set t	he \	/RE				•			,						,		., ,	., ,	_			•			4.0	_		
23:18	Resen					tio		sure	con	•		y wi	ith fu	iture	e de	vices	s, al	way	s wr	ite E	its t	0 0.	Moi	re in	itorn	natio	on in	1.2	Cor	iven)-
17	SCAN					0				W1			Set	SCA	ANC	MP	Inte	erru	pt Fl	lag											
	Write '			he S	SCA	NCI	MP i	nter	rupt																						
16	SINGL					0				W1			Set	SIN	GLE	ECM	IP Ir	iterr	upt	Fla	9										
	Write '		set t	he S	SINC																										
15:12	Reser	ved				To tio		ure	con	npat	ibilit	y wi	ith fu	iture	e de	vices	s, al	way	s wr	ite b	its t	o 0.	Мо	re in	forn	natio	on in	1.2	Cor	iven)-
11	SCAN	UF				0				W1	1		Set	SCA	ANU	IF In	iterr	upt	Flag	g											
	Write 1	1 to s	set t	he S	SCA	NUF	- int	erru	pt fl	ag																					
10	SINGL	.EUF	=			0				W1	1		Set	SIN	GLE	UF	Inte	erru	pt Fl	lag											
	Write '	1 to s	set t	he S	SINC	GLE	UF i	nter	rupt	flag	J																				
9	SCAN	OF				0				W1	1		Set	SCA	ANC)F Ir	iteri	rupt	Fla	g											

Write 1 to set the SCANOF interrupt flag

Bit	Name	Reset	Access	Description
8	SINGLEOF	0	W1	Set SINGLEOF Interrupt Flag
	Write 1 to set the SIN	IGLEOF interrup	ot flag	
7:0	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-

27.5.16 ADCn_IFC - Interrupt Flag Clear Register

Offset	Bit Position																														
0x040	30	53	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	-	0
Reset		0	0	0	0	0	0				•		<u>'</u>	0	0		'			0	0	0	0			'		'			
Access		(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1							(R)W1	(R)W1					(R)W1	(R)W1	(R)W1	(R)W1								
Name		EM23ERR	PRSTIMEDERR	SCANPEND	SCANEXTPEND	PROGERR	VREFOV							SCANCMP	SINGLECMP					SCANUF	SINGLEUF	SCANOF	SINGLEOF								
Bit	Name Reset Access Description																														
31:30	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions															nven	-														
29	EM23ERR 0 (R)W1 Clear EM23ERR Interrupt Flag																														
	Write 1 to clear the EM23ERR interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).																														
28	PRSTIMEDERR 0 (R)W1 Clear PRSTIMEDERR Interrupt Flag																														
	Write 1 to clear the PRSTIMEDERR interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).																														
27	SCANPEND 0 (R)W1 Clear SCANPEND Interrupt Flag																														
	Write 1 to clear the SCANPEND interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).																														
26	SCANEXTPEND 0 (R)W1 Clear SCANEXTPEND Interrupt Flag																														
	Write 1 to clear the SCANEXTPEND interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).																														
25	PROGERR 0 (R)W1 Clear PROGERR Interrupt Flag																														
	Write 1 to clear the PROGERR interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).																														
24	VREFO	VC				0				(R)	W1		Clea	ır VI	REF	OV	Inte	rrup	ot Fl	ag											
	Write 1 (This fe												ng re	eturr	ns th	ie va	lue	of th	ne IF	an	d cl	ears	the	corr	espo	ond	ing i	inte	rrupt	flag	s
23:18	Reserv	ed .				To tio		ure	con	npati	ibilit	y wi	th fu	ture	dev	vices	, alv	vays	s wri	te b	its t	0 0.	Мо	re int	form	atio	n in	1.2	? Coi	nven	
17	SCAN	CMP			(R)	(R)W1 Clear SCANCMP Interrupt Flag																									
	Write 1 flags (1														ırns	the	valu	ie of	the	IF a	and	clea	ırs tl	ne co	orres	por	ndin	g in	terru	ıpt	
16	SINGL	ECN	/IP			0				(R)	W1		Clea	ır SI	NG	LEC	MP	Inte	rrup	ot F	lag										
	Write 1 flags (1														eturr	ns th	e va	alue	of th	ne II	= an	d cl	ears	the	corr	esp	ond	ling	inte	rrupt	

To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-

tions

Reserved

15:12

Bit	Name	Reset	Access	Description
11	SCANUF	0	(R)W1	Clear SCANUF Interrupt Flag
	Write 1 to clear the (This feature mus		. •	ding returns the value of the IF and clears the corresponding interrupt flags.
10	SINGLEUF	0	(R)W1	Clear SINGLEUF Interrupt Flag
	Write 1 to clear the flags (This feature			eading returns the value of the IF and clears the corresponding interrupt MSC.).
9	SCANOF	0	(R)W1	Clear SCANOF Interrupt Flag
	Write 1 to clear the (This feature mus			ding returns the value of the IF and clears the corresponding interrupt flags .
8	SINGLEOF	0	(R)W1	Clear SINGLEOF Interrupt Flag
	Write 1 to clear the flags (This feature			eading returns the value of the IF and clears the corresponding interrupt MSC.).
7:0	Reserved	To ensure tions	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-

27.5.17 ADCn_IEN - Interrupt Enable Register

Offset														В	it F	Pos	ition														
0x044	31	29	28	27	26	25	24	23	22	21	20	19	18	17	16	2 ,	<u>u</u> 4	13	1,	<u>;</u>	19	6	8	7	9	5	4	- (ى ر	1 4	-
Reset		0	0	0	0	0	0							0	_	5				0	0	0	0								5 0
Access		₹	₩ M	₹	S S S	₹	S. S.							₹	38					Z N	₩ M	Z.	₹							Ž	
Name		EM23ERR F	PRSTIMEDERR	SCANPEND	SCANEXTPEND	PROGERR	VREFOV							SCANCMP	SINGI ECMP					SCANUF	SINGLEUF	SCANOF	SINGLEOF							24	
Bit	Name					Re	set			Ac	ces	s	Des	crip	otic	on															
31:30	Reserv	∕ed				To tio		ure	con	npat	ibilit	y w	ith fu	ıture	e de	evic	es, e	lway	ys v	vrite	bits	to 0.	Мо	re in	nfor	mat	ion	in 1	1.2 C	onv	en-
29	EM23E	ERR	,			0				RV	V		EM2	23EI	RR	Int	erru	ot E	nak	le											
	Enable	e/dis	able	the	EM	123E	RR	inte	rrup	ot																					
28	PRSTI	ME	DER	R		0				RV	V		PRS	STIN	1EI	DEI	RR In	terr	upt	Ena	ble										
	Enable	e/dis	able	the	PR	STII	MEC	ER	R in	terr	upt																				
27	SCAN	PEN	ID			0				RV	V		SCA	NP	ΕN	ID I	nteri	upt	En	able											
	Enable	e/dis	able	the	SC	ANF	PEN	D in	terr	upt																					
26	SCAN	EXT	PEN	1D		0				RV	V		SCA	NE	ΧT	PE	ND I	nter	rup	t Ena	able										
	Enable	e/dis	able	the	SC	ANE	EXTI	PEN	ID ir	nterr	upt																				
25	PROG	ERF	3			0				RV	V		PRO	OGE	RF	₹ In	terru	pt E	Ena	ble											
	Enable	e/dis	able	the	PR	OGI	ERR	inte	erru	pt																					
24	VREF	VC				0				RV	V		VRE	FO	۷I	nte	rrup	En	abl	е											
	Enable	e/dis	able	the	VR	EFC)V ir	nterr	upt																						
23:18	Reserv	ved				To tio		ure	con	npat	ibilit	y w	ith fu	iture	e de	evic	es, e	lway	ys v	vrite	bits	to 0.	Мо	re in	nfor	mat	ion	in 1	1.2 C	onv	en-
17	SCAN	CMF)			0				RV	V		SCA	ANC	MF	P In	terru	pt E	Ena	ble											
	Enable	e/dis	able	the	SC	ANG	CMP	inte	erru	pt																					
16	SINGL	.ECN	ИP			0				RV	V		SIN	GLE	CI	MP	Inter	rupt	t Er	nable	•										
	Enable	e/dis	able	the	SIN	IGL	ECM	1P ir	nter	rupt																					
15:12	Reserv	∕ed				To tio		ure	con	npat	ibilit	y w	ith fu	iture	e de	evic	es, a	lway	ys v	vrite	bits	to 0.	Мо	re in	nfor	mat	ion	in 1	1.2 C	onv	en-
11	SCAN	UF				0				RV	V		SCA	NU	FΙ	Inte	rrup	t En	abl	е											
	Enable	e/dis	able	the	SC	ANU	JF ir	nterr	upt																						
10	SINGL	.EUF	=			0				RV	V		SIN	GLE	UI	F In	terru	pt E	Ena	ble											
	Enable	e/dis	able	the	SIN	IGL	EUF	inte	erru	pt																					

0

Enable/disable the SCANOF interrupt

RW

SCANOF Interrupt Enable

SCANOF

9

Bit	Name	Reset	Access	Description
8	SINGLEOF	0	RW	SINGLEOF Interrupt Enable
	Enable/disable th	e SINGLEOF inte	rrupt	
7:2	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
1	SCAN	0	RW	SCAN Interrupt Enable
	Enable/disable th	e SCAN interrupt		
0	SINGLE	0	RW	SINGLE Interrupt Enable
	Enable/disable th	e SINGLE interru	pt	

27.5.18 ADCn_SINGLEDATA - Single Conversion Result Data (Actionable Reads)

Offset	Bit Position	
0x048	1	- 0
Reset	00000000000000000000000000000000000000	
Access	<u>~</u>	
Name	DATA	

Bit	Name	Reset	Access	Description
31:0	DATA	0x00000000	R	Single Conversion Result Data
	This register holds the	e results from th	e last single	e channel mode conversion. Reading this field pops one entry from the

27.5.19 ADCn_SCANDATA - Scan Conversion Result Data (Actionable Reads)

Offset															Bi	t Pc	siti	on														
0x04C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset																	nnnnnnnn															
Access																ב	צ															
Name																F C	DAIA															

Bit	Name	Reset	Access	Description
31:0	DATA	0x00000000	R	Scan Conversion Result Data
	The register holds the	results from the	e last scan	mode conversion. Reading this field pops one entry from the SCAN FIFO.

SINGLE FIFO.

27.5.20 ADCn_SINGLEDATAP - Single Conversion Result Data Peek Register

Offset															Bi	t Po	siti	on														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset																000000000000000000000000000000000000000	000000000000000000000000000000000000000															
Access																۵	۷															
Name																	L (

Bit	Name	Reset	Access	Description
31:0	DATAP	0x00000000	R	Single Conversion Result Data Peek

The register holds the results from the last single channel mode conversion. Reading this field will not pop an entry from the SINGLE FIFO.

27.5.21 ADCn_SCANDATAP - Scan Sequence Result Data Peek Register

Offset															Bi	t Pc	siti	on														
0x054	31	30	59	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	_	0
Reset																	nnnnnnnn															
Access																٥	۲															
Name																C < + < C	L 2 2															

Bit	Name	Reset	Access	Description
31:0	DATAP	0x00000000	R	Scan Conversion Result Data Peek
	The register holds the FIFO.	e results from the	e last scan	mode conversion. Reading this field will not pop an entry from the SCAN

27.5.22 ADCn_SCANDATAX - Scan Sequence Result Data + Data Source Register (Actionable Reads)

Offset		Bit Po	sition
0x068	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16 17 18	4 1
Reset		00×0	0000×0
Access		<u>~</u>	<u>~</u>
Name		SCANINPUTID	DATA

Bit	Name	Reset	Access	Description
31:21	Reserved	To ensure cor tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
20:16	SCANINPUTID	0x00	R	Scan Conversion Input ID
	Indicates from which	input the results	in SCAND	DATA originated. Reading this field pops one entry from the SCAN FIFO.
15:0	DATA	0x0000	R	Scan Conversion Result Data
	Holds the results from	the last scan c	onversion.	Reading this field pops one entry from the SCAN FIFO.

27.5.23 ADCn_SCANDATAXP - Scan Sequence Result Data + Data Source Peek Register

Offset															Bi	t Po	sitio	on														
0x06C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	တ	∞	7	9	5	4	က	7	_	0
Reset														0000										0000	nnnnn	,						
Access														~										۵	צ							
Name														SCANINPUTIDPEEK											DATAP							

Bit	Name	Reset	Access	Description
31:21	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
20:16	SCANINPUTIDPEEK	0x00	R	Scan Conversion Data Source Peek
	Indicates from which in SCAN FIFO.	nput channel the	e results in	SCANDATA originated. Reading this field does not pop any entry from the
15:0	DATAP	0x0000	R	Scan Conversion Result Data Peek
	The register holds the FIFO.	results from the	e last scan	conversion. Reading this field does not pop any entry from the SCAN

27.5.24 ADCn_APORTREQ - APORT Request Status Register

Offset															Bi	t Po	siti	on														
0x07C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	7	_	0
Reset			'		'							•			•								0	0	0	0	0	0	0	0	0	0
Access																							22	œ	œ	œ	œ	œ	œ	œ	ď	ď
Name																							APORT4YREQ	APORT4XREQ	APORT3YREQ	APORT3XREQ	APORT2YREQ	APORT2XREQ	APORT1YREQ	APORT1XREQ	APORTOYREQ	APORT0XREQ

Name	Reset	Access	Description
Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
APORT4YREQ	0	R	1 If the Bus Connected to APORT4Y is Requested
Reports if the bus con	nected to APOF	RT4Y is be	ing requested from the APORT
APORT4XREQ	0	R	1 If the Bus Connected to APORT4X is Requested
Reports if the bus con	nected to APOF	RT4X is be	ing requested from the APORT
APORT3YREQ	0	R	1 If the Bus Connected to APORT3Y is Requested
Reports if the bus con	nected to APOF	RT3Y is be	ing requested from the APORT
APORT3XREQ	0	R	1 If the Bus Connected to APORT3X is Requested
Reports if the bus con	nected to APOF	RT3X is be	ing requested from the APORT
APORT2YREQ	0	R	1 If the Bus Connected to APORT2Y is Requested
Reports if the bus con	nected to APOF	RT2Y is be	ing requested from the APORT
APORT2XREQ	0	R	1 If the Bus Connected to APORT2X is Requested
Reports if the bus con	nected to APOF	RT2X is be	ing requested from the APORT
APORT1YREQ	0	R	1 If the Bus Connected to APORT1Y is Requested
Reports if the bus con	nected to APOF	RT1Y is be	ing requested from the APORT
APORT1XREQ	0	R	1 If the Bus Connected to APORT1X is Requested
Reports if the bus con	nected to APOF	RT1X is be	ing requested from the APORT
APORT0YREQ	0	R	1 If the Bus Connected to APORT0Y is Requested
Reports if the bus con	nected to APOR	RT0Y is be	ing requested from the APORT
APORT0XREQ	0	R	1 If the Bus Connected to APORT0X is Requested
Reports if the bus con	nected to APOR	RT0X is be	ing requested from the APORT
	Reserved APORT4YREQ Reports if the bus cor APORT3YREQ Reports if the bus cor APORT3YREQ Reports if the bus cor APORT3XREQ Reports if the bus cor APORT2YREQ Reports if the bus cor APORT2YREQ Reports if the bus cor APORT1YREQ Reports if the bus cor APORT0YREQ Reports if the bus cor	Reserved To ensure contions APORT4YREQ Reports if the bus connected to APORT4XREQ Reports if the bus connected to APORTAYREQ Reserved To ensure compatibility vitions APORT4YREQ 0 R Reports if the bus connected to APORT4Y is be APORT4XREQ 0 R Reports if the bus connected to APORT4X is be APORT3YREQ 0 R Reports if the bus connected to APORT3Y is be APORT3XREQ 0 R Reports if the bus connected to APORT3Y is be APORT2YREQ 0 R Reports if the bus connected to APORT3X is be APORT2YREQ 0 R Reports if the bus connected to APORT2Y is be APORT2XREQ 0 R Reports if the bus connected to APORT2X is be APORT1YREQ 0 R Reports if the bus connected to APORT1Y is be APORT1YREQ 0 R Reports if the bus connected to APORT1Y is be APORT1XREQ 0 R Reports if the bus connected to APORT1X is be APORT1XREQ 0 R Reports if the bus connected to APORT1X is be	

27.5.25 ADCn_APORTCONFLICT - APORT Conflict Status Register

Offset															Bi	it Po	siti	on														
0x080	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	5	4	က	2	_	0
Reset							•				•				•	•							0	0	0	0	0	0	0	0	0	0
Access																							<u>~</u>	22	22	2	2	22	22	~	2	<u>~</u>
Name																							APORT4YCONFLICT	APORT4XCONFLICT	APORT3YCONFLICT	APORT3XCONFLICT	APORT2YCONFLICT	APORT2XCONFLICT	APORT1YCONFLICT	APORT1XCONFLICT	APORT0YCONFLICT	APORT0XCONFLICT

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
9	APORT4YCONFLICT	0	R	1 If the Bus Connected to APORT4Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT4Y is is a	also being requested by another peripheral
8	APORT4XCONFLICT	0	R	1 If the Bus Connected to APORT4X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT4X is is a	also being requested by another peripheral
7	APORT3YCONFLICT	0	R	1 If the Bus Connected to APORT3Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT3Y is is a	also being requested by another peripheral
6	APORT3XCONFLICT	0	R	1 If the Bus Connected to APORT3X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT3X is is a	also being requested by another peripheral
5	APORT2YCONFLICT	0	R	1 If the Bus Connected to APORT2Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT2Y is is a	also being requested by another peripheral
4	APORT2XCONFLICT	0	R	1 If the Bus Connected to APORT2X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT2X is is a	also being requested by another peripheral
3	APORT1YCONFLICT	0	R	1 If the Bus Connected to APORT1Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT1Y is is a	also being requested by another peripheral
2	APORT1XCONFLICT	0	R	1 If the Bus Connected to APORT1X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT1X is is a	also being requested by another peripheral
1	APORT0YCONFLICT	0	R	1 If the Bus Connected to APORT0Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT0Y is is a	also being requested by another peripheral

Bit	Name	Reset	Access	Description
0	APORT0XCONFLICT	0	R	1 If the Bus Connected to APORT0X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT0X is is a	also being requested by another peripheral

27.5.26 ADCn_SINGLEFIFOCOUNT - Single FIFO Count Register

0x084	Offset															Bi	t Po	siti	on														
Access ~ ~	0x084	31	30	59	78	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	19	တ	∞	7	9	2	4	က	7	_	0
	Reset		•		•		•											•					•									0X0	
Name	Access																															<u>~</u>	
	Name																															SINGLEDC	

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	SINGLEDC	0x0	R	Single Data Count
	Number of unread da	ta available in S	ingle FIFO	

27.5.27 ADCn_SCANFIFOCOUNT - Scan FIFO Count Register

Offset															Bi	t Po	siti	on														
0x088	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	_	0
Reset					•		•	•		•			•		•	•	•										•		•		0X0	
Access																															<u>~</u>	
Name																															SCANDC	

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	SCANDC	0x0	R	Scan Data Count
	Number of unread	d data available ir	n Scan FIFO.	

27.5.28 ADCn_SINGLEFIFOCLEAR - Single FIFO Clear Register

Offset	Bit Position	
0x08C	2 3 4 4 4 4 4 4 4 <th>- 0</th>	- 0
Reset		0
Access		W
Name		SINGLEFIFOCLEAR

Bit	Name	Reset	Access	Description							
31:1	Reserved	To ensure cortions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-							
0	SINGLEFIFOCLEAR	0	W1	Clear Single FIFO Content							
	Write a 1 to clear Sing	e a 1 to clear Single FIFO content.									

27.5.29 ADCn_SCANFIFOCLEAR - Scan FIFO Clear Register

Offset															Bi	it Po	siti	on														
0x090	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset		•	•	•				•		•	•	•		•	•	•	•		•			•	•		•	•	•	•	•	•	•	0
Access																																W
Name																																SCANFIFOCLEAR

Bit	Name	Reset	Access	Description						
31:1	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-						
0	SCANFIFOCLEAR	0	W1	Clear Scan FIFO Content						
	Write a 1 to clear Scan FIFO content.									

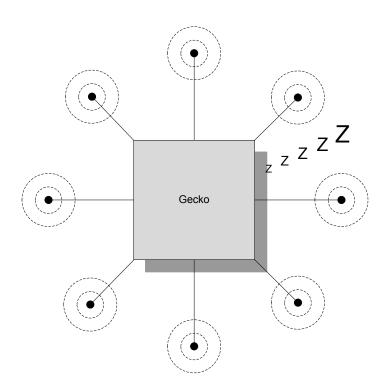
27.5.30 ADCn APORTMASTERDIS - APORT Bus Master Disable Register

Offset														Bi	t Pos	itic	on														
0x094	33	23	28	27	26	25	24	23	22	21	20	9	18	17	16	12	4	5 3	7	11	10	6	∞	7	9	2	4	က	2	_	
Reset	•		'							'		•	1	'				'	,			0	0	0	0	0	0	0	0		
Access																															
Name																						APORT4YMASTERDIS	APORT4XMASTERDIS	APORT3YMASTERDIS	APORT3XMASTERDIS	APORT2YMASTERDIS	APORT2XMASTERDIS	APORT1YMASTERDIS	APORT1XMASTERDIS		
Bit	Name	€				Re	set			Ac	cess	S	Des	crip	tion																
31:10	Rese	rved					To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven- ions																								
9	APOF DIS	RT4Y	MAS	STE	R-	0				RV	V		APC	ORT4	4Y M	ast	er C	Disab	le												
	ADC select	Determines if the ADC will request this APORT bus (if selected by POSSEL or NEGSEL or SCANINPUTSEL). When ADC only passively monitors the APORT bus and the selection of the channel for the selected bus is ignored. The channel selection is done by the device that masters the APORT bus. This bit allows multiple APORT connected devices to monit the same APORT bus simultaneously.														nne															
	Value	;											Des	cript	ion																_
	0												APC	DRT	mast	erir	ng e	nable	d												
	1												APC	PRT	mast	erir	ng d	isable	ed												
8	APOF DIS	RT4X	MAS	STE	R-	0				RV	V		APC	ORT4	4X M	ast	er C	Disab	le												
	ADC select	only p	oass s do	sivel ne b	y mo	onito e de	evice	e tha	ıt m	aste																					

Value	Description
0	APORT mastering enabled
1	APORT mastering disabled

7 APORT3YMASTER- 0 RW **APORT3Y Master Disable** DIS

Determines if the ADC will request this APORT bus (if selected by POSSEL or NEGSEL or SCANINPUTSEL). When 1, ADC only passively monitors the APORT bus and the selection of the channel for the selected bus is ignored. The channel selection is done by the device that masters the APORT bus. This bit allows multiple APORT connected devices to monitor the same APORT bus simultaneously.


Value	Description
0	APORT mastering enabled
1	APORT mastering disabled

	Name	Reset	Access	Description
6	APORT3XMASTER- DIS	0	RW	APORT3X Master Disable
	ADC only passively m	onitors the A le device that	PORT bus ar t masters the	bus (if selected by POSSEL or NEGSEL or SCANINPUTSEL). When 1, and the selection of the channel for the selected bus is ignored. The channel APORT bus. This bit allows multiple APORT connected devices to monitor
	Value			Description
	0			APORT mastering enabled
	1			APORT mastering disabled
5	APORT2YMASTER- DIS	0	RW	APORT2Y Master Disable
	ADC only passively m	onitors the Allie device that	PORT bus ar t masters the	bus (if selected by POSSEL or NEGSEL or SCANINPUTSEL). When 1, and the selection of the channel for the selected bus is ignored. The channel APORT bus. This bit allows multiple APORT connected devices to monitor
	Value			Description
	0			APORT mastering enabled
	1			APORT mastering disabled
4	APORT2XMASTER- DIS	0	RW	APORT2X Master Disable
				bus (if selected by POSSEL or NEGSEL or SCANINPUTSEL). When 1,
		e device that	masters the	nd the selection of the channel for the selected bus is ignored. The channel APORT bus. This bit allows multiple APORT connected devices to monitor
	selection is done by th	e device that	masters the	
	selection is done by the the same APORT bus	e device that	masters the	APORT bus. This bit allows multiple APORT connected devices to monitor
	selection is done by the the same APORT bus Value	e device that	masters the	APORT bus. This bit allows multiple APORT connected devices to monitor Description
3	selection is done by the the same APORT bus Value 0 1	e device that	masters the	APORT bus. This bit allows multiple APORT connected devices to monitor Description APORT mastering enabled
3	selection is done by the the same APORT bus Value 0 1 APORT1YMASTER-DIS Determines if the ADO ADC only passively means the same appears to th	o C will requesonitors the A de device that	RW t this APORT PORT bus art masters the	APORT bus. This bit allows multiple APORT connected devices to monitor Description APORT mastering enabled APORT mastering disabled
3	selection is done by the the same APORT bus Value 0 1 APORT1YMASTER-DIS Determines if the ADO ADC only passively miselection is done by the	o C will requesonitors the A de device that	RW t this APORT PORT bus art masters the	APORT bus. This bit allows multiple APORT connected devices to monitor Description APORT mastering enabled APORT mastering disabled APORT1Y Master Disable bus (if selected by POSSEL or NEGSEL or SCANINPUTSEL). When 1, and the selection of the channel for the selected bus is ignored. The channel
3	selection is done by the the same APORT bus Value 0 1 APORT1YMASTERDIS Determines if the ADC ADC only passively meselection is done by the the same APORT bus	o C will requesonitors the A de device that	RW t this APORT PORT bus art masters the	APORT bus. This bit allows multiple APORT connected devices to monitor Description APORT mastering enabled APORT mastering disabled APORT1Y Master Disable bus (if selected by POSSEL or NEGSEL or SCANINPUTSEL). When 1, and the selection of the channel for the selected bus is ignored. The channel APORT bus. This bit allows multiple APORT connected devices to monitor
3	selection is done by the the same APORT bus Value 0 1 APORT1YMASTERDIS Determines if the ADO ADC only passively meselection is done by the the same APORT bus Value	o C will requesonitors the A de device that	RW t this APORT PORT bus art masters the	Description APORT mastering enabled APORT mastering disabled APORT1Y Master Disable bus (if selected by POSSEL or NEGSEL or SCANINPUTSEL). When 1, and the selection of the channel for the selected bus is ignored. The channel APORT bus. This bit allows multiple APORT connected devices to monitor Description
2	selection is done by the the same APORT bus Value 0 1 APORT1YMASTERDIS Determines if the ADC ADC only passively meselection is done by the the same APORT bus Value 0 1	o C will requesonitors the A de device that	RW t this APORT PORT bus art masters the	Description APORT mastering enabled APORT mastering disabled APORT1Y Master Disable bus (if selected by POSSEL or NEGSEL or SCANINPUTSEL). When 1, and the selection of the channel for the selected bus is ignored. The channel APORT bus. This bit allows multiple APORT connected devices to monitor Description APORT mastering enabled
	selection is done by the the same APORT bus Value 0 1 APORT1YMASTERDIS Determines if the ADC ADC only passively meselection is done by the the same APORT bus Value 0 1 APORT1XMASTERDIS Determines if the ADC ADC only passively meselection is done by the same APORT bus	0 C will requestonitors the A simultaneous 0 C will requestonitors the A simultaneous 0 C will requestonitors the A simultaneous	RW t this APORT PORT bus ar t masters the sly. RW t this APORT PORT bus ar t masters the	Description APORT mastering enabled APORT1Y Master Disable bus (if selected by POSSEL or NEGSEL or SCANINPUTSEL). When 1, and the selection of the channel for the selected bus is ignored. The channel APORT bus. This bit allows multiple APORT connected devices to monitor Description APORT mastering enabled APORT mastering enabled APORT mastering disabled

Bit	Name	Reset Access Description
	0	APORT mastering enabled
	1	APORT mastering disabled
1:0	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions

28. LESENSE - Low Energy Sensor Interface

Quick Facts

What?

LESENSE is a low energy sensor interface capable of autonomously collecting and processing data from multiple sensors even when in EM2. Flexible configuration makes LESENSE a versatile sensor interface compatible with a wide range of sensors and measurement schemes.

Why?

Capability to autonomously monitor sensors allows the EFM32 Tiny Gecko 11 to reside in a low energy mode for long periods of time while keeping track of sensor status and sensor events.

How?

LESENSE is highly configurable and is capable of collecting data from a wide range of sensor types. Once the data is collected, the programmable state machine, LESENSE decoder, is capable of processing sensor data without CPU intervention. A large result buffer allows the chip to remain in EM2 for long periods of time while autonomously collecting data.

28.1 Introduction

LESENSE is a low energy sensor interface utilizing on-chip peripherals to perform measurement of a configurable set of sensors. The sensor measurements results can be processed by the LESENSE decoder, a configurable state machine with up to 32 states. The results can also be stored in a result buffer to be collected by the CPU or DMA for further processing.

LESENSE operates from EM0 down to EM2, and can wake up the CPU on configurable events.

28.2 Features

- · Up to 16 sensors
- Autonomous sensor monitoring in EM0, EM1, and EM2
- · Highly configurable decoding of sensor results
- · Interrupt on sensor events
- · Configurable enable signals to external sensors
- · Circular buffer for storage of up to 16 sensor results
- · Multiple evaluation modes minimize the need for software interaction
- · Supports ADC0 sampling and evaluation
- · Support for multiple sensor types
 - · LC sensors
 - · Capacitive sensing
 - · General analog sensors

28.3 Functional Description

The LESENSE module is capable of controlling on-chip peripherals in order to perform monitoring of different sensors with little or no CPU intervention. LESENSE uses the analog comparators (ACMP) or ADC0 for measurement of sensor signals. LESENSE can also control the VDAC to generate accurate reference voltages. Figure 28.1 LESENSE Block Diagram on page 986 shows an overview of the LESENSE module.

The LESENSE module consists of a sequencer, an evaluation block, a decoder, and a RAM block:

- The sequencer handles interaction with other peripherals and controls timing of sensor measurements. It also includes a counter that can be used to count pulses on the ACMP output.
- The evaluation block is used to process the data collected by the sequencer.
- To autonomously analyze sensor results, the LESENSE decoder provides the ability to define a finite state machine with up to 32 states, as well as define programmable actions upon state transitions. This allows the decoder to implement a wide range of decoding schemes, such as quadrature decoding.
- A RAM block is used for storage of configuration and measurement results. This allows LESENSE to have a relatively large result buffer enabling the chip to remain in a low energy mode for long periods of time while collecting sensor data.

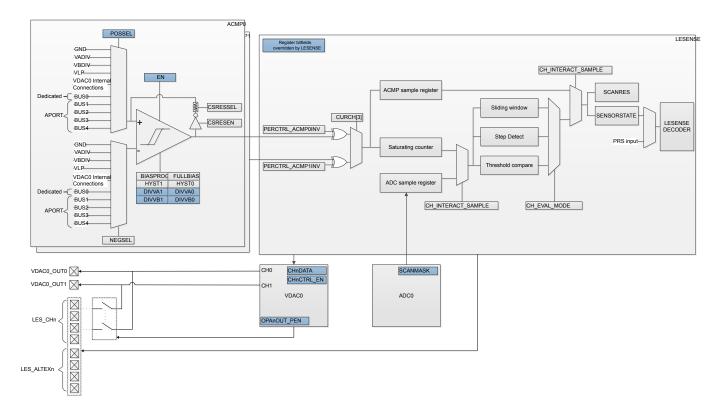


Figure 28.1. LESENSE Block Diagram

28.3.1 Channel Configuration

LESENSE has 16 individually configurable channels, each with its own set of configuration registers. Channel configuration is split into three registers; CHx_TIMING, CHx_INTERACT, and CHx_EVAL. Individual timing for each sensor is configured in CHx_TIMING, sensor interaction is configured in CHx_INTERACT, and configurations regarding evaluation of the measurements are done in CHx_EVAL. For improved readability, CHx_CONF will be used to refer to the channel configuration registers (CHx_TIMING, CHx_INTERACT, and CHx_EVAL) throughout this chapter.

By default, the channel configuration registers are directly mapped to the channel number. Configuring SCANCONF in CTRL makes it possible to alter this mapping.

Configuring SCANCONF to INVMAP will make channels 0-7 use the channel configuration registers for channels 8-15, and vice versa. This feature allows an application to quickly and easily switch the configuration set for the channels.

Setting SCANCONF to TOGGLE will make channel x alternate between using CH_{X-S} CONF and CH_{X+8} CONF. The configuration used is decided by the state of the corresponding bit in SCANRES. For instance, if channel 3 is performing a scan and bit 3 in SCANRES is set, CH_{11} CONF will be used. Channels 8 through 15 will toggle between CH_{X-S} CONF and CH_{X-8} CONF. This mode provides an easy way to implement hysteresis on channel events, as threshold values can be changed depending on the sensor status.

Setting SCANCONF to DECDEF will make the state of the decoder define which scan configuration to be used. If the decoder state is at index 16 or higher, channel x will use CH_{X+8} _CONF, otherwise it will use CH_{X} _CONF. Similarly, channels 8 through 15 will use CH_{X} _CONF when the decoder state index is less than 8 and CH_{X-8} _CONF when the decoder state index is higher than 7. Allowing the decoder state to define which configuration to use enables easy implementation of hysteresis, for example, as different threshold values can be used for the same channel depending on the state of the application. Table 28.1 LESENSE Scan Configuration Selection on page 987 summarizes how channel configuration is selected for different settings of SCANCONF.

SCANCONF LESENSE TOGGLE DECDEF channel x DIRMAP INVMAP SCANRES[n] = 0SCANRES[n] = 1DECSTATE < 16 DECSTATE >= 16 $0 \le x \le 8$ CH_x_CONF CH_{x+8}_CONF CH_x_CONF CH_{x+8}_CONF CH_x_CONF CH_{x+8}_CONF $8 \le x \le 16$ CH_x CONF CH_{x-8}_CONF CH_x CONF CH_{x-8}_CONF CH_x CONF CH_{x-8}_CONF

Table 28.1. LESENSE Scan Configuration Selection

Channels are enabled in the CHEN register, where bit x enables channel x. During a scan, all enabled channels are measured, starting with the lowest indexed channel. Figure 28.3 Scan Sequence on page 988 illustrates a scan sequence with channels 3, 5, and 9 enabled.

28.3.2 Scan Sequence

LESENSE runs on LFACLK_{LESENSE}, which is a prescaled version of LFACLK. The prescaling factor for LFACLK_{LESENSE} is selected in the CMU, available prescaling factors are:

- DIV1: LFACLK_{LESENSE} = LFACLK/1
- DIV2: LFACLK_{LESENSE} = LFACLK/2
- DIV4: LFACLK_{LESENSE} = LFACLK/4
- DIV8: LFACLK_{I ESENSE} = LFACLK/8

All enabled channels are scanned each scan period. How a new scan is started is configured in the SCANMODE bit field in CTRL. If set to PERIODIC, the scan frequency is generated using a counter which is clocked by LFACLK_{LESENSE}. This counter has its own prescaler. This prescaling factor is configured in PCPRESC in TIMCTRL. A new scan sequence is started each time the counter reaches the top value, PCTOP. The scan frequency is calculated using Figure 28.2 Scan Frequency on page 988. If SCANMODE is set to ONE-SHOT, a single scan will be made when START in CMD is set. To start a new scan on a PRS event, set SCANMODE to PRS and configure PRS channel in PRSSEL. The PRS start signal needs to be active for at least one LFACLK_{LESENSE} cycle to make sure LE-SENSE is able to register it.

Figure 28.2. Scan Frequency

It is possible to interleave additional sensor measurements in between the periodic scans. Issuing a start command when LESENSE is idle will immediately start a new scan, without disrupting the frequency of the periodic scans. If the period counter overflows during the interleaved scan, the periodically scheduled scan will start immediately after the interleaved scan completes.

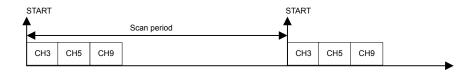


Figure 28.3. Scan Sequence

28.3.3 Sensor Timing

For each channel in the scan sequence, the LESENSE interface goes through three phases: idle, excite, and measure. The durations of the excite and measure phases are configured in the CHx_TIMING registers. The excite phase duration can be configured to be either a number of AUXHFRCO cycles or a number of LFACLK_{LESENSE} cycles, depending on which one is selected by the EXCLK bit in the CHx_INTERACT register. LESENSE includes two timers: A low frequency timer, running on LFACLK_{LESENSE}, and a high frequency timer, running on AUXHFRCO. The low frequency or high frequency timers can be prescaled by configuring LFPRESC or AUXPRESC, respectively, in the TIMCTRL register. The duration of the measure phase is programmed via MEASUREDLY and SAMPLEDLY in the CHx_TIMING registers. The output of the ACMP will be ignored for MEASUREDLY EXCLK cycles after start of the sensor measurement. Sampling of the sensor will happen after SAMPLEDLY LFACLK_{LESENSE}, or AUXHFRCO cycles, depending on the configuration of the SAMPLECLK in the CHx_INTERACT register. The configurable measure- and sample delays enables LESENSE to easily define exact time windows for sensor measurements. A start delay can be inserted before sensor measurement begin by configuring STARTDLY in TIMCTRL. This delay can be used to ensure that the VDAC conversion is done and voltages have stabilized before the sensor measurement begins. The AUXHFRCO startup can be delayed until the system enters the excite phase, by configuring AUX-STARTUP in TIMCTRL to ONDEMAND. This will reduce the time the AUXHFRCO is enabled and reduce power consumption, with the tradeoff that that the starting point for high frequency timing will also be delayed the same amount as the AUXHFRCO startup time.

Figure 28.4 Timing Diagram, AUXHFRCO Based Timing on page 989 depicts a sensor sequence with AUXHFRCO based timing (EXTIME=5, MEASUREDLY=7, SAMPLEDLY=13), while Figure 28.5 Timing Diagram, LFACLK Based Timing on page 990 depicts a sequence with LFACLK_{LESENSE} based timing (EXTIME=1, MEASUREDLY=1, SAMPLEDLY=2).

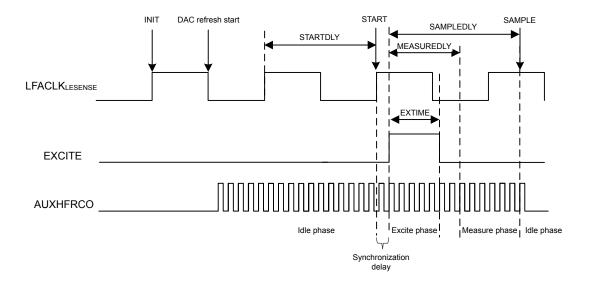


Figure 28.4. Timing Diagram, AUXHFRCO Based Timing

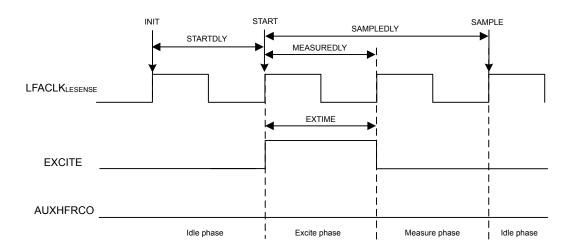


Figure 28.5. Timing Diagram, LFACLK Based Timing

28.3.4 Sensor Interaction

Many sensor types require some type of excitation in order to work. The LESENSE module can generate a variety of sensor stimuli, both on the same pin as the measurement is to be made on, as well as alternative pins.

By default, excitation is performed on the pin associated with the channel (i.e., excitation and sensor measurement is performed on the same pin). The mode of the pin during the excitation phase is configured by the EXMODE bitfield in CHx_INTERACT. The available modes during the excite phase are:

- · DISABLED: The pin is disabled.
- · HIGH: The pin is driven high.
- · LOW: The pin is driven low.
- DACOUT: The pin is connected to the output of a VDAC channel.

Note: Excitation with VDAC output is only available on some channels. Refer to 28.3.9 VDAC Interface for details. If the VDAC is in opamp-mode, setting EXMODE to DACOUT will result in excitation with output from the opamp.

LESENSE is able to perform sensor excitation on a pin other than the one being measured. When ALTEX in CHx_INTERACT is set, the excitation will occur on the alternative excite pin associated with the given channel. By default, the alternative excite pins are mapped to the LES_ALTEX pins, but they can also be mapped to LESENSE CH_{X+8 mod 16}. Mapping of the alternative excite pins is configured in ALTEXMAP in the CTRL register. Table 28.2 LESENSE Excitation Pin Mapping on page 991 summarizes the mapping of excitation pins for different configurations.

Table 28.2. LESENSE Excitation Pin Mapping

LESENSE channel	ALTEX = 0	ALTE	EX = 1
LESENSE CHANNEL	ALIEX - U	ALTEXMAP = CH	ALTEXMAP = ALTEX
0	LES_CH0	LES_CH8	LES_ALTEX0
1	LES_CH1	LES_CH9	LES_ALTEX1
2	LES_CH2	LES_CH10	LES_ALTEX2
3	LES_CH3	LES_CH11	LES_ALTEX3
4	LES_CH4	LES_CH12	LES_ALTEX4
5	LES_CH5	LES_CH13	LES_ALTEX5
6	LES_CH6	LES_CH14	LES_ALTEX6
7	LES_CH7	LES_CH15	LES_ALTEX7
8	LES_CH8	LES_CH0	LES_ALTEX0
9	LES_CH9	LES_CH1	LES_ALTEX1
10	LES_CH10	LES_CH2	LES_ALTEX2
11	LES_CH11	LES_CH3	LES_ALTEX3
12	LES_CH12	LES_CH4	LES_ALTEX4
13	LES_CH13	LES_CH5	LES_ALTEX5
14	LES_CH14	LES_CH6	LES_ALTEX6
15	LES_CH15	LES_CH7	LES_ALTEX7

Figure 28.6 Pin Sequencing on page 992 illustrates the sequencing of the pin associated with the active channel and its alternative excite pin.

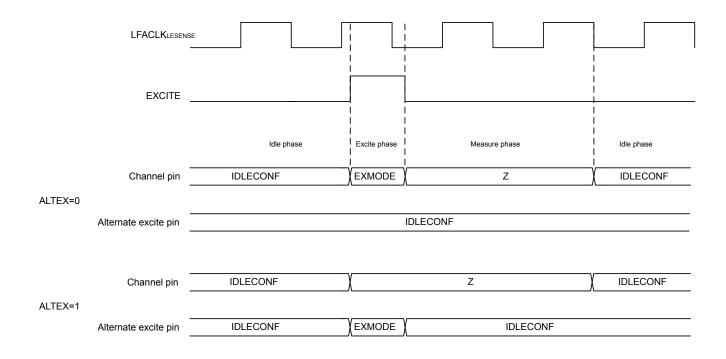


Figure 28.6. Pin Sequencing

The LES_ALTEXn pins have the ability to excite regardless of what channel is active. Setting AEXn in ALTEXCONF will make LES_ALTEXn excite for all channels using alternative excitation (i.e., ALTEX in CHx INTERACT is set).

Note: When exciting on the pin associated with the active channel, the pin will go through a tri-stated phase before returning to the idle configuration. This will not happen on pins used as alternative excitation pins.

The pin configuration for the idle phase can be configured individually for each LESENSE channel and alternative excite pin in the IDLECONF and ALTEXCONF registers. The modes available are the same as the modes available in the excitation phase. In the measure phase, the pin mode on the active channel is always disabled (analog input).

To allow the LESENSE mode to control a GPIO pin, the pin must be enabled in the ROUTEPEN register and configured as push-pull. The IDLECONF configuration should not be altered while the pin enable for a given pin is set in ROUTEPEN.

28.3.5 Sensor Sampling

During the measurement phase, LESENSE can sample data from sensors using either ADC0 or an ACMP. This is configured in CHx_INTERACT_SAMPLE. If the ACMP is used, LESENSE can evaluate the ACMP output at a single point in time (CHx_INTERACT_SAMPLE = ACMPCOUNT) for a programmable period of time.

LESENSE includes the ability to sample both analog comparators simultaneously, effectively cutting the time spent on sensor interaction in some applications in half. Setting DUALSAMPLE in CTRL enables this mode. In dual sample mode, channels X and X+8 are paired, meaning they will be sampled at the same time. DUALSAMPLE mode only works when CHx_INTERACT_SAMPLE is set to ACMP.

If ADC0 is used, LESENSE will initiate ADC conversions and fetch the ADC data for further evaluation. If the ADC is configured in differential mode, CHx_INTERACT_SAMPLE must be set to ADCDIFF. In this mode, the output from the ADC and the threshold used for comparison are given in two's complement notation.

See sections28.3.12 ADC Interface and 28.3.10 ACMP Interface for more details on the LESENSE interface to the ADC and ACMPs. The sampled data from ADC or ACMP will be referred to as sensor data in the remainder of this manual.

28.3.6 Sensor Evaluation

When a measurement phase is completed, the sensor data is evaluated by the evaluation block. If the sensor data is taken from ACMP sample in a single point in time (CHx_INTERACT_SAMPLE = ACMP), the evaluation is limited to determining if the sensor data is 0 or 1. For the other sample modes, there are three ways to do sensor evaluation; threshold comparison, sliding window, or step detection. Evaluation mode is configured in CHx_EVAL_MODE.

If the evaluation of sensor data evaluates to true, the corresponding bit in the result register (SCANRES) is set. By configuring SETIF in CHx_INTERACT, interrupt flags can also be set on SCANRES events. Figure 28.7 Scan Result and Interrupt Generation on page 993 illustrates how the sensor data or ACMP sample is used for evaluation and interrupt generation.

Note: For initialization purposes, SCANRES can be written by software. SCANRES should not be written while LESENSE is running (i.e., the RUNNING bit in LESENSE_STATUS is high).

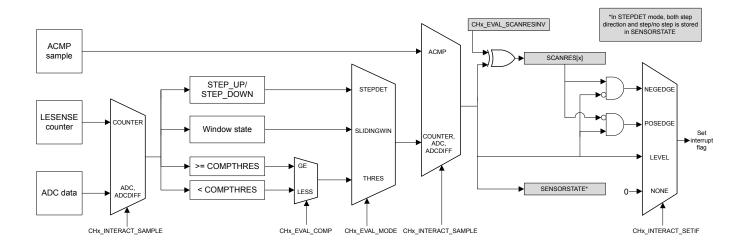


Figure 28.7. Scan Result and Interrupt Generation

The results from sensor data evaluation can be fed into the decoder through the SENSORSTATE register. In DUALSAMPLE mode, results from both the sampled ACMPs will be stored in both SCANRES and SENSORSTATE.

28.3.6.1 Threshold Comparison

In threshold comparison mode, the sensor data is compared to a threshold configured in CHx_EVAL_COMPTHRES. There are two modes of threshold comparison: 'less than' and 'greater than or equal'. Threshold comparison mode is configured in CHx_EVAL_COMP.

28.3.6.2 Sliding Window

In sliding window mode, the sensor data is compared against the upper and lower limits of a window range. The window is defined by a base, given by CHx_EVAL_COMPTHRES, and a size configured in EVALCTRL_WINSIZE. The window size is constant and the same for all LESENSE channels, while the base is specific to each channel and will be updated by LESENSE when the sensor data is outside the current window range. If the sensor data is within the window range, the sensor evaluation will remain the same as it was for the previous measurement. If the sensor data is below the window range, the measurement will be evaluated to false. If the sensor data is above the window range, the measurement will be evaluated to true. In both cases, the window base in CHx_EVAL_COMPTHRES will be updated to reflect the new window range. Figure 28.8 Sliding Window on page 994 shows how the sliding window evaluation mode can be used to implement a system with two self calibrating thresholds.

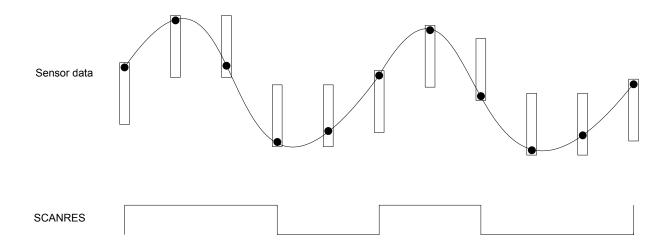


Figure 28.8. Sliding Window

28.3.6.3 Step Detection

Step detection is used to detect steps in the sensor data compared to sensor data from the previous measurement. The size of the step is configured in EVALCTRL_WINSIZE. In this mode, step up and step down are evaluated as described in Figure 28.9 Step Detection on page 994:

STEP_UP = SENSORDATA_i >= SENSORDATA_{i-1} + EVALCTRL_WINSIZE STEP_DOWN = SENSORDATA_i < SENSORDATA_{i-1} - EVALCTRL_WINSIZE

Figure 28.9. Step Detection

If either a step up or a step down is detected, the SCANRES bit for the active channel will be set. In addition, the STEPDIR bit for the channel will be updated to indicate if a step up or a step down was detected. STEPDIR = 1 indicates a step up. In this mode, previous sensor data is stored in CHx_EVAL_COMPTHRES.

28.3.7 Decoder

Many applications, such as quadrature decoding, require some sort of processing of the sensor readings. In quadrature decoding, the sensors repeatedly pass through a set of states which correspond to the position of the sensors. This sequence, and many other decoding schemes, can be described as a finite state machine. To support this type of decoding without CPU intervention, the LESENSE module includes a highly configurable decoder capable of decoding input from up to four sensors. The decoder is implemented as a programmable state machine with up to 32 states. When doing a sensor scan, the results from the sensors are placed in the decoder input register, SENSORSTATE, if DECODE in CHx_INTERACT is set. The resulting position after a scan is illustrated in Figure 28.10 Sensor Scan and Decode Sequence on page 995, where the bottom blocks show how the SENSORSTATE register is filled. If step detection is enabled, the step direction is placed in SENSORSTATE in the position after the sensor result. When the scan sequence is complete, the decoder evaluates the state of the sensors chosen for decoding, as depicted in Figure 28.10 Sensor Scan and Decode Sequence on page 995.

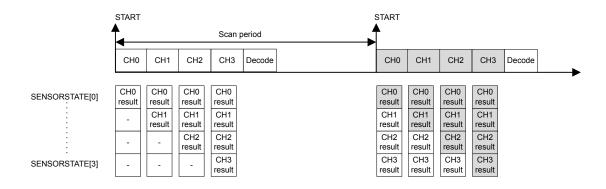


Figure 28.10. Sensor Scan and Decode Sequence

Upon a state transition, LESENSE can generate a pulse on one or more of the decoder PRS channels. Which PRS channel to generate a pulse on is configured in the PRSACT bit field. If PRSCNT in DECCTRL is set, count signals will be generated on decoder PRS channels 0 and 1 according to the PRSACT configuration. In this mode, channel 0 will pulse each time a count event occurs, while channel 1 indicates the count direction (1 being up and 0 being down). The count direction will be kept at its previous state in between count events. The EFM32 Tiny Gecko 11 pulse counter may be used to keep track of events based on these PRS outputs.

If SETIF is set, the DECODER interrupt flag will be set when the transition occurs. If INTMAP in DECCTRL and SETIF is set, a transition from state x or x+16 will set the CHx interrupt flag in addition to the DECODER flag.

Setting CHAIN in STx_TCONFA enables the decoder to evaluate more than two possible transitions for each state. If none of the transitions defined in STx_TCONFA or STx_TCONFB match, the decoder will jump to the next descriptor pair and evaluate the transitions defined there. The decoder uses two LFACLK_{LESENSE} cycles for each descriptor pair to be evaluated. If ERRCHK in CTRL is set, the decoder will check that the sensor state has not changed if none of the defined transitions match. The DECERR interrupt flag will be set if none of the transitions match and the sensor state has changed. Figure 28.11 Decoder State Transition Evaluation on page 996 illustrates state transitions. The "Generate PRS signals and set interrupt flag" blocks will perform actions according to the configuration in STx TCONFA and STx TCONFB.

Note: If only one transition from a state is used, STx TCONFA and STx TCONFB should be configured equally.

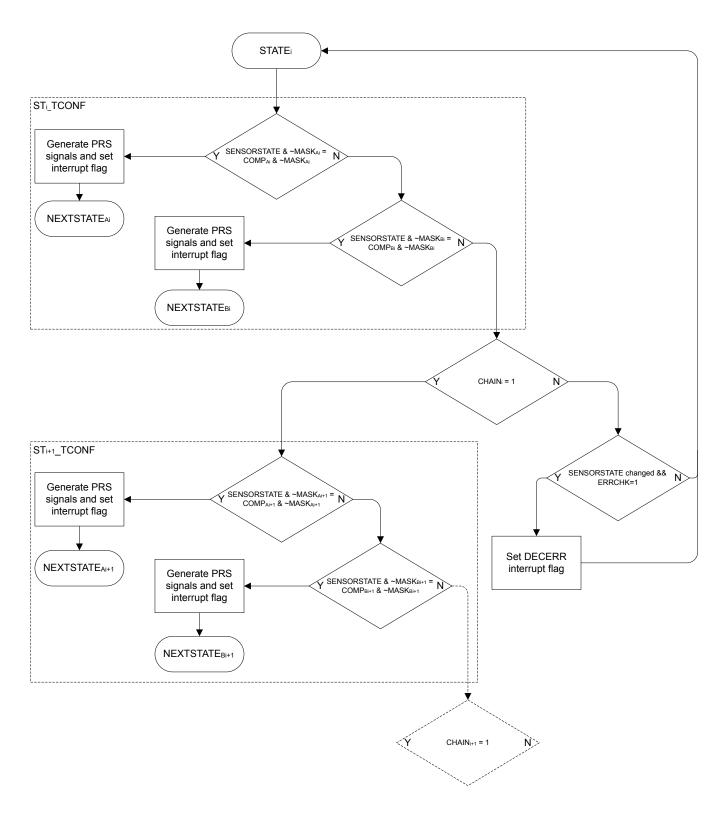


Figure 28.11. Decoder State Transition Evaluation

The DECODER has a PRS output named DECCMP. This output can be used to indicate which state, or subset of states, the decoder is currently in. This PRS output is enabled by setting DECCMPEN in PRSCTRL, and configured through DECCMPMASK and DECCMPV-AL in PRSCTRL. The value of this PRS output is given by Figure 28.12 DECCMP PRS Output on page 997,

PRS_DECCMP = (DECSTATE & ~DECCMPMASK) == (DECCMPVAL & ~DECCMPMASK)

Figure 28.12. DECCMP PRS Output

To prevent unnecessary interrupt requests or PRS outputs when the decoder toggles back and forth between two states, a hysteresis option is available. The hysteresis function is triggered if a type A transition is preceded by a type B transition, and vice versa. A type A transition is defined in STx_TCONFA, and a type B transition is defined in STx_TCONFB. When descriptor chaining is used, a jump to another descriptor will cancel out the hysteresis effect. Figure 28.13 Decoder Hysteresis on page 997 illustrates how the hysteresis triggers upon state transitions.

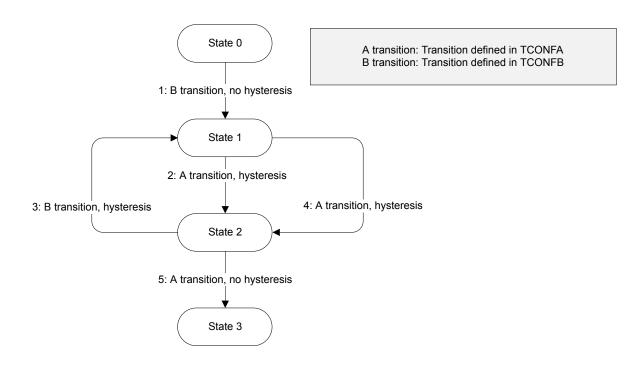


Figure 28.13. Decoder Hysteresis

- When HYSTPRSx is set, PRS signal x is suppressed when the hysteresis triggers.
- When HYSTIRQ is set, interrupt requests are suppressed when the hysteresis triggers.

Note: The decoder error interrupt flag, DECERR, is not affected by the hysteresis.

28.3.8 Measurement Results

Part of the LESENSE RAM is treated as a circular buffer for storage of up to 16 sensor measurements results. Each time LESENSE writes data to the result buffer, the result write pointer (PTR_WR) is incremented. Each time a new result is read through the BUFDATA register, the result read pointer (PTR_RD) is incremented. The read pointer will not be incremented if there is no valid, unread data in the result buffer. By default LESENSE will not write additional data to a full result buffer until the data is read by software or DMA. Setting BUFOW in CTRL enables LESENSE to write to the result buffer even if it is full. In this mode, the result read pointer will follow the write pointer if the buffer is full. The result of this is that data read from the result read register (BUFDATA) will be the oldest unread result. The location pointers are available in PTR.

The result buffer has three flags in the STATUS register: BUFDATAV, BUFHALFFULL, and BUFFULL. The flags indicate when new data is available, when the buffer is half full, and when it is full, respectively.

The result buffer also has three interrupt flags in the IR register: BUFDATAV, BUFLEVEL, and BUFOF. BUFDATAV is set when data is available in the buffer. BUFLEVEL is set when the buffer is either full or half-full, depending on the configuration of BUFIDL in CTRL. BUFOF is set if the result buffer overflows.

During a scan, the state of each sensor is stored in SCANRES. If a sensor triggers, a 1 is stored in SCANRES, else a 0 is stored in SCANRES. Whether or not a sensor is said to be triggered depends of the configuration for the given channel. See 28.3.6 Sensor Evaluation for details. If STRSAMPLE in CHx_EVAL is set, the sensor data for each channel will be stored in the LESENSE result buffer. If STRSCANRES in CTRL is set, the result vector, SCANRES, will also be stored in the result buffer. This will be stored after each scan and will be interleaved with the counter values. The contents of the result buffer can be read from BUFDATA or from BUF[x]_DATA. When reading from BUF[x]_DATA, neither the result read pointer or the status flags BUFDATAV, BUFHALFFULL, or BUFFULL will be updated. When reading through the BUFDATA register, the oldest unread result will be read.

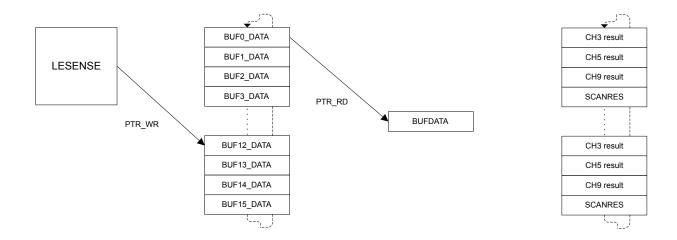


Figure 28.14. Circular Result Buffer

Figure 28.14 Circular Result Buffer on page 998 illustrates how the result buffer would be filled when channels 3,5, and 9 are enabled and have STRSAMPLE in CHx_EVAL set, in addition to STRSCANRES in CTRL. The measurement result from the three channels will be sequentially written during the scan, while SCANRES is written to the result buffer upon scan completion.

28.3.9 VDAC Interface

LESENSE is able to drive the VDAC for generation of accurate reference voltages. This is enabled by setting DACCHxEN in PERCTRL. The refresh rate of the VDAC channels can be configured in DACCONVTRIG in PERCTRL. If DACCONVTRIG is set to CHANNELSTART, the VDAC channels are refreshed prior to each sensor measurement, as depicted in Figure 28.4 Timing Diagram, AUXHFRCO Based Timing on page 989. If DACCONVTRIG is set to SCANSTART, the VDAC channels are refreshed prior to each scan. The conversion data is either taken from the data registers in the EFM32 Tiny Gecko 11 VDAC interface (VDAC0_CH0DATA and VDAC0_CH1DATA) or from the THRES bitfield in the CHx_INTERACT register for the active LESENSE channel. VDAC data used is configured in DACCHxDATA in PERCTRL.

Bias configuration, calibration and reference selection is done in the EFM32 Tiny Gecko 11 VDAC module and LESENSE will not override these configurations.

LESENSE has the possibility to control switches that connect the VDAC alternate outputs. This allows LESENSE to excite sensors with output from the VDAC channels, this is done by setting CHx_INTERACT_EXMODE to DACOUT. The LESENSE channels can also be connected to the VDAC output when the given channel is idle, this is done by setting IDLECONF_CHx to DAC.

Note: Only LESENSE channels 0, 1, 2, 3, 12, 13, 14, 15 have the possibility to excite using the VDAC alternate outputs, or connect to the VDAC alternate outputs during the idle phase.

The VDAC may be chosen as reference to the analog comparators for accurate reference generation. If the VDAC is configured in continuous mode this does not require any external components. If sample/off mode is used, an external capacitor is needed to maintain the voltage between samples. To configure the VDAC to use this external capacitor, connect the capacitor to the VDAC pin for the given channel and set SHORT in VDAC_OPAx_OUT.

Note: The VDAC mode should not be altered while DACACTIVE in STATUS is set

28.3.10 ACMP Interface

The analog comparators (ACMPs) are used to measure the sensors, and have to be configured according to the application in order for LESENSE to work properly. Depending on the configuration in the ACMP0MODE and ACMP1MODE bit-fields in PERCTRL, LESENSE will take control of the positive input mux and the voltage dividers (DIVVA, DIVVB) for ACMP0 and ACMP1. The remaining configuration of the analog comparators is done in the ACMP register interface.

If ACMPxMODE in PERCTRL is set to MUX, LESENSE will take control of the positive input mux of the ACMP, through the external override interface, described in the ACMP chapter (see 26.3.12 External Override Interface). The offset given by LESENSE, EXT_OFFSET, depends on whether one or two ACMPs are controlled by LESENSE. If only one ACMP is used, EXT_OFFSET will have the same value as the active channel. If both ACMP0 and ACMP1 are used, LESENSE channel 0-7 will use ACMP0 with EXT_OFFSET_0-7, and LESENSE channel 8-15 will use ACMP1 with EXT_OFFSET_0-7.

If ACMPxMODE in PERCTRL is set to MUXTHRES, LESENSE will also take control of the voltage dividers in the ACMP, DIVVA and DIVVB. The thresholds used are individual to each channel and is configured using the 6 LSBs of CHx_INTERACT_THRES. By default, ACMP_HYSTERESIS0_DIVVX and ACMP_HYSTERESIS1_DIVVX will be given the same value, the 6 LSBs of CHx_INTERACT_THRES. To allow different values for ACMP_HYSTERESIS0_DIVVX and ACMP_HYSTERESIS1_DIVVX, ACMPxHYSTEN in PERCTRL needs to be set. This allows the hysteresis feature in the ACMP to be utilized. ACMP_HYSTERESIS0_DIVVX will get the value programmed in CHx_INTERACT_THRES[5:0], while ACMP_HYSTERESIS1_DIVVX will get the value programmed in CHx_INTERACT_THRES[11:6].

28.3.11 ACMP and VDAC Duty Cycling

By default, the analog comparators and the VDAC are shut down between LESENSE scans to save energy. If this is not desired, WAR-MUPMODE in PERCTRL can be configured to prevent them from being shut down.

Both the VDAC and analog comparators rely on a bias module for correct operation. This bias module has a low power mode which consumes less energy at the cost of reduced accuracy. BIASMODE in BIASCTRL configures how the bias module is controlled by LESENSE. When set to DUTYCYCLE, LESENSE will set the bias module in high accuracy mode whenever LESENSE is active, and keep it in the low power mode otherwise. When BIASMODE is set to HIGHACC, the high accuracy mode is always selected. When set to DONTTOUCH, LESENSE will not control the bias module.

28.3.12 ADC Interface

The LESENSE module can be configured to trigger conversions on ADC0 and use data from ADC0 to evaluate sensor status. In order to do this, the scan mode of the ADC has to be configured. When the sample delay configured in CHx_TIMING_SAMPLEDLY has expired, LESENSE will initiate an ADC sample. The active LESENSE channel determines which ADC0 channel to be sampled, where LESENSE channel X corresponds to ADC0 scan channel X.

28.3.13 DMA Requests

LESENSE issues a DMA request when the result buffer is either full or half full, depending on the configuration of BUFIDL in CTRL. The request is cleared when the buffer level drops below the threshold defined in BUFIDL. A single DMA request is also set whenever there is unread data in the buffer. DMAWU in CTRL configures at which buffer level LESENSE should wake-up the DMA when in EM2.

Note: The DMA controller should always fetch data from the BUFDATA register.

28.3.14 PRS Output

LESENSE is an asynchronous PRS producer and has twenty PRS outputs. The decoder has four outputs and in addition, all bits in the SCANRES register are available as PRS outputs. For further information on the decoder PRS output, refer to 28.3.7 Decoder.

28.3.15 RAM

LESENSE includes a RAM block used for storage of configuration and results. Registers mapped to the RAM include: STx_TCONFA, STx_TCONFB, BUFx_DATA, BUFDATA, CHx_TIMING, CHx_INTERACT, and CHx_EVAL. These registers have unknown value out of reset and have to be initialized before use.

Note: Read-modify-write operations on uninitialized RAM register produces undefined values.

28.3.16 Application Examples

The following sections detail several example applications for the LESENSE block.

28.3.16.1 Capacitive Sense

Figure 28.15 Capacitive Sense Setup on page 1001 illustrates how the EFM32 Tiny Gecko 11 can be configured to monitor four capacitive buttons.

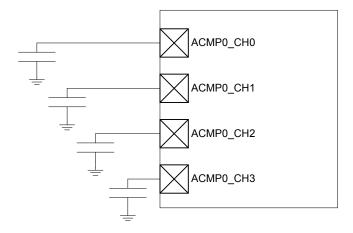
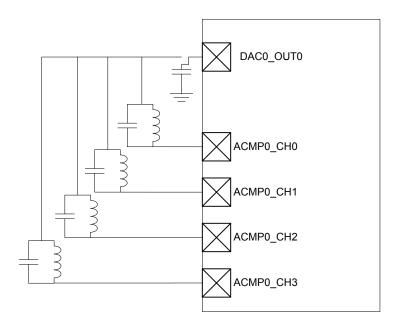


Figure 28.15. Capacitive Sense Setup


The following steps show how to configure LESENSE to scan through the four buttons 100 times per second, issuing an interrupt if one of them is pressed.

- 1. Assuming LFACLK_{LESENSE} is 32 kHz, set PCPRESC to 3 and PCTOP to 39 in CTRL. This will set the LESENSE scan frequency to 100 Hz.
- 2. Enable channels 0 through 3 in CHEN and set IDLECONF for these channels to DISABLED. In capacitive sense mode, the GPIO should always be disabled (i.e., analog input).
- 3. Configure the ACMP to operate in CAPSENSE mode (refer to the ACMP chapter for more details).
- 4. Configure the following bit fields in CHx CONF, for channels 0 through 3:
 - a. Set EXTIME to 0. No excitation is needed in this mode.
 - b. Set SAMPLE to ACMPCOUNT and COMP to LESS. This makes LESENSE interpret a sensor as active if the frequency on a channel drops below the threshold (i.e., the button is pressed).
 - c. Set SAMPLEDLY to an appropriate value each sensor will be measured for SAMPLEDLY/F_{LFACLK_LESENSE} seconds. MEAS-UREDLY should be set to 0
- 5. Set CTRTHRESHOLD to an appropriate value. An interrupt will be issued if the counter value for a sensor is below this threshold after the measurement phase.
- 6. Enable interrupts on channels 0 through 3.
- 7. Start scan sequence by writing a 1 to START in CMD.

In a capacitive sense application, it might be required to calibrate the threshold values on a periodic basis, for example to compensate for humidity and other physical variations. LESENSE is able to store up to 16 counter values from a configurable number of channels, making it possible to collect sample data while in EM2. When calibration is to be performed, the CPU only has to be woken up for a short period of time as the data to be processed already lies in the result registers. To enable storing of the count value for a channel, set STRSAMPLE in the CHx INTERACT register.

28.3.16.2 LC Sensor

Figure 28.16 LC Sensor Setup on page 1002 below illustrates how the EFM32 Tiny Gecko 11 can be set up to monitor four LC sensors.

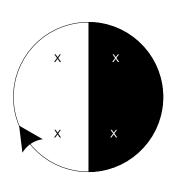


Figure 28.16. LC Sensor Setup

LESENSE can be used to excite and measure the damping factor in LC sensor oscillations. To measure the damping factor, the ACMP can be used to generate a high output each time the sensor voltage exceeds a certain level. These pulses are counted using an asynchronous counter and compared with the threshold in COMPTHRES in the CHx_EVAL register. If the number of pulses exceeds the threshold level, the sensor is said to be active, otherwise it is inactive. Figure 28.17 LC Sensor Oscillations on page 1002 illustrates how the output pulses from the ACMP correspond to damping of the oscillations. The results from sensor evaluation can automatically be fed into the decoder in order to keep track of rotations.

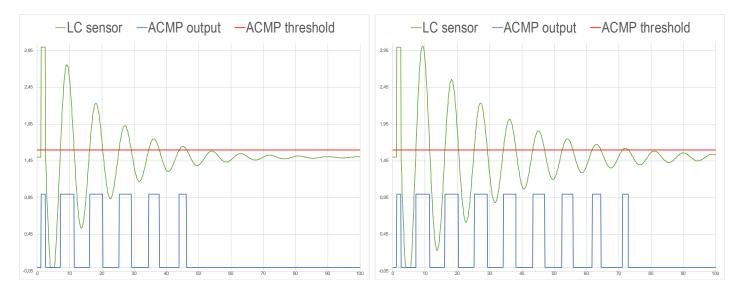


Figure 28.17. LC Sensor Oscillations

The following steps show how to configure LESENSE to scan through the four LC sensors 100 times per second.

- 1. Assuming LFACLK_{LESENSE} is 32kHz, set PCPRESC to 3 and PCTOP to 39 in CTRL. This will set the LESENSE scan frequency to 100Hz.
- 2. Enable the VDAC and configure it to produce a voltage of Vdd/2.

- 3. Enable channels 0 through 3 in CHEN. Set IDLECONF for the active channels to DACOUT. The channel pins should be connected to the VDAC output (effectively shorting the LC sensor) in the idle phase to damp the oscillations.
- 4. Configure the ACMP to use scaled Vdd as negative input, refer to ACMP chapter for details.
- 5. Enable and configure PCNT and asynchronous PRS.
- 6. Configure the GPIOs used as PUSHPULL.
- 7. Configure the following bit fields in CHx CONF, for channels 0 through 3:
 - a. Set EXCLK to AUXHFRCO. AUXHFRCO is needed to achieve short excitation time.
 - b. Set EXTIME to an appropriate value. Excitation will last for EXTIME/F_{AUXHFRCO} seconds.
 - c. Set EXMODE to HIGH. The LC sensors are excited by pulling the excitation pin high.
 - d. Set SAMPLE to ACMPCOUNT and COMP to LESS. Status of each sensor is evaluated based on the number of pulses generated by the ACMP. If they are less than the threshold value, the sensor is said to be active.
 - e. Set SAMPLEDLY to an appropriate value, each sensor will be measured for SAMPLEDLY/F_{LFACLK} LESENSE seconds.
- 8. Set CTRTHRESHOLD to an appropriate value. If the sensor is active, the counter value after the measurement phase should be less than the threshold. If it is inactive, the counter value should be greater than the threshold.
- 9. Start scan sequence by writing a 1 to START in CMD.

Note: Exciting the LC sensor by pulling the excitation pin high allows the ESD protection in the pads to clamp any voltage swings below the ground voltage, giving a consistent starting point for the oscillations.

28.3.16.3 LESENSE Decoder 1

The example below illustrates how the LESENSE module can be used for decoding using three sensors.

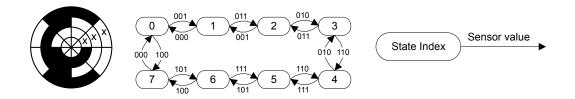


Figure 28.18. FSM Example 1

Figure 28.18 FSM Example 1 on page 1004, configure the following LESENSE registers:

- 1. Configure the channels to be used, be sure to set DECODE in CHx EVAL.
- 2. Set PRSCNT to enable generation of count waveforms on PRS. Also configure a PCNT to listen to the PRS channels and count accordingly.
- 3. Configure the following in STx TCONFA and STx TCONFB:
 - a. Set MASK = 0b1000 in STx_TCONFA and STx_TCONFB for all used states. This enables three sensors to be evaluated by the decoder.
 - b. Configure the remaining bit fields in STx_TCONFA and STx_TCONFB as described in Table 28.3 LESENSE Decoder Configuration for FSM Example 1 on page 1004.
- 4. To initialize the decoder, run one scan, and read the present sensor status from SENSORSTATE. Then write the index of this state to DECSTATE.
- 5. Write to START in CMD to start scanning of sensors and decoding.

Table 28.3. LESENSE Decoder Configuration for FSM Example 1

Register	TCONFA_ NEXTSTATE	TCONFA_COMP	TCONFA_ PRSACT	TCONFB_ NEXTSTATE	TCONFB_COMP	TCONFB_ PRSACT
ST0	1	0b001	UP	7	0b100	DOWN
ST1	2	0b011	UP	0	0b000	DOWN
ST2	3	0b010	UP	1	0b001	DOWN
ST3	4	0b110	UP	2	0b011	DOWN
ST4	5	0b111	UP	3	0b010	DOWN
ST5	6	0b101	UP	4	0b110	DOWN
ST6	7	0b100	UP	5	0b111	DOWN
ST7	0	0b000	UP	6	0b101	DOWN

28.3.16.4 LESENSE Decoder 2

The example below illustrates how the LESENSE decoder can be used to implement the state machine seen in Figure 28.19 FSM Example 2 on page 1005.

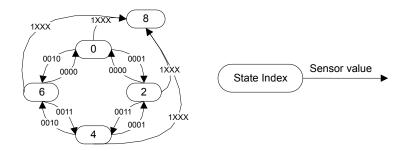


Figure 28.19. FSM Example 2

- 1. Configure STx_TCONFA and STx_TCONFB as described in Table 28.4 LESENSE Decoder Configuration for FSM Example 2 on page 1005.
- 2. To initialize the decoder, run one scan, and read the present sensor status from SENSORSTATE. Then write the index of this state to DECSTATE.
- 3. Write to START in CMD to start scanning of sensors and decoding.

Table 28.4. LESENSE Decoder Configuration for FSM Example 2

Register	NEXTSTATE	СОМР	MASK	CHAIN
ST0_TCONFA	8	0b1000	0b0111	1
ST0_TCONFB	2	0b0001	0b1000	-
ST1_TCONFA	6	0b0010	0b1000	0
ST1_TCONFB	6	0b0010	0b1000	-
ST2_TCONFA	8	0b1000	0b0111	1
ST2_TCONFB	4	0b0011	0b1000	-
ST3_TCONFA	0	0b0000	0b1000	0
ST3_TCONFB	0	0b0000	0b1000	-
ST4_TCONFA	8	0b1000	0b0111	1
ST4_TCONFB	6	0b0010	0b1000	-
ST5_TCONFA	2	0b0001	0b1000	0
ST5_TCONFB	2	0b0001	0b1000	-
ST6_TCONFA	8	0b1000	0b0111	1
ST6_TCONFB	0	0b0000	0b1000	-
ST7_TCONFA	4	0b0011	0b1000	0
ST7_TCONFB	4	0b0011	0b1000	-

28.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LESENSE_CTRL	RW	Control Register
0x004	LESENSE_TIMCTRL	RW	Timing Control Register
0x008	LESENSE_PERCTRL	RW	Peripheral Control Register
0x00C	LESENSE_DECCTRL	RW	Decoder Control Register
0x010	LESENSE_BIASCTRL	RW	Bias Control Register
0x014	LESENSE_EVALCTRL	RW	LESENSE Evaluation Control
0x018	LESENSE_PRSCTRL	RW	PRS Control Register
0x01C	LESENSE_CMD	W1	Command Register
0x020	LESENSE_CHEN	RW	Channel Enable Register
0x024	LESENSE_SCANRES	RWH	Scan Result Register
0x028	LESENSE_STATUS	R	Status Register
0x02C	LESENSE_PTR	R	Result Buffer Pointers
0x030	LESENSE_BUFDATA	R(a)	Result Buffer Data Register
0x034	LESENSE_CURCH	R	Current Channel Index
0x038	LESENSE_DECSTATE	RWH	Current Decoder State
0x03C	LESENSE_SENSORSTATE	RWH	Decoder Input Register
0x040	LESENSE_IDLECONF	RW	GPIO Idle Phase Configuration
0x044	LESENSE_ALTEXCONF	RW	Alternative Excite Pin Configuration
0x050	LESENSE_IF	R	Interrupt Flag Register
0x054	LESENSE_IFS	W1	Interrupt Flag Set Register
0x058	LESENSE_IFC	(R)W1	Interrupt Flag Clear Register
0x05C	LESENSE_IEN	RW	Interrupt Enable Register
0x060	LESENSE_SYNCBUSY	R	Synchronization Busy Register
0x064	LESENSE_ROUTEPEN	RW	I/O Routing Register
0x100	LESENSE_ST0_TCONFA	RW	State Transition Configuration a
0x104	LESENSE_ST0_TCONFB	RW	State Transition Configuration B
	LESENSE_STx_TCONFA	RW	State Transition Configuration a
	LESENSE_STx_TCONFB	RW	State Transition Configuration B
0x1F8	LESENSE_ST31_TCONFA	RW	State Transition Configuration a
0x1FC	LESENSE_ST31_TCONFB	RW	State Transition Configuration B
0x200	LESENSE_BUF0_DATA	RWH	Scan Results
	LESENSE_BUFx_DATA	RWH	Scan Results
0x23C	LESENSE_BUF15_DATA	RWH	Scan Results
0x240	LESENSE_CH0_TIMING	RW	Scan Configuration
0x244	LESENSE_CH0_INTERACT	RW	Scan Configuration

Offset	Name	Туре	Description
0x248	LESENSE_CH0_EVAL	RWH	Scan Configuration
	LESENSE_CHx_TIMING	RW	Scan Configuration
	LESENSE_CHx_INTERACT	RW	Scan Configuration
	LESENSE_CHx_EVAL	RWH	Scan Configuration
0x330	LESENSE_CH15_TIMING	RW	Scan Configuration
0x334	LESENSE_CH15_INTERACT	RW	Scan Configuration
0x338	LESENSE_CH15_EVAL	RWH	Scan Configuration

28.5 Register Description

28.5.1 LESENSE_CTRL - Control Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset	Bit Position																														
0x000	31 30 23 24 25 25 27 27 27 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29									22	2	20	19	8	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	- 0
Reset							0	2	OX OX	0		0	0			0		0			0x0			0x0		0x0					
Access							RW	A S				W.	MA M			₩ M		₩ M			2	AM N			X X		AW.				
Name										DEBUGRUN			BUFIDL		STRSCANRES	BUFOW			DUALSAMPLE		ALTEXMAP								PRSSEL		SCANMODE

	·		<u>'</u>										
Bit	Name	Reset	Access	Description									
31:23	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-									
22	DEBUGRUN	0	RW	Debug Mode Run Enable									
	Set to keep LESENSE running in debug mode.												
	Value			Description									
	0			LESENSE can not start new scans in debug mode									
	1			LESENSE can start new scans in debug mode									
21:20	DMAWU	0x0	RW	DMA Wake-up From EM2									
	Set buffer threshold for waking up the DMA controller when the system is in EM2												
	Value	Mode		Description									
	0	DISABLE		No DMA wake-up from EM2									
	1	BUFDATAV		DMA wake-up from EM2 when data is valid in the result buffer									
	2	BUFLEVEL		DMA wake-up from EM2 when the result buffer is full/half-full depending on BUFIDL configuration									
19	BUFIDL	0	RW	Result Buffer Interrupt and DMA Trigger Level									
	Set buffer threshold for DMA requests and interrupt generation												
	Value	Mode		Description									
	0	HALFFULL		DMA and interrupt flags set when result buffer is half-full									
	1	FULL		DMA and interrupt flags set when result buffer is full									
18	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-									
17	STRSCANRES	0	RW	Enable Storing of SCANRES									
	When set, SCANRI	ES will be stored	in the result	buffer after each scan									

Suppose	Di4	Nama	Poset	A	Decariation
If set, LESENSE will always write to the result buffer, even if it is full 15:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 13	Bit	Name	Reset	Access	Description Result Buffer Overwite
15:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions DUALSAMPLE 0 RW Enable Dual Sample Mode When set, both ACMP's will be sampled simultaneously. Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions ALTEXMAP 0 RW Alternative Excitation Map This bit is used to configure which pins alternate excitation is mapped to. Value Mode Description O ALTEX Alternative excitation is mapped to the LES_ALTEX pins. 1 CH Alternative excitation is mapped to the pin of LESENSE channel (X+8 mod 16), X being the active channel. 10.9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 8:7 SCANCONF 0x0 RW Select Scan Configuration These bits control which Chx_CONF registers to be used. Value Mode Description 1 INVMAP The channel configuration register registers used are directly mapped to the channel number. 1 INVMAP The channel configuration register registers used are directly mapped to the channel configuration register registers used are Chx_te_CONF for channels 8-15. 2 TOGGLE The channel configuration register registers used toggles between CHx_CONF and CHx_te_CONF when channel x triggers 3 DECDEF The decoder state defines the CONF registers to be used. Fresserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions Reserved To ensure compatibility with future devices are part of the channel configuration register registers used toggles between CHx_CONF for channels 8-15. Reserved To ensure compatibility ensure compatibility ensure comp	16				
BOUALSAMPLE 0 RW Enable Dual Sample Mode	45.44		•		
When set, both ACMPs will be sampled simultaneously. Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions	15:14	Reserved		пратівіііту і	with future devices, always write bits to 0. More information in 1.2 Conven-
To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions	13	DUALSAMPLE	0	RW	Enable Dual Sample Mode
11 ALTEXMAP 0 RW Alternative Excitation Map This bit is used to configure which pins alternate excitation is mapped to. Value Mode Description 0 ALTEX Alternative excitation is mapped to the LES_ALTEX pins. 1 CH Alternative excitation is mapped to the pin of LESENSE channel (X+8 mod 16), X being the active channel. 10:9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 8:7 SCANCONF 0x0 RW Select Scan Configuration These bits control which CHx_CONF registers to be used. 10:9 Mode Description 1 INVMAP The channel configuration register registers used are directly mapped to the channel number. 1 INVMAP The channel configuration register registers used are CHx+8_CONF for channels 0-7 and CHx_6_CONF for channels 8-15. 2 TOGGLE The channel configuration register registers used are University mapped to the channel and CHx+8_CONF for channels x triggers 3 DECDEF The decoder state defines the CONF registers to be used. 6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 1 selected as input 4 PRSCH4 PRS Channel 2 selected as input 5 PRSCH3 PRS Channel 3 selected as input 5 PRSCH4 PRS Channel 5 selected as input 5 PRSCH5 PRS Channel 5 selected as input		When set, both ACMI	es will be sample	ed simultar	neously.
This bit is used to configure which pins alternate excitation is mapped to. Value Mode Description 0 ALTEX Alternative excitation is mapped to the LES_ALTEX pins. 1 CH Alternative excitation is mapped to the pin of LESENSE channel (X+8 mod 16), X being the active channel. 10:9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 8:7 SCANCONF 0x0 RW Select Scan Configuration These bits control which CHx_CONF registers to be used. Value Mode Description 0 DIRMAP The channel configuration register registers used are directly mapped to the channel number. 1 INVMAP The channel configuration register registers used are CHx+e_CONF for channels 0-7 and CHx,e_CONF or channels 8-15. 2 TOGGLE The channel configuration register registers used are CHx+e_CONF for channels 0-7 and CHx,e_CONF when channel x triggers 3 DECDEF The decoder state defines the CONF registers to be used. 6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRS Channel 1 selected as input 3 PRSCH2 PRS Channel 2 selected as input 4 PRSCH4 PRS Channel 3 selected as input 5 PRSCH5 PRS Channel 5 selected as input 5 PRSCH6 PRS Channel 5 selected as input	12	Reserved		mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
Value Mode Description O ALTEX Alternative excitation is mapped to the LES_ALTEX pins. 1 CH Alternative excitation is mapped to the pin of LESENSE channel (X+8 mod 16), X being the active channel. 10.9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 8:7 SCANCONF 0x0 RW Select Scan Configuration These bits control which CHx_CONF registers to be used. Value Mode Description O DIRMAP The channel configuration register registers used are directly mapped to the channel number. 1 INVMAP The channel configuration register registers used are CHx+8_CONF for channels 0.7 and CHx_8_CONF for channels 8-15. 2 TOGGLE The channel configuration register registers used are CHx+8_CONF for channels 0.7 and CHx+8_CONF when channel x triggers 3 DECDEF The decoder state defines the CONF when channel x triggers 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 2 selected as input 2 PRSCH2 PRS Channel 3 selected as input 4 PRSCH4 PRS Channel 4 selected as input 5 PRSCH5 PRS Channel 5 selected as input 5 PRSCH6 PRS Channel 5 selected as input 6 PRS Channel 6 selected as input	11	ALTEXMAP	0	RW	Alternative Excitation Map
0 ALTEX Alternative excitation is mapped to the LES_ALTEX pins. 1 CH Alternative excitation is mapped to the pin of LESENSE channel (X+8 mod 16), X being the active channel. 70.9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 8:7 SCANCONF 0x0 RW Select Scan Configuration These bits control which CHx_CONF registers to be used. Value Mode Description 0 DIRMAP The channel configuration register registers used are directly mapped to the channel number. 1 INVMAP The channel configuration register registers used are CHx+8_CONF for channels 0-7 and CHx+8_CONF for channels 8-15. 2 TOGGLE The channel configuration register registers used are CHx+8_CONF for Channels 0-7 and CHx+8_CONF when channel x triggers 3 DECDEF The decoder state defines the CONF registers to be used. 6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 1 selected as input 2 PRSCH2 PRS Channel 2 selected as input 4 PRSCH4 PRS Channel 3 selected as input 5 PRSCH5 PRS Channel 5 selected as input 6 PRSCH6 PRS Channel 5 selected as input		This bit is used to cor	nfigure which pin	is alternate	excitation is mapped to.
1 CH Alternative excitation is mapped to the pin of LESENSE channel (X+8 mod 16), X being the active channel. 10.9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 8:7 SCANCONF 0x0 RW Select Scan Configuration These bits control which CHx_CONF registers to be used. Value Mode Description 0 DIRMAP The channel configuration register registers used are directly mapped to the channel number. 1 INVMAP The channel configuration register registers used are CHx+8_CONF for channels 0-7 and CHy,8_CONF for channels 8-15. 2 TOGGLE The channel configuration register registers used toggles between CHx_CONF and CHx,8_CONF when channel x triggers 3 DECDEF The decoder state defines the CONF registers to be used. 6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 1 selected as input 2 PRSCH2 PRSCH2 PRS Channel 3 selected as input 3 PRSCH3 PRSCH4 PRS Channel 3 selected as input 5 PRSCH5 PRSCH5 PRS Channel 5 selected as input 6 PRSCH6 PRSCH6 PRS Channel 6 selected as input		Value	Mode		Description
To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions		0	ALTEX		Alternative excitation is mapped to the LES_ALTEX pins.
8:7 SCANCONF 0x0 RW Select Scan Configuration These bits control which CHx_CONF registers to be used. Value Mode Description 0 DIRMAP The channel configuration register registers used are directly mapped to the channel number. 1 INVMAP The channel configuration register registers used are CHx+8_CONF for channels 0-7 and CHx_8_CONF for channels 8-15. 2 TOGGLE The channel configuration register registers used are CHx+8_CONF for channels 0-7 and CHx_8_CONF for channels 8-15. 3 DECDEF The decoder state defines the CONF registers to be used. 6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 1 selected as input 2 PRSCH2 PRS Channel 2 selected as input 4 PRSCH3 PRS Channel 3 selected as input 5 PRSCH4 PRS Channel 5 selected as input 5 PRSCH5 PRS Channel 5 selected as input 6 PRSCH6 PRSCH6 PRS Channel 5 selected as input		1	СН		
These bits control which CHx_CONF registers to be used. Value Mode Description 0 DIRMAP The channel configuration register registers used are directly mapped to the channel number. 1 INVMAP The channel configuration register registers used are CHx+8_CONF for channels 0-17 and CHx+8_CONF for channels 8-15. 2 TOGGLE The channel configuration register registers used toggles between CHx_CONF and CHx+8_CONF when channel x triggers 3 DECDEF The decoder state defines the CONF registers to be used. 6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More Information in 1.2 Conventions 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 1 selected as input 2 PRSCH2 PRS Channel 3 selected as input 4 PRSCH4 PRS Channel 4 selected as input 5 PRSCH5 PRS Channel 5 selected as input 6 PRSCH6 PRS Channel 5 selected as input	10:9	Reserved		mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
Value Mode Description 0 DIRMAP The channel configuration register registers used are directly mapped to the channel number. 1 INVMAP The channel configuration register registers used are CH _{X+8} _CONF for channels 8-15. 2 TOGGLE The channel configuration register registers used toggles between CH _X _CONF and CH _{X+8} _CONF when channel x triggers 3 DECDEF The decoder state defines the CONF registers to be used. 6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 1 selected as input 2 PRSCH2 PRS Channel 2 selected as input 3 PRSCH4 PRS Channel 4 selected as input 4 PRSCH5 PRS Channel 5 selected as input 6 PRSCH6 PRS Channel 6 selected as input	8:7	SCANCONF	0x0	RW	Select Scan Configuration
DIRMAP The channel configuration register registers used are directly mapped to the channel number.		These bits control wh	ich CHx_CONF	registers to	o be used.
to the channel number. 1 INVMAP The channel configuration register registers used are CH _{X+8} _CONF for channels 0-7 and CH _{X-8} _CONF for channels 8-15. 2 TOGGLE The channel configuration register registers used toggles between CH _X _CONF and CH _{X+8} _CONF when channel x triggers 3 DECDEF The decoder state defines the CONF registers to be used. 6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 1 selected as input 2 PRSCH2 PRS Channel 2 selected as input 3 PRSCH3 PRS Channel 3 selected as input 4 PRSCH4 PRS Channel 4 selected as input 5 PRSCH4 PRS Channel 5 selected as input 5 PRSCH5 PRS Channel 6 selected as input PRS Channel 6 selected as input PRS Channel 6 selected as input PRS Channel 6 selected as input		Value	Mode		Description
channels 0-7 and CH _{X-8} _CONF for channels 8-15. 2 TOGGLE The channel configuration register registers used toggles between CH _X _CONF and CH _{X+8} _CONF when channel x triggers 3 DECDEF The decoder state defines the CONF registers to be used. 6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 1 selected as input 2 PRSCH2 PRS Channel 2 selected as input 3 PRSCH3 PRS Channel 3 selected as input 4 PRSCH4 PRS Channel 4 selected as input 5 PRSCH5 PRS Channel 5 selected as input 6 PRS Channel 5 selected as input 9 PRS Channel 6 selected as input 9 PRS Channel 6 selected as input		0	DIRMAP		
3 DECDEF The decoder state defines the CONF registers to be used. 6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 1 selected as input 2 PRSCH2 PRS Channel 2 selected as input 3 PRSCH3 PRS Channel 3 selected as input 4 PRSCH4 PRS Channel 4 selected as input 5 PRSCH5 PRS Channel 5 selected as input 6 PRS Channel 5 selected as input PRS Channel 6 selected as input		1	INVMAP		· · · · · · · · · · · · · · · · · · ·
6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions 4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 1 selected as input 2 PRSCH2 PRS Channel 2 selected as input 3 PRSCH3 PRS Channel 3 selected as input 4 PRSCH4 PRS Channel 4 selected as input 5 PRSCH5 PRS Channel 5 selected as input 6 PRSCH6 PRS Channel 6 selected as input		2	TOGGLE		The channel configuration register registers used toggles between CH_X _CONF and CH_{X+8} _CONF when channel x triggers
4:2 PRSSEL 0x0 RW Scan Start PRS Select Select PRS source for scan start if SCANMODE is set to PRS. Value Mode Description 0 PRSCH0 PRS Channel 0 selected as input 1 PRSCH1 PRS Channel 1 selected as input 2 PRSCH2 PRS Channel 2 selected as input 3 PRSCH3 PRS Channel 3 selected as input 4 PRSCH4 PRS Channel 4 selected as input 5 PRSCH5 PRS Channel 5 selected as input 6 PRSCH6 PRS Channel 6 selected as input		3	DECDEF		The decoder state defines the CONF registers to be used.
Select PRS source for scan start if SCANMODE is set to PRS.ValueModeDescription0PRSCH0PRS Channel 0 selected as input1PRSCH1PRS Channel 1 selected as input2PRSCH2PRS Channel 2 selected as input3PRSCH3PRS Channel 3 selected as input4PRSCH4PRS Channel 4 selected as input5PRSCH5PRS Channel 5 selected as input6PRSCH6PRS Channel 6 selected as input	6:5	Reserved		npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
ValueModeDescription0PRSCH0PRS Channel 0 selected as input1PRSCH1PRS Channel 1 selected as input2PRSCH2PRS Channel 2 selected as input3PRSCH3PRS Channel 3 selected as input4PRSCH4PRS Channel 4 selected as input5PRSCH5PRS Channel 5 selected as input6PRSCH6PRS Channel 6 selected as input	4:2	PRSSEL	0x0	RW	Scan Start PRS Select
PRSCH0 PRS Channel 0 selected as input PRSCH1 PRS Channel 1 selected as input PRSCH2 PRS Channel 2 selected as input PRSCH3 PRS Channel 3 selected as input PRSCH4 PRS Channel 4 selected as input PRSCH5 PRS Channel 5 selected as input PRSCH6 PRS Channel 6 selected as input		Select PRS source fo	r scan start if S0	CANMODE	is set to PRS.
PRSCH1 PRS Channel 1 selected as input PRSCH2 PRS Channel 2 selected as input PRSCH3 PRS Channel 3 selected as input PRSCH4 PRS Channel 4 selected as input PRSCH5 PRS Channel 5 selected as input PRSCH6 PRS Channel 6 selected as input		Value	Mode		Description
PRSCH2 PRS Channel 2 selected as input PRSCH3 PRS Channel 3 selected as input PRSCH4 PRS Channel 4 selected as input PRSCH5 PRS Channel 5 selected as input PRSCH6 PRS Channel 6 selected as input		0	PRSCH0		PRS Channel 0 selected as input
PRSCH3 PRS Channel 3 selected as input PRSCH4 PRS Channel 4 selected as input PRSCH5 PRS Channel 5 selected as input PRSCH6 PRS Channel 6 selected as input		1	PRSCH1		PRS Channel 1 selected as input
PRSCH4 PRS Channel 4 selected as input PRSCH5 PRS Channel 5 selected as input PRSCH6 PRS Channel 6 selected as input		2	PRSCH2		PRS Channel 2 selected as input
5 PRSCH5 PRS Channel 5 selected as input 6 PRSCH6 PRS Channel 6 selected as input		3	PRSCH3		PRS Channel 3 selected as input
6 PRSCH6 PRS Channel 6 selected as input		4	PRSCH4		PRS Channel 4 selected as input
		5	PRSCH5		PRS Channel 5 selected as input
7 PRSCH7 PRS Channel 7 selected as input		6	PRSCH6		PRS Channel 6 selected as input
		7	PRSCH7		PRS Channel 7 selected as input

Name	Reset	Access	Description
SCANMODE	0x0	RW	Configure Scan Mode
These bits contr	rol how the scan frequency	uency is de	cided
Value	Mode		Description
0	PERIODIC		A new scan is started each time the period counter overflows
1	ONESHOT		A single scan is performed when START in CMD is set
2	PRS		Pulse on PRS channel

28.5.2 LESENSE_TIMCTRL - Timing Control Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset													Bit	Pos	ition														
0x004	30 33	78	27	56	25	24	23	22	21	20	19	9	17	16	<u>u</u> 4	ζ.	2 !	12	7	10	6	ω	7	9	5	4	က	2	- (
Reset		0					0	OXO						00×0	·						0x0				0x0				0x0
Access		§ S S					- ×	 }						- X							Z.				Z.				Z.
Name		AUXSTARTUP					V INTANTO	SIANIDEI						PCTOP							PCPRESC				LFPRESC				AUXPRESC
Bit	Name				Re	set			Ac	ces	s D	esc	ript	ion															
31:29	Reserved				To tion		ure	com	pati	bilit _.	/ witl	ı futi	ure	devi	es, a	lwa	ys	wri	te b	its t	o 0.	Мо	re in	forn	natio	on ii	n 1.2	? Co	nven-
28	AUXSTAR	TUF	•		0				RV	/	Δ	UXI	HFR	co	Start	up (Со	nfi	gura	atio	า								
	This bit ca	n be	set	to C	ND	EMA	AND	to (dela	y st	artup	of tl	he A	AUXI	IFRC	O v	vhe	en h	nigh	frec	uer	ncy t	time	r is	use	d			
	Value				Мо	de					С	esc	ripti	on															
	0				PR	EDE	ΕMΑ	ND			Α	UXF	HFR	CO	s sta	rted	ha	alf a	clo	ck c	ycle	e be	fore	it's	nee	dec	d		
	1				ON	IDEI	MAN	1D			Α	UXH	HFR	CO	s sta	rted	at	the	e tim	ne it	is n	eed	ed						
27:24	Reserved				To tion		ure	com	pati	bilit	/ witl	n futi	ure	devi	es, a	lwa	ys	wri	te b	its t	o 0.	Мо	re in	forn	natio	on ii	n 1.2	? Co	nven-
23:22	STARTDL	Y			0x0)			RV	/	S	tart	De	ay C	onfi	gura	atio	on											
	Delay sens	sor i	ntera	actic	n S	TAF	TDI	ELA	Y LI	FAC	LK _{LE}	SEN	SE (cycle	s for	eac	h c	char	nnel										
21:20	Reserved				To tion		ure	com	pati	bilit _.	/ witl	n futi	ure	devi	es, a	lwa	ys	wri	te b	its t	o 0.	Мо	re in	forn	natio	on ii	n 1.2	? Co	nven-
19:12	РСТОР				0x0	00			RV	/	P	erio	d C	oun	ter To	эр\	/al	lue											
	These bits	con	tain	the	top	valu	e fo	r the	e pe	riod	cour	nter.																	
11	Reserved				To tion		ure	com	pati	bilit	/ with	n futi	ure	devi	es, a	lwa	ys	wri	te b	its t	o 0.	Мо	re in	forn	natio	on ii	n 1.2	Co	nven-
10:8	PCPRESC	;			0x0)			RV	/	P	erio	d C	oun	er P	resc	cal	ing											
	This bitfield	d is	used	d to	divid	de th	e cl	ock	to tl	пе р	erioc	l cou	ınte	r															
	Value				Мо	de						esc	ripti	on															
	0				DI۱	/1					T	he p	eric	od co	unter	clo	ck	fre	que	ncy	is L	FAC	CLK	ESE	NSE	/1			
						/2																	CLK						

The period counter clock frequency is LFACLK_{LESENSE}/4

The period counter clock frequency is LFACLK_{LESENSE}/8

The period counter clock frequency is LFACLK_{LESENSE}/16

The period counter clock frequency is LFACLK_{LESENSE}/32

silabs com l	Building	a more	connected	world

DIV4

DIV8

DIV16

DIV32

2

3

4

5

Bit	Name	Reset Ac	ccess	Description
	6	DIV64		The period counter clock frequency is LFACLK _{LESENSE} /64
	7	DIV128		The period counter clock frequency is LFACLK _{LESENSE} /128
7	Reserved	To ensure compa	tibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
6:4	LFPRESC	0x0 R\	Ν	Prescaling Factor for Low Frequency Timer
	This bitfield is use	ed to divide the clock to	the low	frequency timer
	Value	Mode		Description
	0	DIV1		Low frequency timer is clocked with LFACLK _{LESENSE} /1
	1	DIV2		Low frequency timer is clocked with LFACLK _{LESENSE} /2
	2	DIV4		Low frequency timer is clocked with LFACLK _{LESENSE} /4
	3	DIV8		Low frequency timer is clocked with LFACLK _{LESENSE} /8
	4	DIV16		Low frequency timer is clocked with LFACLK _{LESENSE} /16
	5	DIV32		Low frequency timer is clocked with LFACLK _{LESENSE} /32
	6	DIV64		Low frequency timer is clocked with LFACLK _{LESENSE} /64
	7	DIV128		Low frequency timer is clocked with LFACLK _{LESENSE} /128
3:2	Reserved	To ensure compa	tibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
1:0	AUXPRESC	0x0 R\	N	Prescaling Factor for High Frequency Timer
	This bitfield is use	ed to divide the clock to	the high	n frequency timer
	Value	Mode		Description
	0	DIV1		High frequency timer is clocked with AUXHFRCO/1
	1	DIV2		High frequency timer is clocked with AUXHFRCO/2
	2	DIV4		High frequency timer is clocked with AUXHFRCO/4
	3	DIV8		High frequency timer is clocked with AUXHFRCO/8

28.5.3 LESENSE_PERCTRL - Peripheral Control Register (Async Reg)

Offset									Bit Position	
0x008	30	78 78 78	27	26	25	24	23	22 82	9	0
Reset		0x0	0	0	0	0	0×0	0x0	0 0 0 0	0
Access		SX SX	\ N	Z.	\ N	S.	SX SX	Z Š	W W W W	Z.
Name		WARMUPMODE	ACMP1HYSTEN	ACMPOHYSTEN			NODE	NODE	RIG TA TA	
		WARMU	ACMP11	ACMPO	ACMP1INV	ACMPOINV	ACMP1MODE	ACMP0MODE	DACCONVTRIC DACSTARTUP DACCH1DATA DACCH1DATA DACCH1EN	DACCHOEN
Bit	Name				Re	set		Acces	s Description	
31:30	Reserv	red			To tio		ure com	patibility	with future devices, always write bits to 0. More information in 1.2 Conver	7-
29:28	WARM	IUPMOI	DE		0x0)		RW	ACMP and VDAC Duty Cycle Mode	
	This bi	tfield is	used	d to	cont	figur	e how th	ne VDA0	and ACMP are duty cycled when LESENSE is controlling them	
	Value				Мо	de			Description	
	0				NC	RM	AL		The analog comparators and VDAC are shut down when LESENSE is idle	
	1				KE	EPA	ACMPW	ARM	The analog comparators are kept powered up when LESENSE is idle	
	2				KE	EP	DACWA	RM	The VDAC is kept powered up when LESENSE is idle	
	3				KE	EPA	ACMPDA	ACWAR	M The analog comparators and VDAC are kept powered up when LE- SENSE is idle	
27	ACMP	1HYSTE	EN		0			RW	ACMP1 Hysteresis Enable	
	Set to	control A	ACM	1P1_	_HY	STE	RESISC	_DIVVX	and ACMP1_HYSTERESIS1_DIVVX separately.	
26	ACMP	OHYSTE	ΞN		0			RW	ACMP0 Hysteresis Enable	
	Set to	control A	ACM	1P0_	_HY	STE	RESISC	_DIVVX	and ACMP0_HYSTERESIS1_DIVVX separately.	
25	ACMP				0			RW	Invert Analog Comparator 1 Output	
			set	to ir		t the	output		from ACMP1	
24	ACMP(4	4- :-	0	4 41		RW	Invert Analog Comparator 0 Output	
23:22		1MODE		to ii	0x(output	RW	from ACMP0 ACMP1 Mode	
25.22				SEN			rols AC		ACMF I Mode	
	Value				Mo				Description	_
	0					SAB	I F		LESENSE does not control ACMP1	_
	1				MU				LESENSE controls the input mux (POSSEL) of ACMP1	
	2						HRES		LESENSE controls the input mux and the threshold value (VDDLEVEL) of ACMP1)

Bit	Name	Reset A	Access	Description
21:20	ACMP0MODE		RW	ACMP0 Mode
		ENSE controls ACMF	P0	
	Value	Mode		Description
	0	DISABLE		LESENSE does not control ACMP0
	1	MUX		LESENSE controls the input mux (POSSEL) of ACMP0
	2	MUXTHRES		LESENSE controls the input mux (POSSEL) and the threshold value (VDDLEVEL) of ACMP0
19:9	Reserved	To ensure compa	atibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
8	DACCONVTRIG	0 R	RW	VDAC Conversion Trigger Configuration
	This bit is used to co	onfigure how frequen	ntly a VE	OAC conversion is triggered
	Value	Mode		Description
	0	CHANNELSTAR	Т	VDAC is enabled before every LESENSE channel measurement.
	1	SCANSTART		VDAC is only enabled once per scan.
7	Reserved	To ensure compa	atibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
6	DACSTARTUP	0 R	RW	VDAC Startup Configuration
	This bit is used to co	onfigure the duration	betwee	n the VDAC conversion trigger and the sensor interaction
	Value	Mode		Description
	0	FULLCYCLE		VDAC is started a full LFACLK $_{\mbox{\scriptsize LESENSE}}$ cycle before sensor interaction starts.
	1	HALFCYCLE		VDAC is started half a LFACLK _{LESENSE} cycle before sensor interaction starts.
5:4	Reserved	To ensure compa	atibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
3	DACCH1DATA	0 R	RW	VDAC CH1 Data Selection
	This bit decides if th	e data used for VDA	.C conve	ersion is taken from the VDAC interface or from LESENSE
	Value	Mode		Description
	0	DACDATA		VDAC data is defined by CH1DATA in the VDAC interface.
	1	THRES		VDAC data is defined by THRES in CHx_INTERACT.
2	DACCH0DATA	0 R	RW	VDAC CH0 Data Selection
	This bit decides if the	e data used for VDA	.C conve	ersion is taken from the VDAC interface or from LESENSE
	Value	Mode		Description
	0	DACDATA		VDAC data is defined by CH0DATA in the VDAC interface.
	1	THRES		VDAC data is defined by THRES in CHx_INTERACT.

Bit	Name	Reset	Access	Description
1	DACCH1EN	0	RW	VDAC CH1 Enable
	Enable LESENSE co	ontrol of VDA	C0 CH1	
0	DACCH0EN	0	RW	VDAC CH0 Enable
	Enable LESENSE co	ontrol of VDA	C0 CH0	

28.5.4 LESENSE_DECCTRL - Decoder Control Register (Async Reg)

Offset															Bi	t Po	sitio	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	11	10	6	∞	7	9	2	4	က	7	_	0
Reset		•	•			000	•				0x0			•		0x0					000			0	0	0	0	0	0	0	0	0
Access						₽					₩ M					Z N					X ≪			₩ W	S.	W.	R.	R W	₩ M	RW	₹	₩ M
Name						PRSSEL3					PRSSEL2					PRSSEL1					PRSSEL0			INPUT	PRSCNT	HYSTIRQ	HYSTPRS2	HYSTPRS1	HYSTPRS0	INTMAP	ERRCHK	DISABLE
Bit	Na	me					Re	set			Ac	ces	s l	Des	crip	tion																

		₫	₫	
Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
27:25	PRSSEL3	0x0	RW	LESENSE Decoder PRS Input 3 Configuration
	Select PRS inp	ut for bit 3 of the LES	SENSE dec	coder
	Value	Mode		Description
	0	PRSCH0		PRS Channel 0 selected as input
	1	PRSCH1		PRS Channel 1 selected as input
	2	PRSCH2		PRS Channel 2 selected as input
	3	PRSCH3		PRS Channel 3 selected as input
	4	PRSCH4		PRS Channel 4 selected as input
	5	PRSCH5		PRS Channel 5 selected as input
	6	PRSCH6		PRS Channel 6 selected as input
	7	PRSCH7		PRS Channel 7 selected as input
24:23	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
22:20	PRSSEL2	0x0	RW	LESENSE Decoder PRS Input 2 Configuration
	Select PRS inp	ut for bit 2 of the LES	SENSE dec	coder

Value	Mode	Description
0	PRSCH0	PRS Channel 0 selected as input
1	PRSCH1	PRS Channel 1 selected as input
2	PRSCH2	PRS Channel 2 selected as input
3	PRSCH3	PRS Channel 3 selected as input
4	PRSCH4	PRS Channel 4 selected as input
5	PRSCH5	PRS Channel 5 selected as input
6	PRSCH6	PRS Channel 6 selected as input
7	PRSCH7	PRS Channel 7 selected as input

	Name	Reset	Access	Description
19:18	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:15	PRSSEL1	0x0	RW	LESENSE Decoder PRS Input 1 Configuration
	Select PRS input	t for the bit 1 of the	LESENSE o	decoder
	Value	Mode		Description
	0	PRSCH0		PRS Channel 0 selected as input
	1	PRSCH1		PRS Channel 1 selected as input
	2	PRSCH2		PRS Channel 2 selected as input
	3	PRSCH3		PRS Channel 3 selected as input
	4	PRSCH4		PRS Channel 4 selected as input
	5	PRSCH5		PRS Channel 5 selected as input
	6	PRSCH6		PRS Channel 6 selected as input
	7	PRSCH7		PRS Channel 7 selected as input
14:13	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven
2:10	PRSSEL0	0x0	RW	LESENSE Decoder PRS Input 0 Configuration
2:10	Select PRS input	t for the bit 0 of the		decoder
2:10	Select PRS input	t for the bit 0 of the		Description
2:10	Select PRS input Value 0	t for the bit 0 of the Mode PRSCH0		Description PRS Channel 0 selected as input
2:10	Value 0	Mode PRSCH0 PRSCH1		Description PRS Channel 0 selected as input PRS Channel 1 selected as input
2:10	Value 0 1	Mode PRSCH0 PRSCH1 PRSCH2		Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input
2:10	Value 0 1 2 3	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3		Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input
2:10	Value 0 1 2 3 4	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4		Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input
12:10	Value 0 1 2 3 4 5	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5		Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input
2:10	Value 0 1 2 3 4 5	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6		Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input
2:10	Value 0 1 2 3 4 5	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5		Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input
	Value 0 1 2 3 4 5	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH5 PRSCH6 PRSCH7	LESENSE C	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 5 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input
)	Value 0 1 2 3 4 5 6 7	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7	LESENSE C	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 5 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input
)	Select PRS input Value 0 1 2 3 4 5 6 7 Reserved	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH5 PRSCH6 PRSCH7 To ensure cotions	ompatibility t	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 5 selected as input PRS Channel 7 selected as input With future devices, always write bits to 0. More information in 1.2 Conven
)	Select PRS input Value 0 1 2 3 4 5 6 7 Reserved	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH5 PRSCH6 PRSCH7 To ensure cotions	ompatibility t	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 5 selected as input PRS Channel 7 selected as input With future devices, always write bits to 0. More information in 1.2 Conven
12:10	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to the	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7 To ensure cotions 0 ne LESENSE decode	ompatibility v	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input With future devices, always write bits to 0. More information in 1.2 Conven
)	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to the Value	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7 To ensure cotions 0 the LESENSE decode Mode	ompatibility v	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input With future devices, always write bits to 0. More information in 1.2 Conventional Co

Bit	Name	Reset	Access	Description
6	HYSTIRQ	0	RW	Enable Decoder Hysteresis on Interrupt Requests
	When set, hystere	esis is enabled in	the decoder,	suppressing interrupt requests.
5	HYSTPRS2	0	RW	Enable Decoder Hysteresis on PRS2 Output
	When set, hystere	esis is enabled in	the decoder,	suppressing changes on PRS channel 2
4	HYSTPRS1	0	RW	Enable Decoder Hysteresis on PRS1 Output
	When set, hystere	esis is enabled in	the decoder,	suppressing changes on PRS channel 1
3	HYSTPRS0	0	RW	Enable Decoder Hysteresis on PRS0 Output
	When set, hystere	esis is enabled in	the decoder,	suppressing changes on PRS channel 0
2	INTMAP	0	RW	Enable Decoder to Channel Interrupt Mapping
	When set, a trans	ition from state x	in the decode	er will set interrupt flag CH[x mod 16]
1	ERRCHK	0	RW	Enable Check of Current State
	When set, the dec	coder checks the	current state	in addition to the states defined in TCONF
0	DISABLE	0	RW	Disable the Decoder
	When set, the dec	coder is disabled.	When disable	ed the decoder will keep its current state

28.5.5 LESENSE_BIASCTRL - Bias Control Register (Async Reg)

Offset															Bi	t Po	siti	on													
0x010	33	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	က	2	- 0
Reset																															0x0
Access																															Z K
Name																															BIASMODE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
1:0	BIASMODE	0x0	RW	Select Bias Mode
	This bitfield is use	ed to configure ho	w LESENSE	interacts with the bias module
	Value	Mode		Description
	0	DONTTOU	СН	Bias module is controlled by the EMU and is not affected by LESENSE
	1	DUTYCYCI	-E	Bias module duty cycled between low power and high accuracy mode
	2	HIGHACC		Bias module always in high accuracy mode
	·	·	·	

28.5.6 LESENSE_EVALCTRL - LESENSE Evaluation Control (Async Reg)

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	80	7	9	5	4	က	7	_	0
Reset	0000×0																															
Access		WW 0×000																														
Name																								LYINDIAIV	HZIONIAA							
Bit	Na	ma					Rα	set			Ac	cos	e l	Das	crin	tion																

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	WINSIZE	0x0000	RW	Sliding Window and Step Detection Size
	In sliding window mod threshold for step det		onfigures t	he window size. In step detection mode, this bitfield is used to configure the

28.5.7 LESENSE_PRSCTRL - PRS Control Register (Async Reg)

Offset															Ві	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset						1	•	1					'	'	•	0						00×0	•			•				00×0		
Access																₽						₩ M								∑		
Name																DECCMPEN						DECCMPMASK								DECCMPVAL		

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
16	DECCMPEN	0	RW	Enable PRS Output DECCMP
	Enables decoder sta	ite compare mato	h PRS out	put
15:13	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
12:8	DECCMPMASK	0x00	RW	Decoder State Compare Value Mask
	Masks DECCMPVA	L and DECSTAT	E for comp	arison
7:5	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
4:0	DECCMPVAL	0x00	RW	Decoder State Compare Value
	Triggers PRS output	when equal to D	ECSTATE	

28.5.8 LESENSE_CMD - Command Register (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset	Bit Position			
0x01C	33 34 35 36 37 38 39 30 30 30 30 30 30 30 30 30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 6 6 7 8 </th <th>ю c</th> <th>4 <u>-</u></th> <th>0</th>	ю c	4 <u>-</u>	0
Reset		0	0	0
Access		× ×	× ×	W1
Name		CLEARBUF	STOP	START

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
3	CLEARBUF	0	W1	Clear Result Buffer
	Set this bit to reset the	e read and write	pointers o	f the result buffer.
2	DECODE	0	W1	Start Decoder
	Set this bit to start the	LESENSE dec	oder.	
1	STOP	0	W1	Stop Scanning of Sensors
	Set this bit to stop LE	SENSE. If issue	ed during a	scan, the command will take effect after scan completion.
0	START	0	W1	Start Scanning of Sensors
	Set this bit to start LE	SENSE.		

28.5.9 LESENSE_CHEN - Channel Enable Register (Async Reg)

Offset															Bi	t Po	sitio	on														
0x020	31	30	29	78	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	2	1	0
Reset																								0000	00000							
Access																								2	2							
Name																																

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	CHEN	0x0000	RW	Enable Scan Channel
	Set bit X to enable ch	annel X		

28.5.10 LESENSE_SCANRES - Scan Result Register (Async Reg)

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset	00000000000000000000000000000000000000																															
Access									[} }																[} }							
Name								GIGGIL	П Г																ב ב ב							

Bit	Name	Reset	Access	Description
31:16	STEPDIR	0x0000	RWH	Direction of Previous Step Detection
	In step detection mod	e, bit X will be s	et if a step	up was detected on channel X
15:0	SCANRES	0x0000	RWH	Scan Results
	Bit X will be set deper	nding on channe	l X evaluat	tion

28.5.11 LESENSE_STATUS - Status Register (Async Reg)

Offset															Ві	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset			'		'		'	•	•			•		•		'	•	•					•				0	0	0	0	0	0
Access																											22	22	22	<u>~</u>	~	œ
Name																											DACACTIVE	SCANACTIVE	RUNNING	BUFFULL	BUFHALFFULL	BUFDATAV

Bit	Name	Reset	Access	Description
Dit	Name	Neset	A00033	Description
31:6	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
5	DACACTIVE	0	R	LESENSE VDAC Interface is Active
	LESENSE is currently	using the VDA	C.	
4	SCANACTIVE	0	R	LESENSE Scan Active
	LESENSE is currently	/ interfacing to s	ensors.	
3	RUNNING	0	R	LESENSE Periodic Counter Running
	LESENSE is running	in periodic mode	€.	
2	BUFFULL	0	R	Result Buffer Full
	Set when the result b	uffer is full		
1	BUFHALFFULL	0	R	Result Buffer Half Full
	Set when the result b	uffer is half full		
0	BUFDATAV	0	R	Result Data Valid
	Set when data is avai	lable in the resu	It buffer. C	leared when the buffer is empty.

28.5.12 LESENSE_PTR - Result Buffer Pointers (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Po	sitio	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	တ	∞	7	9	5	4	က	2	~ c	_ o
Reset																										2	2			0	8	
Access																										۵	۷			Ω	_	
Name																										0/4/	\			2	2	

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure con tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:4	WR	0x0	R	Result Buffer Write Pointer
	These bits show the n	ext index in the	result buffe	er to be written to. Incremented when LESENSE writes to result buffer
3:0	RD	0x0	R	Result Buffer Read Pointer
	These bits show the ir	ndex of the oldes	st unread o	data in the result buffer. Incremented on read from BUFDATA.

28.5.13 LESENSE_BUFDATA - Result Buffer Data Register (Async Reg) (Actionable Reads)

Offset	Bit Position
0x030	33 34 37 38 39 30 30 31 32 33 34 35 36 37 38 40
Reset	XXXXXX
Access	α
Name	BUFDATASRC

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
19:16	BUFDATASRC	0xX	R	Result Data Source
	This bitfield contains	the channel inde	ex for the s	ensor result in BUFDATA.
15:0	BUFDATA	0xXXXX	R	Result Data
	This register can be ι	ised to read the	oldest unre	ead data from the result buffer.

28.5.14 LESENSE_CURCH - Current Channel Index (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Ві	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																														OXO	2	
Access																														Ω	<u>:</u>	
Name																														HUBUH		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
3:0	CURCH	0x0	R	Current Channel Index
	Shows the index of the	ne current chanr	nel	

28.5.15 LESENSE_DECSTATE - Current Decoder State (Async Reg)

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	-	0
Reset		•							•		•		•			•				•	•	•	•	•	•	•	•			00x0		
Access																														RWH		
Name																														DECSTATE		

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4:0	DECSTATE	0x00	RWH	Current Decoder State
	Shows the current de	coder state		

28.5.16 LESENSE_SENSORSTATE - Decoder Input Register (Async Reg)

Offset															Bi	t Po	siti	on													
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	- 0
Reset																														0x0	
Access																														RWH	
Name																														SENSORSTATE	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
3:0	SENSORSTATE	0x0	RWH	Decoder Input Register
	Shows the status of s	sensors chosen	as input to	the decoder

28.5.17 LESENSE_IDLECONF - GPIO Idle Phase Configuration (Async Reg)

Offset															Bi	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset	OXO	OW O	2	OXO	2	OXO	2	S S	9	OX O	2	OXO	2	2	2	OX O	2	2	2	3	UAU	3	>	3	Ovo	8	2	2	2	040	000	
Access	N N		2	<u>}</u>	7/0	<u>}</u>	Š	≥ Y	Š	<u>}</u>	2	<u>}</u>	<u> </u>	2	2	<u>}</u>	2	2	Š	2	Wa	2	Š	2	W	2	Š	2	7	<u> </u>	Z.	
Name	CH15	:	7	_	7	_]	<u> </u>	7	_	0,10	_	OH C		Ö	ê 5	717	<u>-</u>	OH O	2	SHO	-	ZHZ	=	٤НЭ	-	CHO	_	Ç	-	СНО	

Name	CH1	공	공	끙	공	공	CHO	CH8	CH7	СН6	CHE	Š	SH3	CH3	공 -	H S
Bit	Name			Reset		Access	Des	cription								
31:30	CH15			0x0		RW	Cha	nnel 15	ldle Ph	ase Co	nfigurat	ion				
	This bit	field de	termine	s how th	e chan	nel is conf	figured	during t	he idle	ohase						
	Value			Mode			Des	cription								
	0			DISABI	LE		CH1	5 output	is disa	oled in i	dle phas	е				
	1			HIGH			CH1	5 output	is high	in idle p	hase					
	2			LOW			CH1	5 output	is low i	n idle pl	nase					
	3			DAC				5 output e is only								this
29:28	CH14			0x0		RW	Cha	nnel 14	ldle Ph	ase Co	nfigurat	ion				
	This bit	field de	termine	s how th	ie chan	nel is cont	figured	during t	he idle	ohase						
	Value			Mode			Des	cription								
	0			DISABI	LE		CH1	4 output	is disa	oled in i	dle phas	е				
	1			HIGH			CH1	4 output	is high	in idle p	hase					
	2			LOW			CH1	4 output	is low i	n idle pl	nase					
	3			DAC				4 output e is only								this
				0x0		RW	Cha	nnel 13	ldle Ph	ase Co	nfigurat	ion				
27:26	CH13															
27:26		field de	termine	s how th	ie chan	nel is cont	igurea	during t	he idle	ohase						
27:26		field de	termine	s how th	ne chan	nel is cont		during t	he idle	ohase						
27:26	This bit	field de	termine			nel is cont	Des				dle phas	e				
27:26	This bit	field de	termine	Mode		nel is conf	Desc	cription	is disal	oled in i	-	е				
27:26	This bit	field de	termine	Mode DISABI		nel is conf	Dese	cription 3 output	is disal	oled in i	hase	e				
27:26	Value 0 1	field de	termine	Mode DISABI HIGH		nel is conf	Desc CH1 CH1 CH1	cription 3 output 3 output	is disalishing his low is conr	oled in id in idle p n idle pl	hase nase VDAC	output i				this
27:26	Value 0 1 2	field de	termine	Mode DISABI HIGH LOW		nel is conf	Desc CH1 CH1 CH1 CH1 mod	cription 3 output 3 output 3 output 3 output	is disal is high is low i is conr availab	oled in io in idle p n idle pl ected to le on ch	ohase nase o VDAC nannels	output i 0, 1, 2,				this
	This bit Value 0 1 2 3 CH12			Mode DISABI HIGH LOW DAC	LE		Desc CH1 CH1 CH1 CH1 mod	cription 3 output 3 output 3 output 3 output e is only	is disal is high is low i is conr availab	oled in ide planting in idle planting idected to the on character asse College in in idea.	ohase nase o VDAC nannels	output i 0, 1, 2,				this

Bit	Name	Reset Acces	ss Description
	0	DISABLE	CH12 output is disabled in idle phase
	1	HIGH	CH12 output is high in idle phase
	2	LOW	CH12 output is low in idle phase
	3	DAC	CH12 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15
23:22	CH11	0x0 RW	Channel 11 Idle Phase Configuration
	This bitfield determ	ines how the channel is co	onfigured during the idle phase
	Value	Mode	Description
	0	DISABLE	CH11 output is disabled in idle phase
	1	HIGH	CH11 output is high in idle phase
	2	LOW	CH11 output is low in idle phase
	3	DAC	CH11 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15
21:20	CH10	0x0 RW	Channel 10 Idle Phase Configuration
	This bitfield determ	nines how the channel is co	onfigured during the idle phase
	Value	Mode	Description
	0	DISABLE	CH10 output is disabled in idle phase
	1	HIGH	CH10 output is high in idle phase
	2	LOW	CH10 output is low in idle phase
	3	DAC	CH10 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15
19:18	CH9	0x0 RW	Channel 9 Idle Phase Configuration
	This bitfield determ	nines how the channel is co	onfigured during the idle phase
	Value	Mode	Description
	0	DISABLE	CH9 output is disabled in idle phase
	1	HIGH	CH9 output is high in idle phase
	2	LOW	CH9 output is low in idle phase
	3	DAC	CH9 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15
17:16	CH8	0x0 RW	Channel 8 Idle Phase Configuration
	This bitfield determ	nines how the channel is co	onfigured during the idle phase
	Value	Mode	Description
	0	DISABLE	CH8 output is disabled in idle phase
	1	HIGH	CH8 output is high in idle phase
	2	LOW	CH8 output is low in idle phase
	3	DAC	CH8 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15

Bit	Name	Reset	Access	Description
15:14	CH7	0x0	RW	Channel 7 Idle Phase Configuration
	This bitfield det	ermines how the chan	nel is confi	gured during the idle phase
	Value	Mode		Description
	0	DISABLE		CH7 output is disabled in idle phase
	1	HIGH		CH7 output is high in idle phase
	2	LOW		CH7 output is low in idle phase
	3	DAC		CH7 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15
13:12	CH6	0x0	RW	Channel 6 Idle Phase Configuration
	This bitfield det	ermines how the chan	nel is confi	gured during the idle phase
	Value	Mode		Description
	0	DISABLE		CH6 output is disabled in idle phase
	1	HIGH		CH6 output is high in idle phase
	2	LOW		CH6 output is low in idle phase
	3	DAC		CH6 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15
11:10	CH5	0x0	RW	Channel 5 Idle Phase Configuration
	This bitfield det	ermines how the chan	nel is confi	gured during the idle phase
	Value	Mode		Description
	0	DISABLE		CH5 output is disabled in idle phase
	1	HIGH		CH5 output is high in idle phase
	2	LOW		CH5 output is low in idle phase
	3	DAC		CH5 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15
9:8	CH4	0x0	RW	Channel 4 Idle Phase Configuration
	This bitfield dete	ermines how the chan	nel is confi	gured during the idle phase
	Value	Mode		Description
	0	DISABLE		CH4 output is disabled in idle phase
	1	HIGH		CH4 output is high in idle phase
	2	LOW		CH4 output is low in idle phase
	3	DAC		CH4 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15
7:6	CH3	0x0	RW	Channel 3 Idle Phase Configuration
	This bitfield dete	ermines how the chan	nel is confi	gured during the idle phase
	Value	Mode		Description
	0	DISABLE		CH3 output is disabled in idle phase

Bit	Name	Reset A	Access	Description
	1	HIGH		CH3 output is high in idle phase
	2	LOW		CH3 output is low in idle phase
	3	DAC		CH3 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15
5:4	CH2	0x0 I	RW	Channel 2 Idle Phase Configuration
	This bitfield det	ermines how the channe	el is confi	gured during the idle phase
	Value	Mode		Description
	0	DISABLE		CH2 output is disabled in idle phase
	1	HIGH		CH2 output is high in idle phase
	2	LOW		CH2 output is low in idle phase
	3	DAC		CH2 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15
3:2	CH1	0x0 I	RW	Channel 1 Idle Phase Configuration
	This bitfield det	ermines how the channe	el is confi	gured during the idle phase
	Value	Mode		Description
	0	DISABLE		CH1 output is disabled in idle phase
	1	HIGH		CH1 output is high in idle phase
	2			CH1 output is high in idle phase CH1 output is low in idle phase
		HIGH		CH1 output is low in idle phase
1:0	2	HIGH LOW DAC	RW	CH1 output is low in idle phase CH1 output is connected to VDAC output in idle phase. Note that this
1:0	2 3 CH0	HIGH LOW DAC		CH1 output is low in idle phase CH1 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15
1:0	2 3 CH0	HIGH LOW DAC		CH1 output is low in idle phase CH1 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15 Channel 0 Idle Phase Configuration
1:0	2 3 CH0 This bitfield det	HIGH LOW DAC 0x0 rermines how the channe		CH1 output is low in idle phase CH1 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15 Channel 0 Idle Phase Configuration gured during the idle phase
1:0	2 3 CH0 This bitfield det Value	HIGH LOW DAC 0x0 I ermines how the channe		CH1 output is low in idle phase CH1 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15 Channel 0 Idle Phase Configuration gured during the idle phase Description
1:0	2 3 CH0 This bitfield det Value 0	HIGH LOW DAC 0x0 I ermines how the channe Mode DISABLE		CH1 output is low in idle phase CH1 output is connected to VDAC output in idle phase. Note that this mode is only available on channels 0, 1, 2, 3, 12, 13, 14, 15 Channel 0 Idle Phase Configuration gured during the idle phase Description CH0 output is disabled in idle phase

28.5.18 LESENSE_ALTEXCONF - Alternative Excite Pin Configuration (Async Reg)

Offset															Ві	it Po	ositi	on													
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset				•	•	•	•	•	0	0	0	0	0	0	0	0	Ç	S S	(0X0	Š) X	6) X	2	OX O	Š	OXO	2	OK)	0x0
Access									₹	S.	S.	S N N	S.	S S	₩ M	₹	2	≩	i	<u></u> }	2	<u>}</u>	i	≩ Y	2	2	2	<u>}</u>	2	2	RW
Name									AEX7	AEX6	AEX5	AEX4	AEX3	AEX2	AEX1	AEX0	1000	IDLECOINF/		IDLECONF6	L			IDLECCINF4					וחו בסחורו		IDLECONF0

		,	` ` `	<u> </u>		_					
Bit	Name	Reset	Access	Description							
31:24	Reserved	To ensure co	ompatibility (with future devices,	always w	rite bits t	to 0. Mo	ore infor	mation ir	1.2 Co	nven-
23	AEX7	0	RW	ALTEX7 Always	Excite Er	nable					
	Set this bit to excit	e ALTEX7 regard	less of what	channel is active							
22	AEX6	0	RW	ALTEX6 Always	Excite Er	nable					
	Set this bit to excit	e ALTEX6 regard	less of what	channel is active							
21	AEX5	0	RW	ALTEX5 Always	Excite Er	nable					
	Set this bit to excit	e ALTEX5 regard	less of what	channel is active							
20	AEX4	0	RW	ALTEX4 Always	Excite Er	nable					
	Set this bit to excit	e ALTEX4 regard	less of what	channel is active							
19	AEX3	0	RW	ALTEX3 Always	Excite Er	nable					
	Set this bit to excit	e ALTEX3 regard	less of what	channel is active							
18	AEX2	0	RW	ALTEX2 Always	Excite Er	nable					
	Set this bit to excit	e ALTEX2 regard	less of what	channel is active							
17	AEX1	0	RW	ALTEX1 Always	Excite Er	nable					
	Set this bit to excit	e ALTEX1 regard	less of what	channel is active							
16	AEX0	0	RW	ALTEX0 Always	Excite Er	nable					
	Set this bit to excit	e ALTEX0 regard	less of what	channel is active							
15:14	IDLECONF7	0x0	RW	ALTEX7 Idle Pha	se Confi	guration	1				
	This bitfield determ	nines how the alte	rnate excite	pin is configured d	uring the i	dle phas	se				
	Value	Mode		Description							
	0	DISABLE		ALTEX7 output is	disabled	in idle pl	hase				
	1	HIGH		ALTEX7 output is	high in id	le phase	•				
	2	LOW		ALTEX7 output is	low in idle	e phase					
13:12	IDLECONF6	0x0	RW	ALTEX6 Idle Pha	ase Confi	guration	1				
	This bitfield determ	nines how the alte	rnate excite	pin is configured d	uring the i	dle phas	se				

D.Y	N		
Bit	Name	Reset Acce	·
	Value	Mode	Description
	0	DISABLE	ALTEX6 output is disabled in idle phase
	1	HIGH	ALTEX6 output is high in idle phase
	2	LOW	ALTEX6 output is low in idle phase
11:10	IDLECONF5	0x0 RW	ALTEX5 Idle Phase Configuration
	This bitfield determine	es how the alternate ex	cite pin is configured during the idle phase
	Value	Mode	Description
	0	DISABLE	ALTEX5 output is disabled in idle phase
	1	HIGH	ALTEX5 output is high in idle phase
	2	LOW	ALTEX5 output is low in idle phase
9:8	IDLECONF4	0x0 RW	ALTEX4 Idle Phase Configuration
	This bitfield determine	es how the alternate ex	cite pin is configured during the idle phase
	Value	Mode	Description
	0	DISABLE	ALTEX4 output is disabled in idle phase
	1	HIGH	ALTEX4 output is high in idle phase
	2	LOW	ALTEX4 output is low in idle phase
7:6	IDLECONF3	0x0 RW	ALTEX3 Idle Phase Configuration
	This bitfield determine	es how the alternate ex	cite pin is configured during the idle phase
	Value	Mode	Description
	0	DISABLE	ALTEX3 output is disabled in idle phase
	1	HIGH	ALTEX3 output is high in idle phase
	2	LOW	ALTEX3 output is low in idle phase
5:4	IDLECONF2	0x0 RW	ALTEX2 Idle Phase Configuration
	This bitfield determine	es how the alternate ex	cite pin is configured during the idle phase
	Value	Mode	Description
	0	DISABLE	ALTEX2 output is disabled in idle phase
	1	HIGH	ALTEX2 output is high in idle phase
	2	LOW	ALTEX2 output is low in idle phase
3:2	IDLECONF1	0x0 RW	ALTEX1 Idle Phase Configuration
	This bitfield determine	es how the alternate ex	cite pin is configured during the idle phase
	Value	Mode	Description
	0	DISABLE	ALTEX1 output is disabled in idle phase
	1	HIGH	ALTEX1 output is high in idle phase
	2	LOW	ALTEX1 output is low in idle phase

Bit	Name	Reset	Access	Description
1:0	IDLECONF0	0x0	RW	ALTEX0 Idle Phase Configuration
	This bitfield determin	es how the alter	nate excite	pin is configured during the idle phase
	Value	Mode		Description
	0	DISABLE		ALTEX0 output is disabled in idle phase
	1	HIGH		ALTEX0 output is high in idle phase
	2	LOW		ALTEX0 output is low in idle phase

28.5.19 LESENSE_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset				•	'					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access										R	22	2	22	22	22	22	22	22	2	22	2	22	2	2	2	22	2	2	22	22	2	2
Name										CNTOF	BUFOF	BUFLEVEL	BUFDATAV	DECERR	DEC	SCANCOMPLETE	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	СН6	CH5	CH4	СНЗ	CH2	CH1	СНО

		٥		
Bit	Name	Reset	Access	Description
31:23	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
22	CNTOF	0	R	CNTOF Interrupt Flag
	Set when the LESEN	ISE counter ove	erflows.	
21	BUFOF	0	R	BUFOF Interrupt Flag
	Set when the result b	ouffer overflows		
20	BUFLEVEL	0	R	BUFLEVEL Interrupt Flag
	Set when the data bu	uffer is full.		
19	BUFDATAV	0	R	BUFDATAV Interrupt Flag
	Set when data is ava	ilable in the res	ult buffer.	
18	DECERR	0	R	DECERR Interrupt Flag
	Set when the decode	er detects an err	or	
17	DEC	0	R	DEC Interrupt Flag
	Set when the decode	er has issued an	interrupt re	equest
16	SCANCOMPLETE	0	R	SCANCOMPLETE Interrupt Flag
	Set when a scan seq	uence is comple	eted	
15	CH15	0	R	CH15 Interrupt Flag
	Set when channel 15	triggers		
14	CH14	0	R	CH14 Interrupt Flag
	Set when channel 14	triggers		
13	CH13	0	R	CH13 Interrupt Flag
	Set when channel 13	triggers		
12	CH12	0	R	CH12 Interrupt Flag
	Set when channel 12	triggers?		
11	CH11	0	R	CH11 Interrupt Flag
	Set when channel 11	triggers		
10	CH10	0	R	CH10 Interrupt Flag
	Set when channel 10	triggers		

Bit	Name	Reset	Access	Description	
9	CH9	0	R	CH9 Interrupt Flag	
	Set when cha	nnel 9 triggers			
8	CH8	0	R	CH8 Interrupt Flag	
	Set when cha	nnel 8 triggers			
7	CH7	0	R	CH7 Interrupt Flag	
	Set when cha	nnel 7 triggers			
6	CH6	0	R	CH6 Interrupt Flag	
	Set when cha	nnel 6 triggers			
5	CH5	0	R	CH5 Interrupt Flag	
	Set when cha	nnel 5 triggers			
4	CH4	0	R	CH4 Interrupt Flag	
	Set when cha	nnel 4 triggers			
3	CH3	0	R	CH3 Interrupt Flag	
	Set when cha	nnel 3 triggers			
2	CH2	0	R	CH2 Interrupt Flag	
	Set when cha	nnel 2 triggers			
1	CH1	0	R	CH1 Interrupt Flag	
	Set when cha	nnel 1 triggers			
0	CH0	0	R	CH0 Interrupt Flag	
	Set when cha	nnel 0 triggers			

28.5.20 LESENSE_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset			•				•			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access										W1	W1	W1	W1	W1	W1	W1	W1	N M	W	W	W	W1	W1	W1	W1	W	W1	W1	W1	W1	W1	M
Name										CNTOF	BUFOF	BUFLEVEL	BUFDATAV	DECERR	DEC	SCANCOMPLETE	CH15	CH14	CH13	CH12	CH11	CH10	СНЭ	CH8	CH7	СН6	CH5	CH4	СНЗ	CH2	CH1	СНО

Bit	Name	Reset	Access	Description
31:23	Reserved	To ensure con tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
22	CNTOF	0	W1	Set CNTOF Interrupt Flag
	Write 1 to set the CN	TOF interrupt flag	9	
21	BUFOF	0	W1	Set BUFOF Interrupt Flag
	Write 1 to set the BU	FOF interrupt flag	9	
20	BUFLEVEL	0	W1	Set BUFLEVEL Interrupt Flag
	Write 1 to set the BU	FLEVEL interrupt	flag	
19	BUFDATAV	0	W1	Set BUFDATAV Interrupt Flag
	Write 1 to set the BU	FDATAV interrup	t flag	
18	DECERR	0	W1	Set DECERR Interrupt Flag
	Write 1 to set the DE	CERR interrupt fl	ag	
17	DEC	0	W1	Set DEC Interrupt Flag
	Write 1 to set the DE	C interrupt flag		
16	SCANCOMPLETE	0	W1	Set SCANCOMPLETE Interrupt Flag
	Write 1 to set the SC	ANCOMPLETE i	nterrupt fla	ag
15	CH15	0	W1	Set CH15 Interrupt Flag
	Write 1 to set the CH	15 interrupt flag		
14	CH14	0	W1	Set CH14 Interrupt Flag
	Write 1 to set the CH	14 interrupt flag		
13	CH13	0	W1	Set CH13 Interrupt Flag
	Write 1 to set the CH	13 interrupt flag		
12	CH12	0	W1	Set CH12 Interrupt Flag
	Write 1 to set the CH	12 interrupt flag		
11	CH11	0	W1	Set CH11 Interrupt Flag
	Write 1 to set the CH	11 interrupt flag		

Bit	Name	Reset	Access	Description
10	CH10	0	W1	Set CH10 Interrupt Flag
	Write 1 to set the CH1	0 interrupt flag		
9	CH9	0	W1	Set CH9 Interrupt Flag
	Write 1 to set the CH9	interrupt flag		
8	CH8	0	W1	Set CH8 Interrupt Flag
	Write 1 to set the CH8	3 interrupt flag		
7	CH7	0	W1	Set CH7 Interrupt Flag
	Write 1 to set the CH7	interrupt flag		
6	CH6	0	W1	Set CH6 Interrupt Flag
	Write 1 to set the CH6	interrupt flag		
5	CH5	0	W1	Set CH5 Interrupt Flag
	Write 1 to set the CH5	interrupt flag		
4	CH4	0	W1	Set CH4 Interrupt Flag
	Write 1 to set the CH4	I interrupt flag		
3	CH3	0	W1	Set CH3 Interrupt Flag
	Write 1 to set the CH3	3 interrupt flag		
2	CH2	0	W1	Set CH2 Interrupt Flag
	Write 1 to set the CH2	2 interrupt flag		
1	CH1	0	W1	Set CH1 Interrupt Flag
	Write 1 to set the CH1	I interrupt flag		
0	CH0	0	W1	Set CH0 Interrupt Flag
	Write 1 to set the CHO) interrupt flag		

28.5.21 LESENSE_IFC - Interrupt Flag Clear Register

Offset											Bi	t Po	siti	on														
0x058	30 29	28	26	25	24	22	21	20	19	8	17	16	15	4	13	12	1	9	ဝ	∞	7	9	5	4	က	2	_	0
Reset					·	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access						(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1	(R)W1
Name						CNTOF	BUFOF	BUFLEVEL	BUFDATAV	DECERR	DEC	SCANCOMPLETE	CH15	CH14	CH13	CH12	CH11	CH10	СНЭ	CH8	CH7	СН6	CH5	CH4	СНЗ	CH2	CH1	СНО
Bit	Name			Res	set		Ac	ces	s l	Des	crip	tion																
31:23	Reserved			To d	ensure s	con	npat	ibilit _.	y wi	th fu	ture	dev	/ices	s, alı	way.	s wr	ite b	oits t	o 0.	Мо	re in	forn	natio	on ir	1.2	Co.	nvei	n-
22	CNTOF			0			(R))W1	(Clea	ar C	NTC)F Ir	nter	rupt	Fla	g											
	Write 1 to clear the CNTOF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.). BUFOF 0 (R)W1 Clear BUFOF Interrupt Flag															3												
21	BUFOF 0 (R)W1 Clear BUFOF Interrupt Flag																											
	Write 1 to clear the BUFOF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).															3												
20	BUFLEVEL	_		0			(R))W1	(Clea	ar B	UFL	EVE	EL II	nter	rup	t Fla	ıg										
	Write 1 to of flags (This											urns	the	valı	ue o	f the	e IF	and	clea	ars t	he c	orre	espo	ndir	ng in	terr	upt	
19	BUFDATA	V		0			(R))W1	(Clea	ar B	UFD	ATA	AV I	ntei	rrup	t Fla	ag										
	Write 1 to of flags (This											urns	s the	val	ue c	of th	e IF	and	l cle	ars t	the o	corr	espo	ondi	ng ir	nterr	upt	
18	DECERR			0			(R))W1	(Clea	ar D	ECE	RR	Inte	erru	pt F	lag											
	Write 1 to o									ng r	eturı	ns th	ne va	alue	of t	he I	F ar	nd cl	ears	s the	cor	res	pond	ding	inte	rrup	t fla	gs
17	DEC			0			(R))W1	(Clea	ar D	EC I	nte	rrup	t Fl	ag												
	Write 1 to of feature must								g re	turn	s th	e va	lue	of th	ie IF	and	d cle	ears	the	corr	esp	ond	ing i	nter	rupt	flag	ıs (T	his
16	SCANCOM	1PLETE		0			(R))W1	(Clea	ar S	CAN	ICO	MPI	LET	E In	terr	upt	Fla	g								
	Write 1 to o												retu	rns	the	valu	e of	the	IF a	and (clea	rs th	ne c	orre	spor	ndin	g int	ter-
15	CH15			0			(R))W1	(Clea	ar C	H15	Inte	erru	pt F	lag												
	Write 1 to o									etur	ns th	ne v	alue	of t	he I	F ar	nd cl	lear	s the	e coi	res	ono	ding	inte	errup	t fla	gs	
14	CH14			0			(R))W1	(Clea	ar C	H14	Inte	erru	pt F	lag												
	Write 1 to o									etur	ns th	ne v	alue	of t	he I	F ar	nd cl	lears	s the	e coi	res	ono	ding	inte	errup	t fla	gs	

(This feature must be enabled globally in MSC.).

Bit	Name	Reset	Access	Description
13	CH13	0	(R)W1	Clear CH13 Interrupt Flag
		the CH13 interrupt flagust be enabled globally		returns the value of the IF and clears the corresponding interrupt flags
12	CH12	0	(R)W1	Clear CH12 Interrupt Flag
		the CH12 interrupt flaqust be enabled globally		returns the value of the IF and clears the corresponding interrupt flags .
11	CH11	0	(R)W1	Clear CH11 Interrupt Flag
		the CH11 interrupt flagust be enabled globally		returns the value of the IF and clears the corresponding interrupt flags .
10	CH10	0	(R)W1	Clear CH10 Interrupt Flag
		the CH10 interrupt flagust be enabled globally		returns the value of the IF and clears the corresponding interrupt flags .
9	СН9	0	(R)W1	Clear CH9 Interrupt Flag
		the CH9 interrupt flag. enabled globally in M		returns the value of the IF and clears the corresponding interrupt flags (This
8	CH8	0	(R)W1	Clear CH8 Interrupt Flag
		the CH8 interrupt flag. enabled globally in M		returns the value of the IF and clears the corresponding interrupt flags (This
7	CH7	0	(R)W1	Clear CH7 Interrupt Flag
		the CH7 interrupt flag. enabled globally in M		returns the value of the IF and clears the corresponding interrupt flags (This
6	CH6	0	(R)W1	Clear CH6 Interrupt Flag
		the CH6 interrupt flag. enabled globally in M		returns the value of the IF and clears the corresponding interrupt flags (This
5	CH5	0	(R)W1	Clear CH5 Interrupt Flag
		the CH5 interrupt flag. enabled globally in M		returns the value of the IF and clears the corresponding interrupt flags (This
4	CH4	0	(R)W1	Clear CH4 Interrupt Flag
		the CH4 interrupt flag. enabled globally in M		returns the value of the IF and clears the corresponding interrupt flags (This
3	СНЗ	0	(R)W1	Clear CH3 Interrupt Flag
		the CH3 interrupt flag. enabled globally in M		returns the value of the IF and clears the corresponding interrupt flags (This
2	CH2	0	(R)W1	Clear CH2 Interrupt Flag
		the CH2 interrupt flag. enabled globally in M		returns the value of the IF and clears the corresponding interrupt flags (This
1	CH1	0	(R)W1	Clear CH1 Interrupt Flag
		the CH1 interrupt flag. enabled globally in M		returns the value of the IF and clears the corresponding interrupt flags (This
0	CH0	0	(R)W1	Clear CH0 Interrupt Flag
		the CH0 interrupt flag. enabled globally in M		returns the value of the IF and clears the corresponding interrupt flags (This

28.5.22 LESENSE_IEN - Interrupt Enable Register

Offset		Bit Position	
0x05C	31 30 30 29 28 27 27 27 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 0
Reset		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
Access		N	Z &
Name		CNTOF BUFOF BUFOF BUFLEVEL BUFDATAV DECERR DEC SCANCOMPLETE CH15 CH15 CH16 CH16 CH17 CH16 CH16 CH16 CH17 CH17 CH17 CH17 CH17 CH17 CH18 CH17 CH18 CH17 CH18 CH17 CH18 CH17 CH18 CH17 CH18 CH18 CH17 CH18 CH18 CH18 CH18 CH19 CH19 CH19 CH19 CH19 CH19 CH19 CH19	СНО

Bit	Name	Reset	Access	Description
31:23	Reserved			with future devices, always write bits to 0. More information in 1.2 Conven-
22	CNTOF	0	RW	CNTOF Interrupt Enable
22		-	KVV	CNTOF Interrupt Enable
	Enable/disable the C	•		
21	BUFOF	0	RW	BUFOF Interrupt Enable
	Enable/disable the B	UFOF interrupt		
20	BUFLEVEL	0	RW	BUFLEVEL Interrupt Enable
	Enable/disable the B	UFLEVEL interru	ıpt	
19	BUFDATAV	0	RW	BUFDATAV Interrupt Enable
	Enable/disable the B	UFDATAV interr	upt	
18	DECERR	0	RW	DECERR Interrupt Enable
	Enable/disable the D	ECERR interrup	t	
17	DEC	0	RW	DEC Interrupt Enable
	Enable/disable the D	EC interrupt		
16	SCANCOMPLETE	0	RW	SCANCOMPLETE Interrupt Enable
	Enable/disable the S	CANCOMPLETE	interrupt	
15	CH15	0	RW	CH15 Interrupt Enable
	Enable/disable the C	H15 interrupt		
14	CH14	0	RW	CH14 Interrupt Enable
	Enable/disable the C	H14 interrupt		
13	CH13	0	RW	CH13 Interrupt Enable
	Enable/disable the C	H13 interrupt		
12	CH12	0	RW	CH12 Interrupt Enable
	Enable/disable the C	H12 interrupt		
11	CH11	0	RW	CH11 Interrupt Enable
	Enable/disable the C	H11 interrupt		
		•		

Bit	Name	Reset	Access	Description
10	CH10	0	RW	CH10 Interrupt Enable
	Enable/disable th	ne CH10 interrupt		
9	CH9	0	RW	CH9 Interrupt Enable
	Enable/disable th	ne CH9 interrupt		
8	CH8	0	RW	CH8 Interrupt Enable
	Enable/disable th	ne CH8 interrupt		
7	CH7	0	RW	CH7 Interrupt Enable
	Enable/disable th	ne CH7 interrupt		
6	CH6	0	RW	CH6 Interrupt Enable
	Enable/disable th	ne CH6 interrupt		
5	CH5	0	RW	CH5 Interrupt Enable
	Enable/disable th	ne CH5 interrupt		
4	CH4	0	RW	CH4 Interrupt Enable
	Enable/disable th	ne CH4 interrupt		
3	CH3	0	RW	CH3 Interrupt Enable
	Enable/disable th	ne CH3 interrupt		
2	CH2	0	RW	CH2 Interrupt Enable
	Enable/disable th	ne CH2 interrupt		
1	CH1	0	RW	CH1 Interrupt Enable
	Enable/disable th	ne CH1 interrupt		
0	CH0	0	RW	CH0 Interrupt Enable
	Enable/disable th	ne CH0 interrupt		

28.5.23 LESENSE_SYNCBUSY - Synchronization Busy Register

Offset															Bi	t Po	siti	on														
0x060	31	30	29	78	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	∞	7	9	2	4	က	2	_	_ o
Reset				•					•									•		•	•				0				•		Ì	
Access																									R							
Name																									СМD							

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7	CMD	0	R	CMD Register Busy
	Set when the value w	ritten to CMD is	being synd	chronized.
6:0	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-

28.5.24 LESENSE_ROUTEPEN - I/O Routing Register (Async Reg)

Offset															Ві	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset					•		•	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access									₽	R	W.	₽	Z.	₽	Z.	₽	₽	₽	R M	M M	R M	₽	Z N	₽	₽	₽	₽	₽	₽	RW	X ≪	Z.
Name									ALTEX7PEN	ALTEX6PEN	ALTEX5PEN	ALTEX4PEN	ALTEX3PEN	ALTEX2PEN	ALTEX1PEN	ALTEXOPEN	CH15PEN	CH14PEN	CH13PEN	CH12PEN	CH11PEN	CH10PEN	CH9PEN	CH8PEN	CH7PEN	CH6PEN	CH5PEN	CH4PEN	CH3PEN	CH2PEN	CH1PEN	CH0PEN

		ALT		
Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
23	ALTEX7PEN	0	RW	ALTEX7 Pin Enable
	Set this bit to enable	LESENSE ALTI	EX7 pin	
22	ALTEX6PEN	0	RW	ALTEX6 Pin Enable
	Set this bit to enable	LESENSE ALTI	EX6 pin	
21	ALTEX5PEN	0	RW	ALTEX5 Pin Enable
	Set this bit to enable	LESENSE ALTI	EX5 pin	
20	ALTEX4PEN	0	RW	ALTEX4 Pin Enable
	Set this bit to enable	LESENSE ALTI	EX4 pin	
19	ALTEX3PEN	0	RW	ALTEX3 Pin Enable
	Set this bit to enable	LESENSE ALTI	EX3 pin	
18	ALTEX2PEN	0	RW	ALTEX2 Pin Enable
	Set this bit to enable	LESENSE ALTI	EX2 pin	
17	ALTEX1PEN	0	RW	ALTEX1 Pin Enable
	Set this bit to enable	LESENSE ALTI	EX1 pin	
16	ALTEX0PEN	0	RW	ALTEX0 Pin Enable
	Set this bit to enable	LESENSE ALTI	EX0 pin	
15	CH15PEN	0	RW	CH15 Pin Enable
	Set this bit to enable	LESENSE CH1	5 pin	
14	CH14PEN	0	RW	CH14 Pin Enable
	Set this bit to enable	LESENSE CH1	4 pin	
13	CH13PEN	0	RW	CH13 Pin Enable
	Set this bit to enable	LESENSE CH1	3 pin	
12	CH12PEN	0	RW	CH12 Pin Enable
	Set this bit to enable	LESENSE CH1	2 pin	
11	CH11PEN	0	RW	CH11 Pin Enable
	Set this bit to enable	LESENSE CH1	1 pin	

Bit	Name	Reset	Access	Description
10	CH10PEN	0	RW	CH10 Pin Enable
	Set this bit to enable	LESENSE CH10) pin	
9	CH9PEN	0	RW	CH9 Pin Enable
	Set this bit to enable	LESENSE CH9	pin	
8	CH8PEN	0	RW	CH8 Pin Enable
	Set this bit to enable	LESENSE CH8	pin	
7	CH7PEN	0	RW	CH7 Pin Enable
	Set this bit to enable	LESENSE CH7	pin	
6	CH6PEN	0	RW	CH6 Pin Enable
	Set this bit to enable	LESENSE CH6	pin	
5	CH5PEN	0	RW	CH5 Pin Enable
	Set this bit to enable	LESENSE CH5	pin	
4	CH4PEN	0	RW	CH4 Pin Enable
	Set this bit to enable	LESENSE CH4	pin	
3	CH3PEN	0	RW	CH3 Pin Enable
	Set this bit to enable	LESENSE CH3	pin	
2	CH2PEN	0	RW	CH2 Pin Enable
	Set this bit to enable	LESENSE CH2	pin	
1	CH1PEN	0	RW	CH1 Pin Enable
	Set this bit to enable	LESENSE CH1	pin	
0	CH0PEN	0	RW	CH0 Pin Enable
	Set this bit to enable	LESENSE CH0	pin	

28.5.25 LESENSE_STx_TCONFA - State Transition Configuration a (Async Reg)

Offset	Bit Position																										
0x100	331 330 330 330 330 330 330 330 330 330						18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	0 7			
Reset								XXO		××			XXX0						XXO			XX					
Access							RW		RW	R M		RW					RW			RW W							
Name								PRSACT		SETIF	CHAIN				NEXTSTATE				70	MASK			awo.	5			

				A A	SE	S		Ш Z	Σ	00							
Bit	Name	Reset	Access Description														
31:19	Reserved	To ensure co	ompatibility v	with future d	evices	s, alw	ays	s write bits to 0. Mo	re information ir	1.2 Conven-							
18:16	PRSACT	0xX	RW	Configure	Tran	sitio	n A	ction									
	Configure which actio	n to perform w	hen sensor	state equals	COM	Р											
	DECCTRL_PRSCNT = 0																
	Mode	Value		Description													
	NONE	0		No PRS pulses generated													
	PRS0	1 Generate pulse on LESPRS0															
	PRS1	2	2 Generate pulse on LESPRS1														
	PRS01	3	3 Generate pulse on LESPRS0 and LESPRS1														
	PRS2	4 Generate pulse on LESPRS2															
	PRS02	5	5 Generate pulse on LESPRS0 and LESPRS2														
	PRS12	6	6 Generate pulse on LESPRS1 and LESPRS2														
	PRS012	7	7 Generate pulse on LESPRS0, LESPRS1 and LESPRS2														
	DECCTRL_PRSCNT = 1																
	NONE	0		Do not count													
	UP	1															
	DOWN	2 Count down															
	PRS2	4		Generate p	pulse	on Li	ESF	PRS2									
	UPANDPRS2	5		Count up and generate pulse on LESPRS2.													
	DOWNANDPRS2	6		Count down and generate pulse on LESPRS2.													
15	SETIF	Х	RW	Set Interru	upt FI	ag E	nab	ole									
	Set interrupt flag when	n sensor state	equals CON	ИP													
14	CHAIN	Х	RW	Enable St	ate D	escri	pto	or Chaining									
	When set, descriptor i	n the next loca	ation will also	o be evaluat	ed												

Bit	Name	Reset	Access	Description
13	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
12:8	NEXTSTATE	0xXX	RW	Next State Index
	Index of next state	e to be entered it	the sensor st	tate equals COMP
7:4	MASK	0xX	RW	Sensor Mask
	Set bit X to exclud	le sensor X from	evaluation.	
3:0	COMP	0xX	RW	Sensor Compare Value
	State transition is	triggered when	sensor state e	equals COMP

28.5.26 LESENSE_STx_TCONFB - State Transition Configuration B (Async Reg)

For more information about asynchronous registers see 4.3 Access to Low Energy Peripherals (Asynchronous Registers).

Offset															Bi	t Po	siti	on														
0x104	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•		•	•	•		•	•	•	•	•		XXO	•	×		•			XXX0	•	•		>	<u> </u>	r		>	\	
Access															RW		ΑŠ					RW				2	<u>}</u>			<u> </u>	2	
Name															PRSACT		SETIF					NEXTSTATE				70	204M			awo.		

				PRS	SET		Z Z Z	MAS	CON
Bit	Name	Reset	Access	Description	on				
31:19	Reserved	To ensure tions	compatibility (with future d	evices	, alway	s write bits to 0. Mo	re information in	1.2 Conven-
18:16	PRSACT	0xX	RW	Configure	Tran	sition A	Action		
	Configure which action	on to perform	when sensor	state equals	COM	Р			
	DECCTRL_PRSCNT = 0								
	Mode	Value		Description	n				
	NONE	0		No PRS p	ulses	generat	ed		
	PRS0	1		Generate	oulse	on PRS	0		
	PRS1	2		Generate	pulse	on PRS	1		
	PRS01	3		Generate	oulse	on PRS	0 and PRS1		
	PRS2	4		Generate	oulse	on PRS	2		
	PRS02	5		Generate	pulse	on PRS	0 and PRS2		
	PRS12	6		Generate	oulse	on PRS	1 and PRS2		
	PRS012	7		Generate	pulse	on PRS	0, PRS1 and PRS2		
	DECCTRL_PRSCNT = 1								
	NONE	0		Do not cou	ınt				
	UP	1		Count up					
	DOWN	2		Count dow	/n				
	PRS2	4		Generate	oulse	on PRS	2		
	UPANDPRS2	5		Count up a	and ge	nerate	pulse on PRS2.		
	DOWNANDPRS2	6		Count dow	n and	genera	te pulse on PRS2.		
15	SETIF	Х	RW	Set Interre	upt Fl	ag			
	Set interrupt flag whe	n sensor stat	e equals CON	ЛP					
14:13	Reserved	To ensure	compatibility v	with future d	evices	, alway	s write bits to 0. Mo	re information in	1.2 Conven-

tions

Bit	Name	Reset	Access	Description
12:8	NEXTSTATE	0xXX	RW	Next State Index
	Index of next state to	be entered if the	sensor sta	ate equals COMP
7:4	MASK	0xX	RW	Sensor Mask
	Set bit X to exclude se	ensor X from eva	aluation.	
3:0	COMP	0xX	RW	Sensor Compare Value
	State transition is trigg	gered when sens	sor state e	quals COMP

28.5.27 LESENSE_BUFx_DATA - Scan Results (Async Reg)

Offset															Bi	t Po	siti	on														
0x200	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	00	7	9	5	4	- ო	2	_	0
Reset														>	XX									2000	XXXXX							
Access														ם	צ										I M Y							
Name														0 4 4 4 0	DAIASKC									•	DAIA							

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
19:16	DATASRC	0xX	R	Result Data Source
	This bitfield contains t	he channel inde	x for the se	ensor result in DATA.
15:0	DATA	0xXXXX	RWH	Scan Result Buffer
	This bitfield contains t	he sensor result	t.	

28.5.28 LESENSE_CHx_TIMING - Scan Configuration (Async Reg)

Offset															Bi	t Po	siti	on														
0x240	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	, 9	5	4	က	2	_	0
Reset						•				WA OXXXX												•			•	•	XXXO					
Access													i	≷								2	≥ Y							S ≷		
Name														MEASUREDLY									SAIMPLEDLY							EXTIME		

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
23:14	MEASUREDLY	0xXXX	RW	Set Measure Delay
	Configure measure of	delay. Sensor me	easuring is	delayed for MEASUREDLY EXCLK cycles.
13:6	SAMPLEDLY	0xXX	RW	Set Sample Delay
	Configure sample de	elay. Sampling w	ill occur afte	er SAMPLEDLY SAMPLECLK cycles.
5:0	EXTIME	0xXX	RW	Set Excitation Time
	Configure excitation	time. Excitation	will last EX	TIME EXCLK cycles.

28.5.29 LESENSE_CHx_INTERACT - Scan Configuration (Async Reg)

Offset											Bit	t Posit	ion														
0x244	30 30 29	28	26	25	23	22	21	20	19	1 9	<u>`</u>	16	4	13	12	7	10	6	∞	7	9	2		4 (o c	4 L	0
Reset							×	×	×	XXO		XXO		XX							:	XXXX 0					
Access							RW	RW	RW	RW		RW		RW								X ≷					
Name							ALTEX	SAMPLECLK	EXCLK	EXMODE		SETIF		SAMPLE							1	THRES					
Bit	Name			Reset			Ac	ces	s l	Descr	ipi	tion															
31:22	Reserved			To en	sure	com	pati	bilit	y wi	th futu	ire	device	s, al	ways	wri	te b	its t	o 0.	Мо	re ir	nfori	mat	ion	in 1	1.2 C	Conv	en-
21	ALTEX			Х			RV	/		Use A	lte	ernativ	е Ех	cite	Pin												
	If set, alte	rnative e	excite	e pin wi	ll be	use	d fo	exc	citat	ion																	
20	SAMPLE	CLK		X			RV	/	,	Selec	t C	lock U	sed	for T	Γimi	ng	of S	am	ple	Del	ay						
	This bit is	used to	conf	figure w	hich	cloc	k is	use	d fo	r timir	ng	of SAM	1PLE	DLY													
	Value			Mode						Descr	ipti	ion															
	0			LFAC	LFACLK will be used for timing																						
	1			AUXH	IFRC	0				AUXH	IFF	RCO wi	ll be	usec	d for	tim	ing										
19	EXCLK			Х			RV	/		Selec	t C	lock U	sed	for E	Exci	itati	on ⁻	Γimi	ing								
	This bit is	used to	conf	figure w	hich	cloc	k is	use	ed fo	or timir	ng	of EXT	IME	and	ME	ASL	JRE	DLY	1								
	Value			Mode						Descr	ipti	ion															
	0			LFAC	LK					LFAC	LK	will be	use	d for	timi	ng											
	1			AUXH	IFRC	0				AUXH	IFF	RCO wi	ll be	usec	d for	tim	ing										
18:17	EXMODE			0xX			RV	/	;	Set G	PI	O Mode	Э														
	GPIO mod 13, 14, 15		e exc	citation	phas	se of	f the	sca	an s	equen	ce	. Note	that	DAC	OU [.]	Γis	only	ava	ailal	ble o	on c	han	nne	ls 0	, 1, 2	2, 3,	12,
	Value			Mode						Descr	ipti	ion															
	0			DISAE	BLE					Disabl	led	i															
	1			HIGH						Push	Pu	II, GPIO) is	drive	n hi	gh											
	2			LOW						Push	Pu	II, GPIC) is	drive	n lo	N											
	3			DACC	UT				,	VDAC	; oı	utput															
16:14	SETIF			0xX			RV	/		Enabl	e I	Interru	pt G	ener	atio	n											
	Select inte	errupt ge	nera	ation mo	ode f	or C	Нх і	nter	rupt	t flag.																	
	Value			Mode						Descr	ipti	ion															

Bit	Name	Reset	Access	Description
	0	NONE		No interrupt is generated
	1	LEVEL		Set interrupt flag if the sensor triggers.
	2	POSEDGE		Set interrupt flag on positive edge of the sensor state
	3	NEGEDGE		Set interrupt flag on negative edge of the sensor state
	4	BOTHEDGI	ΞS	Set interrupt flag on both edges of the sensor state
13:12	SAMPLE	0xX	RW	Select Sample Mode
	Select measurer	ment to be used for	evaluation	
	Value	Mode		Description
	0	ACMPCOU	NT	Counter output will be used in evaluation
	1	ACMP		ACMP output will be used in evaluation
	2	ADC		ADC output will be used in evaluation
	3	ADCDIFF		Differential ADC output will be used in evaluation
11:0	THRES	0xXXX	RW	ACMP Threshold or VDAC Data

28.5.30 LESENSE_CHx_EVAL - Scan Configuration (Async Reg)

Offset									Bi	t P	os	ition															
0x248	30 33	28	26	25	23	22	20	6 8	17	16) '	υ 4	13	1	: [2 (ກ	ω	7	9	5	-	1 (o ر	4 4	- 0
Reset					1	XXO	×	XXO	×	×	(1		1		'	•		XXXX			1	1	'		1	
Access						A W	RW	A W	S.	% M									I M								
Name						MODE	SCANRESINV	STRSAMPLE	DECODE	COMP									COMPTHEE								
Bit	Name			Reset	t	Ac	ces	s Des	crip	tio	n																
31:23	Reserved			To en	sure	compat	ibilit <u>.</u>	y with fu	ture	de	evic	ces, al	waj	ys v	vrite	bit	s to	O. 1	Лог	e in	for	mat	ion	in 1	.2 C	Conv	en-
22:21	MODE			0xX		RV	V	Con	figu	ıre	Εv	/aluati	on	Мс	de												
	Select which	ch evalu	uatio	n mode	e to b	e used	on tl	ne meas	ure	me	nt	result															
	Value			Mode				Des	cript	ior	1																
	0			THRE	S			Thre	sho	ld (cor	mparis	on	is u	sed	to	eva	luat	e s	enso	or i	esu	ılt				
	1			SLIDI	NGW	/IN	Sliding window is used to evaluate sensor result																				
	2			STEP	DET			Step	det	tec	tior	n is us	ed	to e	valu	ate	e se	nso	r re	sult							
20	SCANRES	INV		Х		RV	V	Ena	ble	lnv	/er	sion o	f R	lesi	ılt												
	If set, the b	oit store	d in	SCAN	RES	will be ir	nver	ted.																			
19:18	STRSAMP	LE		0xX		RV	V	Ena	ble	Sto	orii	ng of S	Ser	ารด	r Sa	mp	le i	n R	esı	ılt B	Buf	fer					
	If set, the s	ensor s	amp	ole valu	ie wil	l be stor	ed a	and avai	lable	e ir	th	e resu	ılt b	uffe	er												
	Value			Mode				Des	cript	ior	1																
	0			DISA	BLE			Noth	ning	wil	ll b	e store	ed i	n th	e re	sul	t bu	ffer.									
	1			DATA	١			The	sen	soı	r sa	ample	dat	a w	ill be	e st	ore	d in	the	res	ult	buf	fer.				
	2			DATA	SRC		The data source (i.e., the channel) will be stored alongside the sensor sample data.											r									
17	DECODE			Х		RV	V	Sen	d R	esi	ult	to Dec	coc	ler													
	If set, the r	esult fro	om tl	nis cha	nnel	will be s	hifte	red into the decoder register.																			
16	COMP			Х		RV	V	Sele	ct N	Λo	de	for Th	res	sho	ld C	on	пра	riso	n								
	Set compa	re mod	e for	thresh	old c	omparis	ons	Select Mode for Threshold Comparison ns (CHx_INTERACT_SAMPLE != ACMP and CHx_EVAL_MODE == THRES).												S).							
	Value			Mode				Des	cript	ior	1																
	0			LESS				Con	npar	iso	n e	evaluat	tes	to '	if s	ens	sor	data	is	less	th	an (СО	MP	THR	ES.	
	1			GE				Con CON				evaluat S.	tes	to '	if s	ens	sor	data	is	grea	ate	r th	an (or e	qua	to	

Bit	Name	Reset	Access	Description
15:0	COMPTHRES	0xXXXX	RWH	Decision Threshold for Sensor Data
	bitfield is written by	LESENSE, and	contains th	ed to configure threshold used for comparison. In step detection mode, this e value from previous sensor measurement. In sliding window mode, this window base for the given channel.

29. GPCRC - General Purpose Cyclic Redundancy Check

Quick Facts

What?

The GPCRC is an error-detecting module commonly used in digital networks and storage systems to detect accidental changes to data.

Why?

The GPCRC module can detect errors in data, giving a higher system reliability and robustness.

How?

Blocks of data entering GPCRC module can have a short checksum, based on the remainder of a polynomial division of their contents; on retrieval the calculation is repeated, and corrective action can be taken against presumed data corruption if the check values do not match.

29.1 Introduction

The GPCRC module is a slave peripheral that implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7(IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. Common 16-bit polynomials are 0x1021 (CCITT-16), 0x3D65 (IEC16-MBus), and 0x8005 (zigbee, 802.15.4, and USB).

29.2 Features

- Programmable 16-bit polynomial, fixed 32-bit polynomial
- Byte-level bit reversal for the CRC input
- Byte-order reorientation for the CRC input
- · Word or half-word bit reversal of the CRC result
- · Ability to configure and seed an operation in a single register write
- · Single-cycle CRC computation for 32-, 16-, or 8-bit blocks
- · DMA operation

29.3 Functional Description

An overview of the GPCRC module is shown in Figure 29.1 GPCRC Overview on page 1054.

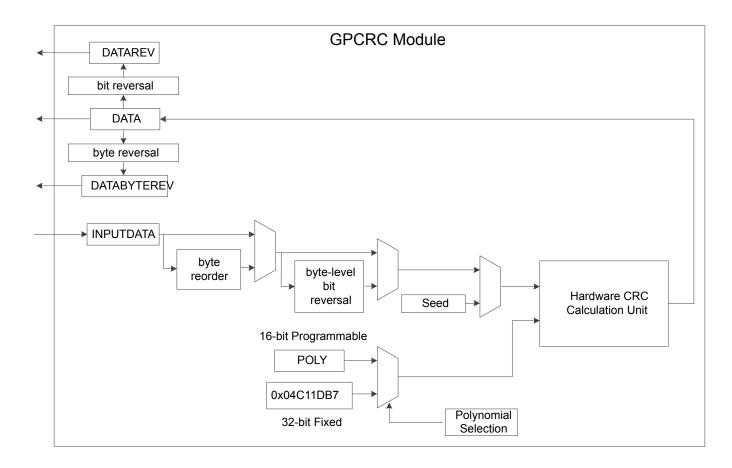
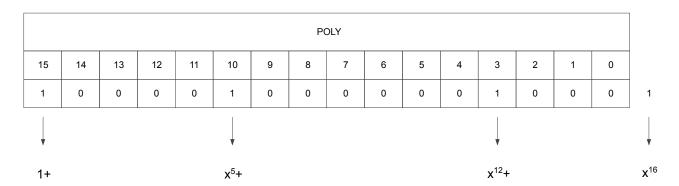



Figure 29.1. GPCRC Overview

29.3.1 Polynomial Specification

POLYSEL in GPCRC_CTRL selects between 32-bit and 16-bit polynomial functions. When a 32-bit polynomial is selected, the fixed IEEE 802.3 polynomial(0x04C11DB7) is used. When a 16-bit polynomial is selected, any valid polynomial can be defined by the user in GPCRC_POLY.

A valid 16-bit CRC polynomial must have an x^{0} term and an x^{0} term. Theoretically, a 16-bit polynomial has 17 terms total. The convention used is to omit the x^{0} term. The polynomial should be written in **reversed** (little endian) bit order. The most significant bit corresponds to the lowest order term. Thus, the most significant bit in CRC_POLY represents the x^{0} term, and the least significant bit in CRC_POLY represents the x^{1} term. The highest significant bit of CRC_POLY should always set to 1. The polynomial representation for the CRC-16-CCIT polynomial x^{1} +

CRC-16-CCITT Normal: 0x1021 Reversed: 0x8408

Figure 29.2. Polynomial Representation

29.3.2 Input and Output Specification

The CRC input data can be written to the GPCRC_INPUTDATA, GPCRC_INPUTDATAHWORD or GPCRC_INPUTDATABYTE register via the APB bus based on different data size. If BYTEMODE in GPCRC_CTRL is set, only the least significant byte of the data word will be used for the CRC calculation no matter which input register is written. There are also three output registers for different ordering. Reading from GPCRC_DATA will get the result based on the polynomial in reversed order, while reading from GPCRC_DATAREV will get the result based on the polynomial in normal order. The CRC calculation needs one clock cycle, reading from GPCRC_DATA, GPCRC_DATAREV or GPCRC_DATABYTEREV register or writting to GPCRC_CMD register is halted while the calculation is in progress.

29.3.3 Initialization

The CRC can be pre-loaded or re-initialized by first writing a 32-bit programmable init value to INIT in GPCRC_INIT and then setting INIT in GPCRC_CMD. It can also be re-initialized automatically when read from DATA, DATAREV or DATABYTEREV provided that AUTOINIT in GPCRC_CTRL is set, the CRC would be re-initialized with the stored init value.

29.3.4 DMA Usage

A DMA channel may be used to transfer data into the CRC engine. All bytes and half-word writes must be word-aligned. The recommended DMA usage model is to use the DMA to transfer all avaliable words of data and use software writes to capture any remaining bytes.

29.3.5 Byte-Level Bit Reversal and Byte Reordering

The byte-level bit reversal and byte reordering operations occur before the data is used in the CRC calculation. Byte reordering can occur on words or half words. The hardware ignores the BYTEREVERSE field with any byte writes or operations with byte mode enabled (BYTEMODE = 1), but the bit reversal settings (BITREVERSE) are still applied to the byte. 32-bit little endian MSB-first data can be treated like 32-bit little endian LSB-first data, as shown in Figure 29.3 Data Ordering Example - 32-bit MSB -first to LSB-first on page 1056. In this example, 32-bit data is written to GPCRC_INPUTDATA, BYTEREVERSE is set for byte ordering, and BITREVERSE is set for byte-level bit reversal.

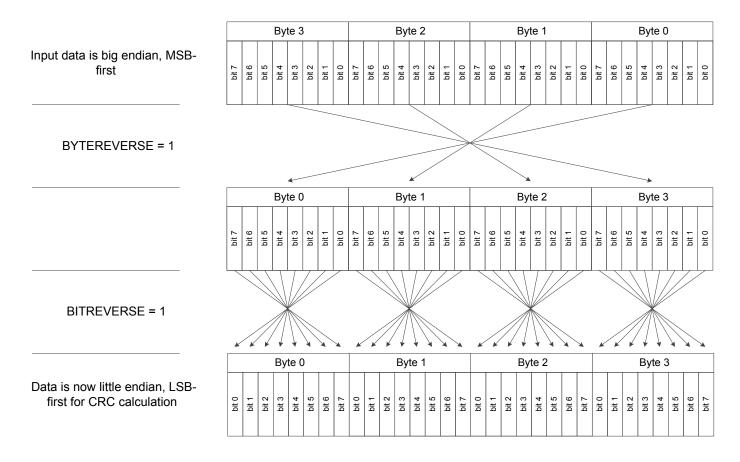


Figure 29.3. Data Ordering Example - 32-bit MSB -first to LSB-first

When handling 16-bit data, the byte reordering function only swap the two lowest bytes and clear the two highest bytes, as shown in Figure 29.4 Data Ordering Example - 16-bit MSB -first to LSB-first on page 1057. In this example, 16-bit data is written to GPCRC_IN-PUTDATAHWORD, BYTEREVERSE is set for byte ordering, and BITREVERSE is set for byte-level bit reversal.

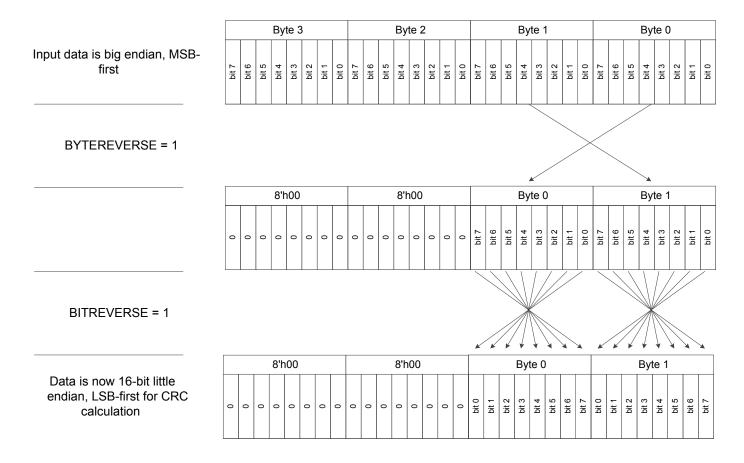


Figure 29.4. Data Ordering Example - 16-bit MSB -first to LSB-first

Assuming a word input byte order of B3 B2 B1 B0, the values used in the CRC calculation for the various settings of the byte-level bit reversal and byte reordering are shown in Table 29.1 Byte-Level Bit Reversal and Byte Reordering Results (B3 B2 B1 B0 Input Order) on page 1057.

Table 29.1. Byte-Level Bit Reversal and Byte Reordering Results (B3 B2 B1 B0 Input Order)

Input Width(bits)	BYTEREVERSE Setting	BITREVERSE Setting	Input to CRC Calculation
32	0	0	B3 B2 B1 B0
32	1	1	'B0 'B1 'B2 'B3
32	1	0	B0 B1 B2 B3
32	0	1	'B3 'B2 'B1 'B0
16	0	0	XX XX B1 B0
16	1	1	XX XX 'B0 'B1
16	1	0	XX XX B0 B1
16	0	1	XX XX 'B1 'B0
8	-	0	XX XX XX XX B0
8	-	1	XX XX XX XX 'B0

Input Width(bits)	BYTEREVERSE Setting	BITREVERSE Setting	Input to CRC Calculation
Note:			
1. X indicates a "don't	care".		
2. Bn is the byte field	within the word.		
3. 'Bn is the bit-revers	ed byte field within the word.		

29.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	GPCRC_CTRL	RW	Control Register
0x004	GPCRC_CMD	W1	Command Register
0x008	GPCRC_INIT	RWH	CRC Init Value
0x00C	GPCRC_POLY	RW	CRC Polynomial Value
0x010	GPCRC_INPUTDATA	W	Input 32-bit Data Register
0x014	GPCRC_INPUTDATAHWORD	W	Input 16-bit Data Register
0x018	GPCRC_INPUTDATABYTE	W	Input 8-bit Data Register
0x01C	GPCRC_DATA	R	CRC Data Register
0x020	GPCRC_DATAREV	R	CRC Data Reverse Register
0x024	GPCRC_DATABYTEREV	R	CRC Data Byte Reverse Register

29.5 Register Description

29.5.1 GPCRC_CTRL - Control Register

Offset															Bi	t Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	19	6	8	7	9	5	4	3	2	_	0
Reset		•	•																0			0	0	0			•	0		•		0
Access																			₩			₩ M	₽	₽				₩				₩ W
Name																			AUTOINIT			BYTEREVERSE	BITREVERSE	BYTEMODE				POLYSEL				Z
Bit	Na	me					Re	set			Ac	cess	s [Des	crip	tion																

				AUTO BYTE BYTE BYTE EN
Bit	Name	Reset	Access	Description
31:14	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
13	AUTOINIT	0	RW	Auto Init Enable
	Enables auto init by TEREV.	re-seeding the (CRC result I	based on the value in INIT after reading of DATA, DATAREV or DATABY-
12:11	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
10	BYTEREVERSE	0	RW	Byte Reverse Mode
	Allows byte level rev	verse of bytes B3	3, B2, B1, B	30 within the 32-bit data word
	Value	Mode		Description
	0	NORMAL		No reverse: B3, B2, B1, B0
	1	REVERSED		Reverse byte order. For 32-bit: B0, B1, B2, B3; For 16-bit: 0, 0, B0, B1
9	BITREVERSE	0	RW	Byte-level Bit Reverse Enable
	Reverses bits within	each byte of the	e 32-bit data	a word
	Value	Mode		Description
	0	NORMAL		No reverse
	1	REVERSED		Reverse bit order in each byte
8	BYTEMODE	0	RW	Byte Mode Enable
	Treats all writes as	bytes. Only the le	east signific	ant byte of the data-word will be used for CRC calculation for all writes
7:5	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
4	POLYSEL	0	RW	Polynomial Select
	Selects 16-bit CRC	programmable p	olynomial o	or 32-bit CRC fixed polynomial
	Value	Mode		Description
	0	CRC32		CRC-32 (0x04C11DB7) polynomial selected
	1	16		16-bit CRC programmable polynomial selected

Bit	Name	Reset	Access	Description
3:1	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	EN	0	RW	CRC Functionality Enable
	Enables CRC fur	nctionality.		
	Value	Mode		Description
	0	DISABLE		Disable CRC function. Reordering function is available, only BITRE- VERSE and BYTEREVERSE bits are configurable in this mode
	1	ENABLE		Writes to inputdata registers result in CRC operations

29.5.2 GPCRC_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset		•												•					•	•											•	0
Access																																×
Name																																<u>F</u>

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure cortions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	INIT	0	W1	Initialization Enable
	Writing 1 to this bit init	tialize the CRC	by writing t	he INIT value in CRC_INIT to CRC_DATA.

29.5.3 GPCRC_INIT - CRC Init Value

Offset															Bi	t Pc	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	5	4	က	2	_	0
Reset		00000000000000000000000000000000000000																														
Access																	[} Y															
Name																Ė	<u>-</u>															

Bit	Name	Reset	Access	Description
31:0	INIT	0x00000000	RWH	CRC Initialization Value
	This value is loaded in	nto CRC_DATA	upon issui	ng the INIT command in CRC_CMD

29.5.4 GPCRC_POLY - CRC Polynomial Value

Offset															Bi	t Po	sitio	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	5	4	က	2	_	0
Reset			-			l	1	l	1	<u>I</u>			l	1			'			1				0000	00000							
Access																								<u> </u>	<u>}</u>							
Name																								>	_							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	POLY	0x0000	RW	CRC Polynomial Value

This value defines 16-bit POLY, which is used as the polynomial during the 16-bit CRC calculation. The polynomial is defined in reversed representation, meaning that the lowest degree term is in the highest bit position of POLY. Additionally, the highest degree term in the polynomial is implicit. Further examples of the CRC configuration can be found in the documentation.

29.5.5 GPCRC_INPUTDATA - Input 32-bit Data Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset																000000000000000000000000000000000000000	000000000															
Access																}	>															
Name																A TA CIT I GIVI	7															

Bit	Name	Reset	Access	Description
31:0	INPUTDATA	0x00000000	W	Input Data for 32-bit
	CRC Input 32-bit Data	can be written t	to this reai	ster. Each time this register is written, the CRC value is undated

29.5.6 GPCRC_INPUTDATAHWORD - Input 16-bit Data Register

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset																								0	nnnnxn				•			
Access																								Š	>							
Name																								() () () () () () () () () () () () () (INPUIDAIAHWOKD							
Diá	Na						В-	oot.			A -		_	D	ovin	4																

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	INPUTDATAHWORD	0x0000	W	Input Data for 16-bit
	CRC Input 16-bit Data	can be written	to this regi	ster. Each time this register is written, the CRC value is updated.

29.5.7 GPCRC_INPUTDATABYTE - Input 8-bit Data Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	41	13	12	7	10	6	8	7	9	5	4	က	2	-	0
Reset											•																	00x0			·	
Access																												≥				
Name																												INPUTDATABYTE				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	INPUTDATABYTE	0x00	W	Input Data for 8-bit
	CRC Input 8-bit Data	can be written to	this regis	ter. Each time this register is written, the CRC value is updated.

29.5.8 GPCRC_DATA - CRC Data Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset																	nxnnnnnxn															
Access																٥	۲															
Name																\ - -	¥ 7															

Bit	Name	Reset	Access	Description
31:0	DATA	0x00000000	R	CRC Data Register

CRC Data Register, read only. The CRC data register may still be indirectly written from software, by writing the INIT register and then issue an INITIALIZE command.

29.5.9 GPCRC_DATAREV - CRC Data Reverse Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset														•		000000000000000000000000000000000000000	0000000000										•					
Access																۵	۲															
Name																	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \															

Bit	Name	Reset	Access	Description
31:0	DATAREV	0x00000000	R	Data Reverse Value

Bit reversed version of CRC Data register. When a 32-bit CRC polynomial is selected, the reversal occurs on the entire 32-bit word. When a 16-bit CRC polynomial is selected, the bits [15:0] are reversed.

29.5.10 GPCRC_DATABYTEREV - CRC Data Byte Reverse Register

Offset			Bit Position
0x024	30 30 29 28 27 27	22 23 23 20 24 25 25 25 25 25 25 25 25 25 25 25 25 25	0 8 1 2 9 5 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Reset			0000000×0
Access			ď
Name			DATABYTEREV
Bit	Name	Reset Access	s Description
04.0	DATABY/TEREY/	0 00000000 B	

31:0 DATABYTEREV 0x00000000 **Data Byte Reverse Value**

Byte reversed version of CRC Data register. When a 32-bit CRC polynomial is selected, the bytes are swizzled to {B0, B1, B2, B3}. When a 16-bit CRC polynomial is selected, the bytes are swizzled to {0, 0, B0, B1}.

30. TRNG - True Random Number Generator

Quick Facts

What?

The TRNG module is a non-deterministic random number generator based on a full hardware solution.

Why?

Secure cryptography commonly relies on randomlygenerated numbers for key generation. Software solutions for random number generation do not usually produce results with enough entropy to satisfy existing standards. Dedicated hardware can provide suitable entropy in an energy-efficient, non-intrusive manner, while also relieving software burden.

How?

Ring oscillators and sampling logic combine to produce non-deterministic random numbers.

30.1 Introduction

The TRNG module is a non-deterministic random number generator based on a full hardware solution. The TRNG output passes the NIST 800-22 and AIS31 test suites.

30.2 Features

- · Simple bus interface to access random numbers, control, and status registers
- · 64 x 32-bit FIFO for random number access
- · Interrupt sources from different FIFO, error, and noise alarm events
- · Passes NIST 800-22 and AIS31
- · Ready for NIST 800-90B
- · Health tests compliant to NIST 800-90B and AIS31

30.3 Functional Description

Software drivers provided by Silicon Labs offer a simple API interface to the TRNG module. It is highly recommended to use the provided software librariesto access the TRNG module. An overview of the TRNG module is shown in Figure 30.1 TRNG Overview on page 1066.

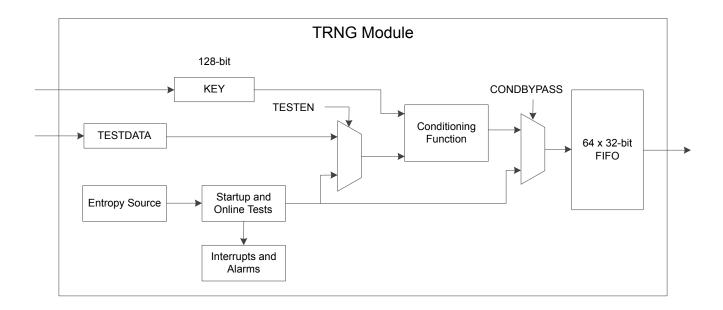


Figure 30.1. TRNG Overview

30.3.1 Built-In Tests

The TRNG module includes several built-in tests to detect issues with the noise source, ensure entropy, and meet cryptography standards. The Repetition Count Test and Adaptive Proportion Test with window sizes of 64 and 4096 bits described in section 6.5.1.2 of NIST-800-90B (http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf) are implemented in hardware and run continuously on the data. All three tests have corresponding interrupt flags that can optionally be used to generate a system interrupt.

The AIS31 Online Test described in section 5.5.3 of https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf is also implemented in hardware, and runs continuously on the data. Both the preliminary noise alarm and the noise alarm are optionally available as interrupt sources from the TRNG module. If a noise alarm occurs, the TRNG will be shut down, and must be reset with a software reset.

Additionally, the NIST-800-90B and AIS31 startup tests may be optionally enabled or disabled by software. The NIST-800-90B startup test is enabled if the CONTROL_BYPNIST bit is cleared to 0. The AIS31 startup test is likewise enabled when CONTROL_BYPAIS31 is cleared to 0. If either the NIST-800-90B or AIS31 startup tests are enabled, no data will be written to the output FIFO until the startup requirements for these tests pass.

30.3.2 FIFO Interface

The TRNG module includes a 64-word output FIFO to hold the output data as it becomes available. The number of 32-bit words available in the FIFO may be checked at any time by reading the FIFOLEVEL register. When the FIFO is completely filled, the TRNG will be shut down, the STATUS_FULLIF flag will be set, and no further data will be written to the FIFO until the FIFO has been flushed. Data may be read from the FIFO one word (32-bits) at a time via the FIFO register. The STATUS_FULLIF flag is cleared upon reading the FIFOLEVEL register.

30.3.3 Data Format - Byte Ordering

All cryptographic data is handled following the big-endian format (AES standard). The first byte (lowest address) of the data is the Most Significant Byte (MSB). However, the bus interfaces on the core use little endian format for internal byte ordering within a 32-bit word. The Least Significant Byte (LSB) within a word is stored at the lowest address.

For example, a 128-bit block 0x00112233445566778899AABBCCDDEEFF is read from the FIFO in the following order:

Word 1 = 0x33221100

Word 2 = 0x77665544

Word 3 = 0xBBAA9988

Word 4 = 0xFFDDEECC

This is important to note when checking the conditioning function for validity. The KEY registers also follow this standard, with KEY0 holding the MSB of a 128-bit value and KEY3 holding the LSB.

30.3.4 TRNG Usage

It is highly recommended to use the software libraries provided by Silicon Labs to access the TRNG module. The information in the following sections are reference for users who choose to write their own low-level software drivers.

30.3.4.1 Checking the Conditioning Function

The conditioning function receives 512 bits from the entropy source and generates 128 bits of output. The conditioning function can be tested by writing a known key and known data into the block with test mode enabled, then validating against the expected output. The sequence of operations to test the conditioning function is as follows:

- 1. Apply a software reset by setting CONTROL SOFTRESET to 1, then clearing it to 0.
- 2. Configure the CONTROL register. Important configuration options include:
 - Enable test mode by setting CONTROL_TESTEN to 1.
 - Ensure the conditioning function is used by clearning CONTROL_CONDBYPASS to 0.
- 3. Write the key into registers KEY0, KEY1, KEY2, and KEY3.
- 4. Write the 512 bits of known data to TESTDATA 32 bits at a time, polling for STATUS_TESTDATABUSY = 0 after each write.
- 5. Read the 128-bit result from the FIFO 32 bits at a time.

Table 30.1 Known-Answer Test for Conditioning Function on page 1068 shows an example with a given key, known data input, and expected output (taken from section F.2.1 in http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf).

Table 30.1. Known-Answer Test for Conditioning Function

	128-bit Format	32-bit Bus Format
Key	0x2B7E151628AED2A6ABF7158809CF4F3C	0x16157E2B 0xA6D2AE28 0x8815F7AB 0x3C4FCF09
Input	0x6BC0BCE12A459991E134741A7F9E1925	0xE1BCC06B 0x9199452A 0x1A7434E1 0x25199E7F
	0xAE2D8A571E03AC9C9EB76FAC45AF8E51	0x578A2DAE 0x9CAC031E 0xAC6FB79E 0x518EAF45
	0x30C81C46A35CE411E5FBC1191A0A52EF	0x461CC830 0x11E45CA3 0x19C1FBE5 0xEF520A1A
	0xF69F2445DF4F9B17AD2B417BE66C3710	0x45249FF6 0x179B4FDF 0x7B412BAD 0x10376CE6
Expected output	0x3FF1CAA1681FAC09120ECA307586E1A7	0xA1CAF13F 0x09AC1F68 0x30CA0E12 0xA7E18675

30.3.4.2 Checking the Entropy Source

The entropy source may be checked using the three built in test sources: repetition count, 64-sample adaptive proportion, and 4096-sample adaptive proportion. The entropy source may be tested using the following sequence:

- 1. Apply a software reset by setting CONTROL SOFTRESET to 1, then clearing it to 0.
- 2. Configure the CONTROL register. Important configuration options include:
 - Disable test mode by clearing CONTROL TESTEN to 0.
 - Bypass the conditioning function by setting CONTROL CONDBYPASS to 1.
 - Enable the TRNG by setting CONTROL_ENABLE to 1.
- 3. Check the FIFOLEVEL register to monitor the amount of generated random numbers or wait for the STATUS_FULLIF flag to set, indicating the FIFO is full. Note that STATUS_FULLIF may be configured to generate an interrupt if desired.
- 4. When FIFOLEVEL has reached the expected value or when STATUS_FULLIF is set, read the random numbers using the FIFO register. Those values can be discarded.
- 5. Continue reading and discarding the random data until at least 4097 x 2 bits (257 x 32-bit words) have been read. This ensures that enough time has passed for the longest test to run.
- 6. Check the STATUS register for error flags.

30.3.4.3 Programming a Random Key

- 1. Check the FIFOLEVEL register to monitor the amount of generated random numbers or wait for the STATUS_FULLIF flag to set, indicating the FIFO is full. Note that STATUS_FULLIF may be configured to generate an interrupt if desired.
- 2. When FIFOLEVEL has reached the expected value or when STATUS_FULLIF is set, read the random numbers using the FIFO register.
- Use four 32-bit random values to program a random key to the KEY0, KEY1, KEY2, and KEY3 registers.
- 4. Apply a software reset by setting CONTROL SOFTRESET to 1, then clearing it to 0. This will flush the FIFO data.

30.3.4.4 Reading Samples

- Check the FIFOLEVEL register to monitor the amount of generated random numbers or wait for the STATUS_FULLIF flag to set, indicating the FIFO is full. Note that STATUS_FULLIF may be configured to generate an interrupt if desired.
- When FIFOLEVEL has reached the expected value or when STATUS_FULLIF is set, read the random numbers using the FIFO register.

30.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	TRNGn_CONTROL	RW	Main Control Register
0x004	TRNGn_FIFOLEVEL	R(a)	FIFO Level Register
0x00C	TRNGn_FIFODEPTH	R	FIFO Depth Register
0x010	TRNGn_KEY0	RW	Key Register 0
0x014	TRNGn_KEY1	RW	Key Register 1
0x018	TRNGn_KEY2	RW	Key Register 2
0x01C	TRNGn_KEY3	RW	Key Register 3
0x020	TRNGn_TESTDATA	RW	Test Data Register
0x030	TRNGn_STATUS	RWH	Status Register
0x034	TRNGn_INITWAITVAL	RW	Initial Wait Counter
0x100	TRNGn_FIFO	R(a)	FIFO Data

30.5 Register Description

30.5.1 TRNGn_CONTROL - Main Control Register

Offset															Ві	t Pc	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset					•	•					•		•		•			•	0	0	0	0	0	0	0	0	0	0	0	0		0
Access																			₹	₹	₽	₹	ΑW	₹	R M	₽	₩ M	₽	₩ M	₽		RW
Name																			BYPAIS31	BYPNIST	FORCERUN	ALMIEN	PREIEN	SOFTRESET	FULLIEN	APT4096IEN	APT64IEN	REPCOUNTIEN	CONDBYPASS	TESTEN		ENABLE

Bit	Name	Reset A	Access	Description
31:14	Reserved	To ensure comp tions	atibility v	with future devices, always write bits to 0. More information in 1.2 Conver
13	BYPAIS31	0 F	RW	AIS31 Start-up Test Bypass.
	Bypass for AIS31	startup test.		
	Value	Mode		Description
	0	NORMAL		AIS31 startup test is applied. No data will be written to the FIFO until the test passes.
	1	BYPASS		AIS31 startup test is bypassed.
12	BYPNIST	0 F	RW	NIST Start-up Test Bypass.
	Bypass for NIST-8	00-90B startup test.		
	Value	Mode		Description
	0	NORMAL		NIST-800-90B startup test is applied. No data will be written to the FIFO until the test passes.
	1	BYPASS		NIST-800-90B startup test is bypassed.
11	FORCERUN	0 F	RW	Oscillator Force Run
	Set this bit to force	e oscillators to run eve	n when	FIFO is full.
	Value	Mode		Description
	0	NORMAL		Oscillators will shut down when FIFO is full
	1	RUN		Oscillators will continue to run even after FIFO is full
10	ALMIEN	0 F	RW	Interrupt enable for AIS31 noise alarm
	Enable/disable Als	S31 noise alarm interr	upt.	
)	PREIEN	0 F	RW	Interrupt enable for AIS31 preliminary noise alarm
	Enable/disable Als	S31 preliminary noise	alarm in	terrupt.
3	SOFTRESET	0 F	RW	Software Reset
	Set to reset the mo	odule. This bit is not c	leared a	utomatically.

Bit	Name	Reset	Access	Description
	Value	Mode		Description
	0	NORMAL		Module not in reset
	1	RESET		The continuous test, the conditioning function and the FIFO are reset
7	FULLIEN	0	RW	Interrupt Enable for FIFO Full
	Enable/Disable FIFO	full interrupt.		
6	APT4096IEN	0	RW	Interrupt Enable for Adaptive Proportion Test Failure (4096-sample Window)
	Enable/Disable 4096-	sample Adaptive	Proportio	n test failure interrupt.
5	APT64IEN	0	RW	Interrupt Enable for Adaptive Proportion Test Failure (64-sample Window)
	Enable/Disable 64-sa	mple Adaptive P	roportion t	test failure interrupt.
4	REPCOUNTIEN	0	RW	Interrupt Enable for Repetition Count Test Failure
	Enable/Disable Repe	tition Count Test	failure inte	errupt.
3	CONDBYPASS	0	RW	Conditioning Bypass
	Enables bypassing of	the conditioning	function (to observe entropy source directly).
	Value	Mode	-	Description
	0	NORMAL		The conditionig function is used
	1	BYPASS		The conditioning function is bypassed
2	TESTEN	0	RW	Test Enable
	Selects the input for the	ne conditioning for	unction an	d continuous tests.
	Value	Mode		Description
	0	NOISE		Non-determinsitc random number generation
	1	TESTDATA		Pseudo-random number generation
1	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	ENABLE	0	RW	TRNG Module Enable
	Enable the TRNG. Th	e module will ge	nerate ran	dom numbers unless the FIFO is full.
	Value	Mode		Description
	0	DISABLED		Module disabled
	1	ENABLED		Module enabled
	0	DISABLED		Module disabled

30.5.2 TRNGn_FIFOLEVEL - FIFO Level Register (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset			•									•		•		000000000000000000000000000000000000000	0000000000	•			•					•			•			
Access																٥	۲															
Name																	VALOE															

Bit	Name	Reset	Access	Description
31:0	VALUE	0x00000000	R	FIFO Level
	Number of 32-bit word read.	ds of random da	ta available	e in the FIFO. The STATUS_FULLIF flag is cleared when FIFOLEVEL is

30.5.3 TRNGn_FIFODEPTH - FIFO Depth Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset																0,000,000	0×00000040															
Access																٥	۲															
Name																	U AFO															

Bit		Name	Reset	Access	Description
31:0)	VALUE	0x00000040	R	FIFO Depth.
		Maximum number of 3	32-bit words that	t can be st	ored in the FIFO.

30.5.4 TRNGn_KEY0 - Key Register 0

Offset															Ві	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	5	4	က	7	_	0
Reset																	nnnnnnnn														1	
Access																Ž	<u>}</u>															
Name																L	VALUE															
Bit	Na	me					Re	set			Ac	cess	s [Des	crip	tior																

Bit	Name	Reset	Access	Description
31:0	VALUE	0x00000000	RW	Key 0
	AES Key 32-bit sub-w	ord 0 (MSB).		

30.5.5 TRNGn_KEY1 - Key Register 1

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	7	_	0
Reset																000000000000000000000000000000000000000	0000000000															
Access																2	<u>}</u>															
Name																	ALOE VALOE															

Bit	Name	Reset	Access	Description
31:0	VALUE	0x00000000	RW	Key 1
	AES Key 32-bit sub-v	vord 1.		

30.5.6 TRNGn_KEY2 - Key Register 2

Offset	Bit Position
0x018	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	00000000000000000000000000000000000000
Access	N N N N N N N N N N N N N N N N N N N
Name	VALUE
Bit	Name Reset Access Description

Bit	Name	Reset	Access	Description
31:0	VALUE	0x00000000	RW	Key 2
	AES Key 32-bit sub-v	vord 2.		

30.5.7 TRNGn_KEY3 - Key Register 3

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																000000000000000000000000000000000000000	000000000000000000000000000000000000000															
Access																2	2															
Name																	VALOL															

Bit	Name	Reset	Access	Description
31:0	VALUE	0x00000000	RW	Key 3
	AES Key 32-bit sub-w	ord 3 (LSB).		

30.5.8 TRNGn_TESTDATA - Test Data Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset																0000000	000000000000000000000000000000000000000															
Access																2	2															
Name) 															

Bit	Name	Reset	Access	Description
31:0	VALUE	0x00000000	RW	Test data input to conditioning function or to the continuous tests

Each word written to this register represents 32 bits of input data for the selected test in test mode (CONTROL_TESTEN = 1). TESTDATABUSY in the STATUS register will be set to 1 each time data is written, and will clear to 0 when the next data word can be written. Writes to this register are ignored if the TESTEN bit in the CONTROL register is 0.

30.5.9 TRNGn_STATUS - Status Register

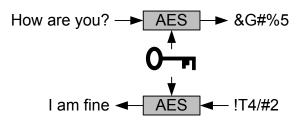
Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset				•													•						0	0	0	0	0	0				0
Access																							œ	RWH	~	2	œ	22				œ
Name																							ALMIF	PREIF	FULLIF	APT4096IF	APT64IF	REPCOUNTIF				TESTDATABUSY

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure comp tions	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
9	ALMIF	0	R	AIS31 Noise Alarm interrupt status
	Set when a noise ala	arm is detected in t	he AIS31	online test.
8	PREIF	0	RWH	AIS31 Preliminary Noise Alarm interrupt status
	Set when a prelimina	ary noise alarm is c	detected i	n the AIS31 online test.
7	FULLIF	0	R	FIFO Full Interrupt Status
	Set when the FIFO is	s full. The STATUS	_FULLIF	flag is cleared by reading FIFOLEVEL.
6	APT4096IF	0	R	Adaptive Proportion test failure (4096-sample window) interrupt status
	Set when an Adaptiv	e Proportion test (4096-san	nple window) failure occurs.
5	APT64IF	0	R	Adaptive Proportion test failure (64-sample window) interrupt status
	Set when an Adaptiv	ve Proportion test (64-sampl	e window) failure occurs.
4	REPCOUNTIF	0	R	Repetition Count Test Interrupt Status
	Set when a Repetition	on Count Test failur	re occurs	
3:1	Reserved	To ensure comp tions	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	TESTDATABUSY	0	R	Test Data Busy
	Indicates that data w	ritten to TESTDAT	A is bein	g processed.
	Value	Mode		Description
	0	IDLE		TESTDATA write is finished processing or no test in progress.
	1	BUSY		TESTDATA write is still being processed.

30.5.10 TRNGn_INITWAITVAL - Initial Wait Counter

Offset															Bi	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	2	1	0
Reset																												L	L L			
Access																												Š	≩ Ƴ			
Name																												L	VALUE			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure cortions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	VALUE	0xFF	RW	Wait counter value
	Number of clock cycle	es to wait before	sampling	data from the noise source.


30.5.11 TRNGn_FIFO - FIFO Data (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x100	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																	nannnnnan															
Access																٥	۲															
Name																	A A L O L															

Bit	Name	Reset	Access	Description							
31:0	VALUE	0x00000000	R	FIFO Read Data							
Data may be read from the FIFO 32 bits at a time using this register.											

31. CRYPTO - Crypto Accelerator

Quick Facts

What?

A fast and energy efficient autonomous hardware accelerator for AES encryption and decryption with 128- or 256-bit keys, ECC over prime and binary Galois finite fields, SHA-1, SHA-224 and SHA-256.

Why?

Efficient cryptography with little or no CPU intervention helps to meet the speed and energy demands of the application. Hardware implementations are generally more secure against side-channel attacks than software implementations.

How?

Programmable sequences of instructions on big numbers allow fast processing with little CPU intervention.

31.1 Introduction

The CRYPTO module allows efficient acceleration of common cryptographic operations and allows these to be used efficiently with a low CPU load. Operations performed by CRYPTO can be set up as a sequence of instructions on a set of 128-bit, 256-bit or 512-bit registers to implement or accelerate Elliptic Curve Cryptography (ECC), SHA-1, SHA-224, SHA-256, and various block cipher modes based on the Advanced Encryption Standard, also known as AES (FIPS-197).

CRYPTO is capable of autonomously fetching data, performing cipher operations and storing data across multiple blocks. When the source data is not a multiple of 16 bytes (128 bits), Zero-padding can be included in the last block. Block operations such as Counter Mode (CTR), Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB) and Output Feedback (OFB) are easily implemented. Block Cipher modes of operation such as Electronic Code Book (ECB), Counter Mode (CTR), Cipher Block Chaining (CBC), CBC-MAC (CBC Message Authentication Code), CCM (Counter with CBC-MAC) and GCM (Galois Counter mode) are easily implemented.

CRYPTO is delivered with an extensive software library in Simplicity Studio that implements all major cryptographic algorithms, including but not limited to AES, SHA-1, SHA-2, ECC, and legacy algorithms DES, 3DES, MD4, MD5 and RC4. The implementation accelerates the algorithms using CRYPTO when possible.

31.2 Features

- · Efficient AES core
 - Encryption/decryption using 128-bit key (54 clock cycles) or 256-bit key (75 clock cycles)
 - · Key buffer
 - Supports autonomous cipher block modes (e.g. ECB, CTR, CBC, PCBC, CFB, CBC-MAC, GMAC, CCM, CCM* and GCM) across multiple blocks
- Accelerated SHA-1, SHA-224 and SHA-256
- Accelerated Elliptic Curve Cryptography (ECC)
 - · Binary and Prime fields
 - Supports NIST recommended curves: P-192, P-224, P-256, K-163, K-233, B-163, and B-233
- Galois/Counter Mode (GCM)
 - · ALU operations on GCM GF(2^128) field
- · Flexible 256-bit ALU and sequencer
 - 5 general purpose 256-bit registers
 - · Supports ADD, SUB, MUL, shift, XOR, etc.
 - · Up to 20 instructions can be chained to implement various block cipher modes
- · Efficient operation
 - · DMA request signals for data read and write
 - · Optional XOR Data write
 - · Interrupt on finished operations
- · Extensive software support
 - · Extensive software library in Simplicity Studio
 - Implements all major cryptographic algorithms: AES, SHA-1, SHA-2, and ECC
 - · Implements legacy algorithms: DES, 3DES, MD4, MD5, and RC4
 - · Hardware accelerated when possible

31.3 Usage and Programming Interface

Many security systems fail due to mistakes in the implementation. Therefore implementations should be left to experts in cryptographic algorithms.

To solve this, the module is supported by an hardened cryptography software library and API delivered through Silicon Labs' Simplicity Studio. The software API is a frontend for performing all supported cryptographic operations, and must be used to receive prompt support.

31.4 Functional Description

A block diagram of the CRYPTO module is shown in Figure 31.1 CRYPTO Overview on page 1080.

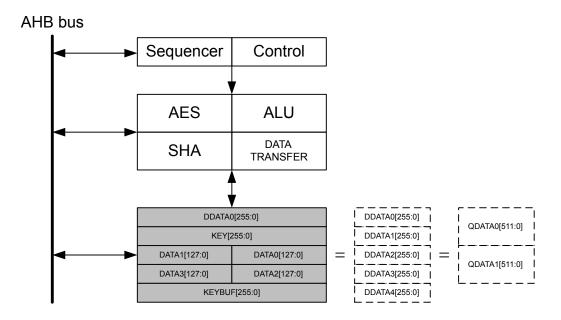


Figure 31.1. CRYPTO Overview

31.4.1 Data and Key Registers

The CRYPTO module contains five 256-bit registers. Accelerators are implemented through instructions operating on these registers, either by copying data between registers and external components through DMA, or by executing instructions on the registers.

Depending on the instruction, the registers can be accessed as 128-bit, 256-bit or 512-bit registers. The registers can also be accessed through different interface registers to achieve different results.

When writing to and reading from the CRYPTO_DATAX, CRYPTO_KEY, CRYPTO_KEYBUF, CRYPTO_DDATAX and CRYPTO_QDATAX registers, the least significant part is accessed first and the most significant part last, see Figure 31.2 CRYPTO Data and Key Register Operation on page 1082. The same is the case for the XOR and byte-access registers for DATA0 and DATA1. It is important to note that some of the 256-bit registers are composed of the 128-bit registers, and both the 512-bit registers are composed of the 256-bit registers.

Note: From here on, the 128, 256 and 512-bit registers are named DATAx, DDATAx, QDATAx, etc, And the access-points to these registers are named CRYPTO DATAx, CRYPTO DDATAx, CRYPTO QDATAx, etc.

DATA0 can be accessed through CRYPTO_DATA0 (32-bit), CRYPTO_DATA0XOR (32-bit), CRYPTO_DATA0BYTE (8-bit) and CRYPTO_DATA0XORBYTE (8-bit). Direct access to bytes 12 - 15 is available through CRYPTO_DATA0BYTE12-15 (8-bit). The DATA0XOR (in CRYPTO_DATA0XOR) is used for XOR'ing a value with the current value in DATA0. This is used in a large variety of block cipher modes. All of these registers operate on DATA0.

DATA1 can be accessed through CRYPTO_DATA1 (32-bit) and CRYPTO_DATA1BYTE (8-bit).

The remaining data registers have regular 32-bit access through their respective registers. Note that all data registers require a full read or write to be fully accessed. This means that the 128-bit registers need four 32-bit reads/writes, the 256-bit registers need 8 reads/writes and the 512-bit registers need 16 reads/writes. For a read, if all read accesses are not done, the register will end up as a shifted version of the original value.

Note: For byte-wise data accesses (DDATAxBYTE, DATAxBYTE, etc.), all reads and writes must be performed in groups of 4, due to internal buffering and shifting of 32 bits at a time. Accessing a number of bytes that is not a multiple of four can cause data incoherency in all of the data registers.

The KEY and KEYBUF registers are 256 bit wide when AES256 is set in CRYPTO_CTRL. Else they are 128 bit wide. When used as a part of DDATAx and QDATAx, they are always 256 bit wide.

The registers DDATA0BIG and QDATA1BIG produce byte-swapped versions of DDATA0 and QDATA1 respectively. These may be used when a computation requires byte-swapping. An example of this is SHA computation, where data needs to be changed to big endian before CRYPTO can work with it. Little endian data is then loaded in through QDATA1BIG and the resulting little endian hash can be read out from DDATA0BIG, see 31.4.5 SHA.

Except for KEYBUF, the contents of all data registers are lost when going to EM2.

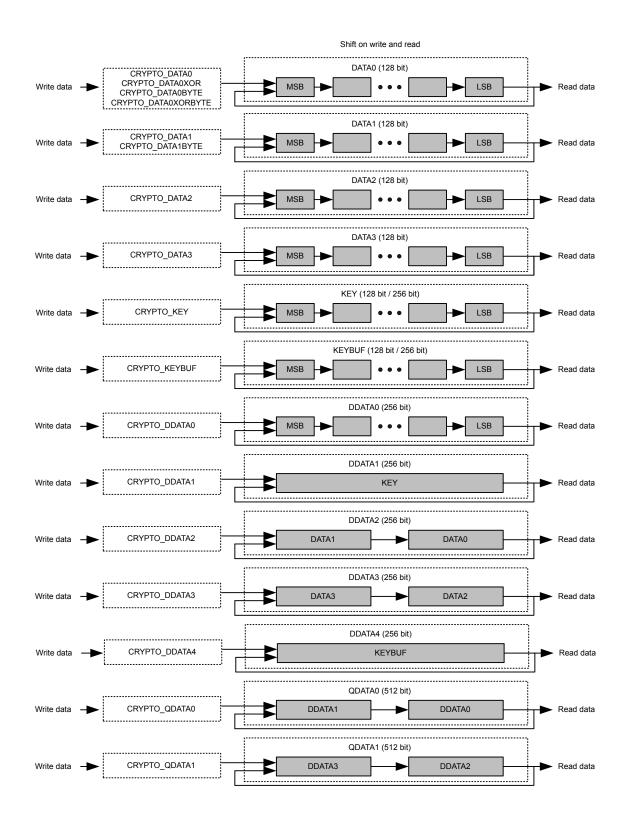


Figure 31.2. CRYPTO Data and Key Register Operation

31.4.1.1 DATA0 Zero

DATA0ZERO in CRYPTO_DSTATUS contains status flags indicating if any 32-bit blocks within DATA0 is 0. For example, if DATA0[95:64] is equal to 0x00000000, ZERO64TO95 is set.

31.4.1.2 DDATA0 and DDATA1 Quick Observation

DDATA0LSBS in CRYPTO_DSTATUS shows the 4 least significant bits in DDATA0. DDATA0MSBS in CRYPTO_DSTATUS shows the 4 most significant bits of DDATA0, while DDATA1MSB in CRYPTO_DSTATUS shows the msb of DDATA1. These observation bitfields are useful for determining the sign of the value in the data registers without having to read out the full register data register values

The 4 bits observed by DDATA0MSBS will change depending on RESULTWIDTH in CRYPTO_WAC. When using 260-bit results, DDATA0MSBS shows bits 259-256, when using 256-bit results, it is bits 255-252, and for 128-bit results, bits 127-124 can be observed. When RESULTWIDTH is 260 bits, the 4 most significant bits, e.g. bits 259-256 are also available in CRYPTO_DDATA0BYTE32, where they can also be written. Using this register is the only way of inputting the upper 4 bits of a 260-bit number to CRYPTO.

31.4.1.3 Result Width

RESULTWIDTH in CRYPTO_WAC determines the width of the operation when performing arithmetic/shift instructions with CRYPTO. Using less wide results will reduce the current consumption of the CRYPTO module. The higher-order bits that are beyond the selected result width are ignored in the computation of arithmetic/shift operations, however, these higher-order bits will be undefined in the result of such instructions.

When RESULTWIDTH=260BIT, all DDATA registers effectively become 260 bits wide, so that the upper 4 bits are not lost when transferring data from DDATA0 to the other DDATA registers. Likewise, the arithmetic/shift instructions shall consider the full 260-bit values of DDATA0-DDATA4 when used as operation inputs. Note that DDATA0 is the only 260-bit register of which MSBs can be observed/written. The upper 4 bits are observed through DDATA0MSBS in CRYPTO_DSTATUS or through CRYPTO_DDATA0BYTE32. For all DDATAx registers, the extra MSBs are cleared when DDATAx is written. Furthermore, for a particular x, a write to DDATAx or any of its aliased registers will cause DDATAx MSBs to be cleared. Note, writing to KEY/KEYBUF will only clear MSBs of DDATA1/DDATA4 when AES256 mode is set. Likewise, writing to DATA0/DATA2 will not clear DDATA2/DDATA3 MSBs.

Since the DATA0-DATA3 registers are always 128-bit, all bit positions greater than 128 are interpreted as 0 when RESULTWIDTH is greater than 128 bits. However, the assignment instructions DATAxTODDATAy will not zero-out the upper 128 bits of the DDATAy target. Instead, those upper words become undefined after such operations.

31.4.2 Instructions and Execution

The CRYPTO module implements a set of instructions in order to load and manipulate data effectively. These instructions are grouped into four types:

- ALU instructions arithmetic and logical bitwise operations
- Transfer instructions moving data between registers and external peripherals like DMA
- Conditional instructions conditionally execute instructions based on context
- · Special instructions various crypto and support instructions

A single instruction can be executed by writing INSTR in CRYPTO_CMD. This will execute the instruction, and the interface of CRYP-TO will be locked until the execution has completed. Multiple commands can safely be issued after each other by the CPU as long as NOBUSYSTALL in CRYPTO_CTRL is not set. If CRYPTO gets a new command or a data access request while busy it will then stall the bus, and execute the new command as soon as it is done with the previous one. Note, there are some exceptions to this rule. For example, see 31.4.8 DMA.

Stalling of the bus can be disabled by setting NOBUSYSTALL in CRYPTO_CTRL, however manipulating (reading or writing) registers while running an instruction will result in undefined behaviour. Additionally, if NOBUSYSTALL=0 and a new command or data access request is made while the CRYPTO is simultaneously performing a data transfer instruction, it is possible for system lockup due to bus stalling loops. The safest approach is to always check if an instruction is running by looking at INSTRRUNNING in CRYPTO_STATUS.

Note that this automatic stalling feature does not apply to automated CRYPTO instruction sequences (described next), since there may be cycle delays between individual instructions for which bus accesses are not prevented. For sequences, always check the SEQRUNNING status bit or the SEQDONE interrupt flag to ensure the sequence is finished before attempting CRYPTO register accesses.

31.4.2.1 Sequences

For executing a set of instructions, it is more efficient to load them into the CRYPTO module and run them as a sequence. This is done by writing the instructions into CRYPTO_SEQ0-CRYPTO_SEQ4, and marking the end of the instruction sequence with either an END or an EXEC instruction. The END simply means end-of-instructions, while writing EXEC means end-of-instructions and execute immediately.

The five registers allow up to 20 instructions to be loaded. To start execution, either end the instructions with an EXEC instruction, or set SEQSTART in CRYPTO_CMD. CRYPTO will then execute the instructions, starting in CRYPTO_SEQ0, and ending at the first END instruction. SEQRUNNING in CRYPTO_STATUS is set while the sequence is running, and the interrupt flag SEQDONE in CRYPTO_IF will be set when the sequence has completed.

A sequence can be stopped by issuing the SEQSTOP command in the CRYPTO_CMD register. This command also clears the state of ongoing CRYPTO instructions including DMA access. Check SEQRUNNING in CRYPTO_STATUS after issuing the SEQSTOP command flag to make sure any ongoing sequence/transfer has completed before accessing data registers again.

31.4.2.2 Available Instructions

The available ALU instructions are listed in Table 31.1 ALU Instructions on page 1085, long instructions are listed in Table 31.2 Long Instructions on page 1086, data transfer instructions are listed in Table 31.3 Transfer Instructions on page 1086, conditional instructions are listed in Table 31.4 Conditional Instructions on page 1087 and special instructions are listed in Table 31.5 Special Instructions on page 1087. The tables explains the side-effects of the instructions and shows which registers are affected. V0 and V1 in the instructions descriptions can be any of the DDATAx registers and a selection of the DATAx registers. They can be selected using the SELD-DATAXDDATAy, SELDATAXDDATAy and SELDATAXDATAy instructions. The first register in the instruction will be selected for V0, and the second for V1. This configuration stays even when the sequence is complete, and can also be set up front. The currently selected V0 and V1 can be read V0 and V1 in CRYPTO CSTATUS.

Table 31.1. ALU Instructions

Instruction	Description	Constraints/Notes
ADD	DDATA0 = V0 + V1	If V0 != DDATA0, then V1 != DDATA0
ADDO	DDATA0 = V0 + V1	Carry is only set, not cleared. If V0 != DDATA0, then V1 != DDATA0
ADDC	DDATA0 = V0 + V1 + carry	If V0 != DDATA0, then V1 != DDATA0
ADDIC	DDATA0 = V0 + V1 + carry << 128	If V0 != DDATA0, then V1 != DDATA0. If resultwidth is 128b, then carry is undefined
MADD	DDATA0 = (V0 + V1) mod P	If V0 != DDATA0, then V1 != DDATA0
MADD32	DDATA0[i] = V0[i] + V1[i]. Word-wise addition	carry is not modified. If V0 != DDATA0, then V1 != DDATA0
SUB	DDATA0 = V0 - V1	V1 != DDATA0. If V1 is 128b and resultwidth > 128b, then upper 128b are unknown
SUBC	DDATA0 = V0 - V1 - carry	V1 != DDATA0. If V1 is 128b and resultwidth > 128b, then upper 128b are unknown
MSUB	DDATA0 = (V0 - V1) mod P	V1 != DDATA0. If V1 is 128b and resultwidth > 128b, then upper 128b are unknown
MUL	DDATA0 = DDATA1 * V1. See 31.4.2.3 MULx Details	V1 != DDATA0,DDATA1
MULC	DDATA0 = DDATA1 * V1 + (DDATA0 << MULWIDTH) See 31.4.2.3 MULx Details	.V1 != DDATA0,DDATA1
MMUL	DDATA0 = (DDATA1 * V1) mod P	V1 != DDATA0,DDATA1
MULO	DDATA0 = DDATA1 * V1. See 31.4.2.3 MULx Details	V1 != DDATA0,DDATA1. Carry is only set, not cleared
SHL	DDATA0 = V0 << 1	If V0 is 128b and resultwidth is 260b, then upper 4b are unknown
SHLC	DDATA0 = V0 << 1 carry	If V0 is 128b and resultwidth is 260b, then upper 4b are unknown
SHLB	DDATA0 = V0 << 1 V0[resultwidth-1]	If V0 is 128b and resultwidth is 260b, then upper 4b are unknown
SHL1	DDATA0 = V0 << 1 1	If V0 is 128b and resultwidth is 260b, then upper 4b are unknown
SHR	DDATA0 = V0 >> 1	
SHRC	DDATA0 = V0 >> 1 carry << resultwidth-1	
SHRB	DDATA0 = V0 >> 1 V0[0] << resultwidth-1	

Instruction	Description	Constraints/Notes
SHR1	DDATA0 = V0 >> 1 1 << resultwidth-1	
SHRA	DDATA0 = V0 >> 1 V0[resultwidth-1] << result-width-1	
CLR	DDATA0 = 0	
XOR	DDATA0 = V0 ^ V1	If V0 != DDATA0, then V1 != DDATA0
INV	DDATA0 = ~V0	
CSET	CARRY = 1	
CCLR	CARRY = 0	
BBSWAP128	DDATA0[127:0] = bbswap(V0[127:0])	See 31.4.2.6 BBSWAP128 Instruction
INC	DDATA0 = DDATA0 + 1	
DEC	DDATA0 = DDATA0 - 1	

Table 31.2. Long Instructions

Instruc- tion	Operation	Constraints/Notes
LADD	{DDATA1,DDATA0} = V0 + V1, if V0 != DDATA0. {DDATA1,DDATA0} = {DDATA1,DDATA0} + V1, if V0 = DDATA0	If V0 != DDATA0, then V1 != DDATA0
LADDO	{DDATA1,DDATA0} = V0 + V1, if V0 != DDATA0. {DDATA1,DDATA0} = {DDATA1,DDATA0} + V1, if V0 = DDATA0	Carry is only set, not cleared. If V0 != DDATA0, then V1 != DDATA0
LADDC	{DDATA1,DDATA0} = V0 + V1 + carry, if V0 != DDATA0. {DDATA1,DDATA0} = {DDATA1,DDATA0} + V1 + carry, if V0 = DDATA0	If V0 != DDATA0, then V1 != DDATA0
LADDIC	{DDATA1,DDATA0} = V0 + V1 + carry << 256, if V0 != DDATA0. {DDATA1,DDATA0} = {DDATA1,DDATA0} + V1 + carry << 256, if V0 = DDA	If V0 != DDATA0, then V1 != DDATA0 TA0
LSUB	{DDATA1,DDATA0} = V0 - V1, if V0 != DDATA0. {DDATA1,DDATA0} = {DDATA1,DDATA0} - V1, if V0 = DDATA0	V1 != DDATA0. If V1 is 128b, then upper 128b are unknown
LSUBC	{DDATA1,DDATA0} = V0 - V1 - carry, if V0 != DDATA0. {DDATA1,DDATA0} = {DDATA1,DDATA0} - V1 - carry, if V0 = DDATA0	V1 != DDATA0. If V1 is 128b, then upper 128b are unknown
LMUL	{DDATA1,DDATA0} = DDATA1 * V1	V1 != DDATA0,DDATA1
LMULO	{DDATA1,DDATA0} = DDATA1 * V1	V1 != DDATA0,DDATA1. Carry is only set, not cleared
LINC	{DDATA1,DDATA0} = {DDATA1,DDATA0} + 1	
LDEC	{DDATA1,DDATA0} = {DDATA1,DDATA0} - 1	

Table 31.3. Transfer Instructions

Instruction	Operation	Constraints/Notes
DATATODMA0	DMA = DATAX, DMA request DMA0RD	DATAX = DATA0, DDATA0, DDATA0BIG, QDATA0 as defined by DMA0RSEL
DMA0TODATA	DATAX = DMA, DMA request DATA0WR	DATAX = DATA0, DDATA0, DDATA0BIG, QDATA0
DMA0TODATAXOR DATA0 = DATA0 ^ DMA, DMA request DA- TA0XORWR		

Instruction	Operation	Constraints/Notes
DATATODMA1	DMA = DATAX, DMA request DMA1RD	DATAX = DATA1, DDATA1, QDATA1, QDATA1BIG as defined by DMA1RSEL
DMA1TODATA	DATAX = DMA, DMA request DATA0WR	DATAX = DATA1, DDATA1, QDATA1, QDATA1BIG
DATAxTODATAy	DATAy = DATAx	
DATAxTODATA0XOR	DATA0 = DATA0 ^ DATAx	If resultwidth is 128b, then carry is undefined
DATAXTODATA0XOR- LEN	DATA0 = DATA0 ^ (DATAx & (2**LENGTH-1))	LENGTH is LENGTHA or LENGTHB depending on active part of sequence. If resultwidth is 128b, then carry is undefined
DDATAxTODDATAy	DDATAy = DDATAx	
DDATAxHTODATA1 DATA1 = DDATAx[255:128]		Bits DDATA2[259:256] become undefined
DDATAxLTODATAy	DATAy = DDATAx[127:0]	
SELDDATAxDDATAy	Use DDATAx as V0, DDATAy as V1	x = 0,1,2,3,4; y = 0,1,2,3,4
SELDATAxDDATAy	Use DATAx as V0, DDATAy as V1	x = 0,1,2; y = 0,1,2,3,4
SELDDATAxDATAy	Use DDATAx as V0, DATAy as V1	x = 0,1,2,3,4; y = 0,1
SELDATAxDATAy	Use DATAx as V0, DATAy as V1	x = 0,1,2; y = 0,1

Table 31.4. Conditional Instructions

Instruction	Operation	Constraints
EXECIFA	Execute following instructions if in part A of sequence	
EXECIFB	Execute following instructions if in part B of sequence	
EXECIFNLAST	Execute following instructions if not in last iteration of sequence	
EXECIFLAST	Execute following instructions if in last iteration of sequence	
EXECIFCARRY	Execute following instructions if carry bit is set	
EXECIFNCARRY	Execute following instructions if carry bit not is set	
EXECALWAYS	Always execute following instructions	

Table 31.5. Special Instructions

Instruction	Operation
END	Ends execution.
EXEC	When written to CRYPTO_SEQx register, automatically triggers execution of all instruction up to this point.
AESENC	DATA0 = AESENC(DATA0)
AESDEC	DATA0 = AESDEC(DATA0)
SHA	DDATA0 = SHA(Q1)
DATA1INC	DATA1 = inc(DATA1). See 31.4.2.5 DATA1INC and DATA1INCCLR Instructions
DATA1INCCLR	DATA1 = clearinc(DATA1). See 31.4.2.5 DATA1INC and DATA1INCCLR Instructions

31.4.2.3 MULx Details

For the MULx instructions (not MMUL), MULWIDTH in CRYPTO_WAC specifies the width of operands DDATA1 (and sometimes V1). This is useful in order to optimize performance because multiplications take the same number of cycles as the bits in the operands plus a couple of cycles for setup.

As with the other ALU instructions, RESULTWIDTH limits the width of the final result of the MULx and MMUL instructions.

31.4.2.4 Long Instruction Details

For the Long instructions listed in Table 31.2 Long Instructions on page 1086, RESULTWIDTH in CRYPTO_WAC is ignored and is treated as if it were set to 512 bits. Likewise, MULWIDTH is also ignored and is treated as if it were set to 256 bits.

31.4.2.5 DATA1INC and DATA1INCCLR Instructions

DATA1INC and DATA1INCCLR operate on the 1, 2, 3 or 4 most significant bytes in DATA1, depending on INCWIDTH in CRYP-TO_CTRL. DATA1INC increments these bytes in big endian, while DATA1INCCLR clears the bytes.

31.4.2.6 BBSWAP128 Instruction

The BBSWAP128 instruction copies the contents of the V0 operand to DDATA0 while swapping the bits of the lower 16 bytes. The operand is not changed. This operation is required for GCM. See 31.4.7 GCM and GMAC

31.4.2.7 Carry

The carry output from most instructions can be observed through the CARRY bit in CRYPTO_DSTATUS. Shift-instructions set CARRY to the value that is shifted out of the register, addition and multiplication set it on register overflow, and subtraction sets it on borrow, e.g. underflow.

In addition to generating carry information, some instructions also use the current value of CARRY. ADDC, SUBC, SHLC and SHRC all use carry to generate the result. For all of these instructions, carry allows a program to chain instructions together to operate on bigger numbers than allowed by CRYPTO. For example, by chaining first an ADD, and then an ADDC which uses the carry from the ADD operation, two 512-bit numbers can be added. By chaining more instructions, even larger numbers can be manipulated.

Other uses of CARRY include observation. To check if a register is 0, one can subtract 1 using the DEC instruction, and check if goes negative by checking the CARRY bit. CARRY can be set manually and in CRYPTO programs using the CSET and CCLR instructions, which set and clear the CARRY bit.

The MULC instruction does not use CARRY like the other carry instructions (i.e., instructions ending in 'C' such as 'ADDC'), but rather preserves the old contents of the multiplication register.

31.4.3 Repeated Sequence

To maximize efficiency, it is desirable to be able to run a set of instructions over multiple blocks of data autonomously. To repeat a sequence over a larger set of data, set LENGTHA in CRYPTO_SEQCTRL to the number of bytes in the set, and BLOCKSIZE to the size of the blocks in the set. The sequence will then be repeated N times, where N is LENGTHA / BLOCKSIZE if LENGTHA is a multiple of BLOCKSIZE, or ceiling(LENGTHA / BLOCKSIZE) if not. In the latter case, data written by DMA will be zero-padded up to BLOCKSIZE if it is written to a register which has a size equal to BLOCKSIZE. One notable exception is when LENGTHA is 0. In this case the sequence will still execute once, but the block transfer instructions will not execute.

Note: If DMAxRSEL in CRYPTO_CTRL selects a register that is smaller than the specified blocksize, DATATODMAx/DMAxTODATA instructions will not use the full blocksize, but will only transfer enough data to empty/fill the register once. For example, if BLOCKSIZE is set to 64B and DMA0RSEL=DDATA0, the instruction DATATODMA0 will only read 32B instead of 64B. The processing of LENGTHA/B will continue as if all 64B had been transferred.

A repeated sequence can also be made do slightly different operations on different parts of the data set. A sequence can be divided into two parts; part A, and part B. By configuring LENGTHA in CRYPTO_SEQCTRL to the length of part A, and LENGTHB in CRYPTO_SEQCTRLB to the length of part B, CRYPTO will first run iterations over part A, knowing it is A, and then part B, knowing it is part B. By using the conditional instructions listed in Table 31.4 Conditional Instructions on page 1087, a program can execute different instructions depending on whether it is in part A or part B.

31.4.4 AES

The AES core operates on data in the 128-bit register DATA0 using the either a 128-bit or 256-bit key from the KEY register. The key width is specified by AES256 in CRYPTO_CTRL. AES operations are implemented as the AESENC and AESDEC instructions, for AES encryption and AES decryption respectively. An overview of the AES functionality is shown in Figure 31.3 CRYPTO AES Overview on page 1089.

AES encryption and decryption enables various block cipher modes like ECB, CTR, CBC, PCBC, CFB, OFB, CBC-MAC, GMAC, CCM, CCM*, and GCM.

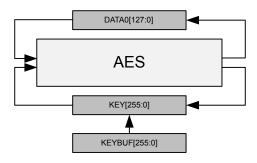


Figure 31.3. CRYPTO AES Overview

The input data before encryption is called the PlainText and output from the encryption is called CipherText. For encryption, the key is called PlainKey. After encryption, the resulting key in the KEY registers is the CipherKey. This key must be loaded into the KEY registers prior to the decryption. After one decryption, the resulting key will be the PlainKey. The resulting PlainKey/CipherKey is only dependent on the value in the KEY registers before encryption/decryption. The resulting keys and data are shown in Figure 31.4 CRYPTO Key and Data Definitions on page 1089.

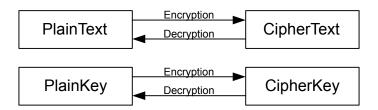


Figure 31.4. CRYPTO Key and Data Definitions

The KEY is by default loaded from KEYBUF prior to each AESENC or AESDEC instruction. If the KEY is not to be overwritten, key buffering should be disabled (KEYBUFDIS in CRYPTO_CTRL). Disabling key buffering also allows the use of key loading through DMA.

The data and key orientation in the CRYPTO registers are shown in Figure 31.5 CRYPTO Data and Key Orientation as Defined in the Advanced Encryption Standard on page 1090.

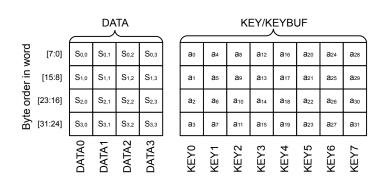


Figure 31.5. CRYPTO Data and Key Orientation as Defined in the Advanced Encryption Standard

31.4.5 SHA

The CRYPTO SHA instruction implements SHA-1 with a 160-bit digest or SHA-2 with a 224-bit digest (SHA-224) or 256-bit digest (SHA-256). Depending on SHAMODE in CRYPTO_CTRL, SHA-1, SHA-224 or SHA-256 will be run on the data in QDATA1, and the result will be put on DDATA0. The contents in QDATA1 will be destroyed in the process.

To run SHA on a dataset, it must first be pre-processed by appending a bit '1' to the message, then padding the data with '0' bits until the message length in bits modulo 512 is 448. Then append the length of the message before pre-processing as a 64-bit big-endian integer. This pre-processing is known as MD-strengthening, and must be done by software before processing with the CRYPTO module.

The pre-processed data can now be run through the CRYPTO module. Begin by writing the values listed in Table 31.6 SHA Init Values on page 1091 to CRYPTO_DDATA1 from top to bottom, then execute the instructions listed in Table 31.7 SHA Preparations on page 1091.

Table 31.6. SHA Init Values

SHA-1	SHA-224	SHA-256
0x67452301	0xC1059ED8	0x6A09E667
0xEFCDAB89	0x367CD507	0xBB67AE85
0x98BADCFE	0x3070DD17	0x3C6EF372
0x10325476	0xF70E5939	0xA54FF53A
0xC3D2E1F0	0xFFC00B31	0x510E527F
0x0000000	0x68581511	0x9B05688C
0x00000000	0x64F98FA7	0x1F83D9AB
0x0000000	0xBEFA4FA4	0x5BE0CD19

Table 31.7. SHA Preparations

STEP	ACTION	Description
STEP0	DDATA1TODDATA0	Copy init data to DDATA0
STEP1	SELDDATA0DDATA1	Select DDATA0 and DDATA1 as operands for SHA instruction

Then, for each 512-bit block, write the block to CRYPTO_QDATA1BIG, execute the instructions listed in Table 31.8 SHA for 512-bit Block on page 1091.

Table 31.8. SHA for 512-bit Block

STEP	ACTION	Description
STEP0	SHA	Perform SHA operation on data in QDATA1
STEP1	MADD32	Accumulate with previous data in DDATA1
STEP2	DDATA0TODDATA1	Copy hash to DDATA1

After the last iteration, the resulting hash can be read out from CRYPTO DDATA0BIG.

31.4.6 ECC

The CRYPTO module implements support for Elliptic Curve Cryptography through the modular instructions MADD, MMUL and MSUB, which perform modular addition, multiplication and subtraction respectively. The instructions can operate on a set of both prime fields GF(p) and binary fields GF(2^m).

The type of modular arithmetic used and the modulus for the modular operations are specified by MODOP and MODULUS in CRYP-TO WAC respectively. Changing these in the middle of an operation leads to undefined behaviour.

31.4.7 GCM and GMAC

CRYPTO implements support for Galois/Counter Mode (GCM), and also Galois Message Authentication Code (GMAC), by providing AES instructions and allowing multiplication on the field $GF(2^128)$ defined by the polynomial $x^128 + x^7 + x^2 + x + 1$.

Note: BBSWAP128 needs to be applied to both operands and the result of the MMUL instruction when using it for GCM and GMAC

Efficient sequencer programs can be set up to perform GCM authentication and encryption/decryption on data from either DMA, or CPU. To achieve a single-pass solution, LENGTHA in CRYPTO_SEQCTRL is set to the length of the authentication part, and LENGTHB is set to the length of the rest of the message. Conditional instructions can then be used to make sure the two parts of the message are processed correctly. A similar approach is used to implement CCM.

31.4.8 DMA

The CRYPTO module has 5 DMA request signals (see Table 31.9 DMA Signals on page 1092) split over 2 internal DMA channels: DMA0 and DMA1. These DMA channels are not associated with channel 0 and 1 of the system DMA, and any system DMA channel can serve any of the 5 DMA requests. See the DMA chapter for information on how to configure the system DMA.

The DMA signals are set through the use of DMA oriented instructions, and cleared by reading or writing the respective CRYPTO data registers.

Name	Set on	Cleared on
DMA0WR	Instruction DMA0TODATA, and DMA0TODATAXOR if COMBDMA0WEREQ in CRYPTO_CTRL is set	Full CRYPTO_DATA0, CRYPTO_DDATA0, CRYPTO_DDATA0BIG or CRYPTO_QDATA0 write, or CRYPTO_DDATA0XOR if COMBDMA0WEDMAREQ in CRYPTO_CTRL is set
DMA0XORWR	Instruction DMA0TODATAXOR	Full CRYPTO_DATA0XOR write
DMA0RD	Instructions DATATODMA0	Full CRYPTO_DATA0, CRYPTO_DDATA0, CRYP-TO_DDATA0BIG or CRYPTO_QDATA0 read, depending on DMA0MODE in CRYPTO_CTRL
DMA1WR	Instructions DMA1TODATA	Full CRYPTO_DATA1, CRYPTO_DDATA1, CRYP- TO_QDATA1 or CRYPTO_QDATA1BIG write
DMA1RD	Instructions DATATODMA1	Full CRYPTO_DATA1, CRYPTO_DDATA1, CRYP- TO_QDATA1 or CRYPTO_QDATA1BIG read, depend- ing on DMA1MODE in CRYPTO_CTRL

Table 31.9. DMA Signals

Note: DMAxRSEL in CRYPTO_CTRL has to be set to the data registers that are to be read using the respective DMA channels on a DATATODMAx instruction. As an important note, DMAxRSEL in CRYPTO_CTRL selects what is read from **any** of the selectable read registers during an ongoing DATATODMAx transfer .

When a DMA oriented CRYPTO instruction is used (either through a STEP in a Sequence or through CRYPTO_CMD), the corresponding DMA signal is set. The instruction is complete when the entire source/destination is read/written (e.g. if DMA0TODATA is used, the operation is complete when a total of 128 valid bits have been written through the CRYPTO_DATA0 register). DMAACTIVE in CRYPTO_STATUS is set while CRYPTO is working on a DMA-related instruction, e.g. waiting for the DMA to read or write data to CRYPTO (see 31.4.8.1 DMA Initial Bytes Skip).

Normally, when a sequence or instruction is executed, access to most CRYPTO registers will stall the CPU or DMA that is trying to access CRYPTO until the operation is done, preventing accesses to CRYPTO that could potentially interfere with an operation. During DMA operations, all non-DMA registers are writeable and readable, but progress through the DMA operation will only be tracked with the registers targeted by the DMA operation (i.e., if the DMA operation is supposed to transfer 3 words to DATA0, the DMA can first choose to transfer data to e.g. DATA3, and then fulfill the transfer to DATA0).

Because the bus interface to CRYPTO is normally locked outside of DMA transfers, a wrongly set up DMA transfer (e.g., transferring one byte too many) may lock up the interface. One way to assist in debugging such issues can be setting NOBUSYSTALL in CRYPTO_CTRL. This will prevent any stall on CRYPTO register accesses during sequences and instructions. Use this option with care, as modifying a register that is being used by CRYPTO can lead to undefined behavior.

31.4.8.1 DMA Initial Bytes Skip

The DMA must be configured to use 32-bit transfer size. This normally would imply that the source data must be aligned to a 4 byte address boundary. However, it is possible to skip the initial bytes (1 to 3) when using DMA to write to DATA0 or DATA1 through a CRYPTO instruction operation. The number of bytes to skip are set in DMA0SKIP and DMA1SKIP in CRYPTO_SEQCTRL. This implies that if DMA0SKIP is set to another value than 0, the initial DMA access will require 5 DMA transfers, even though only 4x32-bit is required.

Note: Any valid unused bytes from a previous DMA write will be used before new DMA data is requested. This data is invalidated by using STOP in CRYPTO CMD.

31.4.8.2 DMA Unaligned Read/Write

Except for DATA0 and DATA1, which can be loaded bytewise using the CRYPTO_DATA0BYTE, CRYPTO_DATA0XORBYTE and CRYPTO_DATA1BYTE registers, the CRYPTO data registers are loaded 32-bits at a time. Special care must be taken when using the DMA and the data buffer is not aligned to a 32-bit address, because the DMA does not directly support 32-bit unaligned accesses.

As an example, let an in-memory 16-byte data buffer start at address 4*N + M and end at the byte before. 4*N + 16 + M, where M is between 0 and 3 inclusive. With an M=0, we have fully aligned accesses, and everything is fine. For M>0 however, the access is unaligned. If M=1, that means that the first 32-bit aligned word of the memory buffer contains 1 byte before the buffer, and 3 bytes of the buffer. Similarly, the last 32-bit aligned word of the memory buffer contains the last byte of the buffer, and three bytes after the buffer.

When doing an unaligned read, we want to only pass the 16 bytes of the buffer to the CRYPTO module. Not the N bytes before in the 32-bit aligned word, and not the 4-N words at the end. To achieve this, set DxDMAREADMODE in CRYPTO_CTRL to either UN-ALIGNEDFULL or UNALIGNEDLENLIMIT, and set DATAxDMASKIP in CRYPTO_SEQCTRL equal to N. When reading in data using a DMA-oriented instruction to DATAx, DDATAx or QDATAx, the read will now only contain the 16 bytes, and not the N bytes before or 4-N words after. Note that in this case, the DMA has to be set up to transfer 5 32-bit words instead of the effective 4.

Being able to read unaligned data does not solve all cases however. If data is to be written back to the buffer after passing through CRYPTO, e.g. when doing an in-place encryption or decryption, it is very undesirable to actually modify the N bytes before and 4-N bytes after the buffer. This is solved using the UAR-suffixed registers in CRYPTO when reading data out from the CRYPTO module, e.g. CRYPTO_DATA0UAR, CRYPTO_DATA1UAR, CRYPTO_DDATA0UAR,CRYPTO_DDATA1UAR, CRYPTO_DDATA0UAR, etc. When an unaligned buffer is written to a CRYPTO buffer, CRYPTO stores the N first bytes and the 4-N last bytes internally. When reading out from an UAR register, these bytes are placed back into the data if DATAxDMAPRES is set in CRYPTO_SEQCTRL.

Note that the latter case only works if the first N and the last 4-N bytes are not changed while CRYPTO works on the data. Internally CRYPTO has 2 buffers for the bytes before and after. The first one is connected to read/write of the DATA0, DDATA0 and QDATA0 registers, and the second is connected to the DATA1, DDATA1 and QDATA1 registers.

If DMAxRMODE in CRYPTO_CTRL is set to FULL or UNALIGNEDFULL and the corresponding DMAxPRES in CRYPTO_SEQCTRL is set, then a whole number of data buffers have to be written by the DMA. In all other cases, it is enough to write the number of 32-bit words to pass all LENGTH bits to the target CRYPTO buffer.

31.4.9 Debugging

There are multiple ways of debugging CRYPTO sequences. The most straight-forward way is to write individual instructions to INSTR in CRYPTO_CMD. An instruction can be written, and data can be read out and examined before running another instruction.

Running individual instructions to debug a program falls short when working with repeated sequences. In these cases, a sequence is run multiple times over a set of data. This cannot be directly replicated with individual instructions

To debug a sequence, set HALT in CRYPTO_SEQCTRL. When set, CRYPTO requires software or the debugger to step it through each instruction in the sequence. To step through the sequence, set SEQSTEP in CRYPTO_CMD. This will execute the current instruction, and make CRYPTO ready to execute the next one.

When stepping through a sequence, the current instruction index can be read from SEQIP in CRYPTO_CSTATUS. SEQSKIP, also in CRYPTO_CSTATUS tells whether the next instruction will be executed or not, based on previous conditionals in the program. SEQ-PART in CRYPTO_CSTATUS shows whether CRYPTO is currently in part A or B of a sequence. Even with NOBUSYSTALL in CRYPTO_CTRL cleared, read and write accesses to CRYPTO will be allowed when CRYPTO is waiting to be stepped. This is to allow data registers to be inspected during debugging.

Note: The data registers in CRYPTO (those marked read-actionable) require shifting of data in order to return the result. For this reason, reading these registers will have no effect and will return unknown values during normal debugger read accesses (see 5.3.6 Debugger Reads of Actionable Registers).

31.5 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	CRYPTO_CTRL	RW	Control Register
0x004	CRYPTO_WAC	RW	Wide Arithmetic Configuration
0x008	CRYPTO_CMD	W	Command Register
0x010	CRYPTO_STATUS	R	Status Register
0x014	CRYPTO_DSTATUS	R	Data Status Register
0x018	CRYPTO_CSTATUS	R	Control Status Register
0x020	CRYPTO_KEY	RWH(nB)(a)	KEY Register Access
0x024	CRYPTO_KEYBUF	RWH(nB)(a)	KEY Buffer Register Access
0x030	CRYPTO_SEQCTRL	RWH	Sequence Control
0x034	CRYPTO_SEQCTRLB	RWH	Sequence Control B
0x040	CRYPTO_IF	R	AES Interrupt Flags
0x044	CRYPTO_IFS	W1	Interrupt Flag Set Register
0x048	CRYPTO_IFC	(R)W1	Interrupt Flag Clear Register
0x04C	CRYPTO_IEN	RW	Interrupt Enable Register
0x050	CRYPTO_SEQ0	RW	Sequence Register 0
0x054	CRYPTO_SEQ1	RW	Sequence Register 1
0x058	CRYPTO_SEQ2	RW	Sequence Register 2
0x05C	CRYPTO_SEQ3	RW	Sequence Register 3
0x060	CRYPTO_SEQ4	RW	Sequence Register 4
0x080	CRYPTO_DATA0	RWH(nB)(a)	DATA0 Register Access
0x084	CRYPTO_DATA1	RWH(nB)(a)	DATA1 Register Access
0x088	CRYPTO_DATA2	RWH(nB)(a)	DATA2 Register Access
0x08C	CRYPTO_DATA3	RWH(nB)(a)	DATA3 Register Access
0x0A0	CRYPTO_DATA0XOR	RWH(nB)(a)	DATA0XOR Register Access
0x0B0	CRYPTO_DATA0BYTE	RWH(nB)(a)	DATA0 Register Byte Access
0x0B4	CRYPTO_DATA1BYTE	RWH(nB)(a)	DATA1 Register Byte Access
0x0BC	CRYPTO_DATA0XORBYTE	RWH(nB)(a)	DATA0 Register Byte XOR Access
0x0C0	CRYPTO_DATA0BYTE12	RWH(nB)	DATA0 Register Byte 12 Access
0x0C4	CRYPTO_DATA0BYTE13	RWH(nB)	DATA0 Register Byte 13 Access
0x0C8	CRYPTO_DATA0BYTE14	RWH(nB)	DATA0 Register Byte 14 Access
0x0CC	CRYPTO_DATA0BYTE15	RWH(nB)	DATA0 Register Byte 15 Access
0x100	CRYPTO_DDATA0	RWH(nB)(a)	DDATA0 Register Access
0x104	CRYPTO_DDATA1	RWH(nB)(a)	DDATA1 Register Access
0x108	CRYPTO_DDATA2	RWH(nB)(a)	DDATA2 Register Access
0x10C	CRYPTO_DDATA3	RWH(nB)(a)	DDATA3 Register Access

Offset	Name	Туре	Description
0x110	CRYPTO_DDATA4	RWH(nB)(a)	DDATA4 Register Access
0x130	CRYPTO_DDATA0BIG	RWH(nB)(a)	DDATA0 Register Big Endian Access
0x140	CRYPTO_DDATA0BYTE	RWH(nB)(a)	DDATA0 Register Byte Access
0x144	CRYPTO_DDATA1BYTE	RWH(nB)(a)	DDATA1 Register Byte Access
0x148	CRYPTO_DDATA0BYTE32	RWH(nB)	DDATA0 Register Byte 32 Access
0x180	CRYPTO_QDATA0	RWH(nB)(a)	QDATA0 Register Access
0x184	CRYPTO_QDATA1	RWH(nB)(a)	QDATA1 Register Access
0x1A4	CRYPTO_QDATA1BIG	RWH(nB)(a)	QDATA1 Register Big Endian Access
0x1C0	CRYPTO_QDATA0BYTE	RWH(nB)(a)	QDATA0 Register Byte Access
0x1C4	CRYPTO_QDATA1BYTE	RWH(nB)(a)	QDATA1 Register Byte Access

31.6 Register Description

31.6.1 CRYPTO_CTRL - Control Register

Offset															Bit	l Po	sitio	on														
0x000	31	30	29	78	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	11	10	6	∞	7	9	2	4	က	2	_	0
Reset	0		0×0				2	OXO			3	OXO		•	OXO	2	^	040				0						•		0	0	0
Access	R W		S				20	<u>}</u>			2	<u>}</u>			S S		<u> </u>	^^				RW								₽	₩ M	RW
Name	COMBDMA0WEREQ		DMA1RSEL									DIMAGRABL			DMA0MODE		HLUMONI					NOBUSYSTALL								SHA	KEYBUFDIS	AES

Bit	Name	Reset	Access	Description
31	COMBDMA0WEREQ	0	RW	Combined Data0 Write DMA Request
	When cleared, the DA given through DATA0\		ATA0XORV	WR operate independently. When set, DATA0XORWR requests are also
30	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
29:28	DMA1RSEL	0x0	RW	DATA0 DMA Unaligned Read Register Select
	Specifies which read r Sequence)	egister is used t	for DMA1R	RD DMA requests (see related notes in 31.4.8 DMA and 31.4.3 Repeated
	Value	Mode		Description
	0	DATA1		
	1	DDATA1		
	2	QDATA1		
	3	QDATA1BIG		
27:26	Reserved	To ensure contions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
25:24	DMA1MODE	0x0	RW	DMA1 Read Mode

This field determines how data is read when using DMA

Value	Mode	Description
0	FULL	Target register is fully read/written during every DMA transaction
1	LENLIMIT	Length Limited. When the current length, i.e. LENGTHA or LENGTHB indicates that there are less bytes available than the register size, only length + 1 bytes + necessary zero padding is read. Zero padding is automatically added when writing.
2	FULLBYTE	Target register is fully read/written during every DMA transaction. Bytewise DMA.

Bit	Name	Reset Acce	ss Description
	3	LENLIMITBYTE	Length Limited. When the current length, i.e. LENGTHA or LENGTHB indicates that there are less bytes available than the register size, only length + 1 bytes + necessary zero padding is read. Bytewise DMA. Zero padding is automatically added when writing.
23:22	Reserved	To ensure compatible tions	lity with future devices, always write bits to 0. More information in 1.2 Conven-
21:20	DMA0RSEL	0x0 RW	DMA0 Read Register Select
	Specifies which rear Sequence)	d register is used for DM	AORD DMA requests (see related notes in 31.4.8 DMA and 31.4.3 Repeated
	Value	Mode	Description
	0	DATA0	
	1	DDATA0	
	2	DDATA0BIG	
	3	QDATA0	
19:18	Reserved	To ensure compatible tions	lity with future devices, always write bits to 0. More information in 1.2 Conven-
17:16	DMA0MODE	0x0 RW	DMA0 Read Mode
	This field determine	es how data is read when	using DMA.
	Value	Mode	Description
	0	FULL	Target register is fully read/written during every DMA transaction
	1	LENLIMIT	Length Limited. When the current length, i.e. LENGTHA or LENGTHB indicates that there are less bytes available than the register size, only length + necessary zero padding is read. Zero padding is automatically added when writing.
	2	FULLBYTE	Target register is fully read/written during every DMA transaction. Bytewise DMA.
	3	LENLIMITBYTE	Length Limited. When the current length, i.e. LENGTHA or LENGTHB indicates that there are less bytes available than the register size, only length + necessary zero padding is read. Bytewise DMA. Zero padding is automatically added when writing.
15:14	INCWIDTH	0x0 RW	Increment Width
	This field determine	s the number of bytes us	ed for the increment function in data1.
	Value	Mode	Description
	0	INCWIDTH1	Byte 15 in DATA1 is used for the increment function.
	1	INCWIDTH2	Bytes 14 and 15 in DATA1 are used for the increment function.
	2	INCWIDTH3	Bytes 13 to 15 in DATA1 are used for the increment function.
	3	INCWIDTH4	Bytes 12 to 15 in DATA1 are used for the increment function.
13:11	Reserved	To ensure compatible tions	lity with future devices, always write bits to 0. More information in 1.2 Conven-
10	NOBUSYSTALL	0 RW	No Stalling of Bus When Busy
	14 /1	م اممالمام مطاعمة الثبير مممود	n access during an operation

Bit	Name	Reset	Access	Description
9:3	Reserved	To ensure c	ompatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
2	SHA	0	RW	SHA Mode
	Select SHA-1 or S	SHA-2 mode.		
	Value	Mode		Description
	0	SHA1		SHA-1 mode
	1	SHA2		SHA-2 mode (SHA-224 or SHA-256)
1	KEYBUFDIS	0	RW	Key Buffer Disable
	Set to Disable key	buffering.		
0	AES	0	RW	AES Mode
	Select AES mode			
	Value	Mode		Description
	0	AES128		AES-128 mode
	1	AES256		AES-256 mode

31.6.2 CRYPTO_WAC - Wide Arithmetic Configuration

Offset				Bit Position					
0x004	30 30 27 28 27	23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	20 20 4	8 7 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 5	တ ထ	6 7	4	ω 4 - 0
Reset					0x0	0×0		0	0×0
Access					R K	RW		RW	RW
					H				
Name					RESULTWIDTH	DTH		0	sn-
					SOL	MULWIDTH		MODOP	MODULUS
					Z	ž		ž	Ž
Bit	Name	Reset	Access	Description					
31:12	Reserved	To ensure con tions	npatibility v	vith future devices, always w	rite bits t	to 0. Mo	re informatio	on in	1.2 Conven-
11:10	RESULTWIDTH	0x0	RW	Result Width					
	Result-size for non-r	nodulus instructio	ns						
	Value	Mode		Description					
	0	256BIT		Results have 256 bits					
	1	128BIT		Results have 128 bits					
	2	260BIT		Results have 260 bits. Upp TA0MSBS in CRYPTO_ST		f result o	can be read	thro	ugh DDA-
9:8	MULWIDTH	0x0	RW	Multiply Width					
3.0	MOLVIDIII	ONO	1 1 1 1						
3.0	Number of bits to mu								
3.0									
3.5	Number of bits to mu	ultiply on non-mod		ply instruction					
3.5	Number of bits to mu	Iltiply on non-moo		ply instruction Description					
3.5	Number of bits to mu Value 0	Mode MUL256		Description Multiply 256 bits	ecified b	y MODl	JLUS		
7:5	Number of bits to mu Value 0 1	Mode MUL256 MUL128 MULMOD	dulus multi	Description Multiply 256 bits Multiply 128 bits				on in	1.2 Conven-
	Value 0 1 2	Mode MUL256 MUL128 MULMOD To ensure con	dulus multi	Description Multiply 256 bits Multiply 128 bits Same number of bits as spe	rite bits t			on in	1.2 Conven-
7:5	Value 0 1 2 Reserved	Mode MUL256 MUL128 MULMOD To ensure contions 0	dulus multi npatibility v	Description Multiply 256 bits Multiply 128 bits Same number of bits as specific products and support the support of the sup	rite bits t			on in	1.2 Conven-
7:5	Number of bits to mu Value 0 1 2 Reserved MODOP	Mode MUL256 MUL128 MULMOD To ensure contions 0	dulus multi npatibility v	Description Multiply 256 bits Multiply 128 bits Same number of bits as specific products and support the support of the sup	rite bits t			on in	1.2 Conven-
7:5	Number of bits to mu Value 0 1 2 Reserved MODOP Field type used for m	Mode MUL256 MUL128 MULMOD To ensure contions 0 modular operations	dulus multi npatibility v	Description Multiply 256 bits Multiply 128 bits Same number of bits as specific that the same of th	rite bits t	to 0. Mo	re informatio		
7:5	Number of bits to mu Value 0 1 2 Reserved MODOP Field type used for module	Mode MUL256 MUL128 MULMOD To ensure contions 0 nodular operations Mode	dulus multi npatibility v	Description Multiply 256 bits Multiply 128 bits Same number of bits as spewith future devices, always we modular Operation Field Description	rite bits t	to 0. Mo	re information	jorith	nms
7:5	Number of bits to mu Value 0 1 2 Reserved MODOP Field type used for module 0	Mode MUL256 MUL128 MULMOD To ensure contions 0 nodular operations Mode BINARY	dulus multi npatibility v	Description Multiply 256 bits Multiply 128 bits Same number of bits as spewith future devices, always well. Modular Operation Field Description Modular operations use XC	rite bits t	to 0. Mo	re information	jorith	nms
7:5	Number of bits to mu Value 0 1 2 Reserved MODOP Field type used for m Value 0 1	Mode MUL256 MUL128 MULMOD To ensure contions 0 modular operations Mode BINARY REGULAR 0x0	npatibility v	Description Multiply 256 bits Multiply 128 bits Same number of bits as specified future devices, always with fu	rite bits t	to 0. Mo	re information	jorith	nms
7:5	Number of bits to mu Value 0 1 2 Reserved MODOP Field type used for m Value 0 1 MODULUS	Mode MUL256 MUL128 MULMOD To ensure contions 0 modular operations Mode BINARY REGULAR 0x0	npatibility v	Description Multiply 256 bits Multiply 128 bits Same number of bits as specified future devices, always with fu	rite bits t	to 0. Mo	re information	jorith	nms
7:5	Number of bits to mu Value 0 1 2 Reserved MODOP Field type used for modulus used for modulus MODULUS Modulus used for modulus	Mode MUL256 MUL128 MULMOD To ensure contions 0 nodular operations Mode BINARY REGULAR 0x0 odular operations	npatibility v	Description Multiply 256 bits Multiply 128 bits Same number of bits as specified future devices, always with future devices, always with future of Description Modular Operation Field Modular operations use XC Modular Operation Modular Opera	rite bits t	to 0. Mo	re information	jorith	nms

Bit	Name	Reset /	Access	Description
	1	BIN128		Generic modulus. p = 2^128
	2	ECCBIN233P		Modulus for B-233 and K-233 ECC curves. $p(t) = t^233 + t^74 + 1$
	3	ECCBIN163P		Modulus for B-163 and K-163 ECC curves. p(t) = $t^163 + t^7 + t^6 + t^3 + 1$
	4	GCMBIN128		Modulus for GCM. $P(t) = t^128 + t^7 + t^2 + t + 1$
	5	ECCPRIME256I	Р	Modulus for P-256 ECC curve. p = 2^256 - 2^224 + 2^192 + 2^96 - 1
	6	ECCPRIME224I	Р	Modulus for P-224 ECC curve. p = 2^224 - 2^96 - 1
	7	ECCPRIME192	Р	Modulus for P-192 ECC curve. p = 2^192 - 2^64 - 1
	8	ECCBIN233N		P modulus for B-233 ECC curve
	9	ECCBIN233KN		P modulus for K-233 ECC curve
	10	ECCBIN163N		P modulus for B-163 ECC curve
	11	ECCBIN163KN		P modulus for K-163 ECC curve
	12	ECCPRIME256I	N	P modulus for P-256 ECC curve
	13	ECCPRIME224I	N	P modulus for P-224 ECC curve
	14	ECCPRIME192I	N	P modulus for P-192 ECC curve

31.6.3 CRYPTO_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	ω	7	9	5	4	က	2	_	0
Reset		'	1		1													•		•	0	0	0			•	'	0	noxn Oxn			
Access																					W	×	W					Š	>			
Name																					SEQSTEP	SEQSTOP	SEQSTART					<u> </u>	Y 0 N			

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
11	SEQSTEP	0	W1	Sequence Step
	When in a halted seq	uence, executes	s the currer	nt instruction and moves to the next
10	SEQSTOP	0	W1	Sequence Stop
	Set to stop encryption	n/decryption reg	ardless of i	t being a single or a SEQUENCE.
9	SEQSTART	0	W1	Encryption/Decryption SEQUENCE Start
	Set to start encryption	n/decryption SE	QUENCE.	
8	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	INSTR	0x00	W	Execute Instruction

Write to this field to perform any of the instructions described below. Illegal values are ignored. See 31.4.2.2 Available Instructions for details and requirements of each instruction

Value	Mode	Description
0	END	End of program
1	EXEC	Start executing instructions up to this point, which also marks end of program
3	DATA1INC	See detailed instruction listing
4	DATA1INCCLR	See detailed instruction listing
5	AESENC	AES Encryption
6	AESDEC	AES Decryption
7	SHA	SHA
8	ADD	Add
9	ADDC	Add with carry
10	LADD	Long addition
11	LADDC	Long addition with carry
12	MADD	Modular addition
13	MADD32	Word-wise addition
16	SUB	Subtract

Name	Reset Access	Description
17	SUBC	Subtract with carry
18	LSUB	Long subtraction
19	LSUBC	Long subtract with carry
20	MSUB	Modular subtraction
24	MUL	Multiply
25	MULC	See detailed instruction listing
26	LMUL	Long multiply
28	MMUL	Modular multiplication
29	MULO	See detailed instruction listing
31	LMULO	See detailed instruction listing
32	SHL	Shift left
33	SHLC	Shift left with carry (Rotate left)
34	SHLB	See detailed instruction listing
35	SHL1	See detailed instruction listing
36	SHR	Shift right
37	SHRC	Shift right with carry (Rotate right)
38	SHRB	See detailed instruction listing
39	SHR1	See detailed instruction listing
40	ADDO	See detailed instruction listing
41	ADDIC	See detailed instruction listing
42	LADDO	See detailed instruction listing
43	LADDIC	See detailed instruction listing
48	CLR	Clear DDATA0
49	XOR	XOR
50	INV	Invert operand
52	CSET	Carry set
53	CCLR	Carry clear
54	BBSWAP128	See detailed instruction listing
56	INC	Increment DDATA0
57	DEC	Decrement DDATA0
58	LINC	Long increment
59	LDEC	Long decrement
62	SHRA	Arithmetic shift right
64	DATA0TODATA0	DATA0 = DATA0
65	DATA0TODATA0XOR	DATA0 = DATA0 ^ DATA0
66	DATA0TODATA0XOR- LEN	DATA0[len-1:0] = DATA0[len-1:0] ^ DATA0[len-1:0]

Bit	Name	Reset Access	Description
	68	DATA0TODATA1	DATA1 = DATA0
	69	DATA0TODATA2	DATA2 = DATA0
	70	DATA0TODATA3	DATA3 = DATA0
	72	DATA1TODATA0	DATA0 = DATA1
	73	DATA1TODATA0XOR	DATA0 = DATA0 ^ DATA1
	74	DATA1TODATA0XOR- LEN	DATA0[len-1:0] = DATA0[len-1:0] ^ DATA1[len-1:0]
	77	DATA1TODATA2	DATA2 = DATA1
	78	DATA1TODATA3	DATA3 = DATA1
	80	DATA2TODATA0	DATA0 = DATA2
	81	DATA2TODATA0XOR	DATA0 = DATA0 ^ DATA2
	82	DATA2TODATA0XOR- LEN	DATA0[len-1:0] = DATA0[len-1:0] ^ DATA2[len-1:0]
	84	DATA2TODATA1	DATA1 = DATA2
	86	DATA2TODATA3	DATA3 = DATA2
	88	DATA3TODATA0	DATA0 = DATA3
	89	DATA3TODATA0XOR	DATA0 = DATA0 ^ DATA3
	90	DATA3TODATA0XOR- LEN	DATA0[len-1:0] = DATA0[len-1:0] ^ DATA3[len-1:0]
	92	DATA3TODATA1	DATA1 = DATA3
	93	DATA3TODATA2	DATA2 = DATA3
	99	DATATODMA0	See detailed instruction listing
	107	DATATODMA1	See detailed instruction listing
	112	DMA0TODATA	See detailed instruction listing
	113	DMA0TODATAXOR	See detailed instruction listing
	114	DMA1TODATA	See detailed instruction listing
	129	DDATA0TODDATA1	DDATA1 = DDATA0
	130	DDATA0TODDATA2	DDATA2 = DDATA0
	131	DDATA0TODDATA3	DDATA3 = DDATA0
	132	DDATA0TODDATA4	DDATA4 = DDATA0
	133	DDATA0LTODATA0	DATA0 = DDATA0[127:0]
	134	DDATA0HTODATA1	DATA1 = DDATA0[255:128]
	135	DDATA0LTODATA2	DATA2 = DDATA0[127:0]
	136	DDATA1TODDATA0	DDATA0 = DDATA1
	138	DDATA1TODDATA2	DDATA2 = DDATA1
	139	DDATA1TODDATA3	DDATA3 = DDATA1
	140	DDATA1TODDATA4	DDATA4 = DDATA1
	141	DDATA1LTODATA0	DATA0 = DDATA1[127:0]

Bit	Name	Reset Access	Description
	142	DDATA1HTODATA1	DATA1 = DDATA1[255:128]
	143	DDATA1LTODATA2	DATA2 = DDATA1[127:0]
	144	DDATA2TODDATA0	DDATA0 = DDATA2
	145	DDATA2TODDATA1	DDATA1 = DDATA2
	147	DDATA2TODDATA3	DDATA3 = DDATA2
	148	DDATA2TODDATA4	DDATA4 = DDATA2
	151	DDATA2LTODATA2	DATA2 = DDATA2[127:0]
	152	DDATA3TODDATA0	DDATA0 = DDATA3
	153	DDATA3TODDATA1	DDATA1 = DDATA3
	154	DDATA3TODDATA2	DDATA2 = DDATA3
	156	DDATA3TODDATA4	DDATA4 = DDATA3
	157	DDATA3LTODATA0	DATA0 = DDATA3[127:0]
	158	DDATA3HTODATA1	DATA1 = DDATA3[255:128]
	160	DDATA4TODDATA0	DDATA0 = DDATA4
	161	DDATA4TODDATA1	DDATA1 = DDATA4
	162	DDATA4TODDATA2	DDATA2 = DDATA4
	163	DDATA4TODDATA3	DDATA3 = DDATA4
	165	DDATA4LTODATA0	DATA0 = DDATA4[127:0]
	166	DDATA4HTODATA1	DATA1 = DDATA4[255:128]
	167	DDATA4LTODATA2	DATA2 = DDATA4[127:0]
	168	DATA0TODDATA0	DDATA0 = DATA0
	169	DATA0TODDATA1	DDATA1 = DATA0
	176	DATA1TODDATA0	DDATA0 = DATA1
	177	DATA1TODDATA1	DDATA1 = DATA1
	184	DATA2TODDATA0	DDATA0 = DATA2
	185	DATA2TODDATA1	DDATA1 = DATA2
	186	DATA2TODDATA2	DDATA2 = DATA2
	192	SELDDATA0DDATA0	Use DDATA0 as V0, DDATA0 as V1
	193	SELDDATA1DDATA0	Use DDATA1 as V0, DDATA0 as V1
	194	SELDDATA2DDATA0	Use DDATA2 as V0, DDATA0 as V1
	195	SELDDATA3DDATA0	Use DDATA3 as V0, DDATA0 as V1
	196	SELDDATA4DDATA0	Use DDATA4 as V0, DDATA0 as V1
	197	SELDATA0DDATA0	Use DATA0 as V0, DDATA0 as V1
	198	SELDATA1DDATA0	Use DATA1 as V0, DDATA1 as V1
	199	SELDATA2DDATA0	Use DATA2 as V0, DDATA2 as V1
	200	SELDDATA0DDATA1	Use DDATA0 as V0, DDATA1 as V1
	201	SELDDATA1DDATA1	Use DDATA1 as V0, DDATA1 as V1

202 203 204	SELDDATA2DDATA1	Use DDATA2 as V0, DDATA1 as V1
204	SELDDATA3DDATA1	Use DDATA3 as V0, DDATA1 as V1
204	SELDDATA4DDATA1	Use DDATA4 as V0, DDATA1 as V1
205	SELDATA0DDATA1	Use DATA0 as V0, DDATA0 as V1
206	SELDATA1DDATA1	Use DATA1 as V0, DDATA1 as V1
207	SELDATA2DDATA1	Use DATA2 as V0, DDATA2 as V1
208	SELDDATA0DDATA2	Use DDATA0 as V0, DDATA2 as V1
209	SELDDATA1DDATA2	Use DDATA1 as V0, DDATA2 as V1
210	SELDDATA2DDATA2	Use DDATA2 as V0, DDATA2 as V1
211	SELDDATA3DDATA2	Use DDATA3 as V0, DDATA2 as V1
212	SELDDATA4DDATA2	Use DDATA4 as V0, DDATA2 as V1
213	SELDATA0DDATA2	Use DATA0 as V0, DDATA0 as V1
214	SELDATA1DDATA2	Use DATA1 as V0, DDATA1 as V1
215	SELDATA2DDATA2	Use DATA2 as V0, DDATA2 as V1
216	SELDDATA0DDATA3	Use DDATA0 as V0, DDATA3 as V1
217	SELDDATA1DDATA3	Use DDATA1 as V0, DDATA3 as V1
218	SELDDATA2DDATA3	Use DDATA2 as V0, DDATA3 as V1
219	SELDDATA3DDATA3	Use DDATA3 as V0, DDATA3 as V1
220	SELDDATA4DDATA3	Use DDATA4 as V0, DDATA3 as V1
221	SELDATA0DDATA3	Use DATA0 as V0, DDATA0 as V1
222	SELDATA1DDATA3	Use DATA1 as V0, DDATA1 as V1
223	SELDATA2DDATA3	Use DATA2 as V0, DDATA2 as V1
224	SELDDATA0DDATA4	Use DDATA0 as V0, DDATA4 as V1
225	SELDDATA1DDATA4	Use DDATA1 as V0, DDATA4 as V1
226	SELDDATA2DDATA4	Use DDATA2 as V0, DDATA4 as V1
227	SELDDATA3DDATA4	Use DDATA3 as V0, DDATA4 as V1
228	SELDDATA4DDATA4	Use DDATA4 as V0, DDATA4 as V1
229	SELDATA0DDATA4	Use DATA0 as V0, DDATA4 as V1
230	SELDATA1DDATA4	Use DATA1 as V0, DDATA4 as V1
231	SELDATA2DDATA4	Use DATA2 as V0, DDATA4 as V1
232	SELDDATA0DATA0	Use DDATA0 as V0, DATA0 as V1
233	SELDDATA1DATA0	Use DDATA1 as V0, DATA0 as V1
234	SELDDATA2DATA0	Use DDATA2 as V0, DATA0 as V1
235	SELDDATA3DATA0	Use DDATA3 as V0, DATA0 as V1
236	SELDDATA4DATA0	Use DDATA4 as V0, DATA0 as V1
237	SELDATA0DATA0	Use DATA0 as V0, DATA0 as V1
238	SELDATA1DATA0	Use DATA1 as V0, DATA0 as V1

Bit	Name	Reset	Access	Description
	239	SELDATA2DA	ATA0	Use DATA2 as V0, DATA0 as V1
	240	SELDDATA0E	DATA1	Use DDATA0 as V0, DATA1 as V1
	241	SELDDATA10	DATA1	Use DDATA1 as V0, DATA1 as V1
	242	SELDDATA2D	DATA1	Use DDATA2 as V0, DATA1 as V1
	243	SELDDATA3D	DATA1	Use DDATA3 as V0, DATA1 as V1
	244	SELDDATA40	DATA1	Use DDATA4 as V0, DATA1 as V1
	245	SELDATA0DA	ATA1	Use DATA0 as V0, DATA1 as V1
	246	SELDATA1DA	ATA1	Use DATA1 as V0, DATA1 as V1
	247	SELDATA2DA	ATA1	Use DATA2 as V0, DATA1 as V1
	248	EXECIFA		Run following if in A sequence
	249	EXECIFB		Run following if in B sequence
	250	EXECIFNLAS	Т	Run following if in last iteration of combined A and B sequence
	251	EXECIFLAST		Run following if in last iteration of combined A and B sequence
	252	EXECIFCARR	RY	Run following if CARRY bit is set
	253	EXECIFNCAR	RRY	Run following if CARRY bit is not set
	254	EXECALWAY	S	Resume execution

31.6.4 CRYPTO_STATUS - Status Register

Offset															Ві	it Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	2	_	0
Reset		•	•				•		•		•		•	•	•	•								•			•			0	0	0
Access																														~	~	2
Name																														DMAACTIVE	INSTRRUNNING	SEQRUNNING

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure contions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
2	DMAACTIVE	0	R	DMA Action is Active
	This bit indicates that	the AES modul	e is waiting	for a DMA transfer to complete.
1	INSTRRUNNING	0	R	Action is Active
	This bit indicates that TO_CMD or due to a		•	cuting an instruction. The origin of the instruction is either through CRYP-
0	SEQRUNNING	0	R	AES SEQUENCE Running
	This bit indicates that	the AES modul	e is runnin	g an encryption/decryption SEQUENCE.

31.6.5 CRYPTO_DSTATUS - Data Status Register

Offset															Bit	t Po	sitio	on														
0x014	31	30	29	78	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset								0				×		×	<u> </u>							\	X X							>	\	
Access								~				22		Ω								_	צ							۵		
Name								CARRY				DDATA1MSB		DDATAOMSBS								000	DDA I AULSBS							DATADZEBO	מושקאועם	
Bit	Na	me					Re	set			Ac	ces	s [Desc	cript	tion																
31:25	Re	serv	/ed				То	ens	ure	com	pati	bility	/ wit	h fut	ture	dev	ices	. alı	way.	s wr	ite b	its t	to 0.	Мо	re in	forn	natio	n in	1.2	Coi	nvei	n-

		<u> </u> ට						۵
Bit	Name	Reset	Access	Description				
31:25	Reserved	To ensure co	ompatibility	with future dev	rices, always wr	rite bits to 0. Mo	re information ir	1.2 Conven-
24	CARRY	0	R	Carry From	Arithmetic Op	eration		
	Set on carry from ari	thmetic operation	ons					
23:21	Reserved	To ensure co	ompatibility	with future dev	rices, always wr	rite bits to 0. Mo	re information ir	1.2 Conven-
20	DDATA1MSB	Х	R	MSB in DD	ATA1			
	Allows read of 255 in	DDATA1. Doe	s not depen	nd on RESULT	WIDTH in CRY	PTO_WAC		
19:16	DDATA0MSBS	0xX	R	MSB in DD	ATA0			
	Allows read of 4 MSF	Bs in DDATA0.	The bits de	pend on RESU	ILTWIDTH in C	RYPTO_WAC		
15:12	Reserved	To ensure co	ompatibility	with future dev	rices, always wr	rite bits to 0. Mo	re information ir	1.2 Conven-
11:8	DDATA0LSBS	0xX	R	LSBs in DD	ATA0			
	Allows read of 4 LSB	s in DDATA0						
7:4	Reserved	To ensure co	ompatibility	with future dev	rices, always wr	rite bits to 0. Mo	re information ir	1.2 Conven-
3:0	DATA0ZERO	0xX	R	Data 0 Zero				
	This field contains fla	ags indicating if	any 32 bit p	part of DATA0	s 0.			
	Value	Mode		Description				
	1	ZERO0TO31	1	In DATA0 bi	ts 0 to 31 are al	Il zero.		
	2	ZERO32TO	63	In DATA0 bi	ts 32 to 63 are	all zero.		
	4	ZERO64TO9	95	In DATA0 bi	ts 64 to 95 are	all zero.		
	8	ZERO96TO1	127	In DATA0 bi	ts 96 to 127 are	e all zero.		

31.6.6 CRYPTO_CSTATUS - Control Status Register

Offset												Ві	t Po	osit	ion														
0x018	30	28	27	26	25	24	23	22	21	5	2 8	17	16	15	4	13	12	<u> </u>	. (2 6	ာ ထ	7	. (0 4	o	4	က	2	- 0
Reset								00×0				0	0							Ç	NX OX								Š Ž
Access								ď				2	2						T		צ								<u>~</u>
Name								SEQIP				SEQSKIP	SEQPART							7	<u>-</u> >								0>
Bit	Name				Re	set			Acces	ss	Des	crip	tio	1															
31:25	Reserved	1			To tion		ure	com	atibili	ty ı	with fu	ıture	de	vice	es, al	wa _.	ys v	vrite	bit	s to	0. M	ore .	info	rma	tio	n in	1.2	Con	ven-
24:20	SEQIP				0x0	00			R		Seq	uen	ce	Nex	t Ins	stru	ıcti	on P	oir	nter									
	Next sequ	uenc	e ins	truc	tion	whe	n in	halte	ed sec	lue	ence																		
19:18	Reserved	1			To tion		ure	com	atibili	ty ı	with fu	ıture	de	vice	es, al	wa	ys v	vrite	bit	s to	0. M	ore i	info	rma	tio	n in	1.2	Con	ven-
17	SEQSKIF)			0				R		Seq	uen	се	Ski	p Ne	xt I	nst	ruct	ior	1									
	When in h	nalte	d se	quer	nce,	tells	wh	ethe	next	ins	tructio	n w	ill b	e sl	kippe	d													
16	SEQPAR	Т			0				R		Seq	uen	ce l	Par	t														
	Shows wh	hethe	er cu	rren	ıtly ir	n pai	rt A	or B	of a se	equ	uence																		
	Value				Мо	de					Des	cript	ion																
	0				SE	QA																							
	1				SE	QB																							
15:11	Reserved	1			To tion		ure	сот	atibili	ty ı	with fu	ıture	de	vice	es, al	wa	ys v	vrite	bit	s to	0. M	ore i	info	rma	tio	n in	1.2	Con	ven-
10:8	V1				0x2	2			R		Sele	ecte	d A	LU	Ope	ran	ıd 1												
	Selectable	е ор	eran	d foi	r arit	hme	etic o	opera	tions																				
	Value				Мо	de					Des	cript	ion																
	0				DD	ATA	۸0																						
	1				DD	ATA	\1																						
	2				DD	ATA	\2																						
	3				DD	ATA	A 3																						
	4				DD	ATA	۸4																						
	5				DA	TA0																							
	6				DA	TA1																							
	7				DA	TA2																							
7:3	Reserved	1			То	ens	ure	com	atibili	ty ı	with fu	ıture	de	vice	es, al	wa _.	ys v	vrite	bit	s to	0. M	ore .	info	rma	tio	n in	1.2	Con	ven-

tions

Bit	Name	Reset	Access	Description
2:0	V0	0x1	R	Selected ALU Operand 0
	Selectable operand for	arithmetic oper	ations	
	Value	Mode		Description
	0	DDATA0		
	1	DDATA1		
	2	DDATA2		
	3	DDATA3		
	4	DDATA4		
	5	DATA0		
	6	DATA1		
_	7	DATA2		

31.6.7 CRYPTO_KEY - KEY Register Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Pc	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX																													
Access																																
Name																\ 	- U 2															

Bit	Name	Reset	Access	Description
31:0	KEY	0xXXXXXXX X	RWH	Key Access

Access the KEY. 4x32bits (8x32bits if AES256 in CRYPTO_CTRL is set) read/write accesses are required to fully read/write KEY.

31.6.8 CRYPTO_KEYBUF - KEY Buffer Register Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	ositi	on														
0x024	31	30	53	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset																	OXXXXXXXX															
Access																	I M Y															
Name																Ĺ	KEYBUF															
Bit	Na	me					Re	set			Ac	ces	s I	Des	crip	tior	1															
31:0	KE	YBU	IF				0x) X	XXX	XXX	ίΧ	RW	/H		Key	Buf	fer	Acc	ess														
		Access to KEYBUF. 4x32bits (8x32bits if AES256 in CRYPTO_CTRL is set) read/write accesses are required to fully read/write KEYBUF																														

31.6.9 CRYPTO_SEQCTRL - Sequence Control

Offset									ا	Bit Posit	ion										
0x030	31	30	29	28	27	25	23	20	1 4 19	5 6 5	4	6 4 4	-	2 6	, ω	7	2	4	က	2	- 0
Reset	0		0	0	0x0	0x0		0x0					•	·	·	0000x0	·	·	·		
Access	RW		X W	RW	RWH	RWH		R.W								RWH					
Name	HALT		DMA1PRESA	DMA0PRESA	DMA1SKIP	DMA0SKIP		BLOCKSIZE								LENGTHA					
Bit	Na	me				Reset		Acces	s Descr	iption											
31	НА	LT				0		RW	Halt S	equence)										
	Allo	ows	step	pin	g throug	h CRYF	PTO ins	tructions	in the sec	quence fo	or de	bugging.									
30	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions DMA1PRESA 0 RW DMA1 Preserve a													ven-							
29	DMA1PRESA 0 RW DMA1 Preserve a																				
	DMA1PRESA 0 RW DMA1 Preserve a Set to write skipped bytes back on next DMA1WR triggered write. Use this together with DMA1SKIP to enable in-place conversions with CRYPTO DMA0PRESA 0 RW DMA0 Preserve a																				
28	DN	1A0F	PRE	SA		0		RW	DMA0	Preserv	e a										
					pped by CRYPTC		c on ne	xt DMA0	WR trigge	ered write	. Use	e this toge	ethei	r with	n DM	A0SK	IP to e	enat	ole in	-place	con-
27:26	DN	1A15	SKIF)		0x0		RWH	DMA1	Skip											
	Se	t to ı	num	ber	of bytes	to exclu	ude fror	n data re	eceived by	next DN	IA1R	D insructi	ion								
25:24	DN	1A05	SKIF	•		0x0		RWH	DMA0	Skip											
	Se	t to ı	num	ber	of bytes	to exclu	ude fror	n data re	eceived by	next DN	IA0R	D insructi	ion								
23:22	Re	serv	⁄ed			To ens	ure con	npatibilit	y with futu	re device	s, al	ways write	e bit	s to (0. Mc	ore info	ormat	ion i	in 1.2	? Con	/en-
21:20	BL	OCK	(SIZ	Έ		0x0		RW	Size o	f Data B	lock	s									
					dth of bl		cessed	in each	iteration o	of a sequ	ence	running o	on a	data	set (see re	elated	note	e in		
	Va	ue				Mode			Descri	ption											
	0					16BYT	ES		A bloc	k is 16 b	/tes l	ong									
	1					32BYT	ES		A bloc	k is 32 b	tes l	ong									
	2					64BYT	ES		A bloc	k is 64 b	/tes l	ong									
19:14	Re	serv	red			To ens	ure con	npatibilit	y with futu	re device	s, al	ways write	e bit	s to (0. Mc	ore inf	ormat	ion i	in 1.2	? Con	/en-
13:0	LE	NGT	ГНА			0x0000)	RWH	Buffer	Length	a in	Bytes									
									led during ast data bl										of by	tes. If	the

31.6.10 CRYPTO_SEQCTRLB - Sequence Control B

Offset															Ві	it Po	ositi	on															
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	5	2 ,	ာ	ω	7	9	22	, ,	4 (2	_	0
Reset			0	0										•								•	•	•		•	0000x0	•	•	·	•		
Access			A W	RW W																							RWH						
Name			DMA1PRESB	DMA0PRESB																							LENGTHB						

Bit	Name	Reset	Access	Description
31:30	Reserved	To ensure o	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
29	DMA1PRESB	0	RW	DMA1 Preserve B
				DMA1PRESA for in-place conversions where all data is written out from a-set is written, enable only this to preserve the data read in during part A
28	DMA0PRESB	0	RW	DMA0 Preserve B
		,		DMA0PRESA for in-place conversions where all data is written out from a-set is written, enable only this to preserve the data read in during part A
27:14	Reserved	To ensure o	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
13:0	LENGTHB	0x0000	RWH	Buffer Length B in Bytes
	Sets the number of	bytes to be han	dled in a sec	ond iteration over a programmed sequence.

31.6.11 CRYPTO_IF - AES Interrupt Flags

Offset															Bi	t Pc	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																															0	0
Access																															ď	2
Name																															SEQDONE	INSTRDONE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure cor tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
1	SEQDONE	0	R	Sequence Done
	Set when an instruction	on sequence ha	s complete	d
0	INSTRDONE	0	R	Instruction Done
	Set when an instruction	on has complete	ed	

31.6.12 CRYPTO_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x044	31	30	59	78	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	7	_	0
Reset		•		•		•					•					•			•	•											0	0
Access																															W	M
Name																															SEQDONE	INSTRDONE

Bit	Name	Reset	Access	Description									
31:2	Reserved	To ensure cor tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-									
1	SEQDONE	0	W1	Set SEQDONE Interrupt Flag									
	Write 1 to set the SEC	QDONE interrup	t flag										
0	INSTRDONE	0	W1	Set INSTRDONE Interrupt Flag									
	Write 1 to set the INS	ne INSTRDONE interrupt flag											

31.6.13 CRYPTO_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	တ	8	7	9	5	4	က	2	_	0
Reset																					•				•				•		0	0
Access																															(R)W1	(R)W1
Name																															SEQDONE	INSTRDONE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure cor tions	npatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
1	SEQDONE	0	(R)W1	Clear SEQDONE Interrupt Flag
	Write 1 to clear the S flags (This feature mu			eading returns the value of the IF and clears the corresponding interrupt //ISC.).
0	INSTRDONE	0	(R)W1	Clear INSTRDONE Interrupt Flag
	Write 1 to clear the IN flags (This feature mu		. •	Reading returns the value of the IF and clears the corresponding interrupt //ISC.).

31.6.14 CRYPTO_IEN - Interrupt Enable Register

Offset	Bit Position	
0x04C	33 34 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 6 10	- 0
Reset		0 0
Access		W W
Name		SEQDONE INSTRDONE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
1	SEQDONE	0	RW	SEQDONE Interrupt Enable
	Enable/disable the SE	EQDONE interru	pt	
0	INSTRDONE	0	RW	INSTRDONE Interrupt Enable
	Enable/disable the IN	STRDONE inter		

31.6.15 CRYPTO_SEQ0 - Sequence Register 0

Offset															Bi	t Po	sitio	on														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	ဝ	8	7	9	5	4	က	2	_	0
Reset				0	0000					•	•	0	2000	•						0	0000						•	0	0000			
Access				2	2							<u>></u>	2							2	<u>}</u>							2	2			
Name				NCTD3	_							INCTD2	22.0							FOTO P	0							OGTON				

Bit	Name	Reset	Access	Description	
31:24	INSTR3	0x00	RW	Sequence Instruction 3	
	Sequence instruction	. See INSTR in (CRYPTO_0	CMD for a possible values.	
23:16	INSTR2	0x00	RW	Sequence Instruction 2	
	Sequence instruction	. See INSTR in (CRYPTO_0	CMD for a possible values.	
15:8	INSTR1	0x00	RW	Sequence Instruction 1	
	Sequence instruction	. See INSTR in (CRYPTO_0	CMD for a possible values.	
7:0	INSTR0	0x00	RW	Sequence Instruction 0	
	Sequence instruction	. See INSTR in (CRYPTO_0	CMD for a possible values.	

31.6.16 CRYPTO_SEQ1 - Sequence Register 1

Offset		Bit Po	sition	
0x054	31 30 29 28 27 27 26 25 27	23 22 21 20 20 10 11 17 17	6 9 9 8	r 9 8 4 8 7 1 0
Reset	00×0	00×0	00×0	00×0
Access	RW	RW	RW	RW
Name	INSTR7	INSTR6	INSTR5	INSTR4

Bit	Name	Reset	Access	Description
31:24	INSTR7	0x00	RW	Sequence Instruction 7
	Sequence instruction	n. See INSTR in	CRYPTO_	CMD for a possible values.
23:16	INSTR6	0x00	RW	Sequence Instruction 6
	Sequence instruction	n. See INSTR in	CRYPTO_	CMD for a possible values.
15:8	INSTR5	0x00	RW	Sequence Instruction 5
	Sequence instruction	n. See INSTR in	CRYPTO_	CMD for a possible values.
7:0	INSTR4	0x00	RW	Sequence Instruction 4
	Sequence instruction	n. See INSTR in	CRYPTO_	CMD for a possible values.

31.6.17 CRYPTO_SEQ2 - Sequence Register 2

Offset		Bit Po	sition	
0x058	31 30 29 28 27 27 26 25 24	23 22 21 20 20 19 19 17 17	6 9 9 8	7 0
Reset	00×0	00×0	00×0	00×0
Access	W. W.	RW W	RW	W. W.
Name	INSTR11	INSTR10	INSTR9	INSTR8

Bit	Name	Reset	Access	Description
31:24	INSTR11	0x00	RW	Sequence Instruction 11
	Sequence instru	ction. See INSTR ir	CRYPTO_0	CMD for a possible values.
23:16	INSTR10	0x00	RW	Sequence Instruction 10
	Sequence instru	ction. See INSTR ir	CRYPTO_0	CMD for a possible values.
15:8	INSTR9	0x00	RW	Sequence Instruction 9
	Sequence instru	ction. See INSTR ir	CRYPTO_0	CMD for a possible values.
7:0	INSTR8	0x00	RW	Sequence Instruction 8
	Sequence instru	ction. See INSTR ir	CRYPTO_0	CMD for a possible values.

31.6.18 CRYPTO_SEQ3 - Sequence Register 3

Offset															Bi	t Po	siti	on														
0x05C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•	0	0000					•		2	noxn							0	0000						•	0	00X0			
Access				20	<u>}</u>							Š	≥ Y							20	}							i	≥ Y			
Name				ALOTONIA R	2							F C F C F C F C F C F C F C F C F C F C	4 X 1 X							NOT D13	2							Ì	INSTR12			

Bit	Name	Reset	Access	Description
31:24	INSTR15	0x00	RW	Sequence Instruction 15
	Sequence instru	iction. See INSTR in	CRYPTO_0	CMD for a possible values.
23:16	INSTR14	0x00	RW	Sequence Instruction 14
	Sequence instru	iction. See INSTR in	CRYPTO_0	CMD for a possible values.
15:8	INSTR13	0x00	RW	Sequence Instruction 13
	Sequence instru	iction. See INSTR in	CRYPTO_0	CMD for a possible values.
7:0	INSTR12	0x00	RW	Sequence Instruction 12
	Sequence instru	iction. See INSTR in	CRYPTO_0	CMD for a possible values.

31.6.19 CRYPTO_SEQ4 - Sequence Register 4

Offset															Bi	t Po	siti	on														
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset					noxn noxn	•	•					0	200	•	•	•			•	2	200	•	•	•			•	Č	noxn noxn			
Access				2	≥ Y							<u>\</u>	2							<u> </u>	2							Ž	≥ Y			
Name				Ę	8 Y 0 Y							NCTD18								NCTD17								Ì	0 Y 0 N			

Bit	Name	Reset	Access	Description
31:24	INSTR19	0x00	RW	Sequence Instruction 19
	Sequence instru	uction. See INSTR in	CRYPTO_0	CMD for a possible values.
23:16	INSTR18	0x00	RW	Sequence Instruction 18
	Sequence instru	uction. See INSTR in	CRYPTO_0	CMD for a possible values.
15:8	INSTR17	0x00	RW	Sequence Instruction 17
	Sequence instru	uction. See INSTR in	CRYPTO_0	CMD for a possible values.
7:0	INSTR16	0x00	RW	Sequence Instruction 16
	Sequence instru	uction. See INSTR in	CRYPTO_0	CMD for a possible values.

31.6.20 CRYPTO_DATA0 - DATA0 Register Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	ositi	on														
0x080	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	9	6	8	7	9	5	4	က	2	_	0
Reset																>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	OXXXXXXXX															
Access		RWH OXX																														
Name																C 4	DATAO															
Bit	Na	me					Re	set			Ac	cess	s l	Des	crip	tior	1															
31:0	DA	TA0					0xX X	(XX	XXX	X	RW	/H		Data	a 0 A	Acc	ess															
	Aco	cess	to E	DAT	A0.	4x3	2bit	s rea	ad/w	rite	acc	esse	es a	re re	equii	red	to fu	lly r	ead	/writ	e D	ΑТА	0									

31.6.21 CRYPTO_DATA1 - DATA1 Register Access (No Bit Access) (Actionable Reads)

Offset	Bit Position
0x084	33 34 36 37 38 39 30 30 30 30 30 30 30 30 40
Reset	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Access	RW H
Name	DATA1
Bit	Name Reset Access Description

Bit	Name	Reset	Access	Description
31:0	DATA1	0xXXXXXXX X	RWH	Data 1 Access
	Access to DATA1, 4x3	32bits read/write	accesses	are required to fully read/write DATA1

31.6.22 CRYPTO_DATA2 - DATA2 Register Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	ositi	on														
0x088	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																	0xxxxxxxx 0xxxxxxxxx															
Access		WH OXXX																														
Name																i I	DATA2															
Bit	Na	me					Re	set			Ac	ces	S	Des	crip	tior	า															
31:0	DA	TA2					0xX X	ΚXX	XXX	ίX	RW	/H		Data	a 2 A	Acc	ess															
	Aco	cess	to [DAT	A2.	4x3	2bit	s rea	ad/w	/rite	acc	esse	es a	are re	equi	red	to fu	ılly r	ead	/writ	e D	AT/	12.									

31.6.23 CRYPTO_DATA3 - DATA3 Register Access (No Bit Access) (Actionable Reads)

Offset															Bit	Posit	ion														
0x08C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	5 5	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX																														
Access																RWH															
Name																DATA3															

Bit	Name	Reset	Access	Description
31:0	DATA3	0xXXXXXXX X	RWH	Data 3 Access
	Access to DATA3 4v	32hite road/write	. 20000000	are required to fully read/write DATA3

Access to DATA3. 4x32bits read/write accesses are required to fully read/write DATA3.

31.6.24 CRYPTO_DATA0XOR - DATA0XOR Register Access (No Bit Access) (Actionable Reads)

Offset												ı	Bit P	ositi	on													
0x0A0	31	29	28	27	26	25	23	22	21	70	19	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset														0xxxxxxxx														
Access														RWH														
Name														DATA0XOR														
Bit	Nam	е			ا	Reset	t _		Acc	ess	De	scri	iptio	n _														
31:0	DAT	A0XO	R			0xXX	XXXX	·X	RW	Н	хо	RD	Data (0 Ac	ces	 s												

Any value written to this register will be XOR'ed with the value of DATA0. The result is stored in DATA0. Reads return DATA0 directly. 4x32bits read/write accesses are required to perform a full XOR write to DATA0

31.6.25 CRYPTO_DATA0BYTE - DATA0 Register Byte Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x0B0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	∞	7	9	5	4	က	2	_	0
Reset			•		•	•			•		•		•			•		•	•				•	•				3	XXX			
Access																												i	I M Y			
Name																												ĺ	DATAOBYTE			

Bit	Name	Reset	Access	Description								
31:8	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-								
7:0	DATA0BYTE	0xXX	RWH	Data 0 Byte Access								
	Access to DATA0. 16x8bits read/write accesses are required to fully read/write DATA0. Accesses must be perform multiples of 4, or data incoherency may occur											

31.6.26 CRYPTO_DATA1BYTE - DATA1 Register Byte Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x0B4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	∞	7	9	5	4	က	2	_	0
Reset											•	•							•				•					}	X	•		
Access																												i	I X Y			
Name																												+ - - -	DAIAIBYIE			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DATA1BYTE	0xXX	RWH	Data 1 Byte Access
	Access to DATA1. 10 multiples of 4, or data			s are required to fully read/write DATA1. Accesses must be performed in

31.6.27 CRYPTO_DATA0XORBYTE - DATA0 Register Byte XOR Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x0BC	33	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	_	0
Reset																												XX				
Access																												HWA	-			
Name																												DATANXORBYTE	-			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DATA0XORBYTE	0xXX	RWH	Data 0 XOR Byte Access
				are required to fully read/write DATA0. Written data is XOR'ed with the be performed in multiples of 4, or data incoherency may occur

31.6.28 CRYPTO_DATA0BYTE12 - DATA0 Register Byte 12 Access (No Bit Access)

Offset	Bit Position	
0x0C0	30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	r 9 8 8 8 7 0
Reset		×××
Access		RWH
Name		DATA0BYTE12

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DATA0BYTE12	0xXX	RWH	Data 0 Byte 12 Access
	Access to DATA0 by	yte 12.		

31.6.29 CRYPTO_DATA0BYTE13 - DATA0 Register Byte 13 Access (No Bit Access)

Offset															Bi	t Po	siti	on														
0x0C4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	∞	7	9	5	4	က	2	- (_ o
Reset																												XXX0				
Access																												RWH				
Name																												DATA0BYTE13				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DATA0BYTE13	0xXX	RWH	Data 0 Byte 13 Access
	Access to DATA0 by	te 13.		

31.6.30 CRYPTO_DATA0BYTE14 - DATA0 Register Byte 14 Access (No Bit Access)

Offset	Bit Position	
0x0C8	30 30 30 30 30 30 30 30 30 30 30 30 30 3	r 9 8 8 8 7 F 0
Reset		XXX
Access		RWH
Name		DATA0BYTE14

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DATA0BYTE14	0xXX	RWH	Data 0 Byte 14 Access
	Access to DATA0 by	/te 14.		

31.6.31 CRYPTO_DATA0BYTE15 - DATA0 Register Byte 15 Access (No Bit Access)

Offset															Bi	t Po	siti	on														
0x0CC	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	- (_ o
Reset		•	•		•	•					•							•				•						XXX			·	
Access																												RWH				
Name																												DATA0BYTE15				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure tions	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DATA0BYTE15	0xXX	RWH	Data 0 Byte 15 Access
	Access to DATA0 by	yte 15.		

31.6.32 CRYPTO_DDATA0 - DDATA0 Register Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	ositi	on														
0x100	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset																	OXXXXXXXX															
Access																	I M Y															
Name																1	DDATA0															
Bit	Na	me					Re	set			Ac	cess	s I	Des	crip	tio	1															
31:0	DD	АТА	0				0x X	XXX	XXX	ίX	RV	/H		Dou	ble	Dat	ta 0	Acc	ess	•												

31.6.33 CRYPTO_DDATA1 - DDATA1 Register Access (No Bit Access) (Actionable Reads)

Access to DDATA0. 8x32bits read/write accesses are required to fully read/write DDATA0.

Offset															Bit F	Posit	ion														
0x104	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	5 5	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset																XXXXXXXXX0															
Access																RWH															
Name																DDATA1															

Bit	Name	Reset	Access	Description
31:0	DDATA1	0xXXXXXXX X	RWH	Double Data 0 Access

Access to DDATA1, which is equal to the full width of KEY regardless of AES256 in CRYPTO_CTRL. 8x32bits read/write accesses are required to fully read/write DDATA1.

31.6.34 CRYPTO_DDATA2 - DDATA2 Register Access (No Bit Access) (Actionable Reads)

Offset															Bit	Ро	siti	on														
0x108	31	33	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	∞	7	9	5	4	က	7	_	0
Reset																XXXXXXXX	, , , , , , , , , , , , , , , , , , ,															
Access																EWH H																
Name																DDATA2																

Bit	Name	Reset	Access	Description
31:0	DDATA2	0xXXXXXXX X	RWH	Double Data 0 Access

Access to DDATA2, which consists of {DATA1, DATA0}. 8x32bits read/write accesses are required to fully read/write DDATA2.

31.6.35 CRYPTO_DDATA3 - DDATA3 Register Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x10C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset																*****	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\															
Access																D/WH																
Name																DDATA3	בר ה															

Bit Na	ame	Reset	Access	Description
31:0 DI	DATA3	0xXXXXXXX X	RWH	Double Data 0 Access

Access to DDATA3, which consists of {DATA3, DATA2}. 8x32bits read/write accesses are required to fully read/write DDATA3.

31.6.36 CRYPTO_DDATA4 - DDATA4 Register Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x110	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset											•		•			********	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~												•			
Access																D/WH	_															
Name																TATA.	(

Bit	Name	Reset	Access	Description
31:0	DDATA4	0xXXXXXXX X	RWH	Double Data 0 Access

Access to DDATA4, which is equal to the full width of KEYBUF regardless of AES256 in CRYPTO_CTRL. 8x32bits read/write accesses are required to fully read/write DDATA4.

31.6.37 CRYPTO_DDATA0BIG - DDATA0 Register Big Endian Access (No Bit Access) (Actionable Reads)

Offset															Bit	t Po	siti	on														
0x130	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	2	4	က	2	_	0
Reset																XXXXXXXX	VAAAAAAA															
Access																EWH																
Name																DIATAORIG																

Bit	t	Name	Reset	Access	Description
31	:0	DDATA0BIG	0xXXXXXXX X	RWH	Double Data 0 Big Endian Access
		Big endian access to I	DDATA0. 8x32b	its read/wr	ite accesses are required to fully read/write DDATA0.

31.6.38 CRYPTO_DDATA0BYTE - DDATA0 Register Byte Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x140	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset		•									•				•				•		•	•	•					>	X		·	
Access																													[} }			
Name																												at/ac/tracc	_			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	DDATA0BYTE	0xXX	RWH	Ddata 0 Byte Access
	Access to DDATA0. 3 multiples of 4, or data			es are required to fully read/write DDATA0. Accesses must be performed in

31.6.39 CRYPTO_DDATA1BYTE - DDATA1 Register Byte Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x144	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																												3	XXX			
Access																													I M Y			
Name																												Ę	DDA1A1BY1E			

Bit	Name	Reset	Access	Description		
31:8	Reserved	To ensure co tions				
7:0	DDATA1BYTE	0xXX	RWH	Ddata 1 Byte Access		
	Access to DDATA1. multiples of 4, or data			es are required to fully read/write DDATA1. Accesses must be performed in		

31.6.40 CRYPTO_DDATA0BYTE32 - DDATA0 Register Byte 32 Access (No Bit Access)

Offset	Bit Position	
0x148	9 d d d d d d d d d d d d d d d d d d d	8 7 9 5 4 6 7 7 0
Reset		××
Access		RWH
Name		DDATA0BYTE32

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
3:0	DDATA0BYTE32	0xX	RWH	Ddata 0 Byte 32 Access
	Access to DDATA0 b	yte 32. This is	used when I	RESULTWIDTH in CRYPTO_WAC is set to 260BIT.

31.6.41 CRYPTO_QDATA0 - QDATA0 Register Access (No Bit Access) (Actionable Reads)

Offset															Bit	Pos	sitio	on														
0x180	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	10	15	14	13	12	7	9	6	ω	7	9	5	4	က	2	_	0
Reset																XXXXXXXXX0																
Access																RWH																
Name																QDATA0																

Bit	Name	Reset	Access	Description
31:0	QDATA0	0xXXXXXXX X	RWH	Quad Data 0 Access
	Access to QDATA0, v QDATA0.	which is equal to	{DDATA1	DDATA0}. 16x32bits read/write accesses are required to fully read/write

31.6.42 CRYPTO_QDATA1 - QDATA1 Register Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x184	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	တ	∞	7	9	2	4	က	7	_	0
Reset									•							>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	00000000000000000000000000000000000000															
Access																ם,,,,ם	2															
Name		QDATA1																														
Bit	Na	me					Re	set			Δc	200	e 1	Des	crin	tion																

Bit	Name	Reset	Access	Description
31:0	QDATA1	0xXXXXXXX X	RWH	Quad Data 1 Access

Access to QDATA1, which is equal to {DATA3, DATA1, DATA0} and {DDATA3, DDATA2}. 16x32bits read/write accesses are required to fully read/write QDATA1.

31.6.43 CRYPTO_QDATA1BIG - QDATA1 Register Big Endian Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x1A4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	တ	∞	7	9	5	4	က	2	_	0
Reset																>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	VVVVVVV															
Access																	2															
Name																SIGNATAGE	ם כי כי כי															

Bit	Name	Reset	Access	Description
31:0	QDATA1BIG	0xXXXXXXX X	RWH	Quad Data 1 Big Endian Access
	Big endian access to	QDATA1. which	is equal to	(DATA3, DATA2, DATA1, DATA0) and (DDATA3, DDATA2), 16x32bits

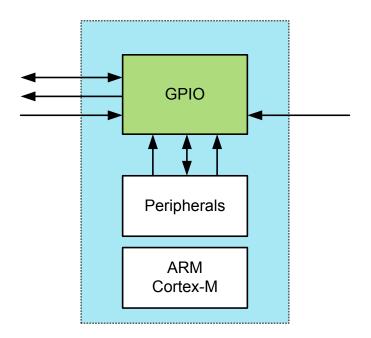
Big endian access to QDATA1, which is equal to {DATA3, DATA2, DATA1, DATA0} and {DDATA3, DDATA2}. 16x32bits read/write accesses are required to fully read/write QDATA1.

31.6.44 CRYPTO_QDATA0BYTE - QDATA0 Register Byte Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	siti	on													
0x1C0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	- 0
Reset																												>	X		
Access																													[} }		
Name																												T V O O V T V O O	AIAUBII		

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7:0	QDATA0BYTE	0xXX	RWH	Qdata 0 Byte Access
	Access to QDATA0.	64x8bits read/w	rite accesse	es are required to fully read/write QDATA0. Accesses must be performed in

multiples of 4, or data incoherency may occur


31.6.45 CRYPTO_QDATA1BYTE - QDATA1 Register Byte Access (No Bit Access) (Actionable Reads)

Offset															Bi	t Po	siti	on														
0x1C4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	5	4	က	2	- (0
Reset																												>	XX			
Access																													I X Y			
Name																												H 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	QDAIAIBYIE			

Bit	Name	Reset	Access	Description								
31:8	Reserved	To ensure cortions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-								
7:0	QDATA1BYTE	0xXX	RWH	Qdata 1 Byte Access								
		DATA1. 64x8bits read/write accesses are required to fully read/write QDATA1. Accesses must be performed in 4, or data incoherency may occur										

32. GPIO - General Purpose Input/Output

Quick Facts

What?

The General Purpose Input/Output (GPIO) is used for pin configuration, direct pin manipulation and sensing, as well as routing for peripheral pin connections.

Why?

Easy to use and highly configurable input/output pins are important to fit many communication protocols as well as minimizing software control overhead. Flexible routing of peripheral functions helps to ease PCB layout.

How?

Each pin on the device can be individually configured as either an input or an output with several different drive modes. Also, individual bit manipulation registers minimizes control overhead. Peripheral connections to pins can be routed to several different locations, thus solving congestion issues that may arise with multiple functions on the same pin. Fully asynchronous interrupts can also be generated from any pin.

32.1 Introduction

In the EFM32 Tiny Gecko 11 devices the General Purpose Input/Output (GPIO) pins are organized into ports with up to 16 pins each. These GPIO pins can individually be configured as either an output or input. More advanced configurations like open-drain, open-source, and glitch filtering can be configured for each individual GPIO pin. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enable interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

Note: To use the GPIO, the GPIO clock must first be enabled in CMU_HFBUSCLKEN0. Setting this bit enables the HFBUSCLK for the GPIO.

32.2 Features

- · Individual configuration for each pin
 - · Tristate (reset state)
 - Push-pull
 - · Open-drain
 - · Pull-up resistor
 - · Pull-down resistor
 - · Drive strength
 - 1 mA
 - 10 mA
 - Slewrate
 - · Over Voltage Tolerance
- EM4 IO pin retention
 - Output enable
 - · Output value
 - · Pull enable
 - · Pull direction
 - · Over Voltage Tolerance
- · EM4 wake-up on selected GPIO pins
- · Glitch suppression input filter
- · Alternate functions (e.g. peripheral outputs and inputs)
 - · Routed to several locations on the device
 - · Pin connections can be enabled individually
 - · Output data can be overridden by peripheral
 - · Output enable can be overridden by peripheral
- · Toggle register for output data
- · Dedicated data input register (read-only)
- · Interrupts
 - · 2 Interrupt lines using either levels or edges
 - · EM4 wake-up pins are selectable for level interrupts
 - · All GPIO pins are selectable for edge interrupts
 - · Separate enable, status, set and clear registers
 - · Asynchronous sensing
 - · Rising, falling or both edges
 - · High or low level detection
 - · Wake up from EM0 Active-EM3 Stop
- · Peripheral Reflex System producer
 - · All GPIO pins are selectable
- · Configuration lock functionality to avoid accidental changes

32.3 Functional Description

An overview of the GPIO module is shown in Figure 32.1 Pin Configuration on page 1132. The GPIO pins are grouped into 16-pin ports. Each individual GPIO pin is called Pxn where x indicates the port (A, B, C ...) and n indicates the pin number (0,1,....,15). Fewer than 16 bits may be available on some ports, depending on the total number of I/O pins on the package. After a reset, both input and output are disabled for all pins on the device, except for the Serial Wire Debug pins.

To use a pin, the Mode Register (GPIO_Px_MODEL/GPIO_Px_MODEH) must be configured for the pin to make it an input or output. These registers can also do more advanced configuration, which is covered in 32.3.1 Pin Configuration. When the port is configured as an input or an output, the Data In Register (GPIO_Px_DIN) can be used to read the level of each pin in the port (bit n in the register is connected to pin n on the port). When configured as an output, the value of the Data Out Register (GPIO_Px_DOUT) will be driven to the pin.

The DOUT value can be changed in 4 different ways:

- · Writing to the GPIO Px DOUT register
- · Writing the BITSET address of the GPIO Px DOUT register sets the DOUT bits
- · Writing the BITCLEAR address of the GPIO_Px_DOUT register clears the DOUT bits
- Writing the GPIO_Px_DOUTTGL register toggles the corresponding DOUT bits

Reading the GPIO_Px_DOUT register will return its contents. Reading the GPIO_Px_DOUTTGL register will return 0.

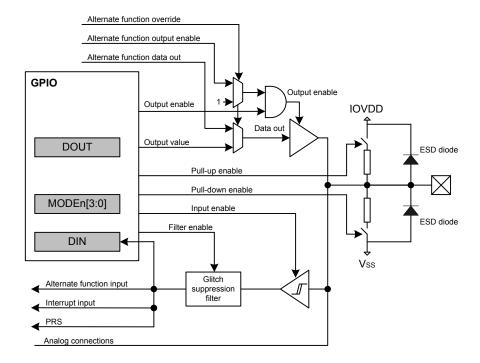


Figure 32.1. Pin Configuration

Note: There is no ESD diode to IOVDD because if using LCD Voltage Boost the pin voltage may be higher than IOVDD. Nevertheless there is an ESD protection block against over voltage.

32.3.1 Pin Configuration

In addition to setting the pins as either outputs or inputs, the GPIO_Px_MODEL and GPIO_Px_MODEH registers can be used for more advanced configurations. GPIO_Px_MODEL contains 8 bit fields named MODEn (n=0,1,..7) which control pins 0-7, while GPIO_Px_MODEH contains 8 bit fields named MODEn (n=8,9,..15) which control pins 8-15. In some modes GPIO_Px_DOUT is also used for extra configurations like pull-up/down and glitch suppression filter enable. Table 32.1 Pin Configuration on page 1133 shows the available configurations.

Table 32.1. Pin Configuration

MODEn	Input	Output	DOUT	Pull- down	Pull- up	Alt Port Ctrl	Input Filter	Description
DISABLED	Disabled	Disabled	0					Input disabled
			1		On			Input disabled with pull-up
INPUT	Enabled		0					Input enabled
	if not DINDIS		1				On	Input enabled with filter
INPUTPULL			0	On				Input enabled with pull-down
			1		On			Input enabled with pull-up
INPUTPULLFILTER			0	On			On	Input enabled with pull- down and filter
			1		On		On	Input enabled with pull-up and filter
PUSHPULL		Push-	х					Push-pull
PUSHPULLALT		pull	х			On		Push-pull with alternate port control values
WIREDOR		Open	х					Open-source
WIREDORPULLDOWN		Source (Wired- OR)	х	On				Open-source with pull-down
WIREDAND		Open	х					Open-drain
WIREDANDFILTER		Drain (Wired-	х				On	Open-drain with filter
WIREDANDPULLUP		AND)	х		On			Open-drain with pull-up
WIREDANDPULLUPFILTER			х		On		On	Open-drain with pull-up and filter
WIREDANDALT			х			On		Open-drain with alternate port control values
WIREDANDALTFILTER			х			On	On	Open-drain with alternate port control values and filter
WIREDANDALTPULLUP			х		On	On		Open-drain with alternate port control values and pull-up
WIREDANDALTPULLUPFILTER			х		On	On	On	Open-drain with alternate port control values, pull-up and filter

MODEn determines which mode the pin is in at a given time. Setting MODEn to DISABLED disables the pin, reducing power consumption to a minimum. When the output driver, input driver and Over Voltage Tolerance is disabled, the pin can be used as a connection for an analog module. An input is enabled by setting MODEn to any value other than DISABLED while DINDIS for the given port is cleared.

Set DINDIS to disable the input of a gpio port. The pull-up, pull-down and glitch filter function can optionally be applied to the input, see Figure 32.2 Tristated Output With Optional Pull-up or Pull-down on page 1134.

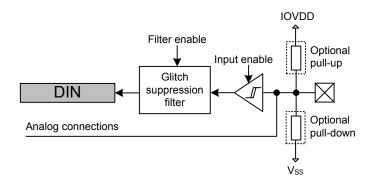


Figure 32.2. Tristated Output With Optional Pull-up or Pull-down

When MODEn is PUSHPULL or PUSHPULLALT, the pin operates in push-pull mode. In this mode, the pin can have alternate port control values and can be driven either high or low, dependent on the value of GPIO_Px_DOUT. The push-pull configuration is shown in Figure 32.3 Push-Pull Configuration on page 1134.

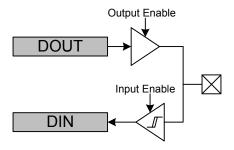


Figure 32.3. Push-Pull Configuration

When MODEn is WIREDOR or WIREDORPULLDOWN, the pin operates in open-source mode (with a pull-down resistor for WIREDORPULLDOWN). When driving a high value in open-source mode, the pull-down is disconnected to save power.

When the mode is prefixed with WIREDAND, the pin operates in open-drain mode as shown in Figure 32.4 Open-drain on page 1134. In open-drain mode, the pin can have an input filter, a pull-up, alternate port control values or any combination of these. When driving a low value in open-drain mode, the pull-up is disconnected to save power.

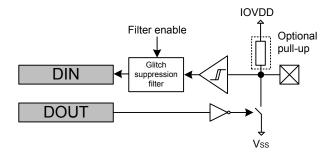


Figure 32.4. Open-drain

32.3.1.1 Over Voltage Tolerance

Over voltage capability is available for most pins. If available, it allows the pin to be used at either the minimum of IOVDD + 2V and 5.5V (for 5V tolerant pads) or the minimum of IOVDD + 2V and 3.8V (for non-5V tolerant pads supporting LCD). The data sheet specifies which pins can be used as 5V tolerant pins. Default over voltage is enabled for each pin supporting that feature. Over voltage tolerance (OVT) can be disabled on a per pin basis. The over voltage tolerance feature applied to the selected pins is configured in the GPIO_Px_OVTDIS register. Disabling the over voltage tolerance for a pin will provide less distortion on that pin, which is useful when the pin is used as analog input.

Note: The VDAC (and OPAMPs) and LCD can drive outputs above IOVDD and therefore the involved pads typically require OVT to be be enabled.

32.3.1.2 Alternate Port Control

The Alternate Port Control allows for additional flexibilty of port level settings. A user may setup two different port configurations (normal and alternate modes) and select which is applied on a pin by pin bases. For example you may configure half of port A to use the low drive strength setting (normal mode) while the other half uses high drive strength (alternate mode).

Alternate port control is enabled when MODEn is set to any of the ALT enumerated modes (ie. PUSHPULLALT). When MODEn is an alternate mode, the pin uses the alternate port control values specified in the DINDISALT, SLEWRATEALT, and DRIVESTRENGTHALT fields in GPIO_Px_CTRL. In all other modes, the port control values are used from the DINDIS, SLEWRATE, and DRIVESTRENGTH fields in GPIO_Px_CTRL.

32.3.1.3 Drive Strength

The drive strength can be applied to pins on a port-by-port basis. The drive strength applied to pins configured using normal MODEn settings can be controlled using the DRIVESTRENGTH field in GPIO_Px_CTRL. The drive strength applied to pins configured using alternate MODEn settings can be controlled using the DRIVESTRENGTHALT field.

32.3.1.4 Slewrate

The slewrate can be applied to pins on a port-by-port basis. The slewrate applied to pins configured using normal MODEn settings can be controlled using the SLEWRATE fields in GPIO_Px_CTRL. The slewrate applied to pins configured using the alternate MODEn settings can be controlled using the SLEWRATEALT field.

32.3.1.5 Input Disable

The pin inputs can be disabled on a port-by-port basis. The input of pins configured using the normal MODEn settings can be disabled by setting DINDIS in GPIO_Px_CTRL. The input of pins configured using the alternate MODEn settings can be disabled by setting DINDISALT.

32.3.1.6 Configuration Lock

GPIO_Px_MODEL, GPIO_Px_MODEH, GPIO_Px_CTRL, GPIO_Px_PINLOCKN, GPIO_Px_OVTDIS, GPIO_EXTIPSELL, GPIO_EXTIPSELL, GPIO_EXTIPINSELL, GPIO_EXTIPINSELH, GPIO_INSENSE, GPIO_ROUTEPEN, and GPIO_ROUTELOCO can be locked by writing any value other than 0xA534 to GPIO_LOCK. Writing the value 0xA534 to the GPIOx_LOCK register unlocks the configuration registers.

In addition to configuration lock, GPIO_Px_MODEL, GPIO_Px_MODEH, GPIO_Px_DOUT, GPIO_Px_DOUTTGL, and GPIO_Px_OVT-DIS can be locked individually for each pin by clearing the corresponding bit in GPIO_Px_PINLOCKN. When a bit in the GPIO_Px_PINLOCKN register is cleared, it will stay cleared until reset.

32.3.2 EM4 Wake-up

It is possible to trigger a wake-up from EM4 using any of the selectable EM4WU GPIO pins. The wake-up request can be triggered through the pins by enabling the corresponding bit in the GPIO_EM4WUEN register. When EM4 wake-up is enabled for the pin, the input filter is enabled during EM4. This is done to avoid false wake-up caused by glitches. In addition, the polarity of the EM4 wake-up request can be selected using the GPIO_EXTILEVEL register.

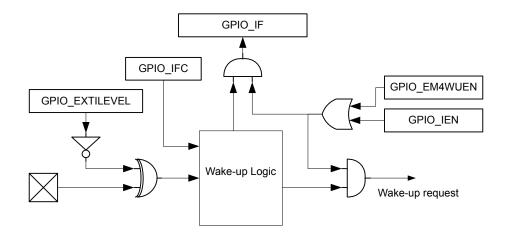


Figure 32.5. EM4 Wake-up Logic

The pins used for EM4 wake-up must be configured as inputs with glitch filters using the GPIO_Px_MODEL/GPIO_Px_MODEH register. If the input is disabled and the wakeup polarity is low, a false wakeup will occur when entering EM4. If the input is enabled, the glitch filtered is disabled, and the polarity is set low, a glitch will occur when going into EM4 that will cause an immediate wake-up. Before going down to EM4, it is important to clear the wake-up logic by setting the GPIO_IFC bit, which clears the wake-up logic, including the GPIO_IF register. It is possible to determine which pin caused the EM4WU by reading the GPIO_IF register. The mapping between EM4WU pins and the bit indexes in the GPIO_EM4WUEN, GPIO_EXTILEVEL, GPIO_IFC, GPIO_IFS, GPIO_IEN, and GPIO_IF registers is as follows:

Table 32.2. EM4WU Register Bit Index to EM4WU Pin Mapping

EM4WU Register Bit Indexes	EM4WU Pin	
16	GPIO_EM4WU0	
17	GPIO_EM4WU1	
18	GPIO_EM4WU2	
19	GPIO_EM4WU3	
31	GPIO_EM4WU15	

32.3.3 EM4 Retention

By default, GPIO pins revert back to their reset state when EM4 is entered. The GPIO pins can be configured to retain the settings for output enable, output value, pull enable, pull direction and over voltage tolerance while in EM4.

EM4 GPIO retention is controlled with the EM4IORETMODE field in the EMU_EM4CTRL register. Setting EM4IORETMODE to EM4EXIT will cause retention to persist while in EM4 and reset the GPIOs during wakeup. Setting EM4IORETMODE to SWUNLATCH will cause the retention to persist until the EM4UNLATCH bit is written by software. Note that when using SWUNLATCH, the GPIO register values are still reset on wakeup from EM4. In order to ensure that the GPIO state does not change, sofware must re-write the GPIO registers before setting EM4UNLATCH and ending EM4 GPIO retention. See the EMU chapter for additional documentation on its registers and the EM4UNLATCH bit.

Alternate functions are connections to pins from peripherals, i.e. Timers, USARTs, etc.. These peripherals contain route registers,

Alternate functions are connections to pins from peripherals, i.e. Timers, USARTs, etc.. These peripherals contain route registers, where the pin connections are enabled. In addition, the route registers contain a location bit field that configures which pin an output of that peripheral will be connected to if enabled. After connecting a peripheral, the pin configuration stays as set in GPIO_Px_MODEL, GPIO_Px_MODEH and GPIO_Px_DOUT registers. For example, the pin configuration must be set to output enable in GPIO_Px_MODEL or GPIO_Px_MODEH for a peripheral to be able to use the pin as an output.

It is not recommended to select two or more peripherals as output on the same pin. The reader is referred to the pin map section of the device data sheet for more information on the possible locations of each alternate function.

Note:

- Some of the alternate function locations have non-interference priority. These locations prevent the use of the selected pin for other
 alternate functions. For example, these can be used to secure TIMER PWM outputs from software errors (i.e. another alternate function enabled to the same pin inadvertently).
- Certain alternate functions have high speed priority locations. These locations ensure fastest possible paths to the pins which is useful for timing critical alternate functions. For the alternate function output signals which are using these locations the MODEn must be configured as PUSHPULL or PUSHPULLALT.
- An overview of these locations is provided in the pin map section of the device data sheet.

32.3.4.1 Analog Connections

When using the GPIO pin for analog functionality, it is recommended to disable the over voltage tolerance by setting the corresponding pin in the GPIO_Px_OVTDIS register and setting the MODEn in GPIO_Px_MODEL or GPIO_Px_MODEH equal to DISABLE to disable the input sense, output driver and pull resistors.

32.3.4.2 Debug Connections

32.3.4.2.1 Serial Wire Debug Connection

The SW Debug Port is routed as an alternate function and the SWDIO and SWCLK pin connections are enabled by default with internal pull up and pull down resistors, respectively. It is possible to disable these pin connections (and disable the pull resistors) by setting the SWDIOTMSPEN and SWCLKTCKPEN bits in GPIO ROUTEPEN to 0.

32.3.4.2.2 JTAG Debug Connection

The JTAG Debug Port is routed as an alternate function and the TMS, TCK, TDO, and TDI pin connections are enabled by default with internal pull up, pull down, no pull, and pull up resistors, respectively. It is possible to disable these pin connections (and disable the pull resistors) by setting the SWDIOTMSPEN, SWCLKTCKPEN, TDOPEN, and TDIPEN bits in GPIO ROUTEPEN to 0.

32.3.4.2.3 Disabling Debug Connections

When the debug pins are disabled, the device can no longer be accessed by a debugger. A reset will set the debug pins back to their enabled default state. The GPIO_ROUTEPEN register can only be updated when the debugger is disconnected from the system. Any attempts to modify GPIO_ROUTEPEN when the debugger is connected will not occur. If you do disable the debug pins, make sure you have at least a 3 second timeout at the start of your program code before you disable the debug pins. This way the debugger will have time to connect to the the device after a reset and before the pins are disabled.

32.3.5 Interrupt Generation

Interrupts may be triggered on edge events for any GPIO pin, or on pin input levels for GPIO capable of EM4 wake-up.

32.3.5.1 Edge Interrupt Generation

The GPIO can generate an interrupt from any edge of the input of any GPIO pin on the device. The edge interrupts have asynchronous sense capability, enabling wake-up from energy modes as low as EM3 Stop, see Figure 32.6 Pin N Interrupt Generation on page 1138.

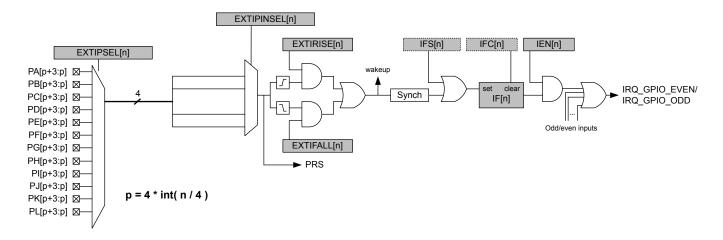


Figure 32.6. Pin N Interrupt Generation

External pin interrupts can be represented in the form of EXTI[index], where index is the external interrupt number. For example, the EXTI7 interrupt has an index of 7. All pins within a group of four (0-3,4-7,8-11,12-15) from all ports are grouped together to trigger one interrupt. The group of pins available to trigger an interrupt is determined by the interrupt index and calculated as int(index/4). For example the first 4 interrupts (EXTI0 - EXTI3) are triggered by pins in the first group (Px[3:0]) and the second 4 interrupts (EXTI4-EXTI7) are triggered by pins in the second group (Px[7:4]).

The EXTIPSELn bits in GPIO_EXTIPSELL or GPIO_EXTIPSELH select which PORT in the group will trigger the interrupt. The EXTI-PINSELn bits in GPIO_EXTIPINSELL or GPIO_EXTIPINSELH will determine which pin inside the selected group will trigger the interrupt.

For example if EXTIPSEL11 = PORTB and EXTPINSEL11 = 0 then PB8 will be used for EXTI11. EXTI11 uses the third group (11/4 = 2) so the list of possible pins is Px[11:8]. The setting of EXTIPSEL11 further narrows the selection to PB[11:8]. Finally EXTPINSEL11 selects the first pin in that group which is PB8.

The GPIO_EXTIRISE[n] and GPIO_EXTIFALL[n] registers enable sensing of rising and falling edges. By setting the EXT[n] bit in GPIO_IEN, a high interrupt flag n, will trigger one of two interrupt lines. The even interrupt line is triggered by any enabled even numbered interrupt flag index, while the odd interrupt line is triggered by odd flag indexes. The interrupt flags can be set and cleared by software when writing the GPIO_IFS and GPIO_IFC registers. Since the external interrupts are asynchronous, they are sensitive to noise. To increase noise tolerance, the MODEL and MODEH fields in the GPIO_Px_MODEL and GPIO_Px_MODEH registers, respectively, should be set to include glitch filtering for pins that have external interrupts enabled.

32.3.5.2 Level Interrupt Generation

GPIO can generate a level interrupt using the input of any GPIO EM4 wake-up pins on the device. The interrupts have asynchronous sense capability, enabling wake-up from energy modes as low as EM4.

In order to enable the level interrupt, set the EM4WU field in the GPIO_IEN register and the EM4WUn field in the GPIO_EXTILEVEL register. Upon a level interrupt occuring, the corresponding EM4WU index in the GPIO_IF register will be set along with the odd or even interrupt line depending on the index inside of GPIO_IF. For example, by setting the EM4WU8 in GPIO_EXTILEVEL and EM4WU[8] in GPIO_IEN, the interrupt flag EM4WU[8] in GPIO_IF will be triggered by a high level on pin EM4WU8 and a interrupt request will be sent on IRQ_GPIO_EVEN.

The wake-up granulalrity of the level interrupts is based on the settings of the EM4WU field in the GPIO_IEN register and the EM4WUEN field in the GPIO_EM4WUEN register, see Table 32.3 Level Interrupt Energy Mode Wakeup on page 1139

Table 32.3. Level Interrupt Energy Mode Wakeup

GPIO_IEN	GPIO_EM4WUEN	Energy Mode Wakeup
0	0	No Interrupt
0	1	EM4H,EM4S
1	0	EM1,EM2,EM3,EM4H,EM4S
1	1	EM1,EM2,EM3,EM4H,EM4S

32.3.6 Output to PRS

All pins within a group of four(0-3,4-7,8-11,12-15) from all ports are grouped together to form one PRS producer which outputs to the PRS. The pin from which the output should be taken is selected in the same fashion as the edge interrupts.

PRS output is not affected by the interrupt edge detection logic or gated by the IEN bits. See Figure 32.6 Pin N Interrupt Generation on page 1138 for an illustration of where the PRS output signal is generated.

32.3.7 Synchronization

To avoid metastability in synchronous logic connected to the pins, all inputs are synchronized with double flip-flops. The flip-flops for the input data run on the HFBUSCLK. Consequently, when a pin changes state, the change will have propagated to GPIO_Px_DIN after two 2 HFBUSCLK cycles. Synchronization (also running on the HFBUSCLK) is also added for interrupt input. To save power when the external interrupts or level interrupts are not used, the synchronization flip-flops for these can be turned off by clearing INT or EM4WU,respectively, in GPIO_INSENSE register.

32.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	GPIO_PA_CTRL	RW	Port Control Register
0x004	GPIO_PA_MODEL	RW	Port Pin Mode Low Register
0x008	GPIO_PA_MODEH	RW	Port Pin Mode High Register
0x00C	GPIO_PA_DOUT	RW	Port Data Out Register
0x018	GPIO_PA_DOUTTGL	W1	Port Data Out Toggle Register
0x01C	GPIO_PA_DIN	R	Port Data in Register
0x020	GPIO_PA_PINLOCKN	RW	Port Unlocked Pins Register
0x028	GPIO_PA_OVTDIS	RW	Over Voltage Disable for All Modes
	GPIO_Px_CTRL	RW	Port Control Register
	GPIO_Px_MODEL	RW	Port Pin Mode Low Register
	GPIO_Px_MODEH	RW	Port Pin Mode High Register
	GPIO_Px_DOUT	RW	Port Data Out Register
	GPIO_Px_DOUTTGL	W1	Port Data Out Toggle Register
	GPIO_Px_DIN	R	Port Data in Register
	GPIO_Px_PINLOCKN	RW	Port Unlocked Pins Register
	GPIO_Px_OVTDIS	RW	Over Voltage Disable for All Modes
0x210	GPIO_PL_CTRL	RW	Port Control Register
0x214	GPIO_PL_MODEL	RW	Port Pin Mode Low Register
0x218	GPIO_PL_MODEH	RW	Port Pin Mode High Register
0x21C	GPIO_PL_DOUT	RW	Port Data Out Register
0x228	GPIO_PL_DOUTTGL	W1	Port Data Out Toggle Register
0x22C	GPIO_PL_DIN	R	Port Data in Register
0x230	GPIO_PL_PINLOCKN	RW	Port Unlocked Pins Register
0x238	GPIO_PL_OVTDIS	RW	Over Voltage Disable for All Modes
0x400	GPIO_EXTIPSELL	RW	External Interrupt Port Select Low Register
0x404	GPIO_EXTIPSELH	RW	External Interrupt Port Select High Register
0x408	GPIO_EXTIPINSELL	RW	External Interrupt Pin Select Low Register
0x40C	GPIO_EXTIPINSELH	RW	External Interrupt Pin Select High Register
0x410	GPIO_EXTIRISE	RW	External Interrupt Rising Edge Trigger Register
0x414	GPIO_EXTIFALL	RW	External Interrupt Falling Edge Trigger Register
0x418	GPIO_EXTILEVEL	RW	External Interrupt Level Register
0x41C	GPIO_IF	R	Interrupt Flag Register
0x420	GPIO_IFS	W1	Interrupt Flag Set Register
0x424	GPIO_IFC	(R)W1	Interrupt Flag Clear Register
0x428	GPIO_IEN	RW	Interrupt Enable Register

Offset	Name	Туре	Description
0x42C	GPIO_EM4WUEN	RW	EM4 Wake Up Enable Register
0x440	GPIO_ROUTEPEN	RW	I/O Routing Pin Enable Register
0x450	GPIO_INSENSE	RW	Input Sense Register
0x454	GPIO_LOCK	RWH	Configuration Lock Register

32.5 Register Description

32.5.1 GPIO_Px_CTRL - Port Control Register

Offset												Bi	t Po	sitic	n														
0x000	30 30 29	28	27	26	25	23	22	12	20	19	18	17	16	15	4 (2 9	12	7	10	6	ω	7	u	ם ע) 4	۲ (ى د	· -	0
Reset		0						0x5					0			,	0							Ox5	2				0
Access		¥ N						X ≪					RW			:	Z N							<u>8</u>	2				Z.
Name		DINDISALT						SLEWRATEALT					DRIVESTRENGTHALT				SIQNIQ							SI EWRATE					DRIVESTRENGTH
Bit	Name				Res	et		Ac	ces	S	Des	crip	tion																
31:29	Reserved				To e		e coi	mpat	ibility	/ WI	with future devices, always write bits to 0. More information in 1.2 Conven-												en-						
28	DINDISAL	Т			0			RV	٧		Alte	rnat	te D	ata i	n Dis	abl	le												
	Data input	disa	able	for p	ort p	ins us	sing	alter	nate	mo	odes	-																	
27:23	Reserved To ensure compatibility with future devices, always write bits to 0. More inforn tions									rma	tion	in 1	1.2 C	onve	en-														
22:20	SLEWRATEALT 0							RV	٧		Alte	rnat	te SI	ewr	ate L	imi	t fo	r Po	ort										
	Slewrate lii	mit f	or p	ort p	ins ι	ising a	alter	nate	mod	les.	. Hig	her	valu	es re	pres	ent	fas	ter	slev	vrat	es.								
19:17	Reserved				To e	ensure s	e coi	mpat	ibility	/ WI	ith fu	ture	dev	rices,	alwa	ays	wri	te b	its t	0 0	. Mc	ore i	nfo	rma	tion	in 1	1.2 C	onve	en-
16	DRIVESTF ALT	REN	GTH	-	0			RV	V		Alternate Drive Strength for Port																		
	Drive stren	gth	setti	ng fo	or po	rt pins	s us	ing a	Itern	ate	driv	e stı	reng	th.															
	Value				Mod	le					Des	cript	ion																_
	0				STF	RONG	i				10 n	nA d	Irive	curr	ent														
	1				WE	ΑK					1 m	A dri	ive c	urre	nt														
15:13	Reserved				To e	ensure s	e coi	mpat	ibility	/ WI	ith fu	ture	dev	rices	alwa	ays	wri	te b	its t	o 0	. Mc	ore i	nfo	rma	tion	in 1	1.2 C	onve	en-
12	DINDIS				0			RV	V		Data	a in	Disa	able															
	Data input	disa	able	for p	ort p	ins no	ot us	sing a	alterr	nate	e mo	des.	·																
11:7	Reserved		To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions																										
6:4	SLEWRAT	Έ			0x5			RV	٧		Slev	vrat	e Lii	mit f	or Po	ort													
	Slewrate lii	mit f	or po	ort p	ins r	ot usi	ing a	altern	ate	mo	des.	Higl	her v	/alue	s rep	res	ent	fas	ter	slev	vrat	es.							
3:1	Reserved				To e	ensure s	e coi	mpat	ibility	/ WI	ith fu	ture	dev	rices	alwa	ays	wri	te b	its t	0 0	. Mc	ore i	nfo	rma	tion	in 1	.2 C	onve	en-

Bit	Name	Reset	Access	Description									
0	DRIVESTRENGTH	0	RW	Drive Strength for Port									
	Drive strength setting	for port pins no	t using alte	ernate modes.									
	Value	Mode		Description									
	0	STRONG		10 mA drive current									
	1	WEAK		1 mA drive current									
	-												

32.5.2 GPIO_Px_MODEL - Port Pin Mode Low Register

Offset		Bit Position																														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		2	2			2	e X			0x0			0x0				0x0				0x0				0x0				0x0			
Access		2	<u>}</u>		X.				RW				XX X				RW			Z W				RW				RW				
Name		71000	MODE6 MODE6						20 N				NODES SECTION SECTION			MODE?	 		MODE1													

Name	MODE7	MODE6	MODE5	MODE4	MODE3	MODE2	MODE1	MODE0							
Bit	Name	Reset	Acces	s Description	1										
31:28	MODE7	0x0	RW	Pin 7 Mode											
	Configure mod	e for pin 7.													
	Value	Mode		Description	Description										
	0	DISABI	LED	Input disable	ed. Pullup if DO	UT is set.									
	1	INPUT		Input enabled. Filter if DOUT is set											
	2	INPUT	PULL	Input enable	Input enabled. DOUT determines pull direction										
	3	INPUT	PULLFILTER	Input enable	Input enabled with filter. DOUT determines pull direction										
	4	PUSHF	PULL	Push-pull or	Push-pull output										
	5	PUSHF	PULLALT	Push-pull using alternate control											
	6	WIRED	OOR	Wired-or output											
	7	WIRED	ORPULLDOW	N Wired-or ou	Wired-or output with pull-down										
	8	WIRED	AND	Open-drain	Open-drain output										
	9	WIRED	ANDFILTER	Open-drain	Open-drain output with filter										
	10	WIRED	ANDPULLUP	Open-drain	output with pullu	ıp									
	11	WIRED FILTER	ANDPULLUP- R	Open-drain	Open-drain output with filter and pullup										
	12	WIRED	ANDALT	Open-drain	output using alte	ernate control									
	13	WIRED	ANDALTFILTE	R Open-drain	output using alte	ernate control w	ith filter								
	14	WIRED UP)ANDALTPULL-	Open-drain	output using alte	ernate control w	ith pullup								
	15	WIRED LUPFIL	ANDALTPUL- TER	Open-drain	output using alte	ernate control w	rith filter and pull	up							
27:24	MODE6	0x0	RW	Pin 6 Mode											
	Configure mod	e for pin 6.													
	Value	Mode		Description											
	0	DISABI	LED	Input disabled. Pullup if DOUT is set.											
	1	INPUT		Input enable	ed. Filter if DOU	T is set									
	2	INPUT	PULL	Input enable	ed. DOUT deterr	mines pull direct	ion								
	3	INPUTI	PULLFILTER	Input enabled with filter. DOUT determines pull direction											

Bit	Name	Reset Access	Description
	4	PUSHPULL	Push-pull output
	5	PUSHPULLALT	Push-pull using alternate control
	6	WIREDOR	Wired-or output
	7	WIREDORPULLDOWN	Wired-or output with pull-down
	8	WIREDAND	Open-drain output
	9	WIREDANDFILTER	Open-drain output with filter
	10	WIREDANDPULLUP	Open-drain output with pullup
	11	WIREDANDPULLUP- FILTER	Open-drain output with filter and pullup
	12	WIREDANDALT	Open-drain output using alternate control
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter
	14	WIREDANDALTPULL- UP	Open-drain output using alternate control with pullup
	15	WIREDANDALTPUL- LUPFILTER	Open-drain output using alternate control with filter and pullup
23:20	MODE5	0x0 RW	Pin 5 Mode
	Configure mode for pi	n 5.	
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set
	2	INPUTPULL	Input enabled. DOUT determines pull direction
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction
	4	PUSHPULL	Push-pull output
	5	PUSHPULLALT	Push-pull using alternate control
	6	WIREDOR	Wired-or output
	7	WIREDORPULLDOWN	Wired-or output with pull-down
	8	WIREDAND	Open-drain output
	9	WIREDANDFILTER	Open-drain output with filter
	10	WIREDANDPULLUP	Open-drain output with pullup
	11	WIREDANDPULLUP- FILTER	Open-drain output with filter and pullup
	12	WIREDANDALT	Open-drain output using alternate control
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter
	14	WIREDANDALTPULL- UP	Open-drain output using alternate control with pullup
	15	WIREDANDALTPUL- LUPFILTER	Open-drain output using alternate control with filter and pullup

Bit	Name	Reset	Access	Description
19:16	MODE4	0x0	RW	Pin 4 Mode
	Configure mode for pir	n 4.		
	Value	Mode		Description
	0	DISABLED		Input disabled. Pullup if DOUT is set.
	1	INPUT		Input enabled. Filter if DOUT is set
	2	INPUTPULL		Input enabled. DOUT determines pull direction
	3	INPUTPULLFI	LTER	Input enabled with filter. DOUT determines pull direction
	4	PUSHPULL		Push-pull output
	5	PUSHPULLAL	_T	Push-pull using alternate control
	6	WIREDOR		Wired-or output
	7	WIREDORPU	LLDOWN	Wired-or output with pull-down
	8	WIREDAND		Open-drain output
	9	WIREDANDFI	LTER	Open-drain output with filter
	10	WIREDANDPL	ULLUP	Open-drain output with pullup
	11	WIREDANDPU FILTER	ULLUP-	Open-drain output with filter and pullup
	12	WIREDANDAL	LT	Open-drain output using alternate control
	13	WIREDANDAL	LTFILTER	Open-drain output using alternate control with filter
	14	WIREDANDAL UP	LTPULL-	Open-drain output using alternate control with pullup
	15	WIREDANDAL LUPFILTER	LTPUL-	Open-drain output using alternate control with filter and pullup
15:12	MODE3	0x0	RW	Pin 3 Mode
	Configure mode for pir	n 3.		
	Value	Mode		Description
	0	DISABLED		Input disabled. Pullup if DOUT is set.
	1	INPUT		Input enabled. Filter if DOUT is set
	2	INPUTPULL		Input enabled. DOUT determines pull direction
	3	INPUTPULLFI	LTER	Input enabled with filter. DOUT determines pull direction
	4	PUSHPULL		Push-pull output
	5	PUSHPULLAL	_T	Push-pull using alternate control
	6	WIREDOR		Wired-or output
	7	WIREDORPU	LLDOWN	Wired-or output with pull-down
	8	WIREDAND		Open-drain output
	9	WIREDANDFI	LTER	Open-drain output with filter
	10	WIREDANDPL	ULLUP	Open-drain output with pullup
	11	WIREDANDPI FILTER	ULLUP-	Open-drain output with filter and pullup

Bit	Name	Reset	Access	Description								
	12	WIREDANDAL	Т	Open-drain output using alternate control								
	13	WIREDANDAL	TFILTER	Open-drain output using alternate control with filter								
	14	WIREDANDAL UP	TPULL-	Open-drain output using alternate control with pullup								
	15	WIREDANDAL LUPFILTER	TPUL-	Open-drain output using alternate control with filter and pullup								
11:8	MODE2	0x0	RW	Pin 2 Mode								
	Configure mode for pi	n 2.										
	Value	Mode		Description								
	0	DISABLED		Input disabled. Pullup if DOUT is set.								
	1	INPUT		Input enabled. Filter if DOUT is set								
	2	INPUTPULL		Input enabled. DOUT determines pull direction								
	3	INPUTPULLFIL	_TER	Input enabled with filter. DOUT determines pull direction								
	4	PUSHPULL		Push-pull output								
	5	PUSHPULLAL	Т	Push-pull using alternate control								
	6	WIREDOR		Wired-or output								
	7	WIREDORPUL	LDOWN	Wired-or output with pull-down								
	8	WIREDAND		Open-drain output								
	9	WIREDANDFIL	TER	Open-drain output with filter								
	10	WIREDANDPL	JLLUP	Open-drain output with pullup								
	11	WIREDANDPU FILTER	JLLUP-	Open-drain output with filter and pullup								
	12	WIREDANDAL	T	Open-drain output using alternate control								
	13	WIREDANDAL	TFILTER	Open-drain output using alternate control with filter								
	14	WIREDANDAL UP	TPULL-	Open-drain output using alternate control with pullup								
	15	WIREDANDAL LUPFILTER	TPUL-	Open-drain output using alternate control with filter and pullup								
7:4	MODE1	0x0	RW	Pin 1 Mode								
	Configure mode for pi	n 1.										
	Value	Mode		Description								
	0	DISABLED		Input disabled. Pullup if DOUT is set.								
	1	INPUT		Input enabled. Filter if DOUT is set								
	2	INPUTPULL		Input enabled. DOUT determines pull direction								
	3	INPUTPULLFIL	_TER	Input enabled with filter. DOUT determines pull direction								
	4	PUSHPULL F		Push-pull output								
	5	PUSHPULLAL	Т	Push-pull using alternate control								
	6	WIREDOR		Wired-or output								

3it	Name	Reset Access	Description							
	7	WIREDORPULLDOWN	Wired-or output with pull-down							
	8	WIREDAND	Open-drain output							
	9	WIREDANDFILTER	Open-drain output with filter							
	10	WIREDANDPULLUP	Open-drain output with pullup							
	11	WIREDANDPULLUP- FILTER	Open-drain output with filter and pullup							
	12	WIREDANDALT	Open-drain output using alternate control							
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter							
	14	WIREDANDALTPULL- UP	Open-drain output using alternate control with pullup							
	15	WIREDANDALTPUL- LUPFILTER	Open-drain output using alternate control with filter and pullup							
:0	MODE0	0x0 RW	Pin 0 Mode							
	Configure mode for pin 0.									
	Value	Mode	Description							
			· · · · · · · · · · · · · · · · · · ·							
	0	DISABLED	Input disabled. Pullup if DOUT is set.							
			Input enabled. Filter if DOUT is set							
	2	INPUTPULL	Input enabled. DOUT determines pull direction							
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction							
	4	PUSHPULL	Push-pull output							
	5	PUSHPULLALT	Push-pull using alternate control							
	6	WIREDOR	Wired-or output							
	7	WIREDORPULLDOWN	Wired-or output with pull-down							
	8	WIREDAND	Open-drain output							
	9	WIREDANDFILTER	Open-drain output with filter							
	10	WIREDANDPULLUP	Open-drain output with pullup							
	11	WIREDANDPULLUP- FILTER	Open-drain output with filter and pullup							
	12	WIREDANDALT	Open-drain output using alternate control							
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter							
	14	WIREDANDALTPULL- UP	Open-drain output using alternate control with pullup							
	15	WIREDANDALTPUL- LUPFILTER	Open-drain output using alternate control with filter and pullup							

32.5.3 GPIO_Px_MODEH - Port Pin Mode High Register

Offset	Bit Position																															
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset	000				0x0				0x0			0x0			0x0				0x0			0x0										
Access	RW &			RW RW				RW			RW			RW			RW			RW												
Name	MODE15				ZEI CON	_		MODE13				MODE12			MODE11			MODE10			МОБЕ9			MODE8								

Name	МОБ	МОБ	MOD	МОБ	МОБ	MOD	MOD	MOD					
Bit	Name	Reset	Access	Description	1								
31:28	MODE15	0x0	RW	Pin 15 Mod	Pin 15 Mode								
	Configure mod	e for pin 15.											
	Value	Mode		Description									
	0	DISABLE	:D	Input disable	ed. Pullup if DO	UT is set.							
	1	INPUT		Input enable	ed. Filter if DOU	T is set							
	2	INPUTPU	JLL	Input enable	ed. DOUT deter	mines pull direct	tion						
	3	INPUTPL	JLLFILTER	Input enable	ed with filter. DC	OUT determines	pull direction						
	4	PUSHPU	ILL	Push-pull or	utput								
	5	PUSHPU	ILLALT	Push-pull us	Push-pull using alternate control								
	6	WIREDO	R	Wired-or output									
	7	WIREDO	RPULLDOWN	Wired-or output with pull-down									
	8	WIREDA	ND	Open-drain output									
	9	WIREDA	NDFILTER	Open-drain output with filter									
	10	WIREDA	NDPULLUP	Open-drain	output with pull	up							
	11	WIREDA FILTER	NDPULLUP-	Open-drain output with filter and pullup									
	12	WIREDA	NDALT	Open-drain output using alternate control									
	13	WIREDA	NDALTFILTEF	Open-drain	Open-drain output using alternate control with filter								
	14	WIREDA UP	NDALTPULL-	Open-drain output using alternate control with pullup									
	15	WIREDANDALTPUL- LUPFILTER		Open-drain output using alternate control with filter and pullup									
27:24	MODE14	0x0	RW	Pin 14 Mod	е								
	Configure mod	e for pin 14.											
	Value	Mode		Description									
	0	DISABLE	:D	Input disabled. Pullup if DOUT is set.									
	1	INPUT		Input enabled. Filter if DOUT is set									
	2	INPUTPL	JLL	Input enable	Input enabled. DOUT determines pull direction								
	3	INPUTPU	JLLFILTER	Input enable	ed with filter. DC	OUT determines	pull direction						

Bit	Name	Reset Access	Description
	4	PUSHPULL	Push-pull output
	5	PUSHPULLALT	Push-pull using alternate control
	6	WIREDOR	Wired-or output
	7	WIREDORPULLDOWN	Wired-or output with pull-down
	8	WIREDAND	Open-drain output
	9	WIREDANDFILTER	Open-drain output with filter
	10	WIREDANDPULLUP	Open-drain output with pullup
	11	WIREDANDPULLUP- FILTER	Open-drain output with filter and pullup
	12	WIREDANDALT	Open-drain output using alternate control
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter
	14	WIREDANDALTPULL- UP	Open-drain output using alternate control with pullup
	15	WIREDANDALTPUL- LUPFILTER	Open-drain output using alternate control with filter and pullup
3:20	MODE13	0x0 RW	Pin 13 Mode
	Configure mode for pi	n 13.	
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set
	2	INPUTPULL	Input enabled. DOUT determines pull direction
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction
	4	PUSHPULL	Push-pull output
	5	PUSHPULLALT	Push-pull using alternate control
	6	WIREDOR	Wired-or output
	7	WIREDORPULLDOWN	Wired-or output with pull-down
	8	WIREDAND	Open-drain output
	9	WIREDANDFILTER	Open-drain output with filter
	10	WIREDANDPULLUP	Open-drain output with pullup
	11	WIREDANDPULLUP- FILTER	Open-drain output with filter and pullup
	12	WIREDANDALT	Open-drain output using alternate control
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter
	14	WIREDANDALTPULL- UP	Open-drain output using alternate control with pullup
	15	WIREDANDALTPUL- LUPFILTER	Open-drain output using alternate control with filter and pullup

Bit	Name	Reset	Access	Description
19:16	MODE12	0x0	RW	Pin 12 Mode
	Configure mode for pi	n 12.		
	Value	Mode		Description
	0	DISABLED		Input disabled. Pullup if DOUT is set.
	1	INPUT		Input enabled. Filter if DOUT is set
	2	INPUTPULL		Input enabled. DOUT determines pull direction
	3	INPUTPULLFI	LTER	Input enabled with filter. DOUT determines pull direction
	4	PUSHPULL		Push-pull output
	5	PUSHPULLAL	.T	Push-pull using alternate control
	6	WIREDOR		Wired-or output
	7	WIREDORPUI	LLDOWN	Wired-or output with pull-down
	8	WIREDAND		Open-drain output
	9	WIREDANDFI	LTER	Open-drain output with filter
	10	WIREDANDPL	JLLUP	Open-drain output with pullup
	11	WIREDANDPU FILTER	JLLUP-	Open-drain output with filter and pullup
	12	WIREDANDAL	_T	Open-drain output using alternate control
	13	WIREDANDAL	TFILTER	Open-drain output using alternate control with filter
	14	WIREDANDAL UP	_TPULL-	Open-drain output using alternate control with pullup
	15	WIREDANDAL LUPFILTER	_TPUL-	Open-drain output using alternate control with filter and pullup
15:12	MODE11	0x0	RW	Pin 11 Mode
	Configure mode for pi	n 11.		
	Value	Mode		Description
	0	DISABLED		Input disabled. Pullup if DOUT is set.
	1	INPUT		Input enabled. Filter if DOUT is set
	2	INPUTPULL		Input enabled. DOUT determines pull direction
	3	INPUTPULLFI	LTER	Input enabled with filter. DOUT determines pull direction
	4	PUSHPULL		Push-pull output
	5	PUSHPULLAL	.T	Push-pull using alternate control
	6	WIREDOR		Wired-or output
	7	WIREDORPUI	LLDOWN	Wired-or output with pull-down
	8	WIREDAND		Open-drain output
	9	WIREDANDFI	LTER	Open-drain output with filter
	10	WIREDANDPL	JLLUP	Open-drain output with pullup
	11	WIREDANDPU FILTER	JLLUP-	Open-drain output with filter and pullup

				· · · · ·							
Bit	Name	Reset	Access	Description							
	12	WIREDANDAL	Т	Open-drain output using alternate control							
	13	WIREDANDAL	TFILTER	Open-drain output using alternate control with filter							
	14	WIREDANDAL UP	TPULL-	Open-drain output using alternate control with pullup							
	15	WIREDANDAL LUPFILTER	TPUL-	Open-drain output using alternate control with filter and pullup							
11:8	MODE10	0x0	RW	Pin 10 Mode							
	Configure mode for pi	n 10.									
	Value	Mode		Description							
	0	DISABLED		Input disabled. Pullup if DOUT is set.							
	1	INPUT		Input enabled. Filter if DOUT is set							
	2	INPUTPULL		Input enabled. DOUT determines pull direction							
	3	INPUTPULLFI	LTER	Input enabled with filter. DOUT determines pull direction							
	4	PUSHPULL		Push-pull output							
	5	PUSHPULLAL	.T	Push-pull using alternate control							
	6	WIREDOR		Wired-or output							
	7	WIREDORPUL	LLDOWN	Wired-or output with pull-down							
	8	WIREDAND		Open-drain output							
	9	WIREDANDFI	LTER	Open-drain output with filter							
	10	WIREDANDPU	JLLUP	Open-drain output with pullup							
	11	WIREDANDPL FILTER	JLLUP-	Open-drain output with filter and pullup							
	12	WIREDANDAL	_T	Open-drain output using alternate control							
	13	WIREDANDAL	TFILTER	Open-drain output using alternate control with filter							
	14	WIREDANDAL UP	TPULL-	Open-drain output using alternate control with pullup							
	15	WIREDANDAL LUPFILTER	TPUL-	Open-drain output using alternate control with filter and pullup							
7:4	MODE9	0x0	RW	Pin 9 Mode							
	Configure mode for pi	n 9.									
	Value	Mode DISABLED INPUT		Description							
	0			Input disabled. Pullup if DOUT is set.							
	1			Input enabled. Filter if DOUT is set							
	2	INPUTPULL		Input enabled. DOUT determines pull direction							
	3	INPUTPULLFI	LTER	Input enabled with filter. DOUT determines pull direction							
	4	PUSHPULL		Push-pull output							
	5	PUSHPULLAL	.Т	Push-pull using alternate control							
	6	WIREDOR		Wired-or output							

Bit	Name	Reset Access	Description
	7	WIREDORPULLDOWN	Wired-or output with pull-down
	8	WIREDAND	Open-drain output
	9	WIREDANDFILTER	Open-drain output with filter
	10	WIREDANDPULLUP	Open-drain output with pullup
	11	WIREDANDPULLUP- FILTER	Open-drain output with filter and pullup
	12	WIREDANDALT	Open-drain output using alternate control
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter
	14	WIREDANDALTPULL- UP	Open-drain output using alternate control with pullup
	15	WIREDANDALTPUL- LUPFILTER	Open-drain output using alternate control with filter and pullup
:0	MODE8	0x0 RW	Pin 8 Mode
	Configure mode for p	in 8.	
			- Description
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set
	2	INPUTPULL	Input enabled. DOUT determines pull direction
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction
	4	PUSHPULL	Push-pull output
	5	PUSHPULLALT	Push-pull using alternate control
	6	WIREDOR	Wired-or output
	7	WIREDORPULLDOWN	Wired-or output with pull-down
	8	WIREDAND	Open-drain output
	9	WIREDANDFILTER	Open-drain output with filter
	10	WIREDANDPULLUP	Open-drain output with pullup
	11	WIREDANDPULLUP- FILTER	Open-drain output with filter and pullup
	12	WIREDANDALT	Open-drain output using alternate control
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter
	14	WIREDANDALTPULL- UP	Open-drain output using alternate control with pullup
	15	WIREDANDALTPUL- LUPFILTER	Open-drain output using alternate control with filter and pullup

32.5.4 GPIO_Px_DOUT - Port Data Out Register

Offset		Bit P	osition
0x00C	330 330 25 28 28 28 28 28 28 28 28 28 28 28 28 28	24 22 23 23 24 19 19 19 14 14 14 14 14 14 14 14 14 14 14 14 14	2 4 5 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
Reset			0000x0
Access			R&
Name			DOUT

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	DOUT	0x0000	RW	Data Out
	Data output on pin.			

32.5.5 GPIO_Px_DOUTTGL - Port Data Out Toggle Register

Offset															Ві	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	5	4	က	2	_	0
Reset		000000000000000000000000000000000000000																														
Access																								7	<u>-</u>							
Name																								<u>}</u>	DOOLIGE							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	DOUTTGL	0x0000	W1	Data Out Toggle
	Write bits to 1 to togg	le correspondin	g bits in GF	PIO_Px_DOUT. Bits written to 0 will have no effect.

32.5.6 GPIO_Px_DIN - Port Data in Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•		•	•	•	•	•					•	,		•			•		•			00000	00000		•	•				•
Access																								۵	۷							
Name																								2								

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	DIN	0x0000	R	Data in
	Port data input.			

32.5.7 GPIO_Px_PINLOCKN - Port Unlocked Pins Register

Offset															Ві	it Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset			•		•		•																	L L	L							
Access																								Ž	≩ Ƴ							
Name																									PINCON							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	PINLOCKN	0xFFFF	RW	Unlocked Pins
	Shows unlocked pi	ns in the port. To	o lock pin n,	clear bit n. The pin is then locked until reset.

32.5.8 GPIO_Px_OVTDIS - Over Voltage Disable for All Modes

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	3	2	_	0
Reset																									000000							
Access																								Ì	≩ Ƴ							-
Name																								0	SICINO							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	OVTDIS	0x0000	RW	Disable Over Voltage Capability
	Disabling the Over Vo	oltage capability	will provide	e less distortion on analog inputs.

32.5.9 GPIO_EXTIPSELL - External Interrupt Port Select Low Register

Offset															Bi	t Po	siti	on														
0x400	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		2	Š	•		2	2			2	2			2	2			2	OX O			2	S S			5	2	•		2	2	
Access		2	<u>}</u>			2	Ž			2	Ž			2	<u>}</u>			<u> </u>	<u>}</u>			<u> </u>	<u>}</u>			2	2			\ 0	2	
Name		TVTIDOE! 7	_			S LIDOUT N				EVTIDOE! 6	I I I OEL			EVTIDOE! A	_			EXTIDOE! 3	ILABEL			CYTIDOGILO	T SEL			L I I DOLL 1	A III SEL			CYTIDOGITO	7 5 7	

	EXT	EXT	EXT	X	<u> X</u>	EX	EX	EXT						
Bit	Name	Reset	Access	Description	n									
31:28	EXTIPSEL7	0x0	RW	External In	terrupt 7 Port S	Select								
	Select input po	ort for external in	iterrupt 7.											
	Value	Mode	-	Description										
	0	PORTA	4	Port A group selected for external interrupt 7										
	1	PORTE	3	Port B grou	p selected for ex	ternal interrupt 7	7							
	2	PORTO	2	Port C grou	p selected for ex	kternal interrupt	7							
	3	PORT)	Port D grou	p selected for ex	kternal interrupt	7							
	4	PORTE	Ξ	Port E grou	p selected for ex	ternal interrupt 7	7							
	5	PORTE	=	Port F grou	p selected for ex	ternal interrupt 7	7							
27:24	EXTIPSEL6	0x0	RW	External In	terrupt 6 Port S	Select								
	Select input po	ort for external in	iterrupt 6.											
	Value	Mode		Description										
	0	PORTA	A	Port A grou	p selected for ex	cternal interrupt 6	3							
	1	PORTE	3	Port B grou	p selected for ex	cternal interrupt 6	3							
	2	PORTO	2	Port C grou	p selected for ex	kternal interrupt 6	3							
	3	PORTI)	Port D grou	p selected for ex	kternal interrupt 6	3							
	4	PORTE	Ξ	Port E grou	p selected for ex	cternal interrupt 6	3							
	5	PORTE	=	Port F grou	p selected for ex	ternal interrupt 6	6							
23:20	EXTIPSEL5	0x0	RW	External In	terrupt 5 Port S	Select								
	Select input po	ort for external in	iterrupt 5.											
	Value	Mode		Description										
	0	PORTA	4	Port A grou	p selected for ex	ternal interrupt	5							
	1	PORTE	3	Port B grou	p selected for ex	ternal interrupt	5							
	2	PORTO	2	Port C grou	p selected for ex	kternal interrupt t	5							
	3	PORTI)	Port D grou	p selected for ex	kternal interrupt t	5							
	4	PORTE	Ξ	Port E group selected for external interrupt 5										

Bit	Name	Reset	Access	Description
	5	PORTF		Port F group selected for external interrupt 5
19:16	EXTIPSEL4	0x0	RW	External Interrupt 4 Port Select
	Select input port for	r external interrup	t 4.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 4
	1	PORTB		Port B group selected for external interrupt 4
	2	PORTC		Port C group selected for external interrupt 4
	3	PORTD		Port D group selected for external interrupt 4
	4	PORTE		Port E group selected for external interrupt 4
	5	PORTF		Port F group selected for external interrupt 4
15:12	EXTIPSEL3	0x0	RW	External Interrupt 3 Port Select
	Select input port for	r external interrup	t 3.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 3
	1	PORTB		Port B group selected for external interrupt 3
	2	PORTC		Port C group selected for external interrupt 3
	3	PORTD		Port D group selected for external interrupt 3
	4	PORTE		Port E group selected for external interrupt 3
	5	PORTF		Port F group selected for external interrupt 3
11:8	EXTIPSEL2	0x0	RW	External Interrupt 2 Port Select
	Select input port for	r external interrup	t 2.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 2
	1	PORTB		Port B group selected for external interrupt 2
	2	PORTC		Port C group selected for external interrupt 2
	3	PORTD		Port D group selected for external interrupt 2
	4	PORTE		Port E group selected for external interrupt 2
	5	PORTF		Port F group selected for external interrupt 2
7:4	EXTIPSEL1	0x0	RW	External Interrupt 1 Port Select
	Select input port for	r external interrup	t 1.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 1
	1	PORTB		Port B group selected for external interrupt 1
	2	PORTC		Port C group selected for external interrupt 1
	3	PORTD		Port D group selected for external interrupt 1

Bit	Name	Reset	Access	Description
	4	PORTE		Port E group selected for external interrupt 1
	5	PORTF		Port F group selected for external interrupt 1
3:0	EXTIPSEL0	0x0	RW	External Interrupt 0 Port Select
	Select input port f	or external interrupt	0.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 0
	1	PORTB		Port B group selected for external interrupt 0
	2	PORTC		Port C group selected for external interrupt 0
	3	PORTD		Port D group selected for external interrupt 0
	4	PORTE		Port E group selected for external interrupt 0
	5	PORTF		Port F group selected for external interrupt 0

Offset															Bit	Pos	sitio	n														
0x404	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	9	15	4	5 3	12	7	10	တ	œ	7	9	5	4	က	2	_	0
Reset		ć	S S			>	3	•	<u> </u>	>	0x0			>	3		0×0				0x0				0×0			0x0				
Access		RW RW				RW				RW RW			RW			Z.																
Name	EXTIPSEL15			EXTIPSEL14			EXTIPSEL13				EXTIPSEL12				EXTIPSEL11				EXTIDSEI 10					EALIPOELS			FXTIPSELS					
Bit	Na	me					Re	set			Ac	cess	s [Desc	cripti	on																
31:28	EX	TIP	SEL	15			0x0)			RW	/	E	exte	rnal	Inte	rru	ot 1	5 Po	rt s	Sele	ct										
	Sel	lect	inpu	ıt po	rt fo	r ex	tern	al in	terrı	upt 1	15.																					

Bit	Name	Reset	Access	Description
31:28	EXTIPSEL15	0x0	RW	External Interrupt 15 Port Select
	Select input port for	external interrupt	15.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 15
	1	PORTB		Port B group selected for external interrupt 15
	2	PORTC		Port C group selected for external interrupt 15
	3	PORTD		Port D group selected for external interrupt 15
	4	PORTE		Port E group selected for external interrupt 15
	5	PORTF		Port F group selected for external interrupt 15
27:24	EXTIPSEL14	0x0	RW	External Interrupt 14 Port Select
	Select input port for	external interrupt	14.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 14
	1	PORTB		Port B group selected for external interrupt 14
	2	PORTC		Port C group selected for external interrupt 14
	3	PORTD		Port D group selected for external interrupt 14
	4	PORTE		Port E group selected for external interrupt 14
	5	PORTF		Port F group selected for external interrupt 14
23:20	EXTIPSEL13	0x0	RW	External Interrupt 13 Port Select
	Select input port for	external interrupt	13.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 13
	1	PORTB		Port B group selected for external interrupt 13
	2	PORTC		Port C group selected for external interrupt 13
	3	PORTD		Port D group selected for external interrupt 13
	4	PORTE		Port E group selected for external interrupt 13

Bit	Name	Reset	Access	Description
	5	PORTF		Port F group selected for external interrupt 13
19:16	EXTIPSEL12	0x0	RW	External Interrupt 12 Port Select
	Select input port for	external interrupt	: 12.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 12
	1	PORTB		Port B group selected for external interrupt 12
	2	PORTC		Port C group selected for external interrupt 12
	3	PORTD		Port D group selected for external interrupt 12
	4	PORTE		Port E group selected for external interrupt 12
	5	PORTF		Port F group selected for external interrupt 12
15:12	EXTIPSEL11	0x0	RW	External Interrupt 11 Port Select
	Select input port for	external interrupt	: 11.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 11
	1	PORTB		Port B group selected for external interrupt 11
	2	PORTC		Port C group selected for external interrupt 11
	3	PORTD		Port D group selected for external interrupt 11
	4	PORTE		Port E group selected for external interrupt 11
	5	PORTF		Port F group selected for external interrupt 11
11:8	EXTIPSEL10	0x0	RW	External Interrupt 10 Port Select
	Select input port for	external interrupt	: 10.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 10
	1	PORTB		Port B group selected for external interrupt 10
	2	PORTC		Port C group selected for external interrupt 10
	3	PORTD		Port D group selected for external interrupt 10
	4	PORTE		Port E group selected for external interrupt 10
	5	PORTF		Port F group selected for external interrupt 10
7:4	EXTIPSEL9	0x0	RW	External Interrupt 9 Port Select
	Select input port for	external interrupt	9.	
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 9
	1	PORTB		Port B group selected for external interrupt 9
	2	PORTC		Port C group selected for external interrupt 9
	3	PORTD		Port D group selected for external interrupt 9

Bit	Name	Reset	Access	Description
	4	PORTE		Port E group selected for external interrupt 9
	5	PORTF		Port F group selected for external interrupt 9
3:0	EXTIPSEL8	0x0	RW	External Interrupt 8 Port Select
	Select input port f	or external interrupt 8		
	Value	Mode		Description
	0	PORTA		Port A group selected for external interrupt 8
	1	PORTB		Port B group selected for external interrupt 8
	2	PORTC		Port C group selected for external interrupt 8
	3	PORTD		Port D group selected for external interrupt 8
	4	PORTE		Port E group selected for external interrupt 8
	5	PORTF		Port F group selected for external interrupt 8

32.5.11 GPIO_EXTIPINSELL - External Interrupt Pin Select Low Register

Offset								Bit Po	sition										
0x408	30	58 29	27	25	23	2 2 2	6 8	16	5 4	5 2	1 6	တ ထ	7 9	დ 4	г a	- 0			
Reset		0x3		0x2	'	0×1		000		0x3		0x2		100		000			
Access		R W		A W		Z.		₩ W		A N		Z.		\X		A W			
Name		EXTIPINSEL7		EXTIPINSEL6		EXTIPINSEL5		EXTIPINSEL4		EXTIPINSEL3		EXTIPINSEL2		EXTIPINSEL1		EXTIPINSELO			
Bit	Name			Reset		Acces	s Des	cription	1										
31:30	Reserv	⁄ed		To ens	ure c	ompatibili	y with fu	uture de	/ices, al	ways wi	rite bits	to 0. Mo	re inforr	nation ir	1.2 Co	nven-			
29:28	EXTIP	INSEL7		0x3		RW	Ext	ernal Int	terrupt	7 Pin Se	elect								
	Select	the pin t	for exter	nal inter	rupt 7	7.													
	Value			Mode			Des	cription											
	0			PIN4			Pin	4											
	1			PIN5			Pin												
	2 PIN6 3 PIN7					Pin Pin													
27:26	Reserv	red .		To ens tions	ure c	ompatibili	y with fu	vith future devices, always write bits to 0. More information in 1.2 Conven-											
25:24		INSEL6		0x2		RW	Exte	External Interrupt 6 Pin Select											
	Select	the pin f	for exter	nal inter	rupt 6	5.													
	Value			Mode				cription											
	0			PIN4			Pin												
	2			PIN5 PIN6			Pin Pin												
	3			PIN7			Pin												
23:22	Reserv	red			ure c	ompatibili			/ices, al	ways wi	rite bits	to 0. Mo	re inforr	nation ir	1.2 Co	nven-			
21:20	EXTIP	INSEL5		0x1		RW	Ext	ernal Int	terrupt	5 Pin Se	elect								
	Select	the pin f	for exter	nal inter	rupt (5.													
	Value			Mode			Des	cription											
	0			PIN4			Pin	4											
	1			PIN5			Pin												
	2			PIN6				Pin 6											
	3		PIN7			Pin	7												

Bit	Name	Reset	Access	Description						
19:18	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-						
17:16	EXTIPINSEL4	0x0	RW	External Interrupt 4 Pin Select						
	Select the pin for e	external interrupt	4.							
	Value	Mode		Description						
	0	PIN4		Pin 4						
	1	PIN5		Pin 5						
	2	PIN6		Pin 6						
	3	PIN7		Pin 7						
15:14	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-						
13:12	EXTIPINSEL3	0x3	RW	External Interrupt 3 Pin Select						
	Select the pin for e	external interrupt	3.							
	Value	Mode		Description						
	0	PIN0		Pin 0						
	1	PIN1		Pin 1						
	2	PIN2		Pin 2						
	3	PIN3		Pin 3						
11:10	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-						
9:8	EXTIPINSEL2	0x2	RW	External Interrupt 2 Pin Select						
	Select the pin for e	external interrupt	2.							
	Value	Mode		Description						
	0	PIN0		Pin 0						
	1	PIN1		Pin 1						
	2	PIN2		Pin 2						
	3	PIN3		Pin 3						
7:6	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Conven						
5:4	EXTIPINSEL1	0x1	RW	External Interrupt 1 Pin Select						
	Select the pin for e	external interrupt	1.							
	Value	Mode		Description						
	0	PIN0		Pin 0						
	1	PIN1		Pin 1						
	2	PIN2		Pin 2						
	3	PIN3		Pin 3						

Bit	Name	Reset	Access	Description
3:2	Reserved	To ensure o	compatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
1:0	EXTIPINSEL0	0x0	RW	External Interrupt 0 Pin Select
	Select the pin for e	external interrupt	0.	
	Value	Mode		Description
	0	PIN0		Pin 0
	1	PIN1		Pin 1
	2	PIN2		Pin 2
	3	PIN3		Pin 3

32.5.12 GPIO_EXTIPINSELH - External Interrupt Pin Select High Register

Offset								Bit Po	sition								
0x40C	31	29	27	25	23	21 20	6 8	17	5 4	13	1 10	o 8	7 9	ۍ 4	ω Q	- 0	
Reset		0x3	·	0x2		0x1		0x0		0x3		0x2		0X1		0x0	
Access		SX SX		S S		Z Š		§ S		Z.		SX SX		A Š		§ S	
Name		EXTIPINSEL15		EXTIPINSEL14		EXTIPINSEL13		EXTIPINSEL12		EXTIPINSEL11		EXTIPINSEL10		EXTIPINSEL9		EXTIPINSEL8	
Bit	Name			Reset		Acces	s Des	cription	1								
31:30	Resen	/ed		To ens	ure coi	mpatibili	ty with fu	uture de	∕ices, a	lways wi	ite bits t	o 0. Mo	re inforr	mation in	1.2 Co	onven-	
29:28	EXTIP	INSEL1	5	0x3		RW	Ext	ernal Int	terrupt	15 Pin S	Select						
	Select	the pin t	for exter	nal inter	rupt 15	5.											
	Value			Mode			Des	cription									
	0			PIN12			Pin	12									
	1			PIN13			Pin										
	2 PIN14 3 PIN15					Pin											
	3							15									
27:26	Reserv	/ed		To ens	ure coi	mpatibili	ty with fu	uture de	/ices, a	lways wi	ite bits t	o 0. Mo	re inforr	mation in	1.2 Co	onven-	
25:24		INSEL1		0x2		RW	Ext	ernal Int	terrupt	14 Pin S	Select						
	Select	the pin t	for exter	nal inter	rupt 14	ł. 											
	Value			Mode			Des	cription									
	0			PIN12			Pin										
	1			PIN13			Pin										
	3			PIN14 PIN15			Pin Pin										
									,								
23:22	Reserv	/ed		tions	ure coi	mpatibili	y with fu	iture de	/ices, a	lways wi	ite bits t	o 0. Mo	re intori	nation in	1.2 Cc	onven-	
21:20	EXTIP	INSEL1	3	0x1		RW	Ext	ernal Int	terrupt	13 Pin 9	Select						
	Select	the pin t	for exter	nal inter	rupt 13	3.											
	Value			Mode			Des	cription									
	0			PIN12			Pin	12									
	1			PIN13			Pin										
	2			PIN14				Pin 14									
	3			PIN15			Pin	Pin 15									

Bit	Name	Reset	Access	Description
19:18	Reserved	To ensure com tions	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
17:16	EXTIPINSEL12	0x0	RW	External Interrupt 12 Pin Select
	Select the pin for ex	xternal interrupt 12.		
	Value	Mode		Description
	0	PIN12		Pin 12
	1	PIN13		Pin 13
	2	PIN14		Pin 14
	3	PIN15		Pin 15
15:14	Reserved	To ensure com	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
13:12	EXTIPINSEL11	0x3	RW	External Interrupt 11 Pin Select
	Select the pin for ex	xternal interrupt 11.		
	Value	Mode		Description
	0	PIN8		Pin 8
	1	PIN9		Pin 9
	2	PIN10		Pin 10
	3	PIN11		Pin 11
11:10	Reserved	To ensure com	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
9:8	EXTIPINSEL10	0x2	RW	External Interrupt 10 Pin Select
	Select the pin for ex	xternal interrupt 10.		
	Value	Mode		Description
	0	PIN8		Pin 8
	1	PIN9		Pin 9
	2	PIN10		Pin 10
	3	PIN11		Pin 11
7:6	Reserved	To ensure com	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
5:4	EXTIPINSEL9	0x1	RW	External Interrupt 9 Pin Select
	Select the pin for ex	xternal interrupt 9.		
	Value	Mode		Description
	0	PIN8		Pin 8
	1	PIN9		Pin 9
	2	PIN10		Pin 10
	3	PIN11		Pin 11

Bit	Name	Reset	Access	Description
3:2	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
1:0	EXTIPINSEL8	0x0	RW	External Interrupt 8 Pin Select
	Select the pin for e	xternal interrupt 8	3.	
	Value	Mode		Description
	0	PIN8		Pin 8
	1	PIN9		Pin 9
	2	PIN10		Pin 10
	3	PIN11		Pin 11

32.5.13 GPIO_EXTIRISE - External Interrupt Rising Edge Trigger Register

Offset															Bi	t Po	siti	on														
0x410	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	2	_	0
Reset			•		•															•				0	nnnnxn							
Access																								Ž	≥ Y							
Name																								ţ	EXIIRISE							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	EXTIRISE	0x0000	RW	External Interrupt N Rising Edge Trigger Enable
	Set bit n to enable to	riggering of exte	ernal interrup	t n on rising edge.
	Value	Description		
	EXTIRISE[n] = 0	Rising edge bled	trigger disa-	 -
	EXTIRISE[n] = 1	Rising edge bled	trigger ena-	

32.5.14 GPIO_EXTIFALL - External Interrupt Falling Edge Trigger Register

Offset															Bi	t Po	siti	on														
0x414	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	_	0
Reset																									000000							
Access																								i	≥ Y							
Name																								L L	EXIIFALL							
Bit	Na	me					Re	set			Ac	ces	s l	Des	crip	tion																
31:16	Re	serv	red				To tion		ure	com	pati	bility	y wi	th fu	ture	dev	rices	s, alı	way	's Wr	ite k	its t	o 0.	Мо	re ir	nfori	nati	on i	n 1	2 Co	nve	en-
15:0	EX	TIF	ALL				0x0	0000)		RV	/		Exte	erna	l Int	erru	ıpt l	N Fa	allin	g E	dge	Triç	gge	r En	abl	е					
	Se	t bit	n to	ena	able	trig	gerir	ng o	f ext	terna	al int	terru	ıpt r	on	falliı	ng e	dge															
	Va	lue					De	scrip	otior	1																						_
	EX	TIF	ALL[[n] =	0		Fal abl		edg	je tri	gge	r dis	3-																			
	EX	TIF	ALL[[n] =	: 1		Fal ble		edg	je tri	gge	r en	a-																			

32.5.15 GPIO_EXTILEVEL - External Interrupt Level Register

32.3.13	SPIO_EXTILEVEL - EX	dernai interrupt Le	avei Register	
Offset			E	Bit Position
0x418	31 39 29 29 27 27 27 26	22 23 24 27 27 27 27 27 27 27 27 27 27 27 27 27	19 19 7	2 9 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reset		0 000		0 0
Access		Mark Mark <td< th=""><th></th><th>Ž X </th></td<>		Ž X
Name		EM4WU9 EM4WU7 EM4WU6 EM4WU5	EM4WU3 EM4WU1 EM4WU1	EM4WU0
Bit	Name	Reset Ac	ccess Descri	iption
31:26	Reserved	To ensure compar tions	atibility with futur	re devices, always write bits to 0. More information in 1.2 Conven-
25	EM4WU9	0 RV	RW EM4 W	Vake Up Level for EM4WU9 Pin
24	Reserved	To ensure compar tions	atibility with futur	re devices, always write bits to 0. More information in 1.2 Conven-
23	EM4WU7	0 R\	RW EM4 W	Vake Up Level for EM4WU7 Pin
22	EM4WU6	0 R\	RW EM4 W	Vake Up Level for EM4WU6 Pin
21	EM4WU5	0 R\	RW EM4 W	Vake Up Level for EM4WU5 Pin
20	EM4WU4	0 R\	RW EM4 W	Vake Up Level for EM4WU4 Pin
19	EM4WU3	0 R\	RW EM4 W	Vake Up Level for EM4WU3 Pin
18	EM4WU2	0 R\	RW EM4 W	Vake Up Level for EM4WU2 Pin
17	EM4WU1	0 RV	RW EM4 W	Vake Up Level for EM4WU1 Pin

EM4 Wake Up Level for EM4WU0 Pin

RW

0

16

EM4WU0

32.5.16 GPIO_IF - Interrupt Flag Register

Offset	Bit Position
0x41C	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	00000x0
Access	α α
Name	EXT EXT

Bit	Name	Reset	Access	Description
31:16	EM4WU	0x0000	R	EM4 Wake Up Pin Interrupt Flag
	EM4 wake up Pir	n Interrupt flag.		
	Value	Description		
	0	Interrupt flag cle	eared	
	1	Interrupt flag se	t	- -
15:0	EXT	0x0000	R	External Pin Interrupt Flag
	Pin n external into	errupt flag.		
	Value	Description		
	0	External interrup cleared	ot flag	
	1	External interrup set	ot flag	_

32.5.17 GPIO_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x420	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	80	7	9	5	4	က	2	_	0
Reset		000000																							nnnnn							
Access		W1 0×0000																					3	<u> </u>								
Name									EINI4VV O															}	ΕΥΙ							

Bit	Name	Reset	Access	Description
31:16	EM4WU	0x0000	W1	Set EM4WU Interrupt Flag
	Write 1 to set the EM	4WU interrupt fla	ag	
15:0	EXT	0x0000	W1	Set EXT Interrupt Flag
	Write 1 to set the EXT	Γ interrupt flag		

32.5.18 GPIO_IFC - Interrupt Flag Clear Register

Offset															Bi	t Pc	sitio	on														
0x424	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset		000000																		•				nannan		•			•	•	<u>. </u>	
Access		(R)W1 0x000																				7,7	ر الا)									
Name		-																					<u>}</u>	- K								

Bit	Name	Reset	Access	Description
31:16	EM4WU	0x0000	(R)W1	Clear EM4WU Interrupt Flag
	Write 1 to clear the E (This feature must be	•	•	ing returns the value of the IF and clears the corresponding interrupt flags .
15:0	EXT	0x0000	(R)W1	Clear EXT Interrupt Flag
	Write 1 to clear the E feature must be enab	, ,		returns the value of the IF and clears the corresponding interrupt flags (This

32.5.19 GPIO_IEN - Interrupt Enable Register

Offset	Bit Position	ion
0x428	31 30 30 30 22 22 24 25 25 25 25 25 25 25 27 27 27 27 27 27 27 27 27 27 27 27 27	4 C C C C C C C C C C C C C C C C C C C
Reset	0000x0	0000×0
Access	X X	N
Name	EM4WU	Ä

Bit	Name	Reset	Access	Description
31:16	EM4WU	0x0000	RW	EM4WU Interrupt Enable
	Enable/disable the El	M4WU interrupt		
15:0	EXT	0x0000	RW	EXT Interrupt Enable
	Enable/disable the EX	XT interrupt		

32.5.20 GPIO_EM4WUEN - EM4 Wake Up Enable Register

Offset															Bi	t Po	ositi	on													
0x42C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1 0
Reset		00000×0																													
Access			AN CONTRACTOR OF THE CONTRACTO																												
Name								NAI IVI																							
								Ц	J																						
Bit	Na	me					Res		J		Ac	ces	s	Des	crip	tior	1														
Bit 31:16			UEN								Ac			Des EM4				Enal	ble												
	EM	I4W			ole E	EM4	0x0	set)	que	RV	/			Wa	ike	Up I			equ	est.										
	EM	I4WI			ole E	EM4	0x0	set)	que	RV	/	0 to	EM4	W able	ake EN	Up I			equ	est.										
	EN Wr	I4WI			ole E	EM4	0x0	set)	que	RV	/	0 to	EM4	able	e EM	Up I 14 w	ake	up r												
	EM Wr	I4WI			ole E	EM4	0x0	set)	que	RV	/	0 to	EM4 dis	able cript	e EM	Up I 14 w 4 wa	ake ike u	ıp o	n piı	า										

32.5.21 GPIO_ROUTEPEN - I/O Routing Pin Enable Register

Offset		Bit Position																														
0x440	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			'			•							•	•		'			•		<u>'</u>		•		'		'		_	_	_	_
Access																													₩ M	RW	₽	RW
Name																													TDIPEN	TDOPEN	SWDIOTMSPEN	SWCLKTCKPEN

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
3	TDIPEN	1	RW	JTAG Test Debug Input Pin Enable
	Enable JTAG TDI co	nnection to pin.		
2	TDOPEN	1	RW	JTAG Test Debug Output Pin Enable
	Enable JTAG TDO o	connection to pin	١.	
1	SWDIOTMSPEN	1	RW	Serial Wire Data and JTAG Test Mode Select Pin Enable
	can no longer be acc make sure you have	cessed by a deb at least a 3 sec	ugger. A re ond timeou	Select connection to pin. WARNING: When this pin is disabled, the device set will set the pin back to a default state as enabled. If you disable this pin, it at the start of you program code before you disable the pin. This way, the a reset before the pin is disabled.
0	SWCLKTCKPEN	1	RW	Serial Wire Clock and JTAG Test Clock Pin Enable
	accessed by a debu	gger. A reset wil	I set the pin the start of	to pin. WARNING: When this pin is disabled, the device can no longer be a back to a default state as enabled. If you disable this pin, make sure you you program code before you disable the pin. This way, the debugger will the pin is disabled.

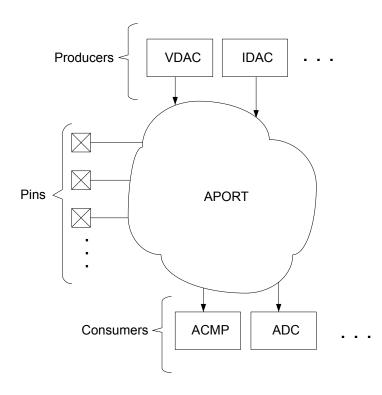
32.5.22 GPIO_INSENSE - Input Sense Register

Offset	Bit Position									
0x450	33 34 6 6 6 6 6 6 6 6 7 7 8 9 9 10 10	- 0								
Reset										
Access		W W								
Name		EM4WU INT								

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure contions	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
1	EM4WU	1	RW	EM4WU Interrupt Sense Enable
	Set this bit to enable	input sensing fo	r EM4WU i	interrupts.
0	INT	1	RW	Interrupt Sense Enable
	Set this bit to enable	input sensing fo	r interrupts	

32.5.23 GPIO_LOCK - Configuration Lock Register

Offset		Bit Position																														
0x454	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset							1		•						ı	1		1	ı		'		'		nnnxn			ı				
Access																									I A Y							
Name																								\L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LOCKNEY							


Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure c tions	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	LOCKKEY	0x0000	RWH	Configuration Lock Kev

Write any other value than the unlock code to lock MODEL, MODEH, CTRL, PINLOCKN, OVTDIS, EXTIPSELL,

Mode	Value	Description
Read Operation		
UNLOCKED	0	GPIO registers are unlocked
LOCKED	1	GPIO registers are locked
Write Operation		
LOCK	0	Lock GPIO registers
UNLOCK	0xA534	Unlock GPIO registers

33. APORT - Analog Port

Quick Facts

What?

The Analog Port (APORT) is a set of analog buses which are used to connect I/O pins to analog peripheral signals.

Why?

The APORT gives on-chip analog resources access to a large number of I/O pins, and provides the system designer with a high degree of routing flexibility.

How?

An analog peripheral requests a pad by simply configuring its input/output to use a channel on APORT. That selection becomes an APORT request where the APORT control switches the pad and the analog signal onto a common bus.

33.1 Introduction

APORT consists of wires, switches, and control logic needed to route signals between analog peripherals and I/O pins. On-chip clients can be either producers or consumers. Analog producers are active devices that drive current/voltage into an APORT, such as current or voltage DACs. Consumers are passive devices that monitor or react to the current/voltage routed to them via the APORT, such as ADCs or analog comparators (ACMP).

33.2 Features

- Pins are typically mapped to two different APORT buses
- Arbitration and conflict status provided to each APORT client

33.3 Functional Description

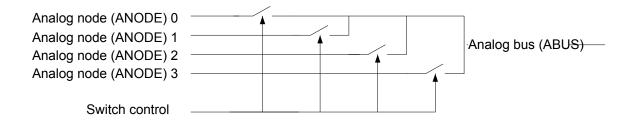


Figure 33.1. Analog Bus (ABUS)

An analog bus (ABUS) consists of analog switches connected to a common wire as shown in Figure 33.1 Analog Bus (ABUS) on page 1178. An APORT consists of multiple ABUSes. Since many clients can operate differentially, buses are grouped by pairs as X and Y. If a given client uses a single ABUS (e.g. single-ended ADC), X and Y are just labels to differentiate the two buses.

When operating differentially, most APORT clients require that one input be chosen from an X bus and the other from a Y bus. For example, the ACMP block will not allow both positive and negative inputs to be chosen from X buses.

33.3.1 I/O Pin Considerations

For external analog signals routed through the APORT, the maximum supported analog I/O voltage will typically be limited to the MIN(V_{ANALOGSUPPLY}, IOVDD) (where V_{ANALOGSUPPLY} is the supply pin powering the analog module). Practically, this means that if IOVDD=1.8 V, the maximum supported analog IO voltage on APORT-routed signals will be limited to 1.8 V, regardless of the analog module supply voltage.

33.3.2 APORT ABUS Naming

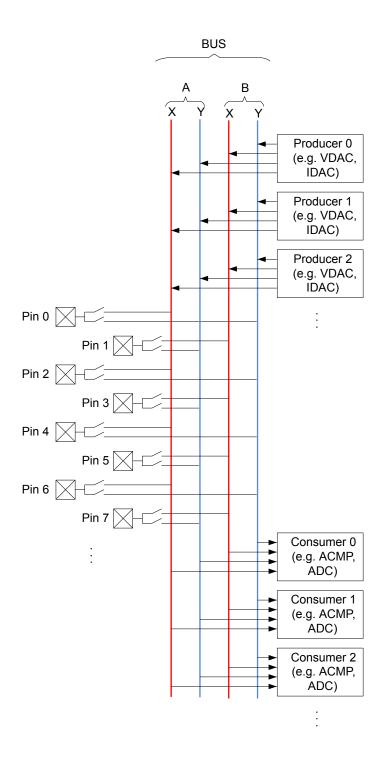


Figure 33.2. Conceptual APORT Structure

APORT ABUSes are prefixed with "BUS" and are grouped in pairs. Each pair is uniquely identified using a letter prefix ("A", "B", "C", etc.) followed by either a "X" or "Y" to identify the ABUS in the pair. For example, "BUSDX" decodes as: "BUS"=ABUS, "D"=pair, "X"=bus. Figure 33.2 Conceptual APORT Structure on page 1179 illustrates this organization.

APORT clients are generally described once in this reference manual regardless of its number of instances. For example, the ACMP client is described once, but the device could contain multiple instances of the ACMP. Because of this, for APORT client descriptions in this reference manual, the ABUS connections are generalized with the prefix "APORT" followed by a number (instead of the "BUS"

followed by a letter). It is possible that different instances of an APORT client connect to different ABUSes. For example, ACMPO APORT1X might connect to the ABUS BUSAX while ACMP1 APORT1X might connect to ABUS BUSCX. Refer to the APORT Client Map in the device data sheet to map the generalized APORT client bus name to an actual device ABUS. A given ABUS has multiple switches which need to be identified. The switches on a bus are specified with the ABUS connection ID followed by a channel ID. For example, channel switch 7 on a given APORT client might be given as APORT1XCH7. Not all APORT channels map to actual GPIO. Refer to the APORT Client Maps in the device data sheet for APORT to GPIO mapping.

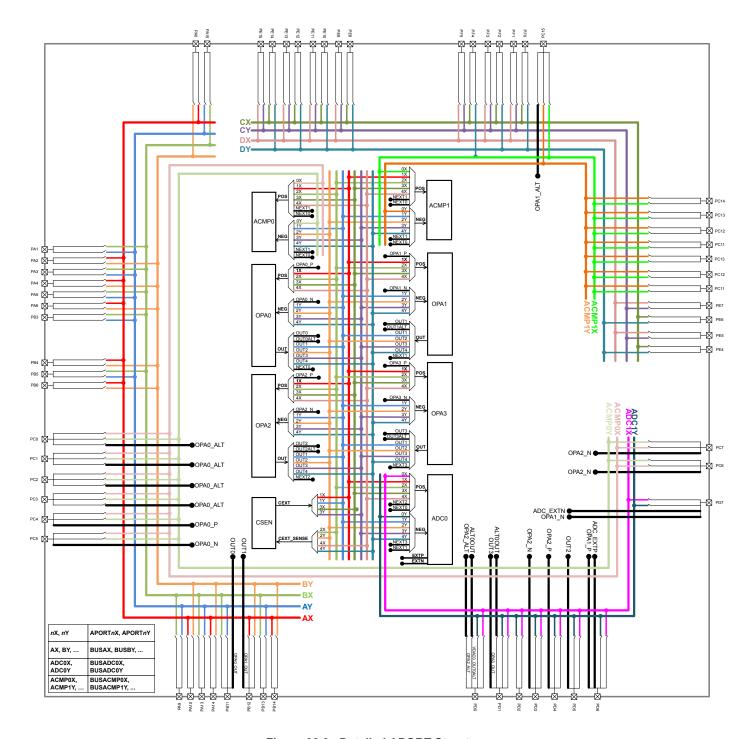


Figure 33.3. Detailed APORT Structure

Figure 33.3 Detailed APORT Structure on page 1180 shows all the possible routes between different peripherals and different pins via APORT BUS for the largest package of the EFM32TG11 device family. Note that, in the figure, the BUSxX and BUSxY are annotated as xX and xY, where x=A,B,C,D and the APORTnX and APORTnY are annotated as nX and nY, where n=1,2,3,4.

For example, the VDAC0_OUT0 APORT output 4Y can be routed to pin PF2 through BUSDY. The configuration required for this routing is as follows:

Set VDAC0_OPA0_OUT_APORTOUTSEL = APORT4YCH18. This selects the VDAC0/OPA0 APORT output 4Y and pin PF2.

Set VDAC0_OPA0_OUT_APORTOUTEN = 1 and VDAC0_OPA0_OUT_APORTOUTENPRS = 0. This enables the VDAC to ungate
it's output to BUSDY.

Another example, when ADC is configured to operate in single channel mode for differential inputs (see 27.3.3.1 Single Channel Mode for how to configure ADC in single channel mode), the positive ADC APORT input 2X and the negative ADC APORT input 2Y can be routed to pin PB5 and PB6 via BUSBX and BUSBY respectively with the following configuration:

- Set ADCn_SINGLECTRL_POSSEL = APORT2XCH21. This selects the pin PB5 for the positive input to the ADC.
- Set ADCn_SINGLECTRL_NEGSEL = APORT2YCH22. This selects the pin PB6 for the negative input to the ADC.

For smaller packages, not all GPIO pins are available. See the pinout sections of the device data sheet for pin availability on a specific device.

33.3.3 Managing ABUSes

The ABUSes of an APORT are shared resources. The user needs to be mindful of this in assigning I/O for different clients throughout the chip, as it is possible to have conflicts for a given ABUS. Each ABUS has an arbiter responsible for limiting the control over the ABUS to one and only one client. If multiple clients attempt to control an ABUS, the arbiter allows no client control over the ABUS and asserts a conflict signal to the clients. The user has the ability to check for such a conflict in each client's status, as well as generate an interrupt.

Having only one client control an ABUS is not the same as having only one user of an ABUS. It is possible for multiple clients to access a single ABUS, but requires all but one client to relinquish control of the ABUS. To do this, some clients have bits to disable bus mastership which are 0 by default. One example is the APORTXMASTERDIS bit in the ACMPn_CTRL. When set to 1, the client will not assert control of the APORT X BUS switches, but may still connect to an APORT X BUS that is controlled by another client.

For example, the ADC and ACMP both want to use the same pin on a particular ABUS the user might set the bus master disable bit to 1 for the ACMP. The ADC is the sole master of the switch configuration on that ABUS, so switches are configured using the configuration set in the ADC. When the ACMP channel is chosen on that same bus, the actual pin connection is dictated by the ADC settings for that bus.

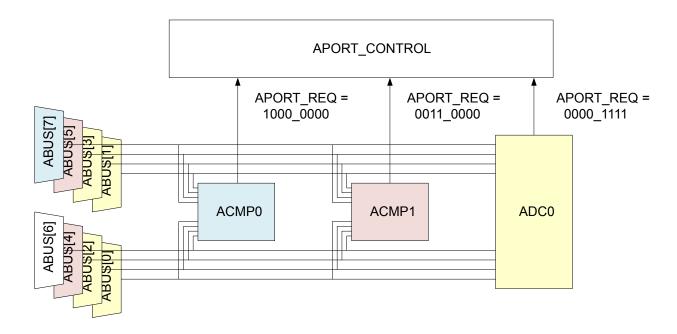


Figure 33.4. APORT Example 1

Figure 33.4 APORT Example 1 on page 1182 illustrates the sharing of APORT. For illustration purposes, each ABUS is identified by a numeric index (instead of BUSAX, BUSAY, BUSBX, etc.). Also, the requests from all the APORT clients are packed into a bit-vector named APORT_REQ to illustrate the request from the APORT Clients (instead of by name such as APORT1XREQ, APORT1YREQ, APORT2XREQ, etc.). In Figure 33.4 APORT Example 1 on page 1182, ABUS and client are the same color if the client has been granted the ABUS.

In Figure 33.4 APORT Example 1 on page 1182 ADC0 has requested ABUS[3:0], ACMP1 has requested ABUS[5:4], ACMP0 has requested ABUS[7], and ABUS[6] is unused. No APORT Client has requested the same ABUS as another, so there is no conflict.

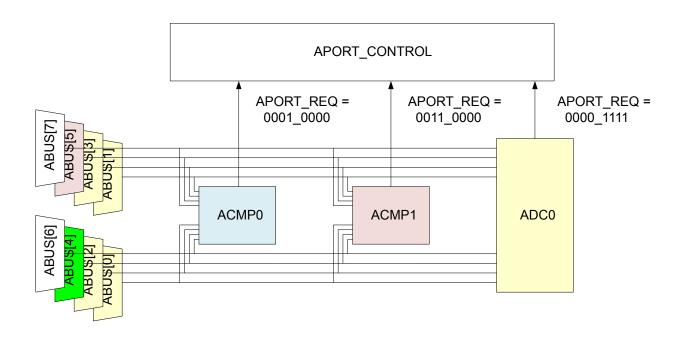


Figure 33.5. APORT Example 2: Bus Conflict

In Figure 33.5 APORT Example 2: Bus Conflict on page 1183 is a similar example to Figure 33.4 APORT Example 1 on page 1182, but now both ACMP0 and ACMP1 are requesting ABUS[4]. This is a configuration error, so APORT grants neither client ABUS[4]. The user must resolve the conflict before ABUS[4] is useable.

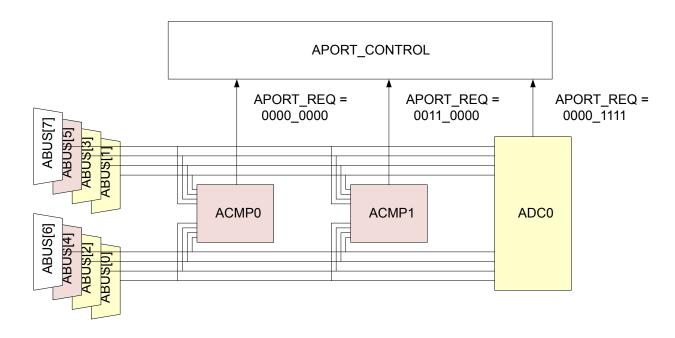
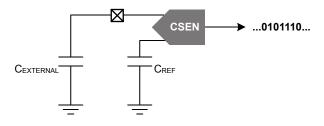



Figure 33.6. APORT Example 3: Sharing an ABUS

Figure 33.6 APORT Example 3: Sharing an ABUS on page 1183 illustrates ABUS sharing. Both ACMPs are configured identically, except ACMP0 has its APORTXMASTERDIS bit-field set to 1. There is only one APORT master for ABUS[5:4] in this case, so there is no conflict.

34. CSEN - Capacitive Sense Module

Quick Facts

What?

The capacitive sense (CSEN) module uses a capacitance-to-digital circuit to measure the capacitance of touch-sensitive switches. The module contains an advanced capacitance-to-digital converter that can be configured to take measurements on a single port pin or scan through a group of up to 64 port pins connected via the APORT buses. Port pins/channels can also be shorted together internally to measure the combined capacitance, lowering the required energy usage for wake-on-touch applications. Adjustable maximum capacitance allows for optimal dynamic range, while hardware accumulation and filtering reduce processor computation time. Interrupts can be generated when CSEN completes conversions or when the measured value crosses a threshold.

Why?

The CSEN module is designed to perform extremely low-power autonomous conversions of capacitive touch switches.

How?

The CSEN module uses charge timing techniques to compare external capacitance against internal reference capacitors.

34.1 Introduction

The capacitive sensing (CSEN) module uses a capacitance-to-digital circuit to determine the capacitance on an input pin. The module can take measurements from different physical pins using the APORT multiplexer. In addition, the module can measure multiple pins in sequence using the scan modes, or multiple pins at the same time (bonded together) using the multiple-channel measurement feature. CSEN is available in EM0, EM1, EM2 and EM3.



Figure 34.1. CSEN Overview

34.2 Features

- · Up to 64 Channels, connected via APORT buses.
- Single sample, continuous single sample, single scan and continuous scan modes supported.
- Support for both SAR and Delta Modulation conversions.
 - SAR conversions are programmable to resolutions of 10, 12, 14, or 16 bits.
 - Delta Modulation conversions support dynamic or fixed gain, and are programmable to resolutions of 10, 12, 14, or 16 bits.
- Supports channel bonding to monitor multiple channels, shorted internally, with a single conversion. The maximum number of channels to be shorted is limited by the maximum capacitance that can be measured by the analog core.
- Conversions triggered by software, PRS, or dedicated timer running from LFXO, LFRCO, or ULFRCO.
- Hardware accumulation of 1, 2, 4, 8, 16, 32, or 64 samples. The result can be right-shifted to the desired resolution or collected in a 22-bit accumulator for further processing by software.
- · Hardware exponential moving average (EMA) filter for candidate touch detection during low power autonomous operation.
- · Automatic threshold comparison with programmable polarity.
- Low-frequency noise filter to reject noise sources such as 50/60 Hz.
- DMA interface to collect accumulated samples in on-chip RAM. The DMA interface can also be used to program starting values for delta-modulation conversions. The DMA interface can run down to EM2.

34.3 Timing

Conversion timing for the CSEN block is flexible, with access to several clocks and conversion trigger sources.

34.3.1 Clocks

The CSEN module takes two external clock sources as input. The register interface is driven by the HFPERCLK source, allowing for fast access to the control and data for the block. The local timer is driven by the LFBCLK source. The CSEN block also contains an internal, low-energy conversion clock source (CLK_{CSEN}). Conversions are self-timed and the block only requires external clocks under certain circumstances.

For register access, HFPERCLK_{CSEN} must be enabled to the CSEN block in the CMU_HFPERCLKEN0 register. When register access is not required, this clock may be shut down for energy savings.

LFBCLK_{CSEN} is used by the local CSEN timer. It should be enabled to the CSEN block in the CMU_LFBCLKEN0 register any time the CSEN local timer is used as a conversion trigger.

34.3.2 Conversion Triggers

CSEN conversions can be triggered from one of three different sources, selected by CTRL_STM: a software register write, a PRS channel, or the local CSEN timer. The selected trigger source begins a conversion cycle. Depending on the selected conversion mode, one conversion trigger may generate one or many output words from the CSEN module. See 34.6 Converison Modes for more details on the CSEN output for each mode.

Software Triggered Conversions

When CTRL_STM is set to START, conversions are triggered by software. Software triggering is typically used when operating the CSEN block in a continuous mode to gather conversions as quickly as the converter allows. Software triggering may also be used in applications where a single conversion or one scan cycle is needed infrequently and sporadically by different software processes. When configured for software triggering, a write of the CMD_START bit to logic 1 initiates conversions.

PRS Triggered Conversions

When CTRL_STM is set to PRS, conversions are triggered via a PRS event. PRS triggers are typically used when it is necessary to synchronize CSEN conversions with other events in the system. For example, the LETIMER may be used in EM2 to initiate a CSEN scan operation and other events at the same time. A number of different PRS channels may be configured as the trigger source. The specific PRS channel to be used as a trigger source is selected in the PRSSEL register.

CSEN Timer Triggered Conversions

When CTRL_STM is set to TIMER, a local 8-bit CSEN timer is used to trigger conversions. The local timer is typically used in conjunction with non-continuous conversion modes to provide periodic conversion triggers at slow sampling rates. The local timer is clocked from LFBCLK_{CSEN}, and configured with the TIMCTRL register. The CSEN timer has a local prescaler (set by the TIMCTRL_PCPRESC field), which divides the LFBCLK_{CSEN} further. The TIMCTRL_PCTOP field sets the reload value for the CSEN timer. The CSEN timer counts down for the number of clocks specified in TIMCTRL_PCTOP. When the counter reaches zero, a conversion cycle is triggered and the timer is reloaded.

34.3.3 Shutdown and Warmup

Many target applications for CSEN require low power operation and infrequent sampling. By default, the converter will power down when it is not in use to save energy. Upon receiving a conversion trigger, the CSEN block will power on and wait for (3 + TIMCTRL_WARMPCNT) CLK_{CSEN} clock cycles before starting conversions.

CTRL_WARMUPMODE defines the behavior of the CSEN converter when it is not actively converting. Software may choose to keep the CSEN block powered on at all times by setting the CTRL_WARMUPMODE bit to logic 1.

34.4 Conversion Types

The CSEN block offers two different types of conversions: SAR, and Delta Modulation.

34.4.1 SAR Conversion Type

SAR (successive approximation register) conversions are self-contained and do not depend on the results of any previous conversions. SAR conversions will be performed when CTRL_CONVSEL is set to SAR. CTRL_SARCR sets the SAR conversion resolution, and is selectable between 10, 12, 14, or 16 bits. SAR conversions last for N cycles of CLK_{CSEN}, where N is the selected resolution (i.e. 12-bit conversions last for 12 CLK_{CSEN} cycles).

Every SAR conversion consists of a set of tests, one for each bit of the converter. The MSB is tested first, followed by all other bits down to the LSB. Each test narrows the possible value by 1/2 until the final result is determined.

34.4.2 Delta Modulation Conversion Type

Delta modulation (DM) conversions provide significant noise, response time, and energy consumption improvements over SAR conversions. A DM conversion inherently takes longer than a SAR conversion to arrive at one result. However, it is much less susceptible to noise events in the system. Whereas a large number of SAR conversions may need to be averaged to produce a desired noise resolution, the same noise resolution can be achieved with few DM conversions. However, DM conversions require more specific knowledge of the underlying conversion process to implement effectively. Silicon Laboratories software libraries use delta modulation for the best possible performance. It is recommended to use the provided libraries in most applications. The information provided in this section is intended as a reference for CSEN module driver development.

Delta modulation conversions are performed when CTRL_CONVSEL is set to DM. DMCFG_DMCR sets the DM conversion resolution, and is selectable between 10, 12, 14, or 16 bits. The selected resolution does not have an impact on conversion timing.

A delta modulated conversion begins with a test against a provided initial value, known as the baseline. If the comparison is high (the external capacitor is larger than the initial value), the comparison value is increased by a specified amount (the delta). If the comparison is low, the comparison value is decreased by the delta. The cycle then repeats, testing against the new value. Each subsequent test brings the test value closer to the external capacitance value, until the desired number of tests have been performed and an output result is produced. The converter may be configured to use a fixed delta value, or to reduce the value by a factor of two at specific intervals.

The DM state machine is configured using different fields in the DMCFG register. The DMG field sets the initial delta step to be used, between 0 and 255 codes at the selected resolution (specified by DMCFG_CRMODE). The DMCFG_DMR field specifies how many tests in a row are to be performed using each delta step. The converter will perform (4 x DMCFG_DMR) tests at each delta step for DMCFG_DMR > 0. For DMCFG_DMR = 0, the converter will perform 64 tests at each delta step. The number of tests performed at each delta step is referred to here as a "cycle". The DMCFG_DMCR field specifies how many cycles the state machine will take to produce one conversion output. For DMCFG_DMCR = 0, the number of cycles will be 16. If the DMCFG_DMGRDIS bit is cleared to 0, the delta step will be halved after each cycle. If DMCFG_DMGRDIS is set to 1, all cycles will use a fixed delta step value. Each test performed by the converter requires one CLK_{CSEN}, and so a full DM conversion requires number_of_cycles x tests_per_cycle clocks of CLK_{CSEN}. Figure 34.2 Delta Modulation Conversion With Gain Reduction (DMCFG_DMGDIS = 0) on page 1187 and Figure 34.3 Delta Modulation Conversion With Fixed Delta Step (DMCFG_DMGDIS = 1) on page 1188 show how delta modulation conversions are performed with and without gain reduction.

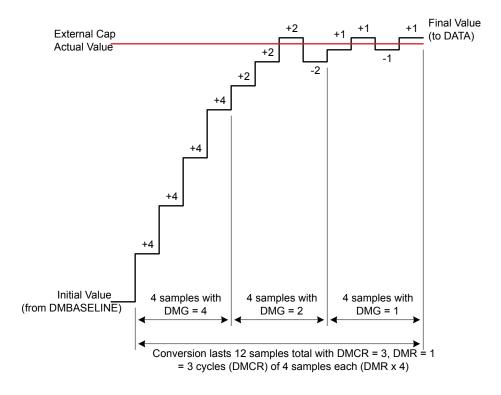


Figure 34.2. Delta Modulation Conversion With Gain Reduction (DMCFG_DMGDIS = 0)

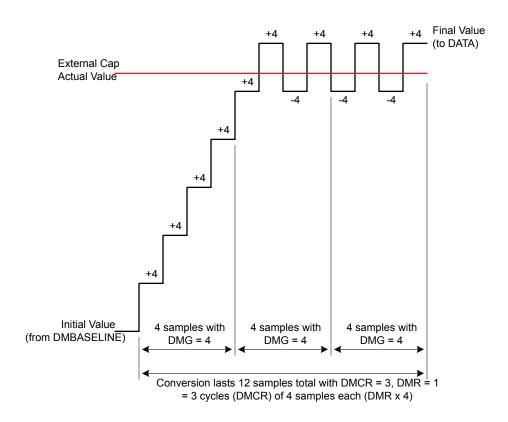


Figure 34.3. Delta Modulation Conversion With Fixed Delta Step (DMCFG_DMGDIS = 1)

The initial test value (baseline) for a DM conversion can be written to the DMBASELINE register prior to the start of the conversion. DMBASELINE contains two fields: BASELINEUP and BASELINEDN. Only the BASELINEUP field is used when chopping is disabled (CTRL_CHOPEN = 0). If chopping is enabled, software must maintain a second baseline value for the ramp-down phase, and write it to BASELINEDN.

CSEN channel inputs are routed through the on-chip APORT bus matrix. Each APORT bus is a shared resource among certain analog peripherals on the device. Some knowledge of how the CSEN block utilizes the APORT buses is necessary to avoid conflicts with other peripherals.

Each time the CSEN module connects to an external pin to take a conversion, it uses one or two of the shared APORT buses. By default, the CSEN module charges the external capacitor through one APORT connection on the CEXT line, and senses the voltage at the capacitor through a different APORT connection on the CEXT_SENSE line. This eliminates any errors introduced by series impedance of the APORT buses, particularly if the external cpacitance is large. To conserve on-chip resources, it is possible to both charge and sense through the CEXT line, by setting CTRL_LOCALSENS to logic 1.When CTRL_LOCALSENS is set to 1, the CEXT_SENSE line is not needed and the corresponding bus may be used by other peripherals.

The CSEN module has four APORT buses connected to the CEXT signal and four APORT buses connected to the CEXT_SENSE signal. The specific buses used for each pin selection depend on the channel, according to Table 34.1 CSEN APORT Bus Connectivity on page 1189. For example, if APORT1XCH4 (APORT1 channel 4) is selected in SINGLECTRL_SINGLESEL, the CEXT signal will be connected to the shared BUSAX, channel 4. If CTRL_LOCALSENS is set to DISABLE, then the CEXT_SENSE signal will be connected to APORT2YCH4, and use the shared bus BUSBY, channel 4.

The same connections apply to scan mode conversions and bonded conversions. For scan mode conversions, the connection through the bus is only made on one channel at a time, when that channel is being converted in the scan. For bonded connections, all selected channel connections are made simultaneously.

Selected CSEN Channel	CEXT Routing	CEXT_SENSE Routing
		(LOCALSENS = 0)
APORT1, Even Channel	APORT1XCHn / BUSAXCHn	APORT2YCHn / BUSBYCHn
APORT1, Odd Channel	APORT1YCHn / BUSAYCHn	APORT2XCHn / BUSBXCHn
APORT3, Even Channel	APORT3XCHn / BUSCXCHn	APORT4YCHn / BUSDYCHn
APORT3, Odd Channel	APORT3YCHn / BUSCYCHn	APORT4XCHn / BUSDXCHn

Table 34.1. CSEN APORT Bus Connectivity

When the CSEN module requests an APORT bus that is already in use by another peripheral, an APORT conflict will occur. The IF_APORTCONFLICT interrupt flag will be set to 1 (generating an interrupt if enabled), and the APORTCONFLICT register will reflect the bus(es) where the conflict occurred. Careful channel planning for the system will avoid APORT conflicts in most systems.

Channel selection for the CSEN module depends on the selected conversion mode. More details on how to select specific input pins are found in 34.6 Conversion Modes.

34.6 Converison Modes

The CSEN module supports several conversion modes:

- Single Channel A conversion trigger starts conversions on a single channel. One output result is produced, then the converter will halt.
- Scan A conversion trigger starts a scan sequence, which converts a specified number of channels independently and in sequence.
 One output result is produced per channel, then the converter will halt.
- Bonded Channel A conversion trigger starts conversions on a bonded channel. A bonded channel is several input channels which are shorted together internally. One output result is produced, then the converter will halt.
- Continuous Single Channel A conversion trigger starts continuous conversions on a single channel. The single channel conversion
 will re-trigger automatically after each output result and repeat until halted.
- Continuous Scan A conversion trigger starts continuous channel scanning. The scan sequence will re-trigger automatically at the
 end of each scan and repeat until halted.
- Continuous Bonded Channel A conversion trigger starts continuous conversions on a bonded channel. The bonded channel conversion will re-trigger automatically after each output result and repeat until halted.

The conversion mode is selected by the CTRL_CM and CTRL_MCEN fields. Refer to 34.6.1 Single Channel Conversions, 34.6.2 Scan Conversions, and 34.6.3 Bonded Channel Conversions for specific information on configuring the CSEN module to the desired conversion mode.

34.6.1 Single Channel Conversions

CSEN is configured for single channel mode when CTRL_MCEN = DISABLE and CTRL_CM = SGL. For continuous single channel mode, CTRL_MCEN = DISABLE and CTRL_CM = CONTSGL.

In single channel mode, SINGLECTRL_SINGLESEL specifies the input channel to be converted. Firmware may select any of the pins connected to the CEXT signal via the APORT. Refer to the Analog Port (APORT) Client Maps section in the product data sheet for mapping of the CEXT signal to specific pins.

When a single channel conversion is triggered, the CSEN block will use the configured conversion type (SAR or DM) to convert the capacitance seen at the selected input pin to a digital value one or more times. The hardware accumulator setting (CTRL_ACU) determines how many times the input pin will be sampled and accumulated before an output word is produced. The IF_CONV interrupt flag will be set to 1 by hardware when an output word is available in the DATA register.

Note: The auto-ground feature is typically not used in single channel conversion mode and should be disabled by software. However, if auto-grounding is enabled, it will ground the unused channels specified by the SCANINPUTSEL0/1 and SCANMASKSEL0/1 registers. See the channel selection discussion in 34.6.2 Scan Conversionsfor more details.

34.6.2 Scan Conversions

CSEN is configured for scan mode when CTRL_MCEN = DISABLE and CTRL_CM = SCAN. For continuous scan mode, CTRL_MCEN = DISABLE and CTRL CM = CONTSCAN.

In scan mode, the input channels to be converted during the scan are determined by the SCANINPUTSEL0/1 and SCANMASK0/1 registers. There are 64 available channels in the scanner logic. SCANINPUTSEL0/1 allow software to route CSEN scan channels to APORT-capable GPIO in groups of 8. SCANMASK0/1 specify which channels on those groups are to be included in the scan.

Note: It is possible to include the same group of 8 in more than one place in the scan sequence. However, for the majority of use cases, the SCANINPUTSEL0 register should be written to 0x07060504, and SCANINPUTSEL1 should be written to 0x0F0E0D0C. This will configure the CSEN scan channels to match their order in bonded mode.

Individual channels are included in the scan based on their bit positions in the mask registers, SCANMASK0 and SCANMASK1. A '1' in the corresponding bit of the mask register will include that channel in the scan. Refer to the Analog Port (APORT) Client Maps section in the product data sheet for mapping of the CEXT signal to specific pins.

When a scan conversion is triggered, the CSEN block will convert each of the selected channels in turn, starting at channel 0 and working up to channel 63. If a channel is not configured for scan in the SCANMASKO/1 register (i.e. the bit for that channel is '0'), it will be skipped.

An example of how the scan logic progresses through channels is shown in Figure 34.4 Scan Mode Sequencing on page 1191. In this simple example, SCANMASK0 = 0x000000318 and SCANMASK1 = 0x00000006, which selects channels 3, 4, 8, 9, 33, and 34 in turn.

CCEN Innut

		SCANMASK Values	CSEN Input Channel
	0	0	0
	1	0	1
	2	0	2
	3	1	3
	4	1	4
	5	0	5
	6	0	0 1 2 3 4 5 6
	7	0 1 1	7
8	8	1	8 9
SCANMASKO	9		9
₹	10	0	10
Į	11 12	0	11 12
₹	12	0	12
ŏ	13	0	13
	•	•	
	27	0	27
	28	0	28
	29	0	29
	30	0	30
	31	0	31
	0	0	32
	1	1	33
	2 3 4	1	34
—	3	0	35
ド	4	0	36
ĕ			
₹	•		
₹	•		
SCANMASK1	27	0	59
	28	0	60 61 62 63
	29	0	61
	30	0	62
	31	0	63

CC A NIMA CIZ

Figure 34.4. Scan Mode Sequencing

An auto-grounding feature is available for scan mode conversions. This feature forces hardware to ground all of the non-active CSEN channels selected by SCANMASK0/1, to reduce bleed-through from measurements on other CSEN channels. Auto-grounding is enabled by setting the CTRL AUTOGND bit to logic 1.

CSEN will use the configured conversion type (SAR or DM) to convert the capacitance seen at each of the selected input pins to a digital value one or more times. The hardware accumulator setting (CTRL_ACU) determines how many times each input pin will be sampled and accumulated before an output word is produced. The IF_CONV interrupt flag will be set to 1 by hardware when each output word is available in the DATA register, and the IF_EOS interrupt flag will be set to 1 by hardware at the completion of a scan cycle.

The DMBASELINE register provides the starting point for DM conversions. This starting point will be different for each channel in the scan, and the DMBASELINE register should be updated accordingly. This is typically done via DMA.

Note: DMA or software must read the output words from the DATA register before completion of the next conversion. New conversions will over-write the DATA register contents.

34.6.3 Bonded Channel Conversions

CSEN is configured for bonded mode when CTRL_MCEN = ENABLE and CTRL_CM = SGL. For continuous bonded mode, CTRL_MCEN = ENABLE and CTRL_CM = CONTSGL.

Bonded channel conversions are intended primarily for wake-on-touch applications where minimal power consupmtion is necessary. Bonded channel conversions operate similar to single channel conversions, except that multiple channels are shorted together and converted as a single capacitance value.

In bonded mode, the channels to be bonded are based on their bit positions in the mask registers SCANMASK0 and SCANMASK1, according to a fixed location, as shown in Figure 34.5 CSEN Input Configuration in Bonded Mode on page 1192. SCANMASK0 selects channels from APORT1 and SCANMASK1 selects channels from APORT3. Even-numbered channels are connected through the X bus, and odd-numbered channels are connected through the Y bus. Channels with a '1' in the corresponding position of SCANMASK0/1 will be shorted together during the conversion and converterd as a single channel. Refer to the Analog Port (APORT) Client Maps section in the product data sheet for mapping of the CEXT signal to specific pins.

	CSEN Inpu Channel	t APORT Connection	Shared Bus Channel
	0 0	APORT1XCH0	BUSAX channel 0
	1 1	APORT1YCH1	BUSAY channel 1
	2 2	APORT1XCH2	BUSAX channel 2
٦	3 3	APORT1YCH3	BUSAX channel 3
SCANMASKO	4 4	APORT1XCH4	BUSAY channel 4
AS	•	•	•
Σ	•	•	•
A	•	•	•
<u>ကို</u> 2	.7 27	APORT1YCH27	BUSAY channel 27
0) 2	28	APORT1XCH28	BUSAX channel 28
2	9 29	APORT1YCH29	BUSAY channel 29
3	30	APORT1XCH30	BUSAX channel 30
3	1 31	APORT1YCH31	BUSAY channel 31

		CSEN Input Channel	APORT Connection	Shared Bus Channel
	0	32	APORT3XCH0	BUSCX channel 0
	1	33	APORT3YCH1	BUSCY channel 1
	2	34	APORT3XCH2	BUSCX channel 2
۱_	3	35	APORT3YCH3	BUSCX channel 3
SCANMASK1	4	36	APORT3XCH4	BUSCY channel 4
¥	•	•	0	0
≥	•	•	0	0
4	•	•	0	0
ပ္တြ	27	59	APORT3YCH27	BUSCY channel 27
۳,	28	60	APORT3XCH28	BUSCX channel 28
	29	61	APORT3YCH29	BUSCY channel 29
	30	62	APORT3XCH30	BUSCX channel 30
	31	63	APORT3YCH31	BUSCY channel 31

Figure 34.5. CSEN Input Configuration in Bonded Mode

When a bonded conversion is triggered, the CSEN block will use the configured conversion type (SAR or DM) to convert the total capacitance seen at the selected input pins to a digital value one or more times. The hardware accumulator setting (CTRL_ACU) determines how many times the input pins will be sampled and accumulated before an output word is produced. The IF_CONV interrupt flag will be set to 1 by hardware when an output word is available in the DATA register.

Note: The auto-ground feature should not be used in bonded conversion mode. Software should clear CTRL_AUTOGND to 0 when configuring CSEN for bonded conversions.

34.7 Output Data

Output data from the CSEN module is posted to the DATA register. The data encoding can be affected by several configuration settings.

Figure 34.6 Data Encoding for Different Resolution Settings on page 1193 shows the effect that the resolution settings (CTRL_SARCR for SAR conversions or DMCFG_CRMODE for DM conversions) have on the output word. In this example, only one sample is accumulated. Regardless of the resolution setting, the MSB is always presented in bit position 15.

													(CSEN	_DA	ΓA Re	giste	r													
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								16 bit	t Data	1						
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						,	14 bit	Data	a						0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						12 bit	Data	a					0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					10 bit	Data	1				0	0	0	0	0	0

Figure 34.6. Data Encoding for Different Resolution Settings

A hardware accumulator allows the CSEN block to accumulate multiple samples on the same channel for each conversion data word produced, and automatically right-shift to normalize the data to 16 bits. This is effective as a simple noise filter. The CTRL_ACU field sets the number of samples to be accumulated from 1, 2, 4, 8, 16, 32, or 64 samples. The right-shift operation can optionally be disabled by setting CTRL_DRSF to 1. Figure 34.7 Data Encoding for Different Accumulator Settings on page 1193 shows the effects of the accumulator, with and without right-shifting on the output data word. In this example, the sample resolution is fixed at 12 bits, but the same principles apply to any resolution setting.

Figure 34.7. Data Encoding for Different Accumulator Settings

When the conversion type is delta modulation (CTRL_CONVSEL = DM) and chopping is enabled (CTRL_CHOPEN = ENABLE), this is a special case for the output word. In this case, both the "up" and the "down" portions of the conversion must be stored. The DATA

register will hold the "up" portion in the lower 16 bits and the "down" portion in the upper 16 bits as shown in Figure 34.8 Data Encoding for Delta Modulation With Chopping on page 1194.

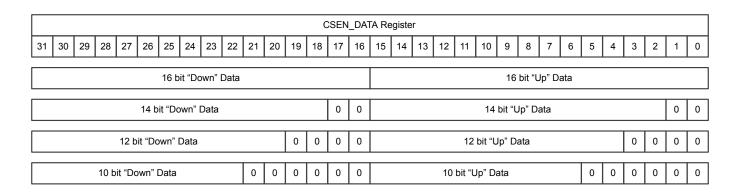


Figure 34.8. Data Encoding for Delta Modulation With Chopping

34.8 Low Frequency Noise Filter (Chopping)

The CSEN module includes a low-frequency noise filter, which is implemented internally using a chopping mechanism. Chopping is enabled by setting CTRL_CHOPEN to ENABLE. In a normal conversion cycle (CTRL_CHOPEN = DISABLE), the charge timing is always performed on a positive (up) ramp. When chopping is enabled, the converter will alternate between using a positive (up) and negative (down) ramp for each sample. While the absolute capacitance value contributes the same amount for an up or a down conversion, any low-frequency offset artifacts due to supply changes will have opposite polarity. Averaging the results of an "up" and a "down" conversion taken back-to-back effectively eliminataes the low-frequency offset differences.

When chopping is used with SAR type converisons, the accumulator performs the necessary averaging in hardware. The accumulator must be set to average at least two samples when chopping is enabled. Because the accumulator always works on multiples of two samples, an even number of "up" and "down" samples will be included in the average.

When chopping is used with DM type conversions, user software must maintain both an "up" and "down" portion of the baseline for the conversion separately. For this reason, the output word will contain both values when using DM conversions. In order to gain the benefits of chopping in DM mode, software should average the "up" and "down" results together.

34.9 Wake on Threshold and Exponential Moving Average

The CSEN module has the capability to operate in the energy-efficient EM2 or EM3 modes and autonomously wake the system when a predetermined threshold is crossed, either while doing single channel conversions or bonded channel conversions. This allows a system to monitor one or more input channels to implement low-energy "wait-for-touch" features. There are two different comparator threshold tests available for this purpose:

- Absolute used to compare data outputs with "less than or equal" or "greater than" tests against a fixed value. This is useful for applications with short sleep durations, which simply want to wake quickly if a certain condition is met.
- Relative EMA used to compare data outputs against a moving average window. This is extremely useful for applications with long-term sleep requirements. The relative comparison allows the CSEN module to adjust for slow changes in capacitance such as those due to environmental changes (temperature, supply) without waking the system.

The absolute test is used when CTRL_CMPEN = ENABLE and CTRL_EMACMP = DISABLE. In this mode, any output word written to the DATA register will be compared against the value in the CMPTHR register. The polarity of the comparison is configured with the CTRL_CMPPOL field. Setting CTRL_CMPPOL to GT means that the comparison will be true if DATA is greater than CMPTHR. Setting CTRL_CMPPOL to LTE means that the comparison will be true if DATA is less than or equal to CMPTHR. On a true result, the IF_CMP interrupt flag is set to 1, and any continuous conversion in progress will be halted.

The relative EMA test is used when CTRL_EMACMP = ENABLE. In this mode, the exponential moving average (EMA) value is used to establish a low-noise average code reading. The EMA is a moving average that is re-calculated on every output data word from the converter, according to the following equation:

EMA[n] = EMA[n-1] - EMA[n-1]/N + DATA/N,

Figure 34.9. CSEN Exponential Moving AverageCalculation

The EMA register stores the current EMA value. This register may be written by software to quickly establish a new baseline average. N in the equation above is the sample weighting of the EMA filter, and is controlled with the EMASAMPLE field. Lower values of EMASAMPLE mean less averaging, and quicker response time, while higher EMASAMPLE values will reject more noise at the expense of response time.

When relative EMA comparisons are enabled, every new sample is compared with a window around the EMA. The lower bound of this window is EMA - CMPTHR, and the upper bound of the window is EMA + CMPTHR. If the new sample written to DATA falls outside that window (lower than the lower bound or higher than the upper bound), the CMP interrupt flag is set to 1 and any continuous conversion in progress is halted. Using the EMA comparison, large jumps in the output data word will trip the comparator and wake the system, but gradual changes will not trigger false positives. Figure 34.10 Wake on Threshold With Relative EMA on page 1196 shows an example of the EMA moving average filter and window.

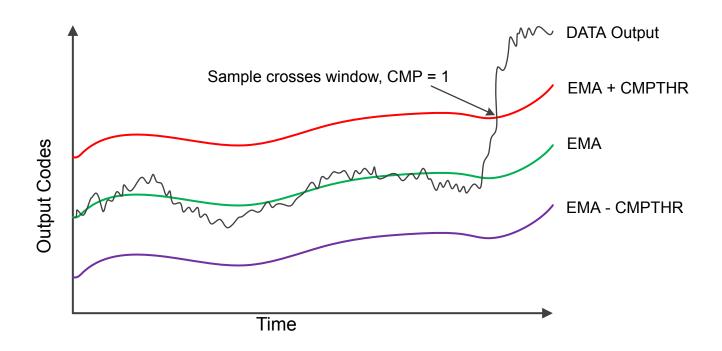


Figure 34.10. Wake on Threshold With Relative EMA

34.10 Analog Adjustments

The analog front-end of the CSEN module has some additional controls that may be useful in certain applications.

34.10.1 Current Reference and Gain

The internal current source used for charging the reference capacitor can be adjusted using the ANACTRL_IREFPROG field. This adjusts the ratio of the internal reference current source vs. the external drive current source, and thereby adjusts the effective gain of the converter. The lowest gain setting is when ANACTRL_IREFPROG = 0, and the highest is with ANACTRL_IREFPROG = 7. The difference between the lowest and highest setting is approximately 10x. High gain gives the best sensitivity and resolution for small capacitors, such as those typically implemented as touch-sensitive PCB features. Lower gain allows for larger capacitor values to be measured. It can also be useful to lower the gain when performing bonded channel conversions.

34.10.2 Current Drive

The external capacitor is charged with a current-source DAC during conversions. The full scale output of the current DAC can be adjusted using the ANACTRL_IDACIREFS field. When ANACTRL_IDACIREFS is 0, the drive current is at its maximum setting. For ANACTRL_IDACIREFS settings of 1-7, the drive current is reduced by a factor of ANACTRL_IDACIREFS / 8. For most touch switch applications, the maximum (default) current drive (ANACTRL_IDACIREFS = 0) should be used. Lower current drive may be useful when there is additional series impedance between the device pin and the capacitive sensor.

34.10.3 Reset (Discharge) Timing

During a conversion, the external capacitance is charged and discharged multiple times. The amount of time used for the reset (discharge) phase is controlled by the ANACTRL_TRSTPROG field. For most touch sensitive switch applications, the fastest (default) timing should be used. Extended reset timing may be useful in applications with additional series impedance between the device pin and the capacitive sensor.

34.11 DMA Interface

The CSEN module has DMA support for reads of the DATA register and writes to the DMBASELINE register. This enables the CSEN module to operate autonomously from software, either to free up software cycles during EM0 or to enable lower power operation in EM1 and EM2.

DMA transfers to and from the CSEN module are enabled by setting the CTRL_DMAEN bit to 1. If the converter is used in SAR mode, only DMA reads (from the DATA register) are triggered. If the converter is used in delta modulation mode, both DMA reads from the DATA register and DMA writes to the DMBASELINE register are triggered.

Requests for a DATA register read occur at the end of a conversion cycle any time the CSEN module writes new output information to the DATA register. DMA may read half words (16 bits) or full words (32 bits) from the DATA register, depending on the specific CSEN configuration and the needs of the application. The CSEN module does not halt when the DMA read request is posted. It will immediately begin the next conversion. If the DMA read request is not serviced by the time the next conversion has completed, the IF_DMAOF flag will be set to indicate an overflow event has occurred.

Requests for a data write to the DMBASELINE register occur only when using delta-modulation type conversions. The write request will be triggered at the start of a conversion, prior to the first sample comparison. The conversion will not begin until the DMA services this write request.

Note: If an absolute or EMA threshold interrupt is enabled when using the DMA, software must be aware that the converter will halt when the interrupt condition occurs. In this case it may be necessary to reconfigure portions of the DMA transfer before resuming conversions.

34.12 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	CSEN_CTRL	RW	Control
0x004	CSEN_TIMCTRL	RW	Timing Control
0x008	CSEN_CMD	W1	Command
0x00C	CSEN_STATUS	R	Status
0x010	CSEN_PRSSEL	RW	PRS Select
0x014	CSEN_DATA	RWH	Output Data
0x018	CSEN_SCANMASK0	RW	Scan Channel Mask 0
0x01C	CSEN_SCANINPUTSEL0	RW	Scan Input Selection 0
0x020	CSEN_SCANMASK1	RW	Scan Channel Mask 1
0x024	CSEN_SCANINPUTSEL1	RW	Scan Input Selection 1
0x028	CSEN_APORTREQ	R	APORT Request Status
0x02C	CSEN_APORTCONFLICT	R	APORT Request Conflict
0x030	CSEN_CMPTHR	RW	Comparator Threshold
0x034	CSEN_EMA	RWH	Exponential Moving Average
0x038	CSEN_EMACTRL	RW	Exponential Moving Average Control
0x03C	CSEN_SINGLECTRL	RW	Single Conversion Control
0x040	CSEN_DMBASELINE	RW	Delta Modulation Baseline
0x044	CSEN_DMCFG	RW	Delta Modulation Configuration
0x048	CSEN_ANACTRL	RW	Analog Control
0x054	CSEN_IF	R	Interrupt Flag
0x058	CSEN_IFS	W1	Interrupt Flag Set
0x05C	CSEN_IFC	(R)W1	Interrupt Flag Clear
0x060	CSEN_IEN	RW	Interrupt Enable

34.13 Register Description

34.13.1 CSEN_CTRL - Control

Offset															В	it Po	ositi	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	'	0	0	0	0	0	0	0	0	0	0	0	6	0X3	0		0×0			•	0	OXO		•	5	040		0	0	
Access				M	₩ M	₩ M	₹	₩ M	Z.	Z.	₩ W	RW W	₩ M	₹	i	≷	\ N		Z M				i	≩ Ƴ			Š	}		₽	₹	
Name				CPACCURACY	LOCALSENS	WARMUPMODE	EMACMPEN	MXUC	AUTOGND	CHOPEN	CONVSEL	DMAEN	DRSF	CMPEN	H	N N	MCEN		ACU					SARCK			2	5		CMPPOL	EN	

Bit	Name	Reset	Acces	s Description
31:29	Reserved	To ensure tions	compatibility	y with future devices, always write bits to 0. More information in 1.2 Conven-
28	CPACCURACY	0	RW	Charge Pump Accuracy
	This bit enables a performance and s			r the APORT supply voltage. For the CSEN module, this bit has no effect on
	Value	Mode		Description
	0	LO		Request Low Accuracy Mode.
	1	HI		Request High Accuracy Mode.
27	LOCALSENS	0	RW	Local Sensing Enable
			will be used	d. The external capacitor will be charged through the CEXT signal and the
	voltage at the pin voltage at the pin voltage and sens			different APORT bus on the CEXT_CSEN signal. When this bit is set to 1,
26				different APORT bus on the CEXT_CSEN signal. When this bit is set to 1,
26	charging and sens	ing are both per	formed with RW	different APORT bus on the CEXT_CSEN signal. When this bit is set to 1, the CEXT signal.
26	charging and sens	ing are both per	formed with RW	different APORT bus on the CEXT_CSEN signal. When this bit is set to 1, the CEXT signal. Select Warmup Mode for CSEN
26	charging and sens WARMUPMODE Use this bit to keep	ing are both per 0 o the analog cor	formed with RW	different APORT bus on the CEXT_CSEN signal. When this bit is set to 1, the CEXT signal. Select Warmup Mode for CSEN egardless of the conversion state.
26	charging and sens WARMUPMODE Use this bit to keep Value	o the analog cor	formed with RW re enabled re	different APORT bus on the CEXT_CSEN signal. When this bit is set to 1, the CEXT signal. Select Warmup Mode for CSEN egardless of the conversion state. Description CSEN analog core is shutdown after each operation completes. The next conversion trigger will incur a delay of (3 + WARMUPCNT) CSEN
26	charging and sens WARMUPMODE Use this bit to keep Value 0	o the analog cor Mode NORMAL	formed with RW re enabled re	different APORT bus on the CEXT_CSEN signal. When this bit is set to 1, the CEXT signal. Select Warmup Mode for CSEN egardless of the conversion state. Description CSEN analog core is shutdown after each operation completes. The next conversion trigger will incur a delay of (3 + WARMUPCNT) CSEN clock cycles before the conversion begins.
	charging and sens WARMUPMODE Use this bit to keep Value 0 1 EMACMPEN	o the analog cor Mode NORMAL KEEPCSE	re enabled re NWARM RW RW be set if the	different APORT bus on the CEXT_CSEN signal. When this bit is set to 1, the CEXT signal. Select Warmup Mode for CSEN egardless of the conversion state. Description CSEN analog core is shutdown after each operation completes. The next conversion trigger will incur a delay of (3 + WARMUPCNT) CSEN clock cycles before the conversion begins. CSEN remains powered up, allowing continuous conversion Greater and Less Than Comparison Using the Exponential Moving
	charging and sens WARMUPMODE Use this bit to keep Value 0 1 EMACMPEN The comparator fla	o the analog cor Mode NORMAL KEEPCSE	re enabled re NWARM RW RW be set if the	different APORT bus on the CEXT_CSEN signal. When this bit is set to 1, the CEXT signal. Select Warmup Mode for CSEN egardless of the conversion state. Description CSEN analog core is shutdown after each operation completes. The next conversion trigger will incur a delay of (3 + WARMUPCNT) CSEN clock cycles before the conversion begins. CSEN remains powered up, allowing continuous conversion Greater and Less Than Comparison Using the Exponential Moving Average (EMA) is Enabled
25	charging and sens WARMUPMODE Use this bit to keep Value 0 1 EMACMPEN The comparator flathan or equal to Elements	o the analog core Mode NORMAL KEEPCSE 0 ag (CMPIF) will I	NWARM RW be set if the 0].	different APORT bus on the CEXT_CSEN signal. When this bit is set to 1, the CEXT signal. Select Warmup Mode for CSEN egardless of the conversion state. Description CSEN analog core is shutdown after each operation completes. The next conversion trigger will incur a delay of (3 + WARMUPCNT) CSEN clock cycles before the conversion begins. CSEN remains powered up, allowing continuous conversion Greater and Less Than Comparison Using the Exponential Moving Average (EMA) is Enabled accumulated result is greater than or equal to EMA+CMPTHR[8:0] or less
25	charging and sens WARMUPMODE Use this bit to keep Value 0 1 EMACMPEN The comparator flathan or equal to Eff MXUC	o the analog core Mode NORMAL KEEPCSE 0 ag (CMPIF) will I	NWARM RW be set if the 0].	different APORT bus on the CEXT_CSEN signal. When this bit is set to 1, the CEXT signal. Select Warmup Mode for CSEN egardless of the conversion state. Description CSEN analog core is shutdown after each operation completes. The next conversion trigger will incur a delay of (3 + WARMUPCNT) CSEN clock cycles before the conversion begins. CSEN remains powered up, allowing continuous conversion Greater and Less Than Comparison Using the Exponential Moving Average (EMA) is Enabled accumulated result is greater than or equal to EMA+CMPTHR[8:0] or less

Bit	Name	Reset	Access	Description
	1	UNC		The CSEN mux inputs unconnected.
23	AUTOGND	0	RW	CSEN Automatic Ground Enable
	included in a sca		e ground	used channels during scan conversions. For instance, if five channels are ed while one channel is being converted. This feature should be disabled).
	Value	Mode		Description
	0	DISABLE		Auto grounding is disabled.
	1	ENABLE		Auto grounding is enabled.
22	CHOPEN	0	RW	CSEN Chop Enable
	Enables choppin than ACC1.	g for low-frequency no	oise filterir	ng. When chopping is enabled, the ACU field must be set to a value greater
	Value	Mode		Description
	0	DISABLE		Chopping is disabled.
	1	ENABLE		Chopping is enabled.
21	CONVSEL	0	RW	CSEN Converter Select
	This bit selects b	etween SAR conversi	ons and d	lelta modulation conversions.
	Value	Mode		Description
	0	SAR		The CSEN uses the SAR method for conversions.
	1	DM		The CSEN uses the delta modulation method for conversions.
20	DMAEN	0	RW	CSEN DMA Enable Bit
				led for DATA register reads of SAR and DM conversions. DMA triggers are I conversions are performed.
	Value	Mode		Description
	0	DISABLE		CSEN DMA is disabled.
	1	ENABLE		CSEN DMA is enabled.
19	DRSF	0	RW	CSEN Disable Right-Shift
	Disables the hard	dware accumulator rig	ht-shift op	peration.
	Value	Mode		Description
	0	DISABLE		DATA[15:0] stores the last conversion (accumulated) result.
	1	ENABLE		DATA[21:0] stores the last conversion (accumulated) result.
18	CMPEN	0	RW	CSEN Digital Comparator Enable
		er. When enabled, a co		ompares the accumulated CSEN conversions to the value stored in the event will halt continuous conversions. Note that this bit is only effective
	Value	Mode		Description

Bit	Name	Reset	Access	Description
	1	ENABLE		CSEN comparator is enabled.
17:16	STM	0x3	RW	Start Trigger Select
		-of-conversion trigge ions across multiple		d. Depending on the CSEN configuration, a single trigger may result in one
	Value	Mode		Description
	0	PRS		PRS Triggering. Conversions are triggered by the PRS channel selected in PRSSEL.
	1	TIMER		Timer Triggering. Conversions are triggered by a local CSEN timer reload.
	2	START		Software Triggering. Conversions are triggered by writing a 1 to the START field of the CMD register.
15	MCEN	0	RW	CSEN Multiple Channel Enable
	This field enable CONTSGL.	s bonded-channel c	onversions,	where selected channels are shorted together. Use only with CM = SGL or
	Value	Mode		Description
	0	DISABLE		Multiple channel feature is disabled.
	1	ENABLE		Selected channels are internally shorted together and the combined node is converted.
14:12	ACU	0x0	RW	CSEN Accumulator Mode Select
14:12		0x0 ures the hardware ad		CSEN Accumulator Mode Select
14:12				CSEN Accumulator Mode Select Description
14:12	This field configu	ures the hardware a		
14:12	This field configu	ures the hardware ad		Description
14:12	This field configu Value	Mode ACC1		Description Accumulate 1 sample.
14:12	This field configuration Value 0 1	Mode ACC1 ACC2		Description Accumulate 1 sample. Accumulate 2 sample.
14:12	Value 0 1 2	Mode ACC1 ACC2 ACC4		Description Accumulate 1 sample. Accumulate 2 sample. Accumulate 4 sample.
14:12	Value 0 1 2 3	Mode ACC1 ACC2 ACC4 ACC8		Description Accumulate 1 sample. Accumulate 2 sample. Accumulate 4 sample. Accumulate 8 sample.
14:12	Value 0 1 2 3 4	Mode ACC1 ACC2 ACC4 ACC8 ACC16		Description Accumulate 1 sample. Accumulate 2 sample. Accumulate 4 sample. Accumulate 8 sample. Accumulate 16 sample.
14:12	Value 0 1 2 3 4 5	Mode ACC1 ACC2 ACC4 ACC8 ACC16 ACC32 ACC64	ccumulator.	Description Accumulate 1 sample. Accumulate 2 sample. Accumulate 4 sample. Accumulate 8 sample. Accumulate 16 sample. Accumulate 32 sample.
	This field configuration of the second configuration of th	Mode ACC1 ACC2 ACC4 ACC8 ACC16 ACC32 ACC64 To ensure co	ccumulator.	Description Accumulate 1 sample. Accumulate 2 sample. Accumulate 4 sample. Accumulate 8 sample. Accumulate 16 sample. Accumulate 32 sample. Accumulate 64 sample.
11:10	This field configuration of the second of th	Mode ACC1 ACC2 ACC4 ACC8 ACC16 ACC32 ACC64 To ensure cotions	ompatibility v	Description Accumulate 1 sample. Accumulate 2 sample. Accumulate 4 sample. Accumulate 8 sample. Accumulate 16 sample. Accumulate 32 sample. Accumulate 64 sample. Accumulate 64 sample. SAR Conversion Resolution.
11:10	This field configuration of the second of th	Mode ACC1 ACC2 ACC4 ACC8 ACC16 ACC32 ACC64 To ensure cotions 0x0	ompatibility v	Description Accumulate 1 sample. Accumulate 2 sample. Accumulate 4 sample. Accumulate 8 sample. Accumulate 16 sample. Accumulate 32 sample. Accumulate 64 sample. Accumulate 64 sample. SAR Conversion Resolution.
11:10	This field configuration of the second of th	Mode ACC1 ACC2 ACC4 ACC8 ACC16 ACC32 ACC64 To ensure cotions 0x0 s the resolution of SA	ompatibility v	Description Accumulate 1 sample. Accumulate 2 sample. Accumulate 4 sample. Accumulate 8 sample. Accumulate 16 sample. Accumulate 32 sample. Accumulate 64 sample. Accumulate 64 sample. With future devices, always write bits to 0. More information in 1.2 Convensions.
11:10	This field configuration of the second of th	Mode ACC1 ACC2 ACC4 ACC8 ACC16 ACC32 ACC64 To ensure cotions 0x0 s the resolution of SA	ompatibility v	Description Accumulate 1 sample. Accumulate 2 sample. Accumulate 4 sample. Accumulate 8 sample. Accumulate 16 sample. Accumulate 32 sample. Accumulate 64 sample. With future devices, always write bits to 0. More information in 1.2 Convensions. Description
11:10	This field configuration of the second of th	Mode ACC1 ACC2 ACC4 ACC8 ACC16 ACC32 ACC64 To ensure contions 0x0 s the resolution of SA Mode CLK10	ompatibility v	Description Accumulate 1 sample. Accumulate 2 sample. Accumulate 4 sample. Accumulate 8 sample. Accumulate 16 sample. Accumulate 32 sample. Accumulate 64 sample. With future devices, always write bits to 0. More information in 1.2 Convensions. Description Conversions last 10 internal CSEN clocks and are 10-bits in length.

Bit	Name	Reset Access	Description
7:6	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
5:4	СМ	0x0 RW	CSEN Conversion Mode Select
	This field is used	to select a conversion method	d.
	Value	Mode	Description
	0	SGL	Single Channel Mode: One conversion of a single channel (when MCE = 0) or set of bonded channels (when MCE = 1) per conversion trigger.
	1	SCAN	Scan Mode: Scans multiple selected channels once per conversion trigger.
	2	CONTSGL	Continuous Single Channel: Continuous conversion of a single channel (when MCE = 0) or set of bonded channels (when MCE = 1).
	3	CONTSCAN	Continuous Scan Mode: Continuously scans multiple selected channels.
3	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-
2	CMPPOL	0 RW	CSEN Digital Comparator Polarity Select
	This bit determin	es the polarity of the digital co	mparator.
	Value	Mode	Description
	0	GT	The digital comparator flag (CMPIF) is set if the conversion result is greater than the threshold.
	1	LTE	The digital comparator flag (CMPIF) is set if the conversion result is less than or equal to the threshold.
1	EN	0 RW	CSEN Enable
			module can be configured while disabled and then enabled when conver- ncel any conversions in progress, but does not reset the configuration.
	Value	Mode	Description
	0	DISABLE	CSEN disabled.
	1	ENABLE	CSEN enabled and ready to convert. Must be done before the start trigger.
0	Reserved	To ensure compatibility tions	with future devices, always write bits to 0. More information in 1.2 Conven-

34.13.2 CSEN_TIMCTRL - Timing Control

Offset											Bit F	Posi	tion														
0x004	30 37	28	26	25 24	23	22	21	20	19	2 9	2 9	5 5	4	13	12	7	9	တ	∞	7	9	2	4	က	7	←	>
Reset											0×0				0	0x00										0×0	
Access											₩ N				i	≥ Y										S.	
Name											WARMUPCNT				(PCIOP										PCPRESC	
Bit	Name			Reset			Ac	cess	s D)escr	iptic	on															
31:18	Reserved			To ens	sure	com	pati	bility	/ witl	h futu	re de	evice	es, al	lway	'S W	rite l	oits t	to 0.	Мо	re in	fori	nati	on ir	n 1.2	? Co	nven-	
17:16	WARMUP	CNT		0x0			RW	/	٧	Varm	up F	Perio	d Co	ount	ter												
	Configures WARMUP					e co	nvei	rter v	wher	า WA	RML	JPM	ODE	= N	IOR	MAL	Th	ne C	SEN	N wa	ırmı	ıp ti	me i	s de	fine	d as	
15:8	PCTOP			0x00			RW	/	P	erio	d Co	unte	er To	p Va	alue)											
	This field o																							and	a st	art	
7:3	Reserved			To ens	sure	com	pati	bility	v with	h futu	ire de	evice	es, al	lway	'S W	rite l	oits t	to 0.	Мо	re in	fori	nati	on ir	n 1.2	? Co	nven-	
2:0	PCPRESC	;		0x0			RW	/	P	erio	d Co	unte	er Pr	esca	aler												
	This field s	ets the	pre-	scaler f	or lo	cal (CSE	N tin	ner o	clock.																	
	Value			Mode					С)escr	iptior	n															
	0			DIV1					T	he p	eriod	l cou	inter	cloc	k fre	eque	ncy	is L	.FBC	CLK	CSE	_N /1					
	1			DIV2					Т	he p	eriod	cou	inter	cloc	k fre	eque	ncy	is L	.FBC	CLK	CSE	_N /2					
	2			DIV4					Т	he p	eriod	l cou	inter	cloc	k fre	eque	ncy	is L	.FBC	CLK	CSE	_N /4					
	3			DIV8					Т	he p	eriod	l cou	inter	cloc	k fre	eque	ncy	is L	.FB0	CLK	CSE	_N /8					
	4			DIV16					Т	he p	eriod	l cou	inter	cloc	k fre	eque	ncy	is L	.FBC	CLK	CSE	_N /16					
	5			DIV32					Т	he p	eriod	l cou	inter	cloc	k fre	eque	ency	is L	.FB0	CLK	CSE	_N /32					
	6			DIV64					Т	he p	eriod	cou	inter	cloc	k fre	eque	ency	is L	.FBC	CLK	CSE	_N /64					
	7			DIV12	8				Т	he p	eriod	l cou	inter	cloc	k fre	eque	ncy	is L	FB(CLK	CSE	_N /12	8				

34.13.3 CSEN_CMD - Command

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	11	10	6	8	7	9	5	4	3	2	1	0
Reset			•		•						•		•					•							•	•		•				0
Access																																M1
Name																																START

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	START	0	W1	Start Software-Triggered Conversions
	When CTRL_STM =	START, writing	a 1 to this	bit will trigger CSEN conversions.

34.13.4 CSEN_STATUS - Status

Offset	Bit Position	
0x00C	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0
Reset		0
Access		~
Name		CSENBUSY

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
0	CSENBUSY	0	R	Busy Flag
	This bit is set to 1	when a conversi	on is currently	y taking place.
	Value	Mode		Description
	0	IDLE		Conversion is complete or a conversion is not currently in progress.
	1	BUSY		Conversion is in progress.

34.13.5 CSEN_PRSSEL - PRS Select

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																															0x0	
Access																															₽	
Name																															PRSSEL	

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
2:0	PRSSEL	0x0	RW	PRS Channel Select

Selects the PRS channel to be used as a conversion trigger when CTRL_STM = PRS.

Value	Mode	Description
0	PRSCH0	PRS Channel 0 selected as the start trigger
1	PRSCH1	PRS Channel 1 selected as the start trigger
2	PRSCH2	PRS Channel 2 selected as the start trigger
3	PRSCH3	PRS Channel 3 selected as the start trigger
4	PRSCH4	PRS Channel 4 selected as the start trigger
5	PRSCH5	PRS Channel 5 selected as the start trigger
6	PRSCH6	PRS Channel 6 selected as the start trigger
7	PRSCH7	PRS Channel 7 selected as the start trigger

34.13.6 CSEN_DATA - Output Data

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																000000000000000000000000000000000000000	0000000000															
Access																	[} }															
Name																\ \ C	<u> </u>															

Bit	Name	Reset	Access	Description
31:0	DATA	0x00000000	RWH	Output Data

Output data words are written to the DATA register when sampling and accumulation for a channel have completed. Data encoding depends on the resolution, accumulator settings, and conversion type. See the chapter text for more details on data output encoding.

34.13.7 CSEN_SCANMASK0 - Scan Channel Mask 0

Offset	Bit Position
0x018	1 1
Reset	00000000000000000000000000000000000000
Access	R≷
Name	SCANINPUTEN
Bit	Name Reset Access Description

Bit	Name	Reset	Access	Description
31:0	SCANINPUTEN	0x00000000	RW	Scan Channel Mask

Scan channel mask for CSEN channels CSEN_INPUT0 through CSEN_INPUT31. For scan mode conversions, a '1' in any bit position will include the channel specified by SCANINPUTSEL0 in a scan. For bonded channel conversions, a '1' in any bit position includes the corresponding channel from APORT1 / BUSA in the bonded conversion. If AUTOGND = ENABLE the scan mask also determines the pins that will be grounded when inactive, for both scan and single channel conversions.

34.13.8 CSEN_SCANINPUTSEL0 - Scan Input Selection 0

34.13.8	CSEN_SCANINF	7013ELU - 308	an input Select	ion u												
Offset				Bit Po	osition											
0x01C	330 29 28	27 26 25 24	22 23 20 20 20 20 20 20 20 20 20 20 20 20 20	19 19 16 16	5 4 6 7 4 6 6 7	11 10 8	C 0 4	w 2 - c								
Reset		0x0		0×0		0x0		0x0								
Access		AW.		X X		RW		RW								
Name		INPUT24TO31SEL		INPUT16TO23SEL		INPUT8TO15SEL		INPUT0T07SEL								
Bit	Name	Reset	Acces	s Description	1											
31:28	Reserved	To ens	sure compatibilit	y with future dev	vices, always wi	ite bits to 0. Mo	re information ir	1.2 Conven-								
27:24	INPUT24TO31	SEL 0x0	RW	CSEN_INP	JT24-31 Select											
	Channels chose	en for CSEN_II	NPUT24-CSEN	_INPUT31 as re	ferred in SCANI	MASK0										
	Mode	Value		Description												
	APORT1CH0T	O7 4		Select APO	Select APORT1 CH0-CH7 as CSEN_INPUT24-CSEN_INPUT31											
	APORT1CH8T	O15 5		Select APO	RT1 CH8-CH15	as CSEN_INPL	JT24-CSEN_IN	PUT31								
	APORT1CH16	TO23 6		Select APO	RT1 CH16-CH2	3 as CSEN_INF	PUT24-CSEN_II	NPUT31								
	APORT1CH24	TO31 7		Select APORT1 CH24-CH31 as CSEN_INPUT24-CSEN_INPU												
	APORT3CH0T	O7 12		Select APO	Select APORT3 CH0-CH7 as CSEN_INPUT24-CSEN_INPUT31											
	APORT3CH8T	O15 13		Select APO	Select APORT3 CH8-CH15 as CSEN_INPUT24-CSEN_INPUT31											
	APORT3CH16	TO23 14		Select APO	Select APORT3 CH16-CH23 as CSEN_INPUT24-CSEN_INPUT31											
	APORT3CH24	TO31 15		Select APO	RT3 CH24-CH3	1 as CSEN_INF	PUT24-CSEN_II	NPUT31								
23:20	Reserved	To ens	sure compatibilit	y with future dev	vices, always wi	ite bits to 0. Mo	re information ir	1.2 Conven-								
19:16	INPUT16TO23	SEL 0x0	RW	CSEN_INP	JT16-23 Select											
	Channels chose	en for CSEN_II	NPUT16-CSEN	_INPUT23 as re	ferred in SCANI	MASK0										
	Mode	Value		Description												
	APORT1CH0T	O7 4		Select APO	Select APORT1 CH0-CH7 as CSEN_INPUT16-CSEN_INPUT23											
	APORT1CH8T	O15 5		Select APO	Select APORT1 CH8-CH15 as CSEN_INPUT16-CSEN_INPUT23											
	APORT1CH16	TO23 6		Select APO	Select APORT1 CH16-CH23 as CSEN_INPUT16-CSEN_INPUT23											
	APORT1CH24	TO31 7		Select APO	Select APORT1 CH24-CH31 as CSEN_INPUT16-CSEN_INPUT23											
	APORT3CH0T	O7 12		Select APORT3 CH0-CH7 as CSEN_INPUT16-CSEN_INPUT23												
	APORT3CH8T	O15 13		Select APORT3 CH8-CH15 as CSEN_INPUT16-CSEN_INPUT23												
	ADODT2CU46	TO22 14		0-14 4 00	DT0 01140 0110	0 00EN INF	DUTAG COEN I	IDLITOO								

APORT3CH16TO23

APORT3CH24TO31

14

15

Select APORT3 CH16-CH23 as CSEN_INPUT16-CSEN_INPUT23

Select APORT3 CH24-CH31 as CSEN_INPUT16-CSEN_INPUT23

Bit	Name	Reset	Access	Description
15:12	Reserved	To ensure comp tions	patibility v	with future devices, always write bits to 0. More information in 1.2 Conven
11:8	INPUT8TO15SEL	0x0	RW	CSEN_INPUT8-15 Select
	Channels chosen for	CSEN_INPUT8-C	SEN_IN	PUT15 as referred in SCANMASK0
	Mode	Value		Description
	APORT1CH0TO7	4		Select APORT1 CH0-CH7 as CSEN_INPUT8-CSEN_INPUT15
	APORT1CH8TO15	5		Select APORT1 CH8-CH15 as CSEN_INPUT8-CSEN_INPUT15
	APORT1CH16TO23	6		Select APORT1 CH16-CH23 as CSEN_INPUT8-CSEN_INPUT15
	APORT1CH24TO31	7		Select APORT1 CH24-CH31 as CSEN_INPUT8-CSEN_INPUT15
	APORT3CH0TO7	12		Select APORT3 CH0-CH7 as CSEN_INPUT8-CSEN_INPUT15
	APORT3CH8TO15	13		Select APORT3 CH8-CH15 as CSEN_INPUT8-CSEN_INPUT15
	APORT3CH16TO23	14		Select APORT3 CH16-CH23 as CSEN_INPUT8-CSEN_INPUT15
	APORT3CH24TO31	15		Select APORT3 CH24-CH31 as CSEN_INPUT8-CSEN_INPUT15
7:4	Reserved	To ensure comp	patibility v	with future devices, always write bits to 0. More information in 1.2 Conver
3:0	INPUT0T07SEL	0x0	RW	CSEN_INPUT0-7 Select
	Channels chosen for	CSEN_INPUT7-C	SEN_IN	PUT0 as referred in SCANMASK0
	Mode	Value		Description
	APORT1CH0T07	4		Select APORT1 CH0-CH7 as CSEN_INPUT0-CSEN_INPUT7
	APORT1CH8TO15	5		Select APORT1 CH8-CH15 as CSEN_INPUT0-CSEN_INPUT7
	APORT1CH16TO23	6		Select APORT1 CH16-CH23 as CSEN_INPUT0-CSEN_INPUT7
	APORT1CH24TO31	7		Select APORT1 CH24-CH31 as CSEN_INPUT0-CSEN_INPUT7
	711 0111 10112 11 001			
	APORT3CH0TO7	12		Select APORT3 CH0-CH7 as CSEN_INPUT0-CSEN_INPUT7
		12 13		Select APORT3 CH0-CH7 as CSEN_INPUT0-CSEN_INPUT7 Select APORT3 CH8-CH15 as CSEN_INPUT0-CSEN_INPUT7
	APORT3CH0TO7			

34.13.9 CSEN_SCANMASK1 - Scan Channel Mask 1

31:0

SCANINPUTEN

0x00000000

RW

Offset															Bit	t Posit	ion													
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	4	13	12	7	10	0	∞	7	9	5	4	က	2	1 0
Reset		00000000000000000000000000000000000000																												
Access																														
Name																SCANINPUTEN														
Bit	Na	me					Re	set			Acc	cess	D	esc	cript	tion														

Scan channel mask for CSEN channels CSEN_INPUT32 through CSEN_INPUT63. For scan mode conversions, a '1' in any bit position will include the channel specified by SCANINPUTSEL1 in a scan. For bonded channel conversions, a '1' in any bit position includes the corresponding channel from APORT3 / BUSC in the bonded conversion. If AUTOGND = ENABLE the scan mask also determines the pins that will be grounded when inactive, for both scan and single channel conversions.

Scan Channel Mask.

34.13.10 CSEN_SCANINPUTSEL1 - Scan Input Selection 1

055					,					. 144													
Offset						1		T	it Po					T .		T						T	
0x024	30 31 28 28	27		23	22	20	6 8		16	15	4	13	7	9	တ	∞	_	9	2	4	က		- 0
Reset		,	0 0 0					000							<u> </u>							0×0	
Access			∑					X ≷						i	≷ Ƴ							ΑŠ	
Name			INPUT56TO63SEL					INPUT48T055SEL						[INPU 140 I 04 / SEL							INPUT32TO39SEL	
Bit	Name		Reset		A	cces	s De	scrip	tion														
31:28	Reserved		To ens	ure	compa	tibilit	y with f	uture	dev	ices	, alv	vays w	rite k	oits	to 0.	Мо	re inf	orm	atio	n in	1.2	Con	ven-
27:24	INPUT56TO63	SEL	0x0		R	W	cs	EN_I	INPL	JT56	6-63	Select											
	Channels chos	en for (CSEN_II	NPU	T56-C	SEN_	_INPU1	Г63 а	ıs ref	erre	d in	SCAN	MAS	SK1									
	Mode		Value				De	scrip	tion														
	APORT1CH0T	O7	4				Sel	ect A	APOF	RT1	CHO)-CH7	as C	SEI	N_IN	NPU	T56-0	SE	N_I	NP	UT6	3	
	APORT1CH8T	O15	5				Sel	ect A	APOF	RT1	CH	3-CH15	as	CSE	EN_	INPL	JT56	-cs	EN_	INF	PUT	63	
	APORT1CH16	TO23	6				Sel	ect A	APOF	RT1	CH1	16-CH2	23 as	s CS	SEN	INF	PUT5	6-C	SEN	1_IN	1PU	T63	
	APORT1CH24	TO31	7				Sel	ect A	POF	RT1	CH2	24-CH3	81 as	s CS	SEN.	INF	PUT5	6-C	SEN	1_IN	IPU	T63	
	APORT3CH0T	O7	12				Sel	ect A	POF	RT3	CHO	O-CH7	as C	SEI	N_IN	NPU	T56-0	CSE	N_I	NP	UT6	3	
	APORT3CH8T	O15	13				Sel	ect A	APOF	RT3	CH	3-CH15	as	CSE	EN_	INPL	JT56	-cs	EN_	INF	PUT	63	
	APORT3CH16	TO23	14				Sel	ect A	APOF	RT3	CH1	16-CH2	23 as	s CS	SEN.	_INF	PUT5	6-C	SEN	1_IN	IPU	T63	
	APORT3CH24	TO31	15				Sel	ect A	APOF	RT3	CH2	24-CH3	31 as	s CS	SEN.	_INF	PUT5	6-C	SEN	1_IN	IPU	T63	
23:20	Reserved		To ens	ure	compa	tibilit	y with t	uture	e dev	rices	, alv	vays w	rite k	oits	to 0.	Мо	re inf	orm	atio	n in	1.2	Con	ven-
19:16	INPUT48TO55	SEL	0x0		R	W	cs	EN_I	INPL	JT48	8-55	Select											
	Channels chos	en for (CSEN_II	NPU	T48-C	SEN_	_INPUT	Г55 а	ıs ref	erre	d in	SCAN	MAS	SK1									
	Mode		Value				De	scrip	tion														
	APORT1CH0T	O7	4				Sel	ect A	POF	RT1	CHO	O-CH7	as C	SEI	N_IN	NPU	T48-0	CSE	N_I	NP	UT5	5	
	APORT1CH8T	O15	5				Sel	ect A	APOF	RT1	CH	3-CH15	as	CSE	EN_	INPL	JT48	-cs	EN_	_INF	PUT	55	
	APORT1CH16	TO23	6				Sel	ect A	POF	RT1	CH1	16-CH2	23 as	s CS	SEN.	_INF	PUT4	8-C	SEN	1_IN	IPU	T55	
	APORT1CH24	TO31	7				Sel	ect A	APOF	RT1	CH2	24-CH3	81 as	s CS	SEN.	_INF	PUT4	8-C	SEN	1_IN	IPU	T55	
	APORT3CH0T	· 07	12				Sel	ect A	APOF	RT3	CHO)-CH7	as C	SEI	N_IN	NPU	T48-0	CSE	N_I	NΡ	UT5	5	
	APORT3CH8T	O15	13				Sel	ect A	APOF	RT3	CH	B-CH15	as	CSE	EN_	INPL	JT48	-CS	EN_	_INF	PUT	55	
	APORT3CH16	TO23	14				Sel	ect A	POF	RT3	CH1	16-CH2	23 as	s CS	SEN.	_INF	PUT4	8-C	SEN	1_IN	1PU	T55	
	APORT3CH24	TO31	15				Sel	ect A	APOF	RT3	CH2	24-CH3	81 as	s CS	SEN.	_INF	PUT4	8-C	SEN	1_IN	IPU	T55	

Bit	Name	Reset A	ccess [Description
15:12	Reserved	To ensure compa	atibility wit	h future devices, always write bits to 0. More information in 1.2 Conver
11:8	INPUT40TO47SEL	0x0 R	w c	CSEN_INPUT40-47 Select
	Channels chosen for	CSEN_INPUT40-C	SEN_INP	UT47 as referred in SCANMASK1
	Mode	Value		Description
	APORT1CH0TO7	4	5	Select APORT1 CH0-CH7 as CSEN_INPUT40-CSEN_INPUT47
	APORT1CH8TO15	5	8	Select APORT1 CH8-CH15 as CSEN_INPUT40-CSEN_INPUT47
	APORT1CH16TO23	6	5	Select APORT1 CH16-CH23 as CSEN_INPUT40-CSEN_INPUT47
	APORT1CH24TO31	7	8	Select APORT1 CH24-CH31 as CSEN_INPUT40-CSEN_INPUT47
	APORT3CH0TO7	12	5	Select APORT3 CH0-CH7 as CSEN_INPUT40-CSEN_INPUT47
	APORT3CH8TO15	13	5	Select APORT3 CH8-CH15 as CSEN_INPUT40-CSEN_INPUT47
	APORT3CH16TO23	14	5	Select APORT3 CH16-CH23 as CSEN_INPUT40-CSEN_INPUT47
	APORT3CH24TO31	15	8	Select APORT3 CH24-CH31 as CSEN_INPUT40-CSEN_INPUT47
7:4	Reserved	To ensure compa	atibility with	th future devices, always write bits to 0. More information in 1.2 Conve
3:0	INPUT32TO39SEL	0x0 R	w c	CSEN_INPUT32-39 Select
	Channels chosen for	CSEN_INPUT32-C	SEN_INP	UT39 as referred in SCANMASK1
	Mode	Value	[Description
	APORT1CH0T07	4	5	Select APORT1 CH0-CH7 as CSEN_INPUT32-CSEN_INPUT39
	APORT1CH8TO15	5	5	Select APORT1 CH8-CH15 as CSEN_INPUT32-CSEN_INPUT39
	APORT1CH16TO23	6	5	Select APORT1 CH16-CH23 as CSEN_INPUT32-CSEN_INPUT39
	APORT1CH24TO31	7	5	Select APORT1 CH24-CH31 as CSEN_INPUT32-CSEN_INPUT39
	APORT1CH24TO31 APORT3CH0TO7	7		Select APORT1 CH24-CH31 as CSEN_INPUT32-CSEN_INPUT39 Select APORT3 CH0-CH7 as CSEN_INPUT32-CSEN_INPUT39
			S	_
	APORT3CH0T07	12	8	Select APORT3 CH0-CH7 as CSEN_INPUT32-CSEN_INPUT39

34.13.11 CSEN_APORTREQ - APORT Request Status

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset				•	•						•				•					•			0	0	0	0	0	0	0	0		
Access																							~	2	2	Ж	22	22	22	2		
Name																							APORT4YREQ	APORT4XREQ	APORT3YREQ	APORT3XREQ	APORT2YREQ	APORT2XREQ	APORT1YREQ	APORT1XREQ		

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
9	APORT4YREQ	0	R	1 If the Bus Connected to APORT4Y is Requested
	Reports if the bus cor	nnected to APOI	RT4Y is be	ing requested from the APORT
8	APORT4XREQ	0	R	1 If the Bus Connected to APORT4X is Requested
	Reports if the bus cor	nnected to APOI	RT4X is be	ing requested from the APORT
7	APORT3YREQ	0	R	1 If the Bus Connected to APORT3Y is Requested
	Reports if the bus cor	nnected to APOI	RT3Y is be	ing requested from the APORT
6	APORT3XREQ	0	R	1 If the Bus Connected to APORT3X is Requested
	Reports if the bus cor	nnected to APOI	RT3X is be	ing requested from the APORT
5	APORT2YREQ	0	R	1 If the Bus Connected to APORT2Y is Requested
	Reports if the bus cor	nnected to APOI	RT2Y is be	ing requested from the APORT
4	APORT2XREQ	0	R	1 If the Bus Connected to APORT2X is Requested
	Reports if the bus cor	nnected to APOI	RT2X is be	ing requested from the APORT
3	APORT1YREQ	0	R	1 If the Bus Connected to APORT1X is Requested
	Reports if the bus cor	nnected to APOI	RT1X is be	ing requested from the APORT
2	APORT1XREQ	0	R	1 If the Bus Connected to APORT2X is Requested
	Reports if the bus cor	nnected to APOI	RT1X is be	ing requested from the APORT
1:0	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-

34.13.12 CSEN_APORTCONFLICT - APORT Request Conflict

Offset	Bit Position								
0x02C	33 30 30 30 30 30 30 30 30 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40	6	ω	/ 9	5	4	3	7	1 0
Reset		0	0	0 0	0	0	0	0	·
Access		2	ا ک	<u>بر</u>	2	8	2	~	
Name		APORT4YCONFLICT	APORT4XCONFLICT	APORT3YCONFLICT APORT3XCONFLICT	APORT2YCONFLICT	APORT2XCONFLICT	ORT1YCONFLI	APORT1XCONFLICT	

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure contions	npatibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
9	APORT4YCONFLICT	0	R	1 If the Bus Connected to APORT4Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT4Y is is a	also being requested by another peripheral
8	APORT4XCONFLICT	0	R	1 If the Bus Connected to APORT4X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT4X is is a	also being requested by another peripheral
7	APORT3YCONFLICT	0	R	1 If the Bus Connected to APORT3Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT3Y is is a	also being requested by another peripheral
6	APORT3XCONFLICT	0	R	1 If the Bus Connected to APORT3X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT3X is is a	also being requested by another peripheral
5	APORT2YCONFLICT	0	R	1 If the Bus Connected to APORT2Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT2Y is is a	also being requested by another peripheral
4	APORT2XCONFLICT	0	R	1 If the Bus Connected to APORT2X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT2X is is a	also being requested by another peripheral
3	APORT1YCONFLICT	0	R	1 If the Bus Connected to APORT1Y is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT1Y is is a	also being requested by another peripheral
2	APORT1XCONFLICT	0	R	1 If the Bus Connected to APORT1X is in Conflict With Another Peripheral
	Reports if the bus con	nected to APOF	RT1X is is a	also being requested by another peripheral
1:0	Reserved	To ensure contions	npatibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-

34.13.13 CSEN_CMPTHR - Comparator Threshold

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	ω	7	9	5	4	က	2	_	0
Reset														•				1	ı		'		l	0000	nnnxn	,		ı				
Access																								2	<u>}</u>							
Name																									۲ ۲ ۲							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15:0	CMPTHR	0x0000	RW	Comparator Threshold.

When CMPEN is set to 1 and EMACMPEN is cleared to 0, a greater than or less than/equal (based on CMPPOL) comparison between the DATA register and CMPTHR value. If the desired condition is met, the CMPIF flag will be set. When EMACMPEN is set to 1, a comparison window is used instead. The DATA register will be compared against EMA +/-CMPTHR. The CMPIF flag is set any time the conversion result is above (EMA + CMPTHR) or below (EMA - CMPTHR).

34.13.14 CSEN_EMA - Exponential Moving Average

Offset															Bi	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																					000000	0000000										
Access																																
Name																					Š L	<u> </u>										

Bit	Name	Reset A	ccess	Description
31:22	Reserved	To ensure compa	atibility w	vith future devices, always write bits to 0. More information in 1.2 Conven-
21:0	EMA	0x000000 R	RWH	Calculated Exponential Moving Average

This register contains the current exponential moving average. The EMA is updated every time an accumulated sample is produced, according to the formula: EMA[n] = EMA[n-1] - EMA[n-1]/N + DATA/N, where N is the EMA sample weight selected by EMASAMPLE. This register can be written to initialize the average.

34.13.15 CSEN_EMACTRL - Exponential Moving Average Control

Offset															Bi	t Po	siti	on														
0x038	33	30	29	28	27	26	25	24	23	22	21	20	9	2	17	16	15	4	73	12	7	9	6	∞	_	9	2	4	က	7	_	0
Reset		•	•																	•		•			•						0x0	
Access																															W M	
Name																															EMASAMPLE	
Bit	Na	ame					Re	set			Ac	ces	s l	Des	crip	tion																
31:3	Re	esen	ved				To tion		ure	con	npati	bility	y wit	th fu	ture	dev	rices	s, alı	way.	s wr	ite b	its t	o 0.	Мо	re ir	forn	natio	on in	1.2	Co	nvei	n-
2:0	ΕN	ИAS	AMF	PLE			0x0)			RW	/	I	EM <i>A</i>	\ Sa	mpl	e W	eig	ht													
	Th	is fie	eld s	peci	fies	the	san	nple	wei	ghti	ng (l	N) fo	or th	e ex	pon	enti	al m	ovir	ng a	vera	ge f	ilter										
	Va	lue					Мо	de					ı	Des	cript	ion																_
	0						W1						ı	EMA	we	ight	(N)	is 1														
	1						W2	2					l	EMA	we	ight	(N)	is 2														
	2						W4						l	EMA	we	ight	(N)	is 4	•													
	3						W8	3					l	EMA	we	ight	(N)	is 8														
	4						W1	6					l	EMA	we	ight	(N)	is 1	6.													
	5						W3	32					l	EMA	we	ight	(N)	is 3	2.													
	6						W6	64					ı	EMA	we	ight	(N)	is 6	4.													

34.13.16 CSEN_SINGLECTRL - Single Conversion Control

34.13.10	00		.0	OLL			O.I.	igic	00.		0.0.		,,,,,,	01																			
Offset															Bi	t P	ositi	on															
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	41	13	2 2	7	10	6	8	7	. 9	L	ç	4	3	2	_	С
Reset		•		•	•	•							•	•	•				•	•	·				Oxo		•	•			•		
Access																									8								
Name																									I HOLL	 							
Bit	Na	ame					Re	set			Ac	ces	s I	Des	crip	tio	n																
31:11	Re	eser	/ed				To tio		ure	com	pati	bility	/ wii	th fu	ture	de	vice	s, al	wa	ys w	rite l	bits 1	o 0.	Мо	re	infor	ma	atio	n in	1.2	? Co	nve	n-
10:4	SI	NGL	ESE	EL			0x0	00			RW	/	;	Sing	gle (Cha	nne	l Inp	out	Sele	ct												
	Th	nis fie	eld s	elec	ts th	ne c	hanı	nel t	o be	sar	nple	d fo	r siı	ngle	cha	ınne	el co	nvei	rsic	ons.													
	M	ode					Va	lue						Des	cript	ion																	_
	AF	POR	T1X	CHO)		32						;	Sele	ct A	PO	RT1	XCI	H0														_
	AF	POR	T1Y	CH1			33						,	Sele	ct A	PO	RT1	YCŀ	H1														
	AF	POR	T3X	CHO)		96							Sele	ct A	PO	RT3	XCI	H0														
	AF	POR	T3Y	CH1			97							Sele	ct A	PO	RT3	YCH	H1														

To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-

3:0

Reserved

tions

34.13.17 CSEN_DMBASELINE - Delta Modulation Baseline

Offset															Ві	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	00000X0																															
Access																																
Name									AGEL																1							

Bit	Name	Reset	Access	Description
31:16	BASELINEDN	0x0000	RW	Delta Modulator Integrator Initial Value
	When CHOPEN = EN	NABLE, this field	is used to	initialize the ramp-down integrator. Unused if CHOPEN = DISABLE.
15:0	BASELINEUP	0x0000	RW	Delta Modulator Integrator Initial Value
	This field is used to in	nitialize the integ	rator. Whe	n CHOPEN = ENABLE, this field is used for the ramp-up integrator.

34.13.18 CSEN_DMCFG - Delta Modulation Configuration

34.13.10	C3LN_DINICI G - Della Modulation C	Somiguration	
Offset		Bit Position	
0x044	31 30 30 29 29 27 27 26 26 27 27 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	21	11 0 0 8 2 9 9 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reset	0	000	0×00 0×00
Access	W. W.	X X	X X
Name	DMGRDIS	CRMODE	DMG
Bit	Name Reset	Access Description	
31:29	Reserved To ensure contions	mpatibility with future devices, always wri	te bits to 0. More information in 1.2 Conven-

	DMC		CR	DWC		DMF	DMC
Bit	Name	Reset	Access	s Description	1		
31:29	Reserved	To ensure co	mpatibility	with future dev	vices, always wr	rite bits to 0. Mo	re information in 1.2 Conven-
28	DMGRDIS	0	RW	Delta Modu	lation Gain Ste	p Reduction D	isable
	If this bit set, the into gain step is divided					DMG. Otherwise	e, at the end of each cycle, the
27:22	Reserved	To ensure co	mpatibility	with future dev	vices, always wr	rite bits to 0. Mo	re information in 1.2 Conven-
21:20	CRMODE	0x0	RW	Delta Modu	lator Conversi	on Resolution.	
	This field selects the	e resolution for D	M convers	sions.			
	Value	Mode		Description			
	0	DM10		10-bit delta	modulator		
	1	DM12		12-bit delta	modulator		
	2	DM14		14-bit delta	modulator		
	3	DM16		16-bit delta	modulator		
19:16	DMCR	0x0	RW	Delta Modu	lator Conversi	on Rate	
							the case of DMCR = 0, the ined by the DMR field.
15:12	Reserved	To ensure co	mpatibility	with future dev	vices, always wr	rite bits to 0. Mo	re information in 1.2 Conven-
11:8	DMR	0x0	RW	Delta Modu	lator Gain Red	uction Interval	
							etting. For DMR = 0, 64 tests be performed per cycle.
7:0	DMG	0x00	RW	Delta Modu	lator Gain Step)	
	This field sets the in resolution selected		e (the "de	lta") for the delt	a modulator. Th	nis field represer	nts a number of codes at the

34.13.19 CSEN_ANACTRL - Analog Control

								.																									
Offset															Bi	it P	ositi	ion															
0x048	34	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	5 5	7	1	10	6	8	7	9	5	4	3	2	-	0
Reset		·	•	•	•						0×0			·					•	•				0x0				0x7			•		
Access											X ≷													ZW W				Z.					
Name											TRSTPROG													IDACIREFS				IREFPROG					
Bit	N	lame					Re	set			Ac	ces	s	Des	crip	tio	n																
31:23	R	Reser	ved				To tio		ure	com	oati	bilit	y w	vith fu	ıture	de	vice	s, al	lwa	ays I	writ	e b	its t	o 0.	Мо	re ir	nforr	natio	on ii	1.2	2 Co	nve	n-
22:20	Т	RST	PRO	G			0x0)			RV	/		Res	et T	imi	ng																
		his fi rease										to d	lisc	charg	e the	e e	xtern	al c	ара	acit	or o	duri	ng a	со	nvei	rsior	1. R	eset	tim	ing i	is in-	-	
19:11	R	Reser	ved				To tio		ure	com	pati	bilit	y w	vith fu	ıture	de	vice	s, al	lwa	ays I	writ	e b	its t	o 0.	Мо	re ir	nforr	natio	on ii	1.2	2 Co	nve	n-
10:8	IE	DACI	REF	S			0x0)			RW	/		Cur	rent	DA	AC a	nd I	Ref	fere	nc	e C	urre	ent	Sca	le							
		DACI												block used.																			
7	R	Reser	ved				To tio		ure	com	pati	bilit	y u	vith fu	ıture	de	vice	s, al	lwa	ays I	writ	e b	its t	o 0.	Мо	re ir	nforr	natio	on ii	1.2	2 Co	nve	n-

Reference Current Control.

To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-

This field sets the relative magnitude of the current source that charges the internal reference cap. Lower settings allow for

larger external capacitance, and higher settings allow for more precise measurements on smaller capacitors.

6:4

3:0

IREFPROG

Reserved

0x7

tions

RW

34.13.20 CSEN_IF - Interrupt Flag

Offset															Bi	t Po	siti	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset					'									•		'	•										•	0	0	0	0	0
Access																												22	22	~	~	œ
Name																												APORTCONFLICT	DMAOF	EOS	CONV	CMP

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure contions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4	APORTCONFLICT	0	R	APORT Conflict Interrupt Flag
	1 if any of the BUSes	being requeste	d by the CS	SEN are also being requested by another peripheral
3	DMAOF	0	R	DMA Overflow Interrupt Flag.
	When DMAEN is 1, the completes.	nis flag will be se	et to 1 by h	ardware if DMA does not read the DATA register and a new conversion
2	EOS	0	R	End of Scan Interrupt Flag.
	This flag is set to 1 at	the end of a sc	an cycle, at	fter all channels have been converted.
1	CONV	0	R	Conversion Done Interrupt Flag
	This flag is set to 1 w	hen a data conv	ersion is co	omplete and the result has been posted to DATA.
0	СМР	0	R	Digital Comparator Interrupt Flag
	This flag is set to 1 w	hen a CSEN co	mparator e	vent has happened.

34.13.21 CSEN_IFS - Interrupt Flag Set

Offset															Bi	it Po	siti	on														
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		'	'		'									•	'	•										<u>' </u>		0	0	0	0	0
Access																												W1	W1	W1	W1	W
Name																												APORTCONFLICT	DMAOF	EOS	CONV	CMP

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure cor tions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
4	APORTCONFLICT	0	W1	Set APORTCONFLICT Interrupt Flag
	Write 1 to set the AP	ORTCONFLICT	interrupt fla	ag
3	DMAOF	0	W1	Set DMAOF Interrupt Flag
	Write 1 to set the DM	AOF interrupt fla	ag	
2	EOS	0	W1	Set EOS Interrupt Flag
	Write 1 to set the EO	S interrupt flag		
1	CONV	0	W1	Set CONV Interrupt Flag
	Write 1 to set the CO	NV interrupt flag		
0	CMP	0	W1	Set CMP Interrupt Flag
	Write 1 to set the CM	P interrupt flag		

34.13.22 CSEN_IFC - Interrupt Flag Clear

Offset	Bit Position					
0x05C	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4	3	2	_	0
Reset		0	0	0	0	0
Access		(R)W1	(R)W1	(R)W1	(R)W1	(R)W1
Name		APORTCONFLICT	DMAOF	EOS	CONV	CMP

Bit	Name	Reset	Access	Description								
31:5	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Cortions										
4	APORTCONFLICT	0	(R)W1	Clear APORTCONFLICT Interrupt Flag								
	Write 1 to clear the A rupt flags (This featur			flag. Reading returns the value of the IF and clears the corresponding interv in MSC.).								
3	DMAOF	0	(R)W1	Clear DMAOF Interrupt Flag								
	Write 1 to clear the DMAOF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags (This feature must be enabled globally in MSC.).											
2	EOS	0	(R)W1	Clear EOS Interrupt Flag								
	Write 1 to clear the E feature must be enab		•	returns the value of the IF and clears the corresponding interrupt flags (This								
1	CONV	0	(R)W1	Clear CONV Interrupt Flag								
	Write 1 to clear the C (This feature must be			g returns the value of the IF and clears the corresponding interrupt flags .								
0	CMP	0	(R)W1	Clear CMP Interrupt Flag								
	Write 1 to clear the C (This feature must be			returns the value of the IF and clears the corresponding interrupt flags .								

34.13.23 CSEN_IEN - Interrupt Enable

Offset	Bit Position																															
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		'			'						'					'				'				'		'	'	0	0	0	0	0
Access																												RW	Z.	RW	Z.	A W
Name																												APORTCONFLICT	DMAOF	EOS	CONV	CMP

Bit	Name	Reset	Access	Description						
31:5	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Contions								
4	APORTCONFLICT	0	RW	APORTCONFLICT Interrupt Enable						
	Enable/disable the APORTCONFLICT interrupt									
3	DMAOF	0	RW	DMAOF Interrupt Enable						
	Enable/disable the D	MAOF interrupt								
2	EOS	0	RW	EOS Interrupt Enable						
	Enable/disable the EOS interrupt									
1	CONV	0	RW	CONV Interrupt Enable						
	Enable/disable the C	ONV interrupt								
0	CMP	0	RW	CMP Interrupt Enable						
	Enable/disable the CMP interrupt									

35. CAN - Controller Area Network

Quick Facts

What?

The Controller Area Network (CAN) is a serial communications protocol which efficiently supports distributed realtime control with a very high level of security.

Why?

The domain of applications for CAN ranges from high speed networks to low cost multiplex wiring. In automotive electronics, engine control units, sensors, anti-skid-systems and more are connected using CAN with bitrates up to 1 Mbit/s. At the same time it is cost effective to build into vehicle body electronics, such as lamp clusters and electric windows, to replace the wiring harness otherwise required.

How?

It provides support for broadcast and multicast communication, with deterministic resolution of contention and robust error detection and signaling.

35.1 Introduction

CAN is a robust multimaster bus supporting a high data transfer rate of 1 Mbit/s and sophisticated error detection and error handling. The CAN peripheral supports up to 32 different message objects for automatic filtering of received messages. Multiple message object locations can be programmed with the same identifier mask to implement receive message FIFOs.

35.2 Features

- · Supports CAN protocol version 2.0 part A, B
- · Bitrates up to 1 Mbit/s
- Disable Automatic Retransmission mode for Time Triggered CAN applications
- · 32 Message Objects
- Each Message Object has its own Identifier Mask
- Programmable FIFO mode
- Maskable interrupt
- Programmable loopback mode for self test operation
- Message RAM retention in EM2

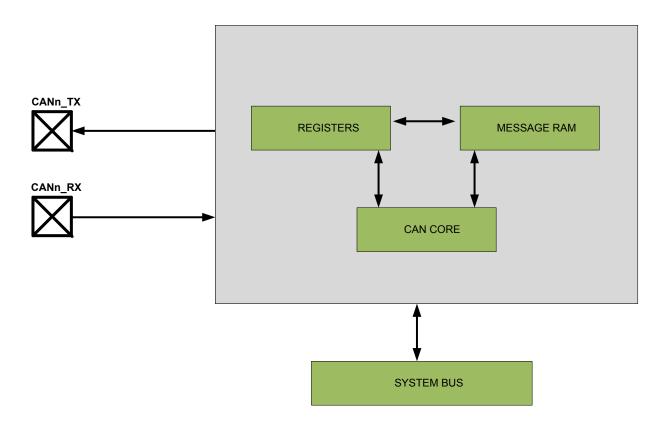


Figure 35.1. Block Diagram

35.3 Functional Description

35.3.1 Operating Modes

35.3.1.1 Software Initialization

The software initialization is started by setting the bit INIT in the CANn_CTRL Register, either by software or by a hardware reset, or by going bus-off.

While INIT is set, all message transfer to and from the CAN bus is stopped, the status of the CAN bus output CAN_TX is recessive (HIGH). The REC and TEC of the CANn ERRCNT are unchanged. Setting INIT does not change any configuration register.

To initialize the CAN Controller, the CPU has to set up the Bit Timing Register (CANn_BITTIMING) and each Message Object. Message Object is a collective representation of the bits in the Message Interface Registers (CANn_MIRx_CMDMASK, CANn_MIRx_MASK, etc.). More details about the Message Object are stated in 35.3.3 Message Object in the Message Memory. If a Message Object is not needed, it is sufficient to set its MSGVAL bit in CANn_MIRx_ARB to not valid. Otherwise, the whole Message Object has to be initialized.

Access to the Bit Timing Register (CANn_BITTIMING) and to the BRP Extension Register (CANn_BRPE) for the configuration of the bit timing is enabled when both bits INIT and CCE in the CANn_CTRL register are set.

Resetting INIT (by CPU only) finishes the software initialization. Afterwards, the module synchronizes itself to the data transfer on the CAN bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits ("bus idle") before it can take part in bus activities and start the message transfer.

The initialization of the Message Objects is independent of INIT and can be done at runtime, but the Message Objects should all be configured to particular identifiers or set to not valid before the message transfer begins.

To change the configuration of a Message Object during normal operation, the CPU has to start by setting MSGVAL to not valid. When the configuration is completed, MSGVAL is set to valid again.

Description

Normal Operation

Initialization is started

Table 35.1. Software Initialization

35.3.1.2 CAN Message Transfer

INIT Bit Value

0

Received messages are stored into their appropriate Message Objects if they pass acceptance filtering. The whole message including all the arbitration bits, DLC and 8 data bytes is stored into the Message Object. If the Identifier Mask is used, the arbitration bits which are masked to "don't care" may be overwritten in the Message Object.

Messages to be transmitted are updated by the CPU. If a permanent Message Object (arbitration and control bits set up during configuration) exists for the message, only the data bytes are updated and then TXRQST bit and DATAVALID bit are set in CANn_MIRx_CTRL to start the transmission. If several transmit messages are assigned to the same Message Object (when the number of Message Objects is not sufficient), the whole Message Object has to be configured before the transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time, they are transmitted subsequently according to their internal priority. Messages may be updated or set to not valid any time, even when their requested transmission is still pending. The old data will be discarded when a message is updated before its pending transmission has started.

Depending on the configuration of the Message Object, the transmission of a message may be requested autonomously by the reception of a remote frame with a matching identifier.

35.3.1.3 Disabled Automatic Retransmission

According to the CAN Specification (see ISO11898), the CAN module provides means for automatic retransmission of frames that have lost arbitration or that have been disturbed by errors during transmission. The frame transmission service will not be confirmed to the user before the transmission is successfully completed. By default, this means for automatic retransmission is enabled. It can be disabled to enable the CAN module to work within a Time Triggered CAN (TTCAN, see ISO11898-1) environment.

The Disabled Automatic Retransmission mode is enabled by programming bit DAR in the CANn_CTRL to 1. In this operation mode, the programmer has to consider the different behaviour of the TXRQST and DATAVALID bits in the Control Registers of the Message Buffers (CANn_MIRx_CTRL):

- When a transmission starts, TXRQST of the respective Message Buffer is reset, while DATAVALID remains set.
- · When the transmission is completed successfully, the DATAVALID bit is reset.

When a transmission failed (lost arbitration or error) bit DATAVALID remains set. To restart the transmission the CPU has to set TXRQST back to 1.

35.3.1.4 Test Mode

The Test Mode is entered by setting the TEST bit in CANn_CTRL to 1. In Test Mode, the bits TX1, TX0, LBACK, SILENT and BASIC in CANn_TEST are writable. RX monitors the state of pin CAN_RX and therefore is only readable. All Test Register functions are disabled when the bit TEST is reset to 0.

35.3.1.5 Silent Mode

The CAN module can be set in Silent Mode by programming the SILENT bit in CANn TEST to 1.

In Silent Mode, the CAN is able to receive valid data frames and valid remote frames, but it sends only recessive bits on the CAN bus and it cannot start a transmission. If the CAN core is required to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted internally so that the CAN module monitors this dominant bit, although the CAN bus may remain in recessive state. The Silent Mode can be used to analyse the traffic on a CAN bus without affecting it by the transmission of dominant bits (Acknowledge Bits, Error Frames). Figure 35.2 CAN Core in Silent Mode on page 1227 shows the connection of signals CAN_TX and CAN_RX to the CAN core in Silent Mode.

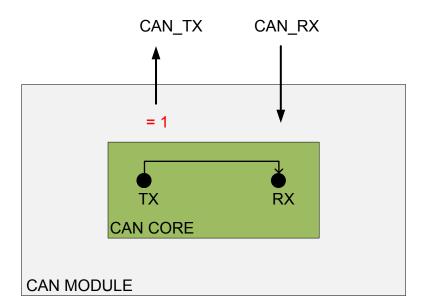


Figure 35.2. CAN Core in Silent Mode

35.3.1.6 Loop Back Mode

The CAN module can be set in Loop Back Mode by programming the CANn_TEST bit LBACK to 1 . In Loop Back Mode, the module treats its own transmitted messages as received messages and stores them (if they pass acceptance filtering) into a Receive Buffer. Figure 35.3 CAN Core in Loop Back Mode on page 1228 shows the connection of signals CAN_TX and CAN_RX to the CAN core in Loop Back Mode.

This mode is provided for self-test functions. To be independent from external stimulation, the CAN core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/ remote frame) in Loop Back Mode. In this mode the CAN core performs an internal feedback from its Tx output to its Rx input. The actual value of the CAN_RX input pin is disregarded by the CAN core. The transmitted messages can be monitored at the CAN_TX pin.

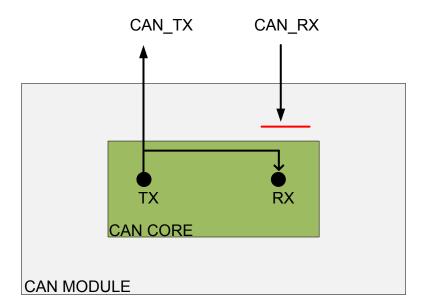


Figure 35.3. CAN Core in Loop Back Mode

35.3.1.7 Loop Back Combined With Silent Mode

It is also possible to combine Loop Back Mode and Silent Mode by programming bits LBACK and SILENT to 1 at the same time. This mode can be used for a "Hot Selftest", meaning the CAN can be tested without affecting a running CAN system connected to the pins CAN_TX and CAN_RX. In this mode the CAN_RX pin is disconnected from the CAN core and the CAN_TX pin is held recessive. Figure 35.4 CAN Core in Loop Back Combined With Silent Mode on page 1229 shows the connection of signals CAN_TX and CAN_RX to the CAN core in case of the combination of Loop Back Mode with Silent Mode.

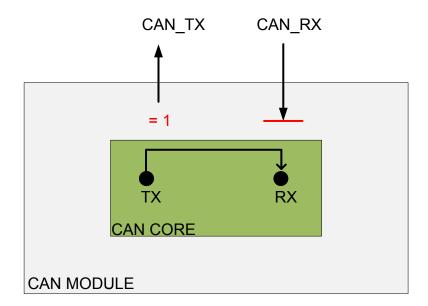


Figure 35.4. CAN Core in Loop Back Combined With Silent Mode

35.3.1.8 Basic Mode

The CAN module can be set in Basic Mode by programming the CANn_TEST bit BASIC to 1

The CANn_MIR0 Registers are used as Transmit Buffer. The transmission of the contents of the CANn_MIR0 Registers is requested by writing the BUSY bit of the CANn_MIR0 Command Request Register to 1. The CANn_MIR0 Registers are locked while the BUSY bit is set. The BUSY bit indicates that the transmission is pending.

As soon the CAN bus is idle, the CANn_MIR0 Registers are loaded into the shift register of the CAN core and the transmission is started. When the transmission has completed, the BUSY bit is reset and the locked CANn_MIR0 Registers are released.

A pending transmission can be aborted at any time by resetting the BUSY bit in the CANn_MIR0 Command Request Register while the CANn_MIR0 Registers are locked. If the CPU has reset the BUSY bit, a possible retransmission in case of lost arbitration or in case of an error is disabled.

The CANn_MIR1 Registers are used as Receive Buffer. After the reception of a message the contents of the shift register is stored into the CANn_MIR1 Registers, without any acceptance filtering.

Additionally, the actual contents of the shift register can be monitored during the message transfer. Each time a read Message Object is initiated by writing the BUSY bit of the CANn_MIR1_CMDREQ Register to 1, the contents of the shift register is stored into the CANn_MIR1 Registers.

In basic mode the evaluation of all Message Object related control and status bits and of the control bits of the CANn_MIRx_CMDMASK Registers is turned off. The message number of the CANn_MIRx_CMDREQ registers is not evaluated. The DATAVALID and MESSAGEOF bits of the CANn_MIR1_CTRL Register retain their function, DLC3-0 will show the received DLC, the other control bits will be read as 0.

35.3.1.9 Software Control of Pin CAN_TX

4 output functions are available for the CAN transmit pin CAN_TX. Additionally to its default function -- the serial data output -- it can drive the CAN Sample Point signal to monitor the CAN core's bit timing and it can drive constant dominant or recessive values. The last two functions, combined with the readable CAN receive pin CAN_RX, can be used to check the CAN bus physical layer.

The output mode of the CAN TX pin is selected by programming the CANn TEST bits TX1 and TX0

The three test functions for the CAN_TX pin interfere with all CAN protocol functions. CAN_TX must be left in its default function when CAN message transfer or any of the test modes Loop Back Mode, Silent Mode, or Basic Mode are selected.

35.3.2 Message Interface Register Sets

There are two sets of Interface Registers (CANn_MIRx) which are used to control the CPU access to the Message RAM. The Interface Registers avoid conficts between CPU access to the Message RAM and CAN message reception and transmission by buffering the data to be transferred. A complete Message Object or parts of the Message Object may be transferred between the Message RAM and the CANn_MIRx Message Buffer registers in one single transfer.

The function of the two interface register sets is identical (except for test mode BASIC). They can be used the way that one set of registers is used for data transfer to the Message RAM while the other set of registers is used for the data transfer from the Message RAM, allowing both processes to be interrupted by each other.

Each set of Interface Registers consists of Message Buffer Registers (CANn_MIRx_DATAL and CANn_MIRx_DATAH) controlled by their own Command Registers (CANn_MIRx_CTRL). The Command Mask Register (CANn_MIRx_CMDMASK) specifies the direction of the data transfer and which parts of a Message Object will be transferred. The Command Request Register (CANn_MIRx_CMDREQ) is used to select a Message Object in the Message RAM as target or source for the transfer and to start the action specified in the Command Mask Register (CANn_MIRx_CMDMASK).

Table 35.2. Interface Register Sets

Interface Registers 0	Address	Interface Registers 1	Address
CANn_BASE + 0x60	MIR0 Command Mask	CANn_BASE + 0x80	MIR1 Command Mask
CANn_BASE + 0x64	MIR0 Mask	CANn_BASE + 0x84	MIR1 Mask
CANn_BASE + 0x68	MIR0 Arbitration	CANn_BASE + 0x88	MIR1 Arbitration
CANn_BASE + 0x6C	MIR0 Message Control	CANn_BASE + 0x8C	MIR1 Message Control
CANn_BASE + 0x70	MIR0 DATA L	CANn_BASE + 0x90	MIR1 DATA L
CANn_BASE + 0x74	MIR0 DATA H	CANn_BASE + 0x94	MIR1 DATA H
CANn_BASE + 0x78	MIR0 Command Request	CANn_BASE + 0x98	MIR1 Command Request

35.3.3 Message Object in the Message Memory

There are 32 Message Objects in the Message RAM. To avoid conflicts between CPU access to the Message RAM and CAN message reception and transmission, the CPU cannot directly access the Message Objects, these accesses are handled via the CANn_MIRx Interface Registers. The bit definitions can be found in descriptions of the CANn_MIRx registers.

Table 35.3. Message Object

UMASK	MSK28- 0	MXTD	MDIR	EOB	DATA- VALID	MESSA- GEOF	RXIE	TXIE	INTPND	RMTEN	TXRQS T	N.A.
MSGVA L	ID28-0	XTD	DIR	DLC3-0	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7

35.3.4 Management of Message Objects

All the Message Objects must be initialized by the CPU or they must be not valid (MSGVAL = 0) and the bit timing must be configured before the CPU clears the INIT bit in the CANn_CTRL Register.

The configuration of a Message Object is done by programming Mask, Arbitration, Control and Data field of one of the two interface register sets to the desired values. By writing to the corresponding CANn_MIRx_CMDREQ Register, the CANn_MIRx_DATAL and CANn_MIRx_DATAH Registers are loaded into the addressed Message Object in the Message RAM.

The CPU reads received messages and updates messages to be transmitted via the CANn_MIRx Interface Registers. Depending on the configuration, the CPU is interrupted on certain CAN message and CAN error events.

35.3.5 Data Transfer From/to Message RAM

When the CPU initiates a data transfer between the CANn_MIRx Registers and Message RAM, the Message Handler sets the BUSY bit in the respective CANn MIRx CMDREQ to 1. After the transfer has completed, the BUSY bit is set back to 0.

The respective Command Mask Register CANn_MIRx_CMDMASK specifies whether a complete Message Object or only parts of it will be transferred. Due to the structure of the Message RAM it is not possible to write single bits/bytes of one Message Object, it is always necessary to write a complete Message Object into the Message RAM. Therefore the data transfer from the CANn_MIRx Registers to the Message RAM requires of a read-modify-write cycle. First that parts of the Message Object that are not to be changed are read from the Message RAM and then the complete contents of the Message Buffer (CANn_MIRx_DATAL and CANn_MIRx_DATAH) Registers are transferred into the Message Object.

After the partial write of a Message Object, that Message Buffer (CANn_MIRx_DATAL and CANn_MIRx_DATAH) Registers that are not selected in the Command Mask CANn_MIRx_CMDMASK Register will set to the actual contents of the selected Message Object.

After the partial read of a Message Object, that Message Buffer (CANn_MIRx_DATAL and CANn_MIRx_DATAH) Registers that are not selected in the Command Mask CANn_MIRx_CMDMASK Register will be left unchanged.

35.3.6 Transmission of Messages

If the shift register of the CAN is ready for loading and if there is no data transfer between the CANn_MIRx Registers and Message RAM, the VALID bits in the CANn_MESSAGESTATE Register and TXRQSTOUT bits in the CANn_TRANSREQ Register are evaluated. The valid Message Object with the highest priority pending transmission request is loaded into the shift register and the transmission is started. The Message Object's DATAVALID bit is reset.

After a successful transmission and if no new data was written to the Message Object (DATAVALID = 0) since the start of the transmission, the TXRQST bit will be reset. If TXIE in CANn_MIRx_CTRL is set, INTPND in CANn_MIRx_CTRL will be set after a successful transmission. If the CAN module has lost the arbitration or if an error occurred during the transmission, the message will be retransmitted as soon as the CAN bus is free again. If meanwhile the transmission of a message with higher priority has been requested, the messages will be transmitted in the order of their priority.

35.3.7 Acceptance Filtering of Received Messages

When the arbitration and control field (Identifier + IDE + RTR + DLC) of an incoming message is completely shifted into the Rx/Tx Shift Register of the CAN module, it starts the scanning of the Message RAM for a matching valid Message Object.

To scan the Message RAM for a matching Message Object, the arbitration bits from the CAN shift register and then the arbitration and mask fields (including MSGVAL, UMASK, DATAVALID, and EOB) of Message Object 1 are compared. This is repeated with each following Message Object until a matching Message Object is found or until the end of the Message RAM is reached

If a match occurs, the scanning is stopped and the Module proceeds depending on the type of frame (Data Frame or Remote Frame) received.

35.3.7.1 Reception of Data Frame

Not only the data bytes, but all arbitration bits and the Data Length Code are stored into the corresponding Message Object. This is implemented to keep the data bytes connected with the identifier even if arbitration mask registers are used.

The DATAVALID bit is set to indicate that new data (not yet seen by the CPU) has been received. The CPU should reset DATAVALID when it reads the Message Object. If at the time of the reception the DATAVALID bit was already set, MESSAGEOF is set to indicate that the previous data (supposedly not seen by the CPU) is lost. If the RXIE bit is set, the INTPND bit is set, causing the Interrupt Register CANn_INTID to point to this Message Object.

The TXRQST bit of this Message Object is reset to prevent the transmission of a Remote Frame, while the requested Data Frame has just been received.

35.3.7.2 Reception of Remote Frame

When a Remote Frame is received, 3 difference configurations of the matching Message Object have to be considered:

- DIR = 1 (direction = transmit), RMTEN = 1, UMASK = 1 or 0. At the reception of a matching Remote Frame, the TXRQST bit of this
 Message Object is set. The rest of the Message Object remains unchanged
- DIR = 1 (direction = transmit), RMTEN = 0, UMASK = 0. At the reception of a matching Remote Frame, the TXRQST bit of this Message Object remains unchanged; the Remote Frame is ignored.
- DIR = 1 (direction = transmit), RMTEN = 0, UMASK = 1. At the reception of a matching Remote Frame, the TXRQST bit of this
 Message Object is reset. The arbitration and control field (Identifier + IDE + RTR + DLC) from the shift register is stored into the
 Message Object in the Message RAM and the DATVALID bit of this Message Object is set. The data fifield of the Message Object
 remains unchanged; the Remote Frame is treated similar to a received Data Frame.

35.3.8 Receive/Transmit Priority

The receive/transmit priority for the Message Objects is attached to the message number. Message Object 1 has the highest priority, while Message Object 32 has the lowest priority. If more than one transmission request is pending, they are serviced due to the priority of the corresponding Message Object.

35.3.9 Configuration of a Transmit Object

Table 35.4. Configuration of Transmit Object

MSGVA L	ARB	DATA	MASK	ЕОВ	DIR	DATA- VALID	MESSA- GEOF	RXIE	TXIE	INTPND	RMTEN	TXRQS T
1	Applica- tion	Applica- tion	Applica- tion	1	1	0	0	0	Applica- tion	0	Applica- tion	0

The Arbitration Registers (ID28-0 and XTD bit) are given by the application. They define the identifier and type of the outgoing message. If an 11-bit Identifier ("Standard Frame") is used, it is programmed to ID28 - ID18, ID17 - ID0 can then be disregarded

If the RMTEN bit is set, a matching received Remote Frame will cause the TXRQST bit to be set; the Remote Frame will autonomously be answered by a Data Frame

The Data Registers (DLC3-0, Data0-7) are given by the application, TXRQST and RMTEN may not be set before the data is valid

The Mask Registers (MASK28-0, UMASK, MXTD, and MDIR bits) may be used (UMASK='1') to allow groups of Remote Frames with similar identifiers to set the TXRQST bit.

35.3.10 Updating a Transmit Object

The CPU may update the data bytes (DATA7:0) of a Transmit Object any time via the CANn_MIRx Interface registers, neither MSGVAL nor TXRQST have to be reset before the update.

Even if only a part of the data bytes are to be updated, all four bytes of the corresponding CANn_MIRx_DATAL Register or MIRx CANn_MIRx_DATAH Register have to be valid before the content of that register is transferred to the Message Object. Either the CPU has to write all four bytes into the MIRx Data Register or the Message Object is transferred to the MIRx Data Register before the CPU writes the new data bytes.

When only the (eight) data bytes are updated, first 0x0087 is written to the Command Mask Register and then the number of the Message Object is written to the Command Request Register, concurrently updating the data bytes and setting TXRQST.

To prevent the reset of TXRQST at the end of a transmission that may already be in progress while the data is updated, DATAVALID has to be set together with TXRQST.

When DATAVALID is set together with TXRQST, DATAVALID will be reset as soon as the new transmission has started.

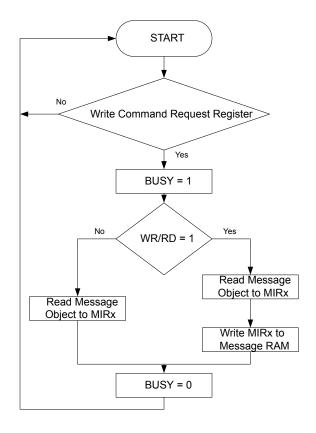


Figure 35.5. Data Transfer Between MIRx Registers and the Message RAM

35.3.11 Configuration of a Receive Object

Table 35.5. Configuration of Receive Object

MSGVA L	ARB	DATA	MASK	ЕОВ	DIR	DATA- VALID	MESSA- GEOF	RXIE	TXIE	INTPND	RMTEN	TXRQS T
1	Applica- tion	Applica- tion	Applica- tion	1	0	0	0	Applica- tion	0	0	0	0

The Arbitration Registers (ID28-0 and XTD bit) are given by the application. They define the identifier and type of accepted received messages. If an 11-bit Identifier ("Standard Frame") is used, it is programmed to ID28 - ID18, ID17 - ID0 can then be disregarded. When a Data Frame with an 11-bit Identifier is received, ID17 - ID0 will be set to '0.'

If the RxIE bit is set, the INTPND bit will be set when a received Data Frame is accepted and stored in the Message Object.

The Data Length Code (DLC3-0) is given by the application. When the Message Handler stores a Data Frame in the Message Object, it will store the received Data Length Code and eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the Message Object will be overwritten by non specified values.

The Mask Registers (MASK28-0, UMASK, MXTD, and MDIR bits) may be used (UMask='1') to allow groups of Data Frames with similar identifiers to be accepted. The Dir bit should not be masked in typical applications.

35.3.12 Handling of Received Messages

The CPU may read a received message any time via the CANn_MIRx Interface registers.

Typically the CPU will write first 0x007F to the Command Mask Register and then the number of the Message Object to the Command Request Register. That combination will transfer the whole received message from the Message RAM into the Message Buffer Register. Additionally, the bits DATAVALID and INTPND are cleared in the Message RAM (not in the Message Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits show which of the matching messages has been received.

The actual value of DATAVALID shows whether a new message has been received since last time this Message Object was read. The actual value of MESSAGEOF shows whether more than one message has been received since last time this Message Object was read. MESSAGEOF will not be automatically reset.

By means of a Remote Frame, the CPU may request another CAN node to provide new data for a receive object. Setting the TXRQST bit of a receive object will cause the transmission of a Remote Frame with the receive object's identifier. This Remote Frame triggers the other CAN node to start the transmission of the matching Data Frame. If the matching Data Frame is received before the Remote Frame could be transmitted, the TXRQST bit is automatically reset.

35.3.13 Configuration of a FIFO Buffer

With the exception of the EOB bit, the configuration of Receive Objects belonging to a FIFO Buffer is the same as the configuration of a (single) Receive Object.

To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks (if used) of these Message Objects have to be programmed to matching values. Due to the implicit priority of the Message Objects, the Message Object with the lowest number will be the first Message Object of the FIFO Buffer. The EOB bit of all Message Objects of a FIFO Buffer except the last have to be programmed to 0. The EOB bits of the last Message Object of a FIFO Buffer is set to 1, configuring it as the End of the Block.

35.3.14 Reception of Messages With FIFO Buffers

Received messages with identifiers matching to a FIFO Buffer are stored into a Message Object of this FIFO Buffer starting with the Message Object with the lowest message number.

When a message is stored into a Message Object of a FIFO Buffer the DATAVALID bit of this Message Object is set. By setting DATAVALID while EOB is 0 the Message Object is locked for further write accesses by the Message Handler until the CPU has written the DATAVALID bit back to 0.

Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is reached. If none of the preceding Message Objects is released by writing DATAVALID to 0, all further messages for this FIFO Buffer will be written into the last Message Object of the FIFO Buffer and will therefore overwrite previous messages.

35.3.15 Reading From a FIFO Buffer

When the CPU transfers the contents of Message Object to the CANn_MIRx Message Buffer registers by writing its number to the MIRx Command Request Register, the corresponding Command Mask Register should be programmed the way that bits DATAVALID and INTPND are reset to 0 (TXRQST/DATAVALID = 1 and CLRINTPND = 1). The values of these bits in the Message Control Register always reflect the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the CPU should read out the Message Objects starting at the FIFO Object with the lowest message number.

35.3.16 Handling of Interrupts

If several interrupts are pending, the CAN Interrupt Identification Register will point to the pending interrupt with the highest priority, disregarding their chronological order. An interrupt remains pending until the CPU has cleared it.

The Status Interrupt has the highest priority. Among the message interrupts, the Message Object's interrupt priority decreases with increasing message number.

A message interrupt is cleared by clearing the Message Object's INTPND bit. The Status Interrupt is cleared by reading the CANn_STATUS Register or by using the CANn_IF0IFC and CANn_IF1IFC registers respectively.

The interrupt identifier INTID in the CANn_INTID Register indicates the cause of the interrupt. When no interrupt is pending, the register will hold the value 0. If the value of the CANn_INTID Register is different from 0, then there is an interrupt pending and, if IE is set, the interrupt line to the CPU, is active (unless the corresponding bits in the CANn_IF0IEN and CANn_IF1IEN are 0). The interrupt line remains active until the CANn_INTID is back to value zero (the cause of the interrupt is reset) or until IE is reset.

The value 0x8000 indicates that an interrupt is pending because the CAN has updated (not necessarily changed) the Status Register (Error Interrupt or Status Interrupt). This interrupt has the highest priority. The CPU can update (reset) the status bits RXOK, TXOK and LEC, but a write access of the CPU to the Status Register can never generate or reset an interrupt.

All other values indicate that the source of the interrupt is one of the Message Objects, INTID points to the pending message interrupt with the highest interrupt priority.

The CPU controls whether a change of the Status Register may cause an interrupt (bits EIE and SIE in the CAN Control Register) and whether the interrupt line becomes active when the Interrupt Identification Register is different from zero (the IF1IEN register and the bit IE in the CAN Control Register). The Interrupt Indentification Register will be updated even when IE is reset

The CPU has 3 possibilities to follow the source of a message interrupt. First, it can follow the INTID in the Interrupt Identification Register. Second, it can poll the Interrupt Pending Register and finally it can read the CANn IF0IF register.

An interrupt service routine reading the message that is the source of the interrupt may read the message and reset the Message Object's INTPND at the same time (bit CLRINTPND in the Command Mask Register). When INTPND is cleared, the CANn_INTID will point to the next Message Object with a pending interrupt.

35.3.17 Configuration of the Bit Timing

Even if minor errors in the configuration of the CAN bit timing do not result in immediate failure, the performance of a CAN network can be reduced significantly. In many cases, the CAN bit synchronisation will amend a faulty configuration of the CAN bit timing to such a degree that only occasionally an error frame is generated. In the case of arbitration however, when two or more CAN nodes simultaneously try to transmit a frame, a misplaced sample point may cause one of the transmitters to become error passive.

Table 35.6. Parameters of the CAN Bit Time

Parameter	Range	Remark
BRP	[132]	Defines the length of the time quantum t _q
Sync_Seg	1 t _q	fixed length, synchronization of bus input to the system clock
Prop_Seg	[18] t _q	compensates for the physical delay times
Phase_Seg1	[18] t _q	may be lengthened temporarily by synchronization
Phase_Seg2	[18] t _q	may be shortenend temporarily by synchronization
SJW	[14] t _q	may not be longer than either Phase Buffer Segment

35.3.17.1 Bit Time and Bit Rate

CAN supports bit rates in the range of lower than 1 kBit/s up to 1000 kBit/s. Each member of the CAN network has its own clock generator, usually a quartz oscillator. The timing parameter of the bit time (i.e. the reciprocal of the bit rate) can be configured individually for each CAN node, creating a common bit rate even though the CAN nodes' oscillator periods osc may be different.

According to the CAN specification, the bit time is divided into four segments. The Synchronization Segment, the Propagation Time Segment, the Phase Buffer Segment 1, and the Phase Buffer Segment 2. Each segment consists of a specific, programmable number of time quanta The length of the time quantum (t_q), which is the basic time unit of the bit time, is defined by the CAN controller's system clock f_{sys} and the Baud Rate Prescaler (BRP): $t_q = BRP / f_{sys}$.

The Synchronisation Segment Sync_Seg is that part of the bit time where edges of the CAN bus level are expected to occur; the distance between an edge that occurs outside of Sync_Seg and the Sync_Seg is called the phase error of that edge. The Propagation Time Segment (Prop_Seg) is intended to compensate for the physical delay times within the CAN network. The Phase Buffer Segments (Phase_Seg1) and (Phase_Seg2) surround the Sample Point. The (Re-)Synchronisation Jump Width (SJW) defines how far a resynchronisation may move the Sample Point inside the limits defined by the Phase Buffer Segments to compensate for edge phase errors.

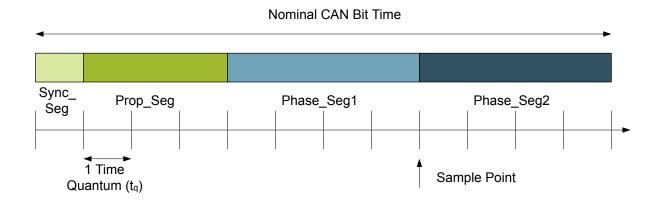


Figure 35.6. Bit Timing

35.3.17.2 EM2 Operation

The CAN module is retained in EM2 (including the Message RAM). However, to ensure that the Message RAM data is not corrupted, the INIT bit in the Control Register needs to be 1 before entering EM2. This will mean that the user will have to clear the INIT upon exit from EM2 so that the CAN module can resynchronize itself to the bus and then take part in the sending and receiving of messages.

35.3.17.3 Software BIST for Message RAM

The Message RAM is tested using a software BIST. The CANn_MDATA and the CANn_MEMACC registers are present for this purpose. The CANn_MDATA register is used to hold the read/write data from/to the RAM and CANn_MEMACC is used to access a particular memory location. It should be noted, that the Message RAM is 32 locations deep and 136 bits wide so to exercise a location in its enitrety the SUBWORD field needs to be used (since access is restricted to word boundaries).

35.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	CANn_CTRL	RW	Control Register
0x004	CANn_STATUS	RWH	Status Register
0x008	CANn_ERRCNT	R	Error Count Register
0x00C	CANn_BITTIMING	RW	Bit Timing Register
0x010	CANn_INTID	R	Interrupt Identification Register
0x014	CANn_TEST	RWH	Test Register
0x018	CANn_BRPE	RW	BRP Extension Register
0x01C	CANn_TRANSREQ	R	Transmission Request Register
0x020	CANn_MESSAGEDATA	R	New Data Register
0x028	CANn_MESSAGESTATE	R	Message Valid Register
0x02C	CANn_CONFIG	RW	Configuration Register
0x030	CANn_IF0IF	R	Message Object Interrupt Flag Register
0x034	CANn_IF0IFS	W1	Message Object Interrupt Flag Set Register
0x038	CANn_IF0IFC	(R)W1	Message Object Interrupt Flag Clear Register
0x03C	CANn_IF0IEN	RW	Message Object Interrupt Enable Register
0x040	CANn_IF1IF	R	Status Interrupt Flag Register
0x044	CANn_IF1IFS	W1	Message Object Interrupt Flag Set Register
0x048	CANn_IF1IFC	(R)W1	Message Object Interrupt Flag Clear Register
0x04C	CANn_IF1IEN	RW	Status Interrupt Enable Register
0x050	CANn_ROUTE	RW	I/O Routing Register
0x060	CANn_MIR0_CMDMASK	RW	Interface Command Mask Register
0x064	CANn_MIR0_MASK	RW	Interface Mask Register
0x068	CANn_MIR0_ARB	RW	Interface Arbitration Register
0x06C	CANn_MIR0_CTRL	RWH	Interface Message Control Register
0x070	CANn_MIR0_DATAL	RW	Interface Data a Register
0x074	CANn_MIR0_DATAH	RW	Interface Data B Register
0x078	CANn_MIR0_CMDREQ	RWH	Interface Command Request Register
0x080	CANn_MIR1_CMDMASK	RW	Interface Command Mask Register
0x084	CANn_MIR1_MASK	RW	Interface Mask Register
0x088	CANn_MIR1_ARB	RW	Interface Arbitration Register
0x08C	CANn_MIR1_CTRL	RWH	Interface Message Control Register
0x090	CANn_MIR1_DATAL	RW	Interface Data a Register
0x094	CANn_MIR1_DATAH	RW	Interface Data B Register
0x098	CANn_MIR1_CMDREQ	RWH	Interface Command Request Register

35.5 Register Description

35.5.1 CANn_CTRL - Control Register

Offset															Bi	t Po	sitio	on														
0x000	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	ဝ	∞	7	9	2	4	က	2	_	0
Reset			'			'			•	•		•		1	'	'		•				•		•	0	0	0		0	0	0	-
Access																									₩	₩	₽		₹	₽	₽	R W
Name																									TEST	CCE	DAR		出	SIE	ш	ΗNI

			_	
Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7	TEST	0	RW	Test Mode Enable Write
	Enables access to th	e Test Register.		
6	CCE	0	RW	Configuration Change Enable
	Enables access to th	e Bit Timing Reg	ister	
5	DAR	0	RW	Disable Automatic Retransmission
	When set, automatic	retransmission is	s disabled.	
4	Reserved	To ensure cor tions	npatibility v	vith future devices, always write bits to 0. More information in 1.2 Conven-
3	EIE		DIA	
	LIL	0	RW	Error Interrupt Enable
	Enables error interru	•		·
2		•		·
2	Enables error interru	pts on status reg	ister chang	e. Status Change Interrupt Enable
2	Enables error interru	pts on status reg	ister chang	e. Status Change Interrupt Enable
	Enables error interru	pts on status reg 0 upts on status re 0	ister chang RW gister chan	e. Status Change Interrupt Enable ge.

The Bus Off recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened by setting or resetting INIT. If the device goes Bus Off, it will set INIT of its own accord, stopping all bus activities. Once INIT has been cleared by the CPU, the device will then wait for 129 occurrences of Bus Idle (129 * 11 consecutive recessive bits) before resuming normal operations. At the end of the Bus Off recovery sequence, the Error Management Counters will be reset. During the waiting time after the resetting of INIT, each time a sequence of 11 recessive bits has been monitored, a Bit0Error code is written to the Status Register, enabling the CPU to readily check whether the CAN bus is stuck at dominant or continuously disturbed and to monitor the proceeding of the Bus Off recovery sequence.

35.5.2 CANn_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	1	10	6	8	7	9	5	4	3	2	_	0
Reset				•											•		•	•							0	0	0	0	0		000	
Access																									~	22	R	RW	₩ M		Z.	
Name																									BOFF	EWARN	EPASS	RXOK	TXOK		LEC	

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure cortions	mpatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
7	BOFF	0	R	Bus Off Status
6	EWARN	0	R	Warning Status
5	EPASS	0	R	Error Passive
4	RXOK	0	RW	Received a Message Successfully
3	TXOK	0	RW	Transmitted a Message Successfully
2:0	LEC	0x0	RW	Last Error Code

The LEC field holds a code which indicates the type of the last error to occur on the CAN bus. This field will be cleared to '0' when a message has been transferred (reception or transmission) without error. The unused code 0x07 may be written by the CPU to check for updates.

Value	Mode	Description
0	NONE	No error occurred during last CAN bus event.
1	STUFF	More than 5 equal bits in a sequence have occurred in a part of a received message where this is not allowed.
2	FORM	A fixed format part of a received frame has the wrong format.
3	ACK	The message this CAN Core transmitted was not acknowledged by another node.
4	BIT1	During the transmission of a message (with the exception of the arbitration field), the device wanted to send a recessive level (bit of logical value 1), but the monitored bus value was dominant.
5	BIT0	During the transmission of a message (or acknowledge bit, or active error flag, or overload flag), the device wanted to send a dominant level (data or identifier bit logical value 0), but the monitored Bus value was recessive. During Bus Off recovery this status is set each time a sequence of 11 recessive bits has been monitored. This enables the CPU to monitor the proceeding of the Bus Off recovery sequence (indicating the bus is not stuck at dominant or continuously disturbed).

Bit	Name	Reset	Access	Description
	6	CRC		The CRC check sum was incorrect in the message received; the CRC received for an incoming message does not match with the calculated CRC for the received data.
	7	UNUSED		When the LEC shows the value '7', no CAN bus event was detected since the CPU wrote this value to the LEC.

35.5.3 CANn_ERRCNT - Error Count Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	3	2	_	0
Reset			•	•								•		•			0				0x00							00×0			·	
Access																	<u>~</u>				œ							α				
Name																	RECERRP				REC							TEC) 			

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15	RECERRP	0	R	Receive Error Passive
	Value	Mode		Description
	0	FALSE		The Receive Error Counter is below the error passive level.
	1	TRUE		The Receive Error Counter has reached the error passive level as defined in the CAN Specification.
14:8	REC	0x00	R	Receive Error Counter
	Actual state of the	Receive Error Co	ounter. Value	es between 0 and 127.
7:0	TEC	0x00	R	Transmit Error Counter
	Actual state of the	Transmit Error C	ounter. Valu	es between 0 and 255.

35.5.4 CANn_BITTIMING - Bit Timing Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	3	2	_	0
Reset																			0x2			0x3	!		2	3			0	-		
Access																			Z ≪			8			Š	2			Ņ	<u>}</u>		
Name																			TSEG2			TSEG-1) 		\ <u>\</u>	200			a	2		

Bit	Name	Reset	Access	Description
31:15	Reserved	To ensure contions	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
14:12	TSEG2	0x2	RW	Time Segment After the Sample Point
	The valid values for the value programme	•	.7]. The act	rual interpretation by the hardware of this value is such that one more than
11:8	TSEG1	0x3	RW	Time Segment Before the Sample Point
	The valid values for the value programme	-	.15]. The a	ctual interpretation by the hardware of this value is such that one more than
7:6	SJW	0x0	RW	Synchronization Jump Width
	The valid programme the value programme	-	3]. The ac	ctual interpretation by the hardware of this value is such that one more than
5:0	BRP	0x01	RW	Baud Rate Prescaler
	multiple of the quanta	a. Valid values fo	or the Baud	divided for generating the bit time quanta. The bit time is built up from a Rate Prescaler are [063]. The actual interpretation by the hardware of programmed here is used.

35.5.5 CANn_INTID - Interrupt Identification Register

caused the interrupt. 33-63: Unused.

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	8	7	9	2	4	က	2	_	0
Reset		'	•		'		'		'				'	•	•	'	0			'		•				•			2	000		
Access																	œ												۵	۷		
Name																	INTSTAT													<u> </u>		

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15	INTSTAT	0	R	Status Interupt

A Status Interrupt is generated by bits BOFF and EWARN (Error Interrupt) or by RXOK, TXOK, and LEC (Status Change Interrupt) assumed that the corresponding enable bits in the CAN Control Register are set. A change of bit EPASS or a write to RXOK, TXOK, or LEC will never generate a Status Interrupt. Reading the Status Register will clear the Status Interrupt value (0x8000) in the Interrupt Identification Register, if it is pending.

Value	Mode	Description
0	FALSE	Status Interrupt is cleared
1	TRUE	Status Interrupt is generated
Reserved	To ensure compa	atibility with future devices, always write bits to 0. More information in 1.2 Conven-

5:0 INTID 0x00 R Interrupt Identifier

Number here indicated the source of the interrupt.0: No interrupt is pending. 1-32: Number of Message Object which

14:6

35.5.6 CANn_TEST - Test Register

33.3.3	,					- 3																										
Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset			•		•	•		•	•			•	•			•			•						0	Š	Š	0	0	0		
Access																									ď	2	≥ Y	R W	Z.	RW		
Name																									X	}	<u> </u>	LBACK	SILENT	BASIC		
Bit	Na	me					Re	set			Ac	ces	s l	Des	crip	tion																
31:8	Re	serv	red				To tion		ure	com	pati	bility	/ wit	th fu	ture	dev	rices	s, al	way	's WI	rite b	its t	to 0.	Мо	re in	forn	natio	on in	1.2	? Co	nvei	7-

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
7	RX	0	R	Monitors the Actual Value of CAN_RX Pin
	Write a 1 to this	bit to start timer.		
	Value	Mode		Description
	0	LOW		CAN bus is dominant.
	1	HIGH		CAN bus is recessive.
6:5	TX	0x0	RW	Control of CAN_TX Pin
	The different tes	t functions may be	combined, b	ut tx[1:0] not equal to 0 disturbs message transfer.
	Value	Mode		Description
	0	CORE		Reset value, CAN_TX is controlled by the CAN Core.
	1	SAMPT		Sample Point can be monitored at CAN_TX pin.
	2	LOW		CAN_TX pin drives a dominant bit (0) value.
	3	HIGH		CAN_TX pin drives a recessive bit (1) value.
4	LBACK	0	RW	Loopback Mode
	When set, CAN	treats its own transi	mitted messa	ages as received messages.
3	SILENT	0	RW	Silent Mode
		is able to receive va t start a transmission		nes and valid remote frames, but it sends only recessive bits on the CAN
2	BASIC	0	RW	Basic Mode
	Enables low-leve	el data transmit and	I receive via	CANn_MIR0_xxx and CANn_MIR1_xxx registers.
1:0	Reserved	To ensure c	ompatibility (with future devices, always write bits to 0. More information in 1.2 Conven-

35.5.7 CANn_BRPE - BRP Extension Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	7	10	စ	∞	7	9	5	4	က	2	_	0
Reset		•	•		•	•				•		•		•				•						•			•			2	8	
Access																														<u> </u>	2	
Name																														A D D D	2 2 T	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
3:0	BRPE	0x0	RW	Baud Rate Prescaler Extension
	By programming BRF	PE the Baud Ra	te Prescale	r can be extended to values up to 1023. The actual interpretation by the

By programming BRPE the Baud Rate Prescaler can be extended to values up to 1023. The actual interpretation by the hardware is that one more than the value programmed by BRPE (MSBs) and BRP (LSBs) is used.

35.5.8 CANn_TRANSREQ - Transmission Request Register

Offset															Bit	Posi	itic	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	9 4	2	4	13	12	7	9	စ	∞	7	9	5	4	က	2	-	0
Reset																0x0000000x0		·														
Access																~																
Name																TXRQSTOUT																

Name	Reset	Access	Description
TXRQSTOUT	0x00000000	R	Transmission Request Bits (Of All Message Objects)
By reading the TXRC	STOUT bits, the	CPU can	check for which Message Object's Transmission Request is pending.
Value	Mode		Description
0	FALSE		This Message Object is not waiting for transmission.
1	TRUE		The transmission of this Message Object is requested and is not yet done.
	TXRQSTOUT By reading the TXRC Value	TXRQSTOUT 0x00000000 By reading the TXRQSTOUT bits, the Value Mode 0 FALSE	TXRQSTOUT 0x00000000 R By reading the TXRQSTOUT bits, the CPU can Value Mode 0 FALSE

35.5.9 CANn_MESSAGEDATA - New Data Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	æ	7	9	5	4	က	2	_	0
Reset		00000000000000000000000000000000000000																														
Access																٥	צ															
Name																	VALID															

Bit	Name	Reset	Access	Description
31:0	VALID	0x00000000	R	DATAVALID Bits (of All Message Objects)
	By reading out the VA	LID bits, the CF	U can che	ck for which Message Object the data portion was updated.

35.5.10 CANn_MESSAGESTATE - Message Valid Register

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset																	nxnnnnnxn		•													
Access																٥	۲															
Name																2	VALID															

Bit	Name	Reset	Access	Description
31:0	VALID	0x00000000	R	Message Valid Bits (of All Message Objects)
	By reading out the VA	LID bits, the CF	PU can che	ck which Message Object is valid.

35.5.11 CANn_CONFIG - Configuration Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	3	2	_	0
Reset				•	'		•						•				0								'		'			<u> </u>	'	
Access																	RW															
Name																	DBGHALT															

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-
15	DBGHALT	0	RW	Debug Halt
	Value	Mode		Description
	0	NORMAL		Normal operation when debug mode is active
	1	STALL		Stall when debug mode is active. Register write access is blocked in this mode
14:0	Reserved	To ensure co	ompatibility	with future devices, always write bits to 0. More information in 1.2 Conven-

35.5.12 CANn_IF0IF - Message Object Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset																000000000000000000000000000000000000000	0000000000															
Access																۵	۷															
Name																	MESSAGE															

Bit	Name	Reset	Access	Description
31:0	MESSAGE	0x00000000	R	Message Object Interrupt Flag

35.5.13 CANn_IF0IFS - Message Object Interrupt Flag Set Register

Offset														Bit	Pos	sitic	on														
0x034	31	30	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset															0x0000000x0	•															
Access															×																
Name															MESSAGE																
Bit	Nan	1е				Re	set			Ac	cess	s [Des	cript	ion																
31:0	MES	SSAGE	=			0x0	0000	0000	0	W1		5	Set	MES	SAG	SE I	nte	rrur	ot F	laq											

35.5.14 CANn_IF0IFC - Message Object Interrupt Flag Clear Register

Write 1 to set the MESSAGE interrupt flag

Offset															Bit	Posit	ion														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	15	4	<u>t</u> (2	12	7	9	6	8	7	9	5	4	က	2	_	0
Reset																00000000x0															
Access																(R)W1															
Name																MESSAGE															

Bit	Name	Reset	Access	Description
31:0	MESSAGE	0x00000000	(R)W1	Clear MESSAGE Interrupt Flag
	Write 1 to clear the M	ESSAGE interru	ıpt flag. Re	ading returns the value of the IF and clears the corresponding interrupt

flags (This feature must be enabled globally in MSC.).

35.5.15 CANn_IF0IEN - Message Object Interrupt Enable Register

Offset															Bi	t P	ositi	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset																	0xFFFFFFF															
Access																	X ≷															
Name																	MESSAGE															
Bit	Na	me					Re	set			Ac	ces	s	Des	crip	tio	n															
31:0	ME	SSA	AGE				0x	FFF	FFF	FF	RV	/		MES	SSA	GE	Inte	rrup	ot E	nab	le											
	Ena	able	/disa	able	the	ME	SS	AGE	inte	erru	pt																					

35.5.16 CANn_IF1IF - Status Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•	•	•									•		•		•														0
Access																																2
Name																																STATUS

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure com tions	npatibility w	vith future devices, always write bits to 0. More information in 1.2 Conven-
0	STATUS	0	R	Status Interrupt Flag

35.5.17 CANn_IF1IFS - Message Object Interrupt Flag Set Register

Offset	Bit Position	
0x044	1 1 <th>0</th>	0
Reset		0
Access		N N
Name		STATUS

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
0	STATUS	0	W1	Set STATUS Interrupt Flag
	Write 1 to set the STA	ATUS interrupt f	lag	

35.5.18 CANn_IF1IFC - Message Object Interrupt Flag Clear Register

Offset															Bi	t Pc	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	∞	7	9	5	4	က	2	_	0
Reset			•			•																										0
Access																																(R)W1
Name																																STATUS

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure cor tions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
0	STATUS	0	(R)W1	Clear STATUS Interrupt Flag
	Write 1 to clear the S (This feature must be			ling returns the value of the IF and clears the corresponding interrupt flags

35.5.19 CANn_IF1IEN - Status Interrupt Enable Register

Offset															Bi	t Po	sitio	on														
0x04C	31	30	53	78	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	ω	7	9	5	4	3	2	_	0
Reset																																_
Access																																RW
Name																																STATUS
Bit	Na	me					Res	set			Ac	cess	s l	Des	crip	tion																
31:1	Re	serve	d				To tion		ure	com	pati	bility	/ wit	th fu	ture	dev	rices	s, alı	vay	s wr	ite k	its t	to 0.	Мо	re in	forn	natio	on ir	n 1.2	Coi	nver	n-
0	ST	ATUS	3				1				RW	/	;	STA	TUS	Int	erru	ıpt l	Ena	ble												
	Ena	able/d	disal	ble t	the	STA	ATU	S in	terrı	upt																						

35.5.20 CANn_ROUTE - I/O Routing Register

Offset	CANn_ROU											Di	t Po	oiti	on														
			- (0	1.0			-								1		٥.												
x050	30 31	28	i 8	75	24	23	22	2	20	19	18	17	16	15	4	13	12		19	တ	ω	7	ဖ	2	4	က	7	_	
Reset																		OXO	<u> </u>					Oxo					
Access																		Σ N						8					
Name																		TXIOC)					EXI OC)				
Bit	Name			R	eset			Ad	cces	s	Desc	crip	tion																
31:14	Reserved				o ens	sure	con	npai	tibilit	y w	ith fu	ture	dev	rices	s, al	ways	write	e b	its to	0.	Moi	e in	forma	atio	n in	1.2	2 Co	nve	er
13:8	TXLOC			0>	x00			R۱	N		TX P	Pin L	_oca	atio	n														_
	Decides th	ne locat	ion c	of th	ie CA	\N_1	Хp	in .																					
	Value			М	ode						Desc	cript	ion																_
	0			LC	OC0						Loca	ation	0																_
	1			LC	OC1						Loca	ation	1																
	2			LC	OC2						Loca	ation	2																
	3			LC	OC3						Loca	ation	3																
	4			LC	OC4						Loca	ation	4																
	5			LC	OC5						Loca	ation	5																
	6			LC	OC6						Loca	ation	6																
	7			LC	OC7						Loca	ation	7																
7:2	RXLOC			0>	x00			R۱	V		RX F	Pin I	Loc	atio	n														_
	Decides th	ne locat	ion c	of th	ie CA	N_F	RX p	oin .																					
	Value			М	ode						Desc	cript	ion																_
	0			LC	OC0						Loca	ation	0																_
	1			LC	OC1						Loca	ation	1																
	2			LC	OC2						Loca	ation	2																
	3			LC	ЭС3						Loca	ation	3																
	4			LC	OC4						Loca	ation	4																
	5			LC	OC5						Loca	ation	5																
	6			LC	OC6						Loca	ation	6																
	7			LC	OC7						Loca	ation	7																
1	Reserved				o ens	sure	con	npai	tibilit	y w	ith fu	ture	dev	vices	s, al	ways	write	e b	its to	0.	Mor	e in	forma	atio	n in	1.2	2 Co	nve	er:

When Enabled the CAN_TX pin is enabled.

Bit	Name	Reset	Access	Description
	Value			Description
	0			The CAN_TX pin is disabled
	1			The CAN_TX pin is enabled

35.5.21 CANn_MIRx_CMDMASK - Interface Command Mask Register

													J.																		
Offset												В	it	Posit	ion																
0x060	30 30 29	7 78	72	3	25	23	22	1 2	20	5	9 8	17	5	5 5	4		13	12	7	5	2 ,	ກ	∞	7	9	2	4	6	7	_	0
Reset			•		•	•	•	•		•	•	•		•	•			•			•	'		0	0	0	0	0	0	0	0
Access																								Z.	₹	₹	R ≪	N N N	R ≪	Z N	Z.
Name																								WRRD	MASKACC	ARBACC	CONTROL	CLRINTPND	MDAT	+	DATAB
Bit	Name Reset Access Description																														
31:8	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conv															onve	n-														
7	WRRD 0 RW Write/Read RAM																														
	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Contions																														
	Value				Mode						Des	crip	tio	n																	
	0				READ)								lata fr Regist																nd	
	1			,	WRIT	E								lata fr ect ad															he N	/les-	_
6	MASKAC	С			0			R\	N		Acc	ess	N	lask l	Bits	;															
5	ARBACC			(0			R\	N		Aco	ess	A	rbitra	itioi	n	Bit	s													
4	CONTRO	L			0			R۱	N		Acc	ess	C	ontro	l Bi	its	S														
3	CLRINTPI	ND		-	0			R۱	N		Cle	ar Ir	nte	errupt	Pe	no	din	g B	it												
	A read according to the A read																														
2	TXRQSTN	NEWD	ΑT		0			R۱	N		Tra	nsm	nis	sion	Rec	ηu	est	Bit	/ No	ew	Da	ta	Bit								
	If a transm the MIRx I											RQS	ST	NEW	TAC	Γiι	n th	ne M	IIR×	(C	om	ma	nd	Mas	sk R	egis	ster,	bit	TXF	RQS	Γin
1	DATAA				0			R۱	N		Acc	ess	D	ata E	yte	s	0-3														
0	DATAB			-	0			R۱	N		СС	Cha	anı	nel M	ode	,															
	These bits	selec	t the	mo	ode fo	r Co	mp	are/0	Capt	tur	e cha	nnel	l.																		

35.5.22 CANn_MIRx_MASK - Interface Mask Register

Offset															Bi	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	3	2	-	0
Reset	-	_																0x1FFFFFFF														
Access	R ≪	R ⊗																X ≷														
Name	MXTD	MDIR																MASK														

Bit	Name	Reset	Access	Description
31	MXTD	1	RW	Mask Extended Identifier
30	MDIR	1	RW	Mask Message Direction
29	Reserved	To ensure cortions	npatibility v	with future devices, always write bits to 0. More information in 1.2 Conven-
28:0	MASK	0x1FFFFFF	RW	Identifier Mask

35.5.23 CANn_MIRx_ARB - Interface Arbitration Register

Offset															Bi	t Po	siti	on														
0x068	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	0	0	0															0x0000000x0														
Access	RW	R W	R W															ΑŠ														
Name	MSGVAL	XTD	DIR															Q														

Bit	Name	Reset	Access	Description
31	MSGVAL	0	RW	Message Valid
	CAN Control Registe	er. This bit must	also be r	sed Messages Objects during the initialization before it resets bit INIT in the eset before the identifier id[28:0], the control bits XTD, DIR, or the Data sages Object is no longer required.
30	XTD	0	RW	Extended Identifier
	Value	Mode		Description
	0	STD		The 11-bit (standard) Identifier will be used for this Message Object.
	1	EXT		The 29-bit (extended) Identifier will be used for this Message Object.
29	DIR	0	RW	Message Direction
	Value	Mode		Description
	0	RX		On TXRQST, a Remote Frame with the identifier of this Message Object is transmitted. On reception of a Data Frame with matching identifier, that message is stored in this Message Object.
	1	TX		On TXRQST, the respective Message Object is transmitted as a Data Frame. On reception of a Remote Frame with matching identifier, the TXRQST bit of this Message Object is set (if RMTEN = 1).
28:0	ID	0x00000000	RW	Message Identifier

ID[28:0] is 29-bit Identifier for Extended Frame. ID[28:18] is 11-bit Identifier for Standard Frame. When 11-bit (standard) Identifiers are used for a Message Object, the identifiers of received Data Frames are written into bits ID[28:18]. For acceptance filtering, only these bits together with mask bits MSK[28:18] are considered. The Arbitration Registers ID[28:0], XTD, and DIR are used to define the identifier and type of outgoing messages and are used (together with the mask registers MSK[28:0], MXTD, and MDIR) for acceptance filtering of incoming messages. A received message is stored into the valid Message Object with matching identifier and direction=receive (Data Frame) or direction=transmit (Remote Frame). Extended frames can be stored only in Message Objects with XTD=one, standard frames in Message Objects with XTD=zero. If a received message (Data Frame or Remote Frame) matches with more than one valid Message Object, it is stored into that with the lowest message number.

35.5.24 CANn_MIRx_CTRL - Interface Message Control Register

Office														ъ.	4.0	!4															
Offset		T		1	1	1						1			Т	ositi															
0x06C	33	59	28	27	26	52	24	23	22	2	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7		0
Reset																0	0	0	0	0	0	0	0	0					ć	<u> </u>	
Access																RWH	RWH	RW	RW	RW	RW	RW	RW	RW					Š	Š Y	
Name																DATAVALID	MESSAGEOF	INTPND	UMASK	TXIE	RXIE	RMTEN	TXRQST	EOB					(חרר	
Bit	Name					Re	eset			Ac	ces	s	Des	crip	tio	n															
31:16	Reserv	ved					ens ons	ure	con	npati	ibilit <u>.</u>	y w	ith fu	ıture	de	vice	s, al	way	s wi	ite k	oits t	o 0.	Мо	re in	forn	natio	on in	1.2	2 Co	nven-	-
15	DATA	VALI	ID			0				RV	۷H		Nev	v Da	ta																
14	MESS	AGE	OF	=		0				RV	VΗ		Mes			.ost	(onl	y Va	alid	for	Mes	sag	e O	bjed	ets V	Vith	Dir	ect	ion :	=	
13	INTPN	ID				0				RV	V		Inte	rrup	ot P	end	ing														
12	UMAS	K				0				RV	V		Use	Ac	сер	tano	e M	lask													
	If the U									ssag	je O)bje	ct's	mas	k bi	ts ha	ave 1	to be	e pro	ogra	mm	ed d	lurin	g in	itiali	zatio	on o	f the	е Ме	essag	е
11	TXIE					0				RV	V		Tra	nsm	it Ir	nteri	upt	Ena	able												
10	RXIE					0				RV	V		Rec	eive	e In	terru	ıpt l	Enal	ble												
9	RMTE	N				0				RV	V		Ren	note	En	able)														
8	TXRQ	ST				0				RV	V		Tra	nsm	it R	Requ	est														
7	EOB					0				RV	V		End	of	Buf	fer															
	This bi																	32) to	o bu	ild a	FIF	O E	Buffe	r. F	or si	ngle	е Ме	essa	ige (Objec	ts
6:4	Reserv	ved					o ens	ure	con	npati	ibilit <u>.</u>	y w	ith fu	ıture	de	vice	s, al	way	s wi	ite k	oits t	o 0.	Мо	re in	forn	natio	on in	1.2	2 Co	nven-	

The Data Length Code of a Message Object must be defined the same as in all the corresponding objects with the same identifier at other nodes. When the Message Handler stores a data frame, it will write the DLC to the value given by the received message. 0-8: Data Frame has 0-8 data bytes. 9-15: Data Frame has 8 data bytes.

Data Length Code

0x0

RW

3:0

DLC

35.5.25 CANn_MIRx_DATAL - Interface Data a Register

Offset															Bi	t Po	siti	on														
0x070	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	2	1	0
Reset		0000										0	000							0	000							0	000			
Access	RW 0										2	<u> </u>							2	}							2	<u>}</u>				
Name	DATA3										CATAO	7							TATA1													

Bit	Name	Reset	Access	Description
31:24	DATA3	0x00	RW	Fourth Byte of CAN Data Frame
23:16	DATA2	0x00	RW	Third Byte of CAN Data Frame
15:8	DATA1	0x00	RW	Second Byte of CAN Data Frame
7:0	DATA0	0x00	RW	First Byte of CAN Data Frame

35.5.26 CANn_MIRx_DATAH - Interface Data B Register

Offset															Bi	t Po	sitio	on														
0x074	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset		0000									0	₹							0	0000							Č	noxn			<u> </u>	
Access		W. W.									2	2							2	2							Ž	≩ Y				
Name	DATA7 R									DATAR	2							DATAR	2							F	DA I A4					

Bit	Name	Reset	Access	Description
31:24	DATA7	0x00	RW	Eight Byte of CAN Data Frame
23:16	DATA6	0x00	RW	Seventh Byte of CAN Data Frame
15:8	DATA5	0x00	RW	Sixth Byte of CAN Data Frame
7:0	DATA4	0x00	RW	Fifth Byte of CAN Data Frame

35.5.27 CANn_MIRx_CMDREQ - Interface Command Request Register

0x01

RW

Offset															Ві	t Po	siti	on														
0x078	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	3	2	_	0
Reset													'	1			0		'	'				'					0	-	•	
Access																	22												<u> </u>	2		
Name																	BUSY												MINUS			

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility (with future devices, always write bits to 0. More information in 1.2 Conven-
15	BUSY	0	R	Busy Flag

A message transfer is started as soon as the CPU has written the message number to the Command Request Register. With this write operation the busy bit is automatically set to '1' and signal CAN_WAIT_B is pulled LOW to notify the CPU that a transfer is in progress. After a wait time of 3 to 6 CAN_CLK periods, the transfer between the Interface Register and the Message RAM has completed. The busy bit is set back to zero and CAN_WAIT_B is set back to HIGH.

	Value	Mode	Description
	0	FALSE	Reset to zero when read/write action has finished.
	1	TRUE	Set to one when writing to the MIRx Command Request Register.
14:6	Reserved	To ensure compatib	ility with future devices, always write bits to 0. More information in 1.2 Conven-

Message Number

When a Message Number that is not valid is written into the Command Request Register, the Message Number will be transformed into a valid value and that Message Object will be transferred. There are 32 Message Objects in the Message RAM. To avoid conflicts between CPU accessing to the Message RAM and CAN message reception and transmission, the CPU cannot directly access the Message Objects, these accesses are handled via the MIRx Interface Registers. 1-32: Valid Message Number, the Message Object in the Message RAM is selected for data transfer. 0: Not a valid Message Number, interpreted as 32. 33-63: Not a valid Message Number, interpreted as 1-31.

5:0

MSGNUM

36. Revision History

Revision 1.1

March. 2021

- · Added description of VLP and ACMP startup behavior when External Override Interface is enabled.
- Updated the Notes in Table 10.8 Oscillator and Clock Availability in Energy Modes on page 321.
- Updated the Note under 21.3.1.6 Underflow/Overflow From Neighboring Timer.
- · Added a Note to 27.3.3.2 Scan Mode.
- Updated 27.3.10.9 Temperature Measurement and added an additional Note.
- · Made minor changes and fixed typos throughout the document.

Revision 1.0

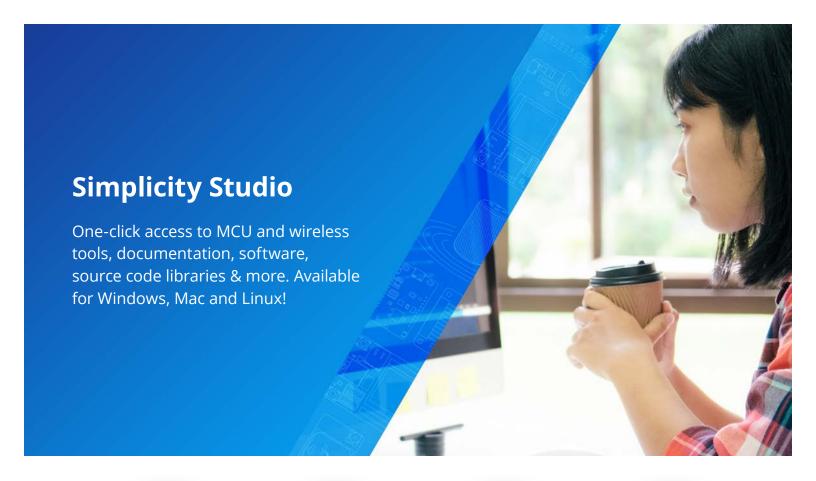
November, 2018

- 6.3.8 Instruction Cache: Added note about icache flush on bus fault events.
- · Changes to Note: element formatting throughout document.
- Table 9.3 EMU Wake-Up Triggers from Low Energy Modes on page 233: Added missing wake-up trigger sources.
- 9.3.13 Powering Off SRAM Blocks: Extended description with additional detail.
- Figure 10.2 CMU Overview Low Frequency Portion on page 298: Corrected clock tree diagram to show CSEN and SYSTICK options.
- 10. CMU Clock Management Unit: HFXO control register descriptions clarified for startup and steady state configuration.
- 14.3.1.3 Configurable PRS Logic: Clarified ANDNEXT and ORPREV behavior for first and last PRS channels.
- 14.3.2 Producers: Added more detail about GPIO producer source.
- 14.3.5 DMA Request on PRS: Fixed incorrect bit / register names and clarified signals for DMA are PRSRQE0 and PRSREQ1.
- · Added section for 19. UART Universal Asynchronous Receiver/ Transmitter.
- 27.3.10.2 Repetitive Mode: Added description of timing for SYNC mode and REPDELAY setting.

Revision 0.5

February, 2018

Initial version.


Appendix 1. Abbreviations

This section lists abbreviations used in this document.

Table 1.1. Abbreviations

ACMP Analog Comparator ADC Analog to Digital Converter AHB AMBA Advanced High-performance Bus. AMBA is short for "Advanced Microcontroller Bus Architecture". APB AMBA Advanced Peripheral Bus. AMBA is short for "Advanced Microcontroller Bus Architecture". ALE Address Latch Enable AUXHFRCO Auxiliary High Frequency RC Oscillator. CC Compare / Capture CIC Cascaded Integrator Comb CLK Clock CMD Command CMU Clock Management Unit CTRL Control DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode (also called active mode) EMT Sleep to EM4 Hilber- nator/Shutoff EMU Energy Mode 1 to Energy Mode 4 (also called low energy modes) FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HFXO High Frequency Crystal Oscillator HW Hardware IPC Inter-Integrated Circuit interface Low Energy Sensor Interface Low Energy Sensor Interface Low Energy Sensor Interface Low Energy Sensor Interface Low Energy Sensor Interface Low Energy Sensor Interface	Abbreviation	Description
AMBA Advanced High-performance Bus. AMBA is short for "Advanced Microcontroller Bus Architecture". APB AMBA Advanced Peripheral Bus. AMBA is short for "Advanced Microcontroller Bus Architecture". ALE Address Latch Enable AUXHFRCO Auxillary High Frequency RC Oscillator. CC Compare / Capture CIC Cascaded Integrator Comb CLK Clock CMD Command CMU Clock Management Unit CTRL Control DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Friendly Microcontroller EM Energy Mode 1 to Energy Mode 4 (also called low energy modes) EMU Energy Mode 1 to Energy Mode 4 (also called low energy modes) EFS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HW Hardware I²C Inter-integrated Circuit interface Liquid Crystal Display	ACMP	Analog Comparator
ture". APB AMBA Advanced Peripheral Bus. AMBA is short for "Advanced Microcontroller Bus Architecture". ALE Address Latch Enable AUXHFRCO Auxiliary High Frequency RC Oscillator. CC Compare / Capture CIC Cascaded Integrator Comb CLK Clock CMD Command CMU Clock Management Unit CTRL Control DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hiber nate/Shutoff EFS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HW Hardware I/C Inter-Integrated Circuit interface LCD Liquid Crystal Display	ADC	Analog to Digital Converter
ALE Address Latch Enable AUXHFRCO Auxiliary High Frequency RC Oscillator. CC Compare / Capture CIC Cascaded Integrator Comb CLK Clock CMD Command CMU Clock Management Unit CTRL Control DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Mode 0 (also called active mode) EMM Active Energy Mode 0 (also called active mode) EMI Sleep to EM4 Hiber- nate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency Crystal Oscillator HW Hardware 2C Inter-Integrated Circuit interface Liguid Crystal Display	АНВ	
AUXHFRCO Auxiliary High Frequency RC Oscillator. CC Compare / Capture CIC Cascaded Integrator Comb CLK Clock CMD Command CMU Clock Management Unit CTRL Control DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Mode 0 (also called active mode) EMI Sleep to EM4 Hiber- nate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency Crystal Oscillator HW Hardware #C Inter-Integrated Circuit interface Liquid Crystal Display	APB	AMBA Advanced Peripheral Bus. AMBA is short for "Advanced Microcontroller Bus Architecture".
CC Compare / Capture CIC Cascaded Integrator Comb CLK Clock CMD Command CMU Clock Management Unit CTRL Control DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hilber- alter/Shutoff EMU Energy Mode 1 to Energy Mode 4 (also called low energy modes) EM0 Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency Crystal Oscillator HW Hardware i²C Inter-Integrated Circuit interface LIQUI Command Command	ALE	Address Latch Enable
CIC Cascaded Integrator Comb CLK Clock CMD Command CMU Clock Management Unit CTRL Control DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hiber- ates // Shutoff EMU Energy Mode 1 to Energy Mode 4 (also called low energy modes) EMU Energy Mode Dista Poly Mode EMO Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency Crystal Oscillator HW Hardware i²C Inter-Integrated Circuit interface LIQuid Crystal Display	AUXHFRCO	Auxiliary High Frequency RC Oscillator.
CLK Clock CMD Command CMU Clock Management Unit CTRL Control DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode EMO Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hiber- nate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HW Hardware i²C Inter-Integrated Circuit interface LCD Liquid Crystal Display	CC	Compare / Capture
CMD Command CMU Clock Management Unit CTRL Control DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode EMO Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hibernate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HW Hardware I/C Inter-Integrated Circuit interface LCD Liquid Crystal Display	CIC	Cascaded Integrator Comb
CMU Clock Management Unit CTRL Control DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode EMO Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hiber-nate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HW Hardware IPC Inter-Integrated Circuit interface LCD Liquid Crystal Display	CLK	Clock
CTRL Control DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode EMO Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hiber- nate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency Crystal Oscillator HW Hardware IPC Inter-Integrated Circuit interface LCD Liquid Crystal Display	CMD	Command
DAC Digital to Analog Converter DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode EMO Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hibernate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware IPC Inter-Integrated Circuit interface LCD Liquid Crystal Display	CMU	Clock Management Unit
DBG Debug DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode EMO Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hibernate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HW Hardware IPC Inter-Integrated Circuit interface LCD Liquid Crystal Display	CTRL	Control
DMA Direct Memory Access DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode EMO Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hiber- nate/Shutoff Energy Management Unit EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware I²C Inter-Integrated Circuit interface LCD Liquid Crystal Display	DAC	Digital to Analog Converter
DRD Dual Role Device DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode EMO Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hiber- nate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware IPC Inter-Integrated Circuit interface LCD Liquid Crystal Display	DBG	Debug
DTI Dead Time Insertion EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode EMO Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hibernate/Shutoff EMU Energy Mode 1 to Energy Mode 4 (also called low energy modes) EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware 2C Inter-Integrated Circuit interface LCD Liquid Crystal Display	DMA	Direct Memory Access
EBI External Bus Interface EFM Energy Friendly Microcontroller EM Energy Mode EM0 Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hiber- nate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware I²C Inter-Integrated Circuit interface LCD Liquid Crystal Display	DRD	Dual Role Device
EFM Energy Friendly Microcontroller EM Energy Mode EM0 Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hiber- nate/Shutoff Energy Mode 1 to Energy Mode 4 (also called low energy modes) EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware I²C Inter-Integrated Circuit interface LCD Liquid Crystal Display	DTI	Dead Time Insertion
EM Energy Mode EM0 Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hiber- nate/Shutoff Energy Mode 1 to Energy Mode 4 (also called low energy modes) EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware I²C Inter-Integrated Circuit interface LCD Liquid Crystal Display	EBI	External Bus Interface
EM0 Active Energy Mode 0 (also called active mode) EM1 Sleep to EM4 Hiber- nate/Shutoff Energy Mode 1 to Energy Mode 4 (also called low energy modes) EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware I²C Inter-Integrated Circuit interface LCD Liquid Crystal Display	EFM	Energy Friendly Microcontroller
EM1 Sleep to EM4 Hiber- nate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware I ² C Inter-Integrated Circuit interface LCD Liquid Crystal Display	EM	Energy Mode
nate/Shutoff EMU Energy Management Unit ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware I ² C Inter-Integrated Circuit interface LCD Liquid Crystal Display	EM0 Active	Energy Mode 0 (also called active mode)
ENOB Effective Number of Bits FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware I ² C Inter-Integrated Circuit interface LCD Liquid Crystal Display		Energy Mode 1 to Energy Mode 4 (also called low energy modes)
FS Full-speed GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware I ² C Inter-Integrated Circuit interface LCD Liquid Crystal Display	EMU	Energy Management Unit
GPIO General Purpose Input / Output HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware I ² C Inter-Integrated Circuit interface LCD Liquid Crystal Display	ENOB	Effective Number of Bits
HFRCO High Frequency RC Oscillator HFXO High Frequency Crystal Oscillator HW Hardware I ² C Inter-Integrated Circuit interface LCD Liquid Crystal Display	FS	Full-speed
HFXO High Frequency Crystal Oscillator HW Hardware I ² C Inter-Integrated Circuit interface LCD Liquid Crystal Display	GPIO	General Purpose Input / Output
HW Hardware I ² C Inter-Integrated Circuit interface LCD Liquid Crystal Display	HFRCO	High Frequency RC Oscillator
Inter-Integrated Circuit interface LCD Liquid Crystal Display	HFXO	High Frequency Crystal Oscillator
LCD Liquid Crystal Display	HW	Hardware
	I ² C	Inter-Integrated Circuit interface
LESENSE Low Energy Sensor Interface	LCD	Liquid Crystal Display
	LESENSE	Low Energy Sensor Interface

Abbreviation	Description
LETIMER	Low Energy Timer
LEUART	Low Energy Universal Asynchronous Receiver Transmitter
LFRCO	Low Frequency RC Oscillator
LFXO	Low Frequency Crystal Oscillator
LS	Low-speed
MAC	Media Access Controller
NVIC	Nested Vector Interrupt Controller
OSR	Oversampling Ratio
OTG	On-the-go
PCNT	Pulse Counter
PCM	Pulse Code Modulation
PDM	Pulse Density Modulation
PHY	Physical Layer
PRS	Peripheral Reflex System
PWM	Pulse Width Modulation
RC	Resistance and Capacitance
RMU	Reset Management Unit
RTC	Real Time Clock
SAR	Successive Approximation Register
SOF	Start of Frame
SPI	Serial Peripheral Interface
SW	Software
TRNG	True Random Number Generator
UART	Universal Asynchronous Receiver Transmitter
USART	Universal Synchronous Asynchronous Receiver Transmitter
USB	Universal Serial Bus
VMON	Voltage supply monitor
WDOG	Watchdog timer
XTAL	Crystal

IoT Portfolio www.silabs.com/IoT

SW/HW www.silabs.com/simplicity

Quality www.silabs.com/quality

Support & Community www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class Ill devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs p

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA